mirror of
https://github.com/dlang/phobos.git
synced 2025-05-09 13:02:30 +03:00
Update cross-module links.
Update crosslinks in cheat sheet.
This commit is contained in:
parent
fa803294a6
commit
309a22e916
2 changed files with 216 additions and 130 deletions
|
@ -1,54 +1,137 @@
|
|||
// Written in the D programming language.
|
||||
|
||||
/**
|
||||
Implements algorithms oriented mainly towards processing of
|
||||
sequences. Sequences processed by these functions define range-based interfaces.
|
||||
See also $(LINK2 std_range.html, Reference on ranges) and
|
||||
This package implements generic algorithms oriented towards the processing of
|
||||
sequences. Sequences processed by these functions define range-based
|
||||
interfaces. See also $(LINK2 std_range.html, Reference on ranges) and
|
||||
$(WEB ddili.org/ders/d.en/ranges.html, tutorial on ranges).
|
||||
|
||||
<script type="text/javascript">inhibitQuickIndex = 1</script>
|
||||
|
||||
$(BOOKTABLE ,
|
||||
$(TR $(TH Category) $(TH Functions)
|
||||
)
|
||||
$(TR $(TDNW Searching) $(TD $(MYREF all) $(MYREF any) $(MYREF balancedParens) $(MYREF
|
||||
boyerMooreFinder) $(MYREF canFind) $(MYREF commonPrefix) $(MYREF count)
|
||||
$(MYREF countUntil) $(MYREF endsWith) $(MYREF find) $(MYREF
|
||||
findAdjacent) $(MYREF findAmong) $(MYREF findSkip) $(MYREF findSplit)
|
||||
$(MYREF findSplitAfter) $(MYREF findSplitBefore) $(MYREF minCount)
|
||||
$(MYREF minPos) $(MYREF skipOver) $(MYREF startsWith)
|
||||
$(MYREF until) )
|
||||
)
|
||||
$(TR $(TDNW Comparison) $(TD $(MYREF among) $(MYREF castSwitch) $(MYREF clamp)
|
||||
$(MYREF cmp) $(MYREF equal) $(MYREF levenshteinDistance) $(MYREF
|
||||
levenshteinDistanceAndPath) $(MYREF max) $(MYREF min) $(MYREF mismatch)
|
||||
$(MYREF predSwitch))
|
||||
)
|
||||
$(TR $(TDNW Iteration) $(TD $(MYREF cache) $(MYREF cacheBidirectional)
|
||||
$(MYREF each) $(MYREF filter) $(MYREF filterBidirectional)
|
||||
$(MYREF group) $(MYREF groupBy) $(MYREF joiner) $(MYREF map) $(MYREF reduce)
|
||||
$(MYREF splitter) $(MYREF sum) $(MYREF uniq) )
|
||||
)
|
||||
$(TR $(TDNW Sorting) $(TD $(MYREF completeSort) $(MYREF isPartitioned)
|
||||
$(MYREF isSorted) $(MYREF makeIndex) $(MYREF multiSort) $(MYREF
|
||||
nextEvenPermutation) $(MYREF nextPermutation) $(MYREF partialSort)
|
||||
$(MYREF partition) $(MYREF partition3) $(MYREF schwartzSort) $(MYREF sort)
|
||||
$(MYREF topN) $(MYREF topNCopy) )
|
||||
)
|
||||
$(TR $(TDNW Set operations) $(TD $(MYREF cartesianProduct) $(MYREF
|
||||
largestPartialIntersection) $(MYREF largestPartialIntersectionWeighted)
|
||||
$(MYREF nWayUnion) $(MYREF setDifference) $(MYREF setIntersection) $(MYREF
|
||||
setSymmetricDifference) $(MYREF setUnion) )
|
||||
)
|
||||
$(TR $(TDNW Mutation) $(TD $(MYREF bringToFront) $(MYREF copy) $(MYREF
|
||||
fill) $(MYREF initializeAll) $(MYREF move) $(MYREF moveAll) $(MYREF
|
||||
moveSome) $(MYREF remove) $(MYREF reverse) $(MYREF strip) $(MYREF stripLeft)
|
||||
$(MYREF stripRight) $(MYREF swap) $(MYREF swapRanges) $(MYREF uninitializedFill) )
|
||||
)
|
||||
