ldc/gen/toobj.cpp
Tomas Lindquist Olsen fc480b7fd8 SWITCHED TO LLVM 2.5 !
Applied patch from ticket #129 to compile against latest LLVM. Thanks Frits van Bommel.

Fixed implicit return by asm block at the end of a function on x86-32. Other architectures will produce an error at the moment. Adding support for new targets is fairly simple.

Fixed return calling convention for complex numbers, ST and ST(1) were switched around.

Added some testcases.

I've run a dstress test and there are no regressions. However, the runtime does not seem to compile with symbolic debug information. -O3 -release -inline works well and is what I used for the dstress run. Tango does not compile, a small workaround is needed in tango.io.digest.Digest.Digest.hexDigest. See ticket #206 .
2009-02-08 05:26:54 +01:00

1009 lines
32 KiB
C++

// Copyright (c) 1999-2004 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.
#include <cstddef>
#include <iostream>
#include <fstream>
#include "gen/llvm.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Target/SubtargetFeature.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetMachineRegistry.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/PassManager.h"
#include "llvm/LinkAllPasses.h"
#include "llvm/System/Program.h"
#include "llvm/System/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "mars.h"
#include "module.h"
#include "mtype.h"
#include "declaration.h"
#include "statement.h"
#include "enum.h"
#include "aggregate.h"
#include "init.h"
#include "attrib.h"
#include "id.h"
#include "import.h"
#include "template.h"
#include "scope.h"
#include "gen/irstate.h"
#include "gen/logger.h"
#include "gen/tollvm.h"
#include "gen/llvmhelpers.h"
#include "gen/arrays.h"
#include "gen/structs.h"
#include "gen/classes.h"
#include "gen/functions.h"
#include "gen/todebug.h"
#include "gen/runtime.h"
#include "ir/irvar.h"
#include "ir/irmodule.h"
//////////////////////////////////////////////////////////////////////////////////////////
// in gen/optimize.cpp
void ldc_optimize_module(llvm::Module* m, char lvl, bool doinline);
// fwd decl
void write_asm_to_file(llvm::TargetMachine &Target, llvm::Module& m, llvm::raw_fd_ostream& Out);
void assemble(const llvm::sys::Path& asmpath, const llvm::sys::Path& objpath);
//////////////////////////////////////////////////////////////////////////////////////////
void Module::genobjfile(int multiobj)
{
bool logenabled = Logger::enabled();
if (llvmForceLogging && !logenabled)
{
Logger::enable();
}
Logger::println("Generating module: %s\n", (md ? md->toChars() : toChars()));
LOG_SCOPE;
//printf("codegen: %s\n", srcfile->toChars());
assert(!global.errors);
// start by deleting the old object file
deleteObjFile();
// create a new ir state
// TODO look at making the instance static and moving most functionality into IrModule where it belongs
IRState ir;
gIR = &ir;
ir.dmodule = this;
// reset all IR data stored in Dsymbols and Types
IrDsymbol::resetAll();
IrType::resetAll();
// name the module
std::string mname(toChars());
if (md != 0)
mname = md->toChars();
ir.module = new llvm::Module(mname);
// module ir state
// might already exist via import, just overwrite since
// the global created for the filename must belong to the right llvm module
// FIXME: but shouldn't this always get reset between modules? like other IrSymbols
this->ir.irModule = new IrModule(this, srcfile->toChars());
// set target stuff
ir.module->setTargetTriple(global.params.targetTriple);
ir.module->setDataLayout(global.params.dataLayout);
// get the target machine
const llvm::TargetMachineRegistry::entry* MArch;
std::string Err;
MArch = llvm::TargetMachineRegistry::getClosestStaticTargetForModule(*ir.module, Err);
if (MArch == 0) {
error("error auto-selecting target for module '%s'", Err.c_str());
fatal();
}
llvm::SubtargetFeatures Features;
//TODO: Features?
