Introducing ordered()

This commit is contained in:
Andrei Alexandrescu 2015-03-26 17:39:11 -07:00
parent 283374b78c
commit 5ca24b8392
2 changed files with 56 additions and 9 deletions

View file

@ -221,6 +221,7 @@ Params:
handlers that accept one argument. There can also be a choice that
accepts zero arguments. That choice will be invoked if the $(D
switchObject) is null.
switchObject = the object against which the tests are being made.
Returns:
The value of the selected choice.
@ -500,7 +501,7 @@ Params:
Returns:
Returns $(D val), if it is between $(D lower) and $(D upper).
Otherwise returns the nearest of the two.
Otherwise returns the nearest of the two.
*/
auto clamp(T1, T2, T3)(T1 val, T2 lower, T3 upper)
@ -708,14 +709,14 @@ template equal(alias pred = "a == b")
/++
This function compares to ranges for equality. The ranges may have
different element types, as long as $(D pred(a, b)) evaluates to $(D bool)
for $(D a) in $(D r1) and $(D b) in $(D r2).
for $(D a) in $(D r1) and $(D b) in $(D r2).
Performs $(BIGOH min(r1.length, r2.length)) evaluations of $(D pred).
Params:
r1 = The first range to be compared.
r1 = The first range to be compared.
r2 = The second range to be compared.
Returns:
Returns:
$(D true) if and only if the two ranges compare equal element
for element, according to binary predicate $(D pred).
@ -799,7 +800,7 @@ range of range (of range...) comparisons.
{
import std.algorithm.iteration : map;
import std.math : approxEqual;
import std.internal.test.dummyrange : ReferenceForwardRange,
import std.internal.test.dummyrange : ReferenceForwardRange,
ReferenceInputRange, ReferenceInfiniteForwardRange;
debug(std_algorithm) scope(success)

View file

@ -193,6 +193,52 @@ bool isSorted(alias less = "a < b", Range)(Range r) if (isForwardRange!(Range))
assert(isSorted(s)); // bidirectional
}
/**
Like $(D isSorted), returns $(D true) if the given $(D values) are ordered
according to the comparison operation $(D less). Unlike $(D isSorted), takes values
directly instead of structured in a range.
The predicate must be a strict ordering just like with $(D isSorted). For
example, $(D "a <= b") is incorrect and will cause failed assertions.
Params:
values = The tested value
less = The comparison predicate
Returns:
$(D true) if the values are ordered.
*/
bool ordered(alias less = "a < b", T...)(T values)
if ((T.length == 2 && is(typeof(binaryFun!less(values[1], values[0])) : bool))
||
(T.length > 2 && is(typeof(ordered!less(values[0 .. 1 + $ / 2])))
&& is(typeof(ordered!less(values[$ / 2 .. $]))))
)
{
foreach (i, _; T[0 .. $ - 1])
{
if (binaryFun!less(values[i + 1], values[i]))
{
assert(!binaryFun!less(values[i], values[i + 1]),
__FUNCTION__ ~ ": incorrect non-strict predicate.");
return false;
}
}
return true;
}
///
unittest
{
assert(ordered(42, 42, 43));
assert(!ordered(43, 42, 45));
// Ordered lexicographically
assert(ordered("Jane", "Jim", "Joe"));
// Incidentally also ordered by length decreasing
assert(ordered!((a, b) => a.length > b.length)("Jane", "Jim", "Joe"));
}
// partition
/**
Partitions a range in two using $(D pred) as a
@ -1229,8 +1275,8 @@ private template TimSortImpl(alias pred, R)
immutable run3 = stackLen - 2;
immutable run2 = stackLen - 3;
immutable run1 = stackLen - 4;
if ( (stackLen > 2 && stack[run2].length <= stack[run3].length + stack[run4].length) ||
if ( (stackLen > 2 && stack[run2].length <= stack[run3].length + stack[run4].length) ||
(stackLen > 3 && stack[run1].length <= stack[run3].length + stack[run2].length) )
{
immutable at = stack[run2].length < stack[run4].length ? run2 : run3;
@ -1238,10 +1284,10 @@ private template TimSortImpl(alias pred, R)
}
else if (stack[run3].length > stack[run4].length) break;
else mergeAt(range, stack[0 .. stackLen], run3, minGallop, temp);
stackLen -= 1;
}
// Assert that the code above established the invariant correctly
version (assert)
{