$(TR $(TDNW Utility) $(TD $(MYREF forward) ))
|
||||
)
|
||||
Algorithms are categorized into the following submodules:
|
||||
|
||||
Many functions in this module are parameterized with a function or a
|
||||
$(BOOKTABLE ,
|
||||
$(TR $(TH Category) $(TH Submodule) $(TH Functions)
|
||||
)
|
||||
$(TR $(TDNW Searching)
|
||||
$(TDNW $(SUBMODULE searching))
|
||||
$(TD
|
||||
$(SUBREF searching, all)
|
||||
$(SUBREF searching, any)
|
||||
$(SUBREF searching, balancedParens)
|
||||
$(SUBREF searching, boyerMooreFinder)
|
||||
$(SUBREF searching, canFind)
|
||||
$(SUBREF searching, commonPrefix)
|
||||
$(SUBREF searching, count)
|
||||
$(SUBREF searching, countUntil)
|
||||
$(SUBREF searching, endsWith)
|
||||
$(SUBREF searching, find)
|
||||
$(SUBREF searching, findAdjacent)
|
||||
$(SUBREF searching, findAmong)
|
||||
$(SUBREF searching, findSkip)
|
||||
$(SUBREF searching, findSplit)
|
||||
$(SUBREF searching, findSplitAfter)
|
||||
$(SUBREF searching, findSplitBefore)
|
||||
$(SUBREF searching, minCount)
|
||||
$(SUBREF searching, minPos)
|
||||
$(SUBREF searching, skipOver)
|
||||
$(SUBREF searching, startsWith)
|
||||
$(SUBREF searching, until)
|
||||
)
|
||||
)
|
||||
$(TR $(TDNW Comparison)
|
||||
$(TDNW $(SUBMODULE comparison))
|
||||
$(TD
|
||||
$(SUBREF comparison, among)
|
||||
$(SUBREF comparison, castSwitch)
|
||||
$(SUBREF comparison, clamp)
|
||||
$(SUBREF comparison, cmp)
|
||||
$(SUBREF comparison, equal)
|
||||
$(SUBREF comparison, levenshteinDistance)
|
||||
$(SUBREF comparison, levenshteinDistanceAndPath)
|
||||
$(SUBREF comparison, max)
|
||||
$(SUBREF comparison, min)
|
||||
$(SUBREF comparison, mismatch)
|
||||
$(SUBREF comparison, predSwitch)
|
||||
)
|
||||
)
|
||||
$(TR $(TDNW Iteration)
|
||||
$(TDNW $(SUBMODULE iteration))
|
||||
$(TD
|
||||
$(SUBREF iteration, cache)
|
||||
$(SUBREF iteration, cacheBidirectional)
|
||||
$(SUBREF iteration, each)
|
||||
$(SUBREF iteration, filter)
|
||||
$(SUBREF iteration, filterBidirectional)
|
||||
$(SUBREF iteration, group)
|
||||
$(SUBREF iteration, groupBy)
|
||||
$(SUBREF iteration, joiner)
|
||||
$(SUBREF iteration, map)
|
||||
$(SUBREF iteration, reduce)
|
||||
$(SUBREF iteration, splitter)
|
||||
$(SUBREF iteration, sum)
|
||||
$(SUBREF iteration, uniq)
|
||||
)
|
||||
)
|
||||
$(TR $(TDNW Sorting)
|
||||
$(TDNW $(SUBMODULE sorting))
|
||||
$(TD
|
||||
$(SUBREF sorting, completeSort)
|
||||
$(SUBREF sorting, isPartitioned)
|
||||
$(SUBREF sorting, isSorted)
|
||||
$(SUBREF sorting, makeIndex)
|
||||
$(SUBREF sorting, multiSort)
|
||||
$(SUBREF sorting, nextEvenPermutation)
|
||||
$(SUBREF sorting, nextPermutation)
|
||||
$(SUBREF sorting, partialSort)
|
||||
$(SUBREF sorting, partition)
|
||||
$(SUBREF sorting, partition3)
|
||||
$(SUBREF sorting, schwartzSort)
|
||||
$(SUBREF sorting, sort)
|
||||
$(SUBREF sorting, topN)
|
||||
$(SUBREF sorting, topNCopy)
|
||||
)
|
||||
)
|
||||
$(TR $(TDNW Set operations)
|
||||
$(TDNW $(SUBMODULE setops))
|
||||
$(TD
|
||||
$(SUBREF setops, cartesianProduct)
|
||||
$(SUBREF setops, largestPartialIntersection)
|
||||