// Features.setCPU(MCPU);
// for (unsigned i = 0; i != MAttrs.size(); ++i)
// Features.AddFeature(MAttrs[i]);
// only generate PIC code when -fPIC switch is used
if (global.params.pic)
llvm::TargetMachine::setRelocationModel(llvm::Reloc::PIC_);
// allocate the target machine
std::auto_ptr<llvm::TargetMachine> target(MArch->CtorFn(*ir.module, Features.getString()));
assert(target.get() && "Could not allocate target machine!");
llvm::TargetMachine &Target = *target.get();
gTargetData = Target.getTargetData();
// set final data layout
std::string datalayout = gTargetData->getStringRepresentation();
ir.module->setDataLayout(datalayout);
if (Logger::enabled())
Logger::cout() << "Final data layout: " << datalayout << '\n';
assert(memcmp(global.params.dataLayout, datalayout.c_str(), 9) == 0); // "E-p:xx:xx"
// debug info
if (global.params.symdebug) {
RegisterDwarfSymbols(ir.module);
DtoDwarfCompileUnit(this);
}
// handle invalid 'objectø module
if (!ClassDeclaration::object) {
error("is missing 'class Object'");
fatal();
}
if (!ClassDeclaration::classinfo) {
error("is missing 'class ClassInfo'");
fatal();
}
// process module members
for (int k=0; k < members->dim; k++) {
Dsymbol* dsym = (Dsymbol*)(members->data[k]);
assert(dsym);
dsym->toObjFile(multiobj);
}
// main driver loop
DtoEmptyAllLists();
// generate ModuleInfo
genmoduleinfo();
// do this again as moduleinfo might have pulled something in!
DtoEmptyAllLists();
// emit usedArray
if (!ir.usedArray.empty())
{
const LLArrayType* usedTy = LLArrayType::get(getVoidPtrType(), ir.usedArray.size());
LLConstant* usedInit = LLConstantArray::get(usedTy, ir.usedArray);
LLGlobalVariable* usedArray = new LLGlobalVariable(usedTy, true, LLGlobalValue::AppendingLinkage, usedInit, "llvm.used", ir.module);
usedArray->setSection("llvm.metadata");
}
// verify the llvm
if (!global.params.novalidate) {
std::string verifyErr;
Logger::println("Verifying module...");
LOG_SCOPE;
if (llvm::verifyModule(*ir.module,llvm::ReturnStatusAction,&verifyErr))
{
error("%s", verifyErr.c_str());
fatal();
}
else {
Logger::println("Verification passed!");
}
}
// always run this pass to eliminate dead code that breaks debug info
llvm::PassManager pm;
pm.add(new llvm::TargetData(ir.module));
pm.add(llvm::createCFGSimplificationPass());
pm.run(*ir.module);
// run optimizer
ldc_optimize_module(ir.module, global.params.optimizeLevel, global.params.llvmInline);
// verify the llvm
if (!global.params.novalidate && (global.params.optimizeLevel >= 0 || global.params.llvmInline)) {
std::string verifyErr;
Logger::println("Verifying module... again...");
LOG_SCOPE;
if (llvm::verifyModule(*ir.module,llvm::ReturnStatusAction,&verifyErr))
{
error("%s", verifyErr.c_str());
fatal();
}
else {
Logger::println("Verification passed!");
}
}
// eventually do our own path stuff, dmd's is a bit strange.
typedef llvm::sys::Path LLPath;
// write LLVM bitcode
if (global.params.output_bc) {
LLPath bcpath = LLPath(objfile->name->toChars());
bcpath.eraseSuffix();
bcpath.appendSuffix(std::string(global.bc_ext));
Logger::println("Writing LLVM bitcode to: %s\n", bcpath.c_str());
std::ofstream bos(bcpath.c_str(), std::ios::binary);
llvm::WriteBitcodeToFile(ir.module, bos);
}
// write LLVM IR
if (global.params.output_ll) {
LLPath llpath = LLPath(objfile->name->toChars());
llpath.eraseSuffix();
llpath.appendSuffix(std::string(global.ll_ext));
Logger::println("Writing LLVM asm to: %s\n", llpath.c_str());
std::ofstream aos(llpath.c_str());
ir.module->print(aos, NULL);
}
// write native assembly
if (global.params.output_s || global.params.output_o) {
LLPath spath = LLPath(objfile->name->toChars());
spath.eraseSuffix();
spath.appendSuffix(std::string(global.s_ext));
if (!global.params.output_s) {
spath.createTemporaryFileOnDisk();
}
Logger::println("Writing native asm to: %s\n", spath.c_str());
std::string err;
{
llvm::raw_fd_ostream out(spath.c_str(), false, err);
write_asm_to_file(Target, *ir.module, out);
}
// call gcc to convert assembly to object file
if (global.params.output_o) {
LLPath objpath = LLPath(objfile->name->toChars());
assemble(spath, objpath);
}
if (!global.params.output_s) {
spath.eraseFromDisk();
}
}
delete ir.module;
gTargetData = 0;
gIR = NULL;
if (llvmForceLogging && !logenabled)
{
Logger::disable();
}
}
/* ================================================================== */
// based on llc code, University of Illinois Open Source License
void write_asm_to_file(llvm::TargetMachine &Target, llvm::Module& m, llvm::raw_fd_ostream& out)
{
using namespace llvm;
// Build up all of the passes that we want to do to the module.
ExistingModuleProvider Provider(&m);
FunctionPassManager Passes(&Provider);
Passes.add(new TargetData(*Target.getTargetData()));
// Ask the target to add backend passes as necessary.
MachineCodeEmitter *MCE = 0;
//TODO: May want to switch it on for -O0?
bool Fast = false;
FileModel::Model mod = Target.addPassesToEmitFile(Passes, out, TargetMachine::AssemblyFile, Fast);
assert(mod == FileModel::AsmFile);
bool err = Target.addPassesToEmitFileFinish(Passes, MCE, Fast);
assert(!err);
Passes.doInitialization();
// Run our queue of passes all at once now, efficiently.
for (llvm::Module::iterator I = m.begin(), E = m.end(); I != E; ++I)
if (!I->isDeclaration())
Passes.run(*I);
Passes.doFinalization();
// release module from module provider so we can delete it ourselves
std::string Err;
llvm::Module* rmod = Provider.releaseModule(&Err);
assert(rmod);
}
/* ================================================================== */
// uses gcc to make an obj out of an assembly file
// based on llvm-ld code, University of Illinois Open Source License
void assemble(const llvm::sys::Path& asmpath, const llvm::sys::Path& objpath)
{
using namespace llvm;
const char *cc;
#if !_WIN32
cc = getenv("CC");
if (!cc)
#endif
cc = "gcc";
sys::Path gcc = llvm::sys::Program::FindProgramByName(cc);
if (gcc.empty())
{
error("failed to locate gcc");
fatal();
}
// Run GCC to assemble and link the program into native code.
//
// Note:
// We can't just assemble and link the file with the system assembler
// and linker because we don't know where to put the _start symbol.
// GCC mysteriously knows how to do it.
std::vector<std::string> args;
args.push_back(gcc.toString());
args.push_back("-fno-strict-aliasing");
args.push_back("-O3");
args.push_back("-c");
args.push_back("-xassembler");
args.push_back(asmpath.toString());
args.push_back("-o");
args.push_back(objpath.toString());
//FIXME: only use this if needed?
args.push_back("-fpic");
//FIXME: enforce 64 bit
if (global.params.is64bit)
args.push_back("-m64");
// Now that "args" owns all the std::strings for the arguments, call the c_str
// method to get the underlying string array. We do this game so that the
// std::string array is guaranteed to outlive the const char* array.
std::vector<const char *> Args;
for (unsigned i = 0, e = args.size(); i != e; ++i)
Args.push_back(args[i].c_str());
Args.push_back(0);
Logger::println("Assembling with: ");
std::vector<const char*>::const_iterator I = Args.begin(), E = Args.end();
std::ostream& logstr = Logger::cout();
for (; I != E; ++I)
if (*I)
logstr << "'" << *I << "'" << " ";
logstr << "\n" << std::flush;
// Run the compiler to assembly the program.