$(SUBREF setops, largestPartialIntersectionWeighted)
|
||||
$(SUBREF setops, nWayUnion)
|
||||
$(SUBREF setops, setDifference)
|
||||
$(SUBREF setops, setIntersection)
|
||||
$(SUBREF setops, setSymmetricDifference)
|
||||
$(SUBREF setops, setUnion)
|
||||
)
|
||||
)
|
||||
$(TR $(TDNW Mutation)
|
||||
$(TDNW $(SUBMODULE mutation))
|
||||
$(TD
|
||||
$(SUBREF mutation, bringToFront)
|
||||
$(SUBREF mutation, copy)
|
||||
$(SUBREF mutation, fill)
|
||||
$(SUBREF mutation, initializeAll)
|
||||
$(SUBREF mutation, move)
|
||||
$(SUBREF mutation, moveAll)
|
||||
$(SUBREF mutation, moveSome)
|
||||
$(SUBREF mutation, remove)
|
||||
$(SUBREF mutation, reverse)
|
||||
$(SUBREF mutation, strip)
|
||||
$(SUBREF mutation, stripLeft)
|
||||
$(SUBREF mutation, stripRight)
|
||||
$(SUBREF mutation, swap)
|
||||
$(SUBREF mutation, swapRanges)
|
||||
$(SUBREF mutation, uninitializedFill)
|
||||
)
|
||||
)
|
||||
$(TR $(TDNW Utility)
|
||||
$(TDNW -)
|
||||
$(TD $(MYREF forward)
|
||||
)
|
||||
))
|
||||
|
||||
Many functions in this package are parameterized with a function or a
|
||||
$(GLOSSARY predicate). The predicate may be passed either as a
|
||||
function name, a delegate name, a $(GLOSSARY functor) name, or a
|
||||
compile-time string. The string may consist of $(B any) legal D
|
||||
|
@ -79,259 +162,262 @@ $(TR $(TH Function Name) $(TH Description))
|
|||
|
||||
$(LEADINGROW Searching)
|
||||
|
||||
$(T2 all,
|
||||
$(T2 searching, all,
|
||||
$(D all!"a > 0"([1, 2, 3, 4])) returns $(D true) because all elements
|
||||
are positive)
|
||||
$(T2 any,
|
||||
$(T2 searching, any,
|
||||
$(D any!"a > 0"([1, 2, -3, -4])) returns $(D true) because at least one
|
||||
element is positive)
|
||||
$(T2 balancedParens,
|
||||
$(T2 searching, balancedParens,
|
||||
$(D balancedParens("((1 + 1) / 2)")) returns $(D true) because the
|
||||
string has balanced parentheses.)
|
||||
$(T2 boyerMooreFinder,
|
||||
$(T2 searching, boyerMooreFinder,
|
||||
$(D find("hello world", boyerMooreFinder("or"))) returns $(D "orld")
|
||||
using the $(LUCKY Boyer-Moore _algorithm).)
|
||||
$(T2 canFind,
|
||||
$(T2 searching, canFind,
|
||||
$(D canFind("hello world", "or")) returns $(D true).)
|
||||
$(T2 count,
|
||||
$(T2 searching, count,
|
||||
Counts elements that are equal to a specified value or satisfy a
|
||||
predicate. $(D count([1, 2, 1], 1)) returns $(D 2) and
|
||||
$(D count!"a < 0"([1, -3, 0])) returns $(D 1).)
|
||||
$(T2 countUntil,
|
||||
$(T2 searching, countUntil,
|
||||
$(D countUntil(a, b)) returns the number of steps taken in $(D a) to
|
||||
reach $(D b); for example, $(D countUntil("hello!", "o")) returns
|
||||
$(D 4).)
|
||||
$(T2 commonPrefix,
|
||||
$(T2 searching, commonPrefix,
|
||||
$(D commonPrefix("parakeet", "parachute")) returns $(D "para").)
|
||||
$(T2 endsWith,
|
||||
$(T2 searching, endsWith,
|
||||
$(D endsWith("rocks", "ks")) returns $(D true).)
|
||||
$(T2 find,
|
||||
$(T2 searching, find,
|
||||
$(D find("hello world", "or")) returns $(D "orld") using linear search.
|
||||
(For binary search refer to $(XREF range,sortedRange).))