std::string ErrMsg;
int R = sys::Program::ExecuteAndWait(
gcc, &Args[0], 0, 0, 0, 0, &ErrMsg);
if (R)
{
error("failed to invoke gcc");
fatal();
}
}
/* ================================================================== */
// the following code generates functions and needs to output
// debug info. these macros are useful for that
#define DBG_TYPE ( getPtrToType(llvm::StructType::get(NULL,NULL)) )
#define DBG_CAST(X) ( llvm::ConstantExpr::getBitCast(X, DBG_TYPE) )
// build module ctor
llvm::Function* build_module_ctor()
{
if (gIR->ctors.empty())
return NULL;
size_t n = gIR->ctors.size();
if (n == 1)
return gIR->ctors[0]->ir.irFunc->func;
std::string name("_D");
name.append(gIR->dmodule->mangle());
name.append("6__ctorZ");
std::vector<const LLType*> argsTy;
const llvm::FunctionType* fnTy = llvm::FunctionType::get(LLType::VoidTy,argsTy,false);
assert(gIR->module->getFunction(name) == NULL);
llvm::Function* fn = llvm::Function::Create(fnTy, llvm::GlobalValue::InternalLinkage, name, gIR->module);
fn->setCallingConv(DtoCallingConv(0, LINKd));
llvm::BasicBlock* bb = llvm::BasicBlock::Create("entry", fn);
IRBuilder<> builder(bb);
// debug info
LLGlobalVariable* subprog;
if(global.params.symdebug) {
subprog = DtoDwarfSubProgramInternal(name.c_str(), name.c_str());
builder.CreateCall(gIR->module->getFunction("llvm.dbg.func.start"), DBG_CAST(subprog));
}
for (size_t i=0; i<n; i++) {
llvm::Function* f = gIR->ctors[i]->ir.irFunc->func;
llvm::CallInst* call = builder.CreateCall(f,"");
call->setCallingConv(DtoCallingConv(0, LINKd));
}
// debug info end
if(global.params.symdebug)
builder.CreateCall(gIR->module->getFunction("llvm.dbg.region.end"), DBG_CAST(subprog));
builder.CreateRetVoid();
return fn;
}
// build module dtor
static llvm::Function* build_module_dtor()
{
if (gIR->dtors.empty())
return NULL;
size_t n = gIR->dtors.size();
if (n == 1)
return gIR->dtors[0]->ir.irFunc->func;
std::string name("_D");
name.append(gIR->dmodule->mangle());
name.append("6__dtorZ");
std::vector<const LLType*> argsTy;
const llvm::FunctionType* fnTy = llvm::FunctionType::get(LLType::VoidTy,argsTy,false);
assert(gIR->module->getFunction(name) == NULL);
llvm::Function* fn = llvm::Function::Create(fnTy, llvm::GlobalValue::InternalLinkage, name, gIR->module);
fn->setCallingConv(DtoCallingConv(0, LINKd));
llvm::BasicBlock* bb = llvm::BasicBlock::Create("entry", fn);
IRBuilder<> builder(bb);
// debug info
LLGlobalVariable* subprog;
if(global.params.symdebug) {
subprog = DtoDwarfSubProgramInternal(name.c_str(), name.c_str());
builder.CreateCall(gIR->module->getFunction("llvm.dbg.func.start"), DBG_CAST(subprog));
}
for (size_t i=0; i<n; i++) {
llvm::Function* f = gIR->dtors[i]->ir.irFunc->func;
llvm::CallInst* call = builder.CreateCall(f,"");
call->setCallingConv(DtoCallingConv(0, LINKd));
}
// debug info end
if(global.params.symdebug)
builder.CreateCall(gIR->module->getFunction("llvm.dbg.region.end"), DBG_CAST(subprog));
builder.CreateRetVoid();
return fn;
}
// build module unittest
static llvm::Function* build_module_unittest()
{
if (gIR->unitTests.empty())
return NULL;
size_t n = gIR->unitTests.size();
if (n == 1)
return gIR->unitTests[0]->ir.irFunc->func;
std::string name("_D");
name.append(gIR->dmodule->mangle());
name.append("10__unittestZ");
std::vector<const LLType*> argsTy;
const llvm::FunctionType* fnTy = llvm::FunctionType::get(LLType::VoidTy,argsTy,false);
assert(gIR->module->getFunction(name) == NULL);
llvm::Function* fn = llvm::Function::Create(fnTy, llvm::GlobalValue::InternalLinkage, name, gIR->module);
fn->setCallingConv(DtoCallingConv(0, LINKd));
llvm::BasicBlock* bb = llvm::BasicBlock::Create("entry", fn);
IRBuilder<> builder(bb);
// debug info
LLGlobalVariable* subprog;
if(global.params.symdebug) {
subprog = DtoDwarfSubProgramInternal(name.c_str(), name.c_str());
builder.CreateCall(gIR->module->getFunction("llvm.dbg.func.start"), DBG_CAST(subprog));
}
for (size_t i=0; i<n; i++) {
llvm::Function* f = gIR->unitTests[i]->ir.irFunc->func;
llvm::CallInst* call = builder.CreateCall(f,"");
call->setCallingConv(DtoCallingConv(0, LINKd));
}
// debug info end
if(global.params.symdebug)
builder.CreateCall(gIR->module->getFunction("llvm.dbg.region.end"), DBG_CAST(subprog));
builder.CreateRetVoid();
return fn;
}
// build ModuleReference and register function, to register the module info in the global linked list
static LLFunction* build_module_reference_and_ctor(LLConstant* moduleinfo)
{
// build ctor type
const LLFunctionType* fty = LLFunctionType::get(LLType::VoidTy, std::vector<const LLType*>(), false);
// build ctor name
std::string fname = "_D";
fname += gIR->dmodule->mangle();
fname += "16__moduleinfoCtorZ";
// build a function that registers the moduleinfo in the global moduleinfo linked list
LLFunction* ctor = LLFunction::Create(fty, LLGlobalValue::InternalLinkage, fname, gIR->module);
// provide the default initializer
const LLStructType* modulerefTy = DtoModuleReferenceType();
std::vector<LLConstant*> mrefvalues;
mrefvalues.push_back(LLConstant::getNullValue(modulerefTy->getContainedType(0)));
mrefvalues.push_back(llvm::ConstantExpr::getBitCast(moduleinfo, modulerefTy->getContainedType(1)));
LLConstant* thismrefinit = LLConstantStruct::get(modulerefTy, mrefvalues);
// create the ModuleReference node for this module
std::string thismrefname = "_D";
thismrefname += gIR->dmodule->mangle();
thismrefname += "11__moduleRefZ";
LLGlobalVariable* thismref = new LLGlobalVariable(modulerefTy, false, LLGlobalValue::InternalLinkage, thismrefinit, thismrefname, gIR->module);
// make sure _Dmodule_ref is declared
LLGlobalVariable* mref = gIR->module->getNamedGlobal("_Dmodule_ref");
if (!mref)
mref = new LLGlobalVariable(getPtrToType(modulerefTy), false, LLGlobalValue::ExternalLinkage, NULL, "_Dmodule_ref", gIR->module);
// make the function insert this moduleinfo as the beginning of the _Dmodule_ref linked list
llvm::BasicBlock* bb = llvm::BasicBlock::Create("moduleinfoCtorEntry", ctor);
IRBuilder<> builder(bb);
// debug info
LLGlobalVariable* subprog;
if(global.params.symdebug) {
subprog = DtoDwarfSubProgramInternal(fname.c_str(), fname.c_str());
builder.CreateCall(gIR->module->getFunction("llvm.dbg.func.start"), DBG_CAST(subprog));
}
// get current beginning
LLValue* curbeg = builder.CreateLoad(mref, "current");
// put current beginning as the next of this one
LLValue* gep = builder.CreateStructGEP(thismref, 0, "next");
builder.CreateStore(curbeg, gep);
// replace beginning
builder.CreateStore(thismref, mref);
// debug info end
if(global.params.symdebug)
builder.CreateCall(gIR->module->getFunction("llvm.dbg.region.end"), DBG_CAST(subprog));
// return
builder.CreateRetVoid();
return ctor;
}