|
||||
$(T2 findAdjacent,
|
||||
$(T2 searching, findAdjacent,
|
||||
$(D findAdjacent([1, 2, 3, 3, 4])) returns the subrange starting with
|
||||
two equal adjacent elements, i.e. $(D [3, 3, 4]).)
|
||||
$(T2 findAmong,
|
||||
$(T2 searching, findAmong,
|
||||
$(D findAmong("abcd", "qcx")) returns $(D "cd") because $(D 'c') is
|
||||
among $(D "qcx").)
|
||||
$(T2 findSkip,
|
||||
$(T2 searching, findSkip,
|
||||
If $(D a = "abcde"), then $(D findSkip(a, "x")) returns $(D false) and
|
||||
leaves $(D a) unchanged, whereas $(D findSkip(a, 'c')) advances $(D a)
|
||||
to $(D "cde") and returns $(D true).)
|
||||
$(T2 findSplit,
|
||||
$(T2 searching, findSplit,
|
||||
$(D findSplit("abcdefg", "de")) returns the three ranges $(D "abc"),
|
||||
$(D "de"), and $(D "fg").)
|
||||
$(T2 findSplitAfter,
|
||||
$(T2 searching, findSplitAfter,
|
||||
$(D findSplitAfter("abcdefg", "de")) returns the two ranges
|
||||
$(D "abcde") and $(D "fg").)
|
||||
$(T2 findSplitBefore,
|
||||
$(T2 searching, findSplitBefore,
|
||||
$(D findSplitBefore("abcdefg", "de")) returns the two ranges $(D "abc")
|
||||
and $(D "defg").)
|
||||
$(T2 minCount,
|
||||
$(T2 searching, minCount,
|
||||
$(D minCount([2, 1, 1, 4, 1])) returns $(D tuple(1, 3)).)
|
||||
$(T2 minPos,
|
||||
$(T2 searching, minPos,
|
||||
$(D minPos([2, 3, 1, 3, 4, 1])) returns the subrange $(D [1, 3, 4, 1]),
|
||||
i.e., positions the range at the first occurrence of its minimal
|
||||
element.)
|
||||
$(T2 mismatch,
|
||||
$(T2 searching, mismatch,
|
||||
$(D mismatch("parakeet", "parachute")) returns the two ranges
|
||||
$(D "keet") and $(D "chute").)
|
||||
$(T2 skipOver,
|
||||
$(T2 searching, skipOver,
|
||||
Assume $(D a = "blah"). Then $(D skipOver(a, "bi")) leaves $(D a)
|
||||
unchanged and returns $(D false), whereas $(D skipOver(a, "bl"))
|
||||
advances $(D a) to refer to $(D "ah") and returns $(D true).)
|
||||
$(T2 startsWith,
|
||||
$(T2 searching, startsWith,
|
||||
$(D startsWith("hello, world", "hello")) returns $(D true).)
|
||||
$(T2 until,
|
||||
$(T2 searching, until,
|
||||
Lazily iterates a range until a specific value is found.)
|
||||
|
||||
$(LEADINGROW Comparison)
|
||||
|
||||
$(T2 among,
|
||||
$(T2 comparison, among,
|
||||
Checks if a value is among a set of values, e.g.
|
||||
$(D if (v.among(1, 2, 3)) // `v` is 1, 2 or 3))
|
||||
$(T2 castSwitch,
|
||||
$(T2 comparison, castSwitch,
|
||||
$(D (new A()).castSwitch((A a)=>1,(B b)=>2)) returns $(D 1).)
|
||||
$(T2 clamp,
|
||||
$(T2 comparison, clamp,
|
||||
$(D clamp(1, 3, 6)) returns $(D 3). $(D clamp(4, 3, 6)) returns $(D 4).)
|
||||
$(T2 cmp,
|
||||
$(T2 comparison, cmp,
|
||||
$(D cmp("abc", "abcd")) is $(D -1), $(D cmp("abc", "aba")) is $(D 1),
|
||||
and $(D cmp("abc", "abc")) is $(D 0).)
|
||||
$(T2 equal,
|
||||
$(T2 comparison, equal,
|
||||
Compares ranges for element-by-element equality, e.g.
|
||||
$(D equal([1, 2, 3], [1.0, 2.0, 3.0])) returns $(D true).)