// Put out instance of ModuleInfo for this Module
void Module::genmoduleinfo()
{
// The layout is:
// {
// char[] name;
// ModuleInfo[] importedModules;
// ClassInfo[] localClasses;
// uint flags;
//
// void function() ctor;
// void function() dtor;
// void function() unitTest;
//
// void* xgetMembers;
// void function() ictor;
// }
// resolve ModuleInfo
if (!moduleinfo)
{
error("object.d is missing the ModuleInfo class");
fatal();
}
DtoForceConstInitDsymbol(moduleinfo);
// check for patch
if (moduleinfo->fields.dim != 9)
{
error("object.d ModuleInfo class is incorrect");
fatal();
}
// moduleinfo llvm struct type
const llvm::StructType* moduleinfoTy = isaStruct(moduleinfo->type->ir.type->get());
// classinfo llvm struct type
const llvm::StructType* classinfoTy = isaStruct(ClassDeclaration::classinfo->type->ir.type->get());
// initializer vector
std::vector<LLConstant*> initVec;
LLConstant* c = 0;
// vtable
c = moduleinfo->ir.irStruct->vtbl;
initVec.push_back(c);
// monitor
c = getNullPtr(getPtrToType(LLType::Int8Ty));
initVec.push_back(c);
// name
char *name = toPrettyChars();
c = DtoConstString(name);
initVec.push_back(c);
// importedModules[]
int aimports_dim = aimports.dim;
std::vector<LLConstant*> importInits;
for (size_t i = 0; i < aimports.dim; i++)
{
Module *m = (Module *)aimports.data[i];
if (!m->needModuleInfo() || m == this)
continue;
// declare the imported module info
std::string m_name("_D");
m_name.append(m->mangle());
m_name.append("8__ModuleZ");
llvm::GlobalVariable* m_gvar = gIR->module->getGlobalVariable(m_name);
if (!m_gvar) m_gvar = new llvm::GlobalVariable(moduleinfoTy, false, llvm::GlobalValue::ExternalLinkage, NULL, m_name, gIR->module);
importInits.push_back(m_gvar);
}
// has import array?
if (!importInits.empty())
{
const llvm::ArrayType* importArrTy = llvm::ArrayType::get(getPtrToType(moduleinfoTy), importInits.size());
c = llvm::ConstantArray::get(importArrTy, importInits);
std::string m_name("_D");
m_name.append(mangle());
m_name.append("9__importsZ");
llvm::GlobalVariable* m_gvar = gIR->module->getGlobalVariable(m_name);
if (!m_gvar) m_gvar = new llvm::GlobalVariable(importArrTy, true, llvm::GlobalValue::InternalLinkage, c, m_name, gIR->module);
c = llvm::ConstantExpr::getBitCast(m_gvar, getPtrToType(importArrTy->getElementType()));
c = DtoConstSlice(DtoConstSize_t(importInits.size()), c);
}
else
c = DtoConstSlice( DtoConstSize_t(0), getNullValue(getPtrToType(moduleinfoTy)) );
initVec.push_back(c);
// localClasses[]
ClassDeclarations aclasses;
//printf("members->dim = %d\n", members->dim);
for (size_t i = 0; i < members->dim; i++)
{
Dsymbol *member;
member = (Dsymbol *)members->data[i];
//printf("\tmember '%s'\n", member->toChars());
member->addLocalClass(&aclasses);
}
// fill inits
std::vector<LLConstant*> classInits;
for (size_t i = 0; i < aclasses.dim; i++)
{
ClassDeclaration* cd = (ClassDeclaration*)aclasses.data[i];
if (cd->isInterfaceDeclaration())
{
Logger::println("skipping interface '%s' in moduleinfo", cd->toPrettyChars());
continue;
}
else if (cd->sizeok != 1)
{
Logger::println("skipping opaque class declaration '%s' in moduleinfo", cd->toPrettyChars());
continue;
}
Logger::println("class: %s", cd->toPrettyChars());
assert(cd->ir.irStruct->classInfo);
c = DtoBitCast(cd->ir.irStruct->classInfo, getPtrToType(classinfoTy));
classInits.push_back(c);
}
// has class array?