|
||||
$(T2 levenshteinDistance,
|
||||
$(T2 comparison, levenshteinDistance,
|
||||
$(D levenshteinDistance("kitten", "sitting")) returns $(D 3) by using
|
||||
the $(LUCKY Levenshtein distance _algorithm).)
|
||||
$(T2 levenshteinDistanceAndPath,
|
||||
$(T2 comparison, levenshteinDistanceAndPath,
|
||||
$(D levenshteinDistanceAndPath("kitten", "sitting")) returns
|
||||
$(D tuple(3, "snnnsni")) by using the $(LUCKY Levenshtein distance
|
||||
_algorithm).)
|
||||
$(T2 max,
|
||||
$(T2 comparison, max,
|
||||
$(D max(3, 4, 2)) returns $(D 4).)
|
||||
$(T2 min,
|
||||
$(T2 comparison, min,
|
||||
$(D min(3, 4, 2)) returns $(D 2).)
|
||||
$(T2 mismatch,
|
||||
$(T2 comparison, mismatch,
|
||||
$(D mismatch("oh hi", "ohayo")) returns $(D tuple(" hi", "ayo")).)
|
||||
$(T2 predSwitch,
|
||||
$(T2 comparison, predSwitch,
|
||||
$(D 2.predSwitch(1, "one", 2, "two", 3, "three")) returns $(D "two").)
|
||||
|
||||
$(LEADINGROW Iteration)
|
||||
|
||||
$(T2 cache,
|
||||
$(T2 iteration, cache,
|
||||
Eagerly evaluates and caches another range's $(D front).)
|
||||
$(T2 cacheBidirectional,
|
||||
$(T2 iteration, cacheBidirectional,
|
||||
As above, but also provides $(D back) and $(D popBack).)
|
||||
$(T2 each,
|
||||
$(T2 iteration, each,
|
||||
$(D each!writeln([1, 2, 3])) eagerly prints the numbers $(D 1), $(D 2)
|
||||
and $(D 3) on their own lines.)
|
||||
$(T2 filter,
|
||||
$(T2 iteration, filter,
|
||||
$(D filter!"a > 0"([1, -1, 2, 0, -3])) iterates over elements $(D 1)
|
||||
and $(D 2).)
|
||||
$(T2 filterBidirectional,
|
||||
$(T2 iteration, filterBidirectional,
|
||||
Similar to $(D filter), but also provides $(D back) and $(D popBack) at
|
||||
a small increase in cost.)
|
||||
$(T2 group,
|
||||
$(T2 iteration, group,
|
||||
$(D group([5, 2, 2, 3, 3])) returns a range containing the tuples
|
||||
$(D tuple(5, 1)), $(D tuple(2, 2)), and $(D tuple(3, 2)).)
|
||||
$(T2 groupBy,
|
||||
$(T2 iteration, groupBy,
|
||||
$(D groupBy!((a,b) => a[1] == b[1])([[1, 1], [1, 2], [2, 2], [2, 1]]))
|
||||
returns a range containing 3 subranges: the first with just
|
||||
$(D [1, 1]); the second with the elements $(D [1, 2]) and $(D [2, 2]);
|
||||
and the third with just $(D [2, 1]).)
|
||||
$(T2 joiner,
|
||||
$(T2 iteration, joiner,
|
||||
$(D joiner(["hello", "world!"], "; ")) returns a range that iterates
|
||||
over the characters $(D "hello; world!"). No new string is created -
|
||||
the existing inputs are iterated.)
|
||||
$(T2 map,
|
||||
$(T2 iteration, map,
|
||||
$(D map!"2 * a"([1, 2, 3])) lazily returns a range with the numbers
|
||||
$(D 2), $(D 4), $(D 6).)
|
||||
$(T2 reduce,
|
||||
$(T2 iteration, reduce,
|
||||
$(D reduce!"a + b"([1, 2, 3, 4])) returns $(D 10).)
|
||||
$(T2 splitter,
|
||||
$(T2 iteration, splitter,
|
||||
Lazily splits a range by a separator.)
|
||||
$(T2 sum,
|
||||
$(T2 iteration, sum,
|
||||
Same as $(D reduce), but specialized for accurate summation.)
|
||||
$(T2 uniq,
|
||||
$(T2 iteration, uniq,
|
||||
Iterates over the unique elements in a range, which is assumed sorted.)
|
||||
|
||||
$(LEADINGROW Sorting)
|
||||
|
||||
$(T2 completeSort,
|
||||
$(T2 sorting, completeSort,
|
||||
If $(D a = [10, 20, 30]) and $(D b = [40, 6, 15]), then
|
||||
$(D completeSort(a, b)) leaves $(D a = [6, 10, 15]) and $(D b = [20,
|
||||
30, 40]).
|
||||
The range $(D a) must be sorted prior to the call, and as a result the
|
||||
combination $(D $(XREF range,chain)(a, b)) is sorted.)
|
||||
$(T2 isPartitioned,
|
||||
$(T2 sorting, isPartitioned,
|
||||
$(D isPartitioned!"a < 0"([-1, -2, 1, 0, 2])) returns $(D true) because
|
||||
the predicate is $(D true) for a portion of the range and $(D false)
|
||||
afterwards.)
|
||||
$(T2 isSorted,
|
||||
$(T2 sorting, isSorted,
|
||||
$(D isSorted([1, 1, 2, 3])) returns $(D true).)
|
||||
$(T2 makeIndex,
|
||||
$(T2 sorting, makeIndex,
|
||||
Creates a separate index for a range.)
|
||||
$(T2 nextEvenPermutation,
|
||||
$(T2 sorting, nextEvenPermutation,
|
||||
Computes the next lexicographically greater even permutation of a range
|
||||
in-place.)
|
||||
$(T2 nextPermutation,
|
||||
$(T2 sorting, nextPermutation,
|
||||
Computes the next lexicographically greater permutation of a range
|
||||
in-place.)
|
||||
$(T2 partialSort,
|
||||
$(T2 sorting, partialSort,
|
||||
If $(D a = [5, 4, 3, 2, 1]), then $(D partialSort(a, 3)) leaves
|
||||
$(D a[0 .. 3] = [1, 2, 3]).
|
||||
The other elements of $(D a) are left in an unspecified order.)
|
||||
$(T2 partition,
|
||||
$(T2 sorting, partition,
|
||||
Partitions a range according to a predicate.)
|
||||
$(T2 partition3,
|
||||
$(T2 sorting, partition3,
|
||||
Partitions a range in three parts (less than, equal, greater than the
|
||||
given pivot).)
|
||||
$(T2 schwartzSort,
|
||||
$(T2 sorting, schwartzSort,
|
||||
Sorts with the help of the $(LUCKY Schwartzian transform).)
|
||||
$(T2 sort,
|
||||
$(T2 sorting, sort,
|
||||
Sorts.)
|
||||
$(T2 topN,
|
||||
$(T2 sorting, topN,
|
||||
Separates the top elements in a range.)
|
||||
$(T2 topNCopy,
|
||||
$(T2 sorting, topNCopy,
|
||||
Copies out the top elements of a range.)
|
||||
|
||||
$(LEADINGROW Set operations)
|
||||
|
||||
$(T2 cartesianProduct,
|
||||
$(T2 setops, cartesianProduct,
|
||||
Computes Cartesian product of two ranges.)
|
||||
$(T2 largestPartialIntersection,
|
||||
$(T2 setops, largestPartialIntersection,
|
||||
Copies out the values that occur most frequently in a range of ranges.)
|
||||
$(T2 largestPartialIntersectionWeighted,
|
||||
$(T2 setops, largestPartialIntersectionWeighted,
|
||||
Copies out the values that occur most frequently (multiplied by
|
||||
per-value weights) in a range of ranges.)
|
||||
$(T2 nWayUnion,
|
||||
$(T2 setops, nWayUnion,
|
||||
Computes the union of a set of sets implemented as a range of sorted
|
||||
ranges.)
|
||||
$(T2 setDifference,
|
||||
$(T2 setops, setDifference,
|
||||
Lazily computes the set difference of two or more sorted ranges.)
|
||||
$(T2 setIntersection,
|
||||
$(T2 setops, setIntersection,
|
||||
Lazily computes the intersection of two or more sorted ranges.)
|
||||
$(T2 setSymmetricDifference,
|
||||
$(T2 setops, setSymmetricDifference,
|
||||
Lazily computes the symmetric set difference of two or more sorted
|
||||
ranges.)
|
||||
$(T2 setUnion,
|
||||
$(T2 setops, setUnion,
|
||||
Lazily computes the set union of two or more sorted ranges.)