if (!classInits.empty())
{
const llvm::ArrayType* classArrTy = llvm::ArrayType::get(getPtrToType(classinfoTy), classInits.size());
c = llvm::ConstantArray::get(classArrTy, classInits);
std::string m_name("_D");
m_name.append(mangle());
m_name.append("9__classesZ");
assert(gIR->module->getGlobalVariable(m_name) == NULL);
llvm::GlobalVariable* m_gvar = new llvm::GlobalVariable(classArrTy, true, llvm::GlobalValue::InternalLinkage, c, m_name, gIR->module);
c = DtoBitCast(m_gvar, getPtrToType(classinfoTy));
c = DtoConstSlice(DtoConstSize_t(classInits.size()), c);
}
else
c = DtoConstSlice( DtoConstSize_t(0), getNullValue(getPtrToType(classinfoTy)) );
initVec.push_back(c);
// flags
c = DtoConstUint(0);
if (!needmoduleinfo)
c = DtoConstUint(4); // flags (4 means MIstandalone)
initVec.push_back(c);
// function pointer type for next three fields
const LLType* fnptrTy = getPtrToType(LLFunctionType::get(LLType::VoidTy, std::vector<const LLType*>(), false));
// ctor
llvm::Function* fctor = build_module_ctor();
c = fctor ? fctor : getNullValue(fnptrTy);
initVec.push_back(c);
// dtor
llvm::Function* fdtor = build_module_dtor();
c = fdtor ? fdtor : getNullValue(fnptrTy);
initVec.push_back(c);
// unitTest
llvm::Function* unittest = build_module_unittest();
c = unittest ? unittest : getNullValue(fnptrTy);
initVec.push_back(c);
// xgetMembers
c = getNullValue(getVoidPtrType());
initVec.push_back(c);
// ictor
c = getNullValue(fnptrTy);
initVec.push_back(c);
/*Logger::println("MODULE INFO INITIALIZERS");
for (size_t i=0; i<initVec.size(); ++i)
{
Logger::cout() << *initVec[i] << '\n';
if (initVec[i]->getType() != moduleinfoTy->getElementType(i))
assert(0);
}*/
// create initializer
LLConstant* constMI = llvm::ConstantStruct::get(initVec);
// create name
std::string MIname("_D");
MIname.append(mangle());
MIname.append("8__ModuleZ");
// declare global
// flags will be modified at runtime so can't make it constant
// it makes no sense that the our own module info already exists!
assert(!gIR->module->getGlobalVariable(MIname));
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(constMI->getType(), false, llvm::GlobalValue::ExternalLinkage, constMI, MIname, gIR->module);
// build the modulereference and ctor for registering it
LLFunction* mictor = build_module_reference_and_ctor(gvar);
// register this ctor in the magic llvm.global_ctors appending array
const LLFunctionType* magicfty = LLFunctionType::get(LLType::VoidTy, std::vector<const LLType*>(), false);
std::vector<const LLType*> magictypes;
magictypes.push_back(LLType::Int32Ty);
magictypes.push_back(getPtrToType(magicfty));
const LLStructType* magicsty = LLStructType::get(magictypes);
// make the constant element
std::vector<LLConstant*> magicconstants;
magicconstants.push_back(DtoConstUint(65535));
magicconstants.push_back(mictor);
LLConstant* magicinit = LLConstantStruct::get(magicsty, magicconstants);
// declare the appending array
const llvm::ArrayType* appendArrTy = llvm::ArrayType::get(magicsty, 1);
std::vector<LLConstant*> appendInits(1, magicinit);
LLConstant* appendInit = llvm::ConstantArray::get(appendArrTy, appendInits);
std::string appendName("llvm.global_ctors");
llvm::GlobalVariable* appendVar = new llvm::GlobalVariable(appendArrTy, true, llvm::GlobalValue::AppendingLinkage, appendInit, appendName, gIR->module);
}
/* ================================================================== */
void Dsymbol::toObjFile(int multiobj)
{
Logger::println("Ignoring Dsymbol::toObjFile for %s", toChars());
}
/* ================================================================== */
void Declaration::toObjFile(int unused)
{
Logger::println("Ignoring Declaration::toObjFile for %s", toChars());
}
/* ================================================================== */
void InterfaceDeclaration::toObjFile(int multiobj)
{
//Logger::println("Ignoring InterfaceDeclaration::toObjFile for %s", toChars());
gIR->resolveList.push_back(this);
}
/* ================================================================== */
void StructDeclaration::toObjFile(int multiobj)
{
gIR->resolveList.push_back(this);
}
/* ================================================================== */
void ClassDeclaration::toObjFile(int multiobj)
{
gIR->resolveList.push_back(this);
}
/******************************************
* Get offset of base class's vtbl[] initializer from start of csym.
* Returns ~0 if not this csym.
*/
unsigned ClassDeclaration::baseVtblOffset(BaseClass *bc)
{
return ~0;
}
/* ================================================================== */
void TupleDeclaration::toObjFile(int multiobj)
{
Logger::println("TupleDeclaration::toObjFile(): %s", toChars());
assert(isexp);
assert(objects);
int n = objects->dim;
for (int i=0; i < n; ++i)
{
DsymbolExp* exp = (DsymbolExp*)objects->data[i];
assert(exp->op == TOKdsymbol);
exp->s->toObjFile(multiobj);
}
}
/* ================================================================== */
void VarDeclaration::toObjFile(int multiobj)
{
Logger::print("VarDeclaration::toObjFile(): %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
if (aliassym)
{
Logger::println("alias sym");
toAlias()->toObjFile(multiobj);
return;
}
// global variable or magic
if (isDataseg())
{
Logger::println("data segment");
#if DMDV2
if (storage_class & STCmanifest)
{
assert(0 && "manifest constant being codegened!!!");
}
#endif
// don't duplicate work
if (this->ir.resolved) return;
this->ir.resolved = true;
this->ir.declared = true;
this->ir.irGlobal = new IrGlobal(this);
Logger::println("parent: %s (%s)", parent->toChars(), parent->kind());
#if DMDV2
// not sure why this is only needed for d2
bool _isconst = isConst() && init;
#else
bool _isconst = isConst();
#endif
Logger::println("Creating global variable");
const LLType* _type = this->ir.irGlobal->type.get();
llvm::GlobalValue::LinkageTypes _linkage = DtoLinkage(this);
std::string _name(mangle());
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(_type,_isconst,_linkage,NULL,_name,gIR->module);
this->ir.irGlobal->value = gvar;
if (Logger::enabled())
Logger::cout() << *gvar << '\n';
// if this global is used from a nested function, this is necessary or
// optimization could potentially remove the global (if it's the only use)
if (nakedUse)
gIR->usedArray.push_back(DtoBitCast(gvar, getVoidPtrType()));
gIR->constInitList.push_back(this);
}
else
{
// might already have its irField, as classes derive each other without getting copies of the VarDeclaration
if (!ir.irField)
{
assert(!ir.isSet());
ir.irField = new IrField(this);
}
IrStruct* irstruct = gIR->topstruct();
irstruct->addVar(this);
Logger::println("added offset %u", offset);
}
}
/* ================================================================== */
void TypedefDeclaration::toObjFile(int multiobj)
{
static int tdi = 0;
Logger::print("TypedefDeclaration::toObjFile(%d): %s\n", tdi++, toChars());
LOG_SCOPE;
// generate typeinfo
DtoTypeInfoOf(type, false);
}
/* ================================================================== */
void EnumDeclaration::toObjFile(int multiobj)
{
Logger::println("Ignoring EnumDeclaration::toObjFile for %s", toChars());
}
/* ================================================================== */
void FuncDeclaration::toObjFile(int multiobj)
{
gIR->resolveList.push_back(this);
}
/* ================================================================== */
void AnonDeclaration::toObjFile(int multiobj)
{
Array *d = include(NULL, NULL);
if (d)
{
// get real aggregate parent
IrStruct* irstruct = gIR->topstruct();
// push a block on the stack
irstruct->pushAnon(isunion);
// go over children
for (unsigned i = 0; i < d->dim; i++)
{ Dsymbol *s = (Dsymbol *)d->data[i];
s->toObjFile(multiobj);
}
// finish
irstruct->popAnon();
}
}