|
||||
|
||||
$(LEADINGROW Mutation)
|
||||
|
||||
$(T2 bringToFront,
|
||||
$(T2 mutation, bringToFront,
|
||||
If $(D a = [1, 2, 3]) and $(D b = [4, 5, 6, 7]),
|
||||
$(D bringToFront(a, b)) leaves $(D a = [4, 5, 6]) and
|
||||
$(D b = [7, 1, 2, 3]).)
|
||||
$(T2 copy,
|
||||
$(T2 mutation, copy,
|
||||
Copies a range to another. If
|
||||
$(D a = [1, 2, 3]) and $(D b = new int[5]), then $(D copy(a, b))
|
||||
leaves $(D b = [1, 2, 3, 0, 0]) and returns $(D b[3 .. $]).)
|
||||
$(T2 fill,
|
||||
$(T2 mutation, fill,
|
||||
Fills a range with a pattern,
|
||||
e.g., if $(D a = new int[3]), then $(D fill(a, 4))
|
||||
leaves $(D a = [4, 4, 4]) and $(D fill(a, [3, 4])) leaves
|
||||
$(D a = [3, 4, 3]).)
|
||||
$(T2 initializeAll,
|
||||
$(T2 mutation, initializeAll,
|
||||
If $(D a = [1.2, 3.4]), then $(D initializeAll(a)) leaves
|
||||
$(D a = [double.init, double.init]).)
|
||||
$(T2 move,
|
||||
$(T2 mutation, move,
|
||||
$(D move(a, b)) moves $(D a) into $(D b). $(D move(a)) reads $(D a)
|
||||
destructively.)
|
||||
$(T2 moveAll,
|
||||
$(T2 mutation, moveAll,
|
||||
Moves all elements from one range to another.)
|
||||
$(T2 moveSome,
|
||||
$(T2 mutation, moveSome,
|
||||
Moves as many elements as possible from one range to another.)
|
||||
$(T2 remove,
|
||||
$(T2 mutation, remove,
|
||||
Removes elements from a range in-place, and returns the shortened
|
||||
range.)
|
||||
$(T2 reverse,
|
||||
$(T2 mutation, reverse,
|
||||
If $(D a = [1, 2, 3]), $(D reverse(a)) changes it to $(D [3, 2, 1]).)
|
||||
$(T2 strip,
|
||||
$(T2 mutation, strip,
|
||||
Strips all leading and trailing elements equal to a value, or that
|
||||
satisfy a predicate.
|
||||
If $(D a = [1, 1, 0, 1, 1]), then $(D strip(a, 1)) and
|
||||
$(D strip!(e => e == 1)(a)) returns $(D [0]).)
|
||||
$(T2 stripLeft,
|
||||
$(T2 mutation, stripLeft,
|
||||
Strips all leading elements equal to a value, or that satisfy a
|
||||
predicate. If $(D a = [1, 1, 0, 1, 1]), then $(D stripLeft(a, 1)) and
|
||||
$(D stripLeft!(e => e == 1)(a)) returns $(D [0, 1, 1]).)
|
||||
$(T2 stripRight,
|
||||
$(T2 mutation, stripRight,
|
||||
Strips all trailing elements equal to a value, or that satisfy a
|
||||
predicate.
|
||||
If $(D a = [1, 1, 0, 1, 1]), then $(D stripRight(a, 1)) and
|
||||
$(D stripRight!(e => e == 1)(a)) returns $(D [1, 1, 0]).)
|
||||
$(T2 swap,
|
||||
$(T2 mutation, swap,
|
||||
Swaps two values.)
|
||||
$(T2 swapRanges,
|
||||
$(T2 mutation, swapRanges,
|
||||
Swaps all elements of two ranges.)
|
||||
$(T2 uninitializedFill,
|
||||
$(T2 mutation, uninitializedFill,
|
||||
Fills a range (assumed uninitialized) with a value.)
|
||||
)
|
||||
|
||||
Macros:
|
||||
T2=$(TR $(TDNW $(LREF $1)) $(TD $+))
|
||||
T2=$(TR $(TD $(SUBREF $1, $2)) $(TD $(T2_SKIP $+)))
|
||||
T2_SKIP=$+
|
||||
WIKI = Phobos/StdAlgorithm
|
||||
SUBMODULE = $(LINK2 std_algorithm_$1.html, std.algorithm.$1)
|
||||
SUBREF = $(LINK2 std_algorithm_$1.html#.$2, $(TT $2))$(NBSP)
|
||||
|
||||
Copyright: Andrei Alexandrescu 2008-.
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue