ldc/gen/llvmhelpers.cpp
Tomas Lindquist Olsen f46f865375 Removed KDevelop3 project files, CMake can generate them just fine!
Fixed function literals in static initializers.
Changed alignment of delegates from 2*PTRSIZE to just PTRSIZE.
Changed errors to go to stderr instead of stdout.
Fairly major rewriting of struct/union/class handling, STILL A BIT BUGGY !!!
2008-11-29 21:25:43 +01:00

1673 lines
53 KiB
C++

#include "gen/llvm.h"
#include "llvm/Target/TargetMachineRegistry.h"
#include "mars.h"
#include "init.h"
#include "id.h"
#include "expression.h"
#include "template.h"
#include "module.h"
#include "gen/tollvm.h"
#include "gen/llvmhelpers.h"
#include "gen/irstate.h"
#include "gen/runtime.h"
#include "gen/logger.h"
#include "gen/arrays.h"
#include "gen/dvalue.h"
#include "gen/complex.h"
#include "gen/classes.h"
#include "gen/functions.h"
#include "gen/typeinf.h"
#include "gen/todebug.h"
#include "ir/irmodule.h"
#include <stack>
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// DYNAMIC MEMORY HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
LLValue* DtoNew(Type* newtype)
{
// get runtime function
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_allocmemoryT");
// get type info
LLConstant* ti = DtoTypeInfoOf(newtype);
assert(isaPointer(ti));
// call runtime allocator
LLValue* mem = gIR->CreateCallOrInvoke(fn, ti, ".gc_mem")->get();
// cast
return DtoBitCast(mem, getPtrToType(DtoType(newtype)), ".gc_mem");
}
void DtoDeleteMemory(LLValue* ptr)
{
// get runtime function
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_delmemory");
// build args
LLSmallVector<LLValue*,1> arg;
arg.push_back(DtoBitCast(ptr, getVoidPtrType(), ".tmp"));
// call
gIR->CreateCallOrInvoke(fn, arg.begin(), arg.end());
}
void DtoDeleteClass(LLValue* inst)
{
// get runtime function
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_delclass");
// build args
LLSmallVector<LLValue*,1> arg;
arg.push_back(DtoBitCast(inst, fn->getFunctionType()->getParamType(0), ".tmp"));
// call
gIR->CreateCallOrInvoke(fn, arg.begin(), arg.end());
}
void DtoDeleteInterface(LLValue* inst)
{
// get runtime function
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_delinterface");
// build args
LLSmallVector<LLValue*,1> arg;
arg.push_back(DtoBitCast(inst, fn->getFunctionType()->getParamType(0), ".tmp"));
// call
gIR->CreateCallOrInvoke(fn, arg.begin(), arg.end());
}
void DtoDeleteArray(DValue* arr)
{
// get runtime function
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_delarray");
// build args
LLSmallVector<LLValue*,2> arg;
arg.push_back(DtoArrayLen(arr));
arg.push_back(DtoBitCast(DtoArrayPtr(arr), getVoidPtrType(), ".tmp"));
// call
gIR->CreateCallOrInvoke(fn, arg.begin(), arg.end());
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// ALLOCA HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
llvm::AllocaInst* DtoAlloca(const LLType* lltype, const std::string& name)
{
return new llvm::AllocaInst(lltype, name, gIR->topallocapoint());
}
llvm::AllocaInst* DtoAlloca(const LLType* lltype, LLValue* arraysize, const std::string& name)
{
return new llvm::AllocaInst(lltype, arraysize, name, gIR->topallocapoint());
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// ASSERT HELPER
////////////////////////////////////////////////////////////////////////////////////////*/
void DtoAssert(Loc* loc, DValue* msg)
{
std::vector<LLValue*> args;
// func
const char* fname = msg ? "_d_assert_msg" : "_d_assert";
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, fname);
// msg param
if (msg)
{
args.push_back(msg->getRVal());
}
// file param
args.push_back(DtoLoad(gIR->dmodule->ir.irModule->fileName));
// line param
LLConstant* c = DtoConstUint(loc->linnum);
args.push_back(c);
// call
CallOrInvoke* call = gIR->CreateCallOrInvoke(fn, args.begin(), args.end());
// end debug info
if (global.params.symdebug)
DtoDwarfFuncEnd(gIR->func()->decl);
// after assert is always unreachable
gIR->ir->CreateUnreachable();
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// LABEL HELPER
////////////////////////////////////////////////////////////////////////////////////////*/
LabelStatement* DtoLabelStatement(Identifier* ident)
{
FuncDeclaration* fd = gIR->func()->decl;
FuncDeclaration::LabelMap::iterator iter = fd->labmap.find(ident->toChars());
if (iter == fd->labmap.end())
{
if (fd->returnLabel && fd->returnLabel->ident->equals(ident))
{
assert(fd->returnLabel->statement);
return fd->returnLabel->statement;
}
return NULL;
}
return iter->second;
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// GOTO HELPER
////////////////////////////////////////////////////////////////////////////////////////*/
void DtoGoto(Loc* loc, Identifier* target, EnclosingHandler* enclosinghandler, TryFinallyStatement* sourcetf)
{
assert(!gIR->scopereturned());
LabelStatement* lblstmt = DtoLabelStatement(target);
if(!lblstmt) {
error(*loc, "the label %s does not exist", target->toChars());
fatal();
}
// if the target label is inside inline asm, error
if(lblstmt->asmLabel) {
error(*loc, "cannot goto to label %s inside an inline asm block", target->toChars());
fatal();
}
// find target basic block
std::string labelname = gIR->func()->getScopedLabelName(target->toChars());
llvm::BasicBlock*& targetBB = gIR->func()->labelToBB[labelname];
if (targetBB == NULL)
targetBB = llvm::BasicBlock::Create("label", gIR->topfunc());
// find finallys between goto and label
EnclosingHandler* endfinally = enclosinghandler;
while(endfinally != NULL && endfinally != lblstmt->enclosinghandler) {
endfinally = endfinally->getEnclosing();
}
// error if didn't find tf statement of label
if(endfinally != lblstmt->enclosinghandler)
error(*loc, "cannot goto into try block");
// goto into finally blocks is forbidden by the spec
// though it should not be problematic to implement
if(lblstmt->tf != sourcetf) {
error(*loc, "spec disallows goto into finally block");
fatal();
}
// emit code for finallys between goto and label
DtoEnclosingHandlers(enclosinghandler, endfinally);
llvm::BranchInst::Create(targetBB, gIR->scopebb());
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// TRY-FINALLY, VOLATILE AND SYNCHRONIZED HELPER
////////////////////////////////////////////////////////////////////////////////////////*/
void EnclosingSynchro::emitCode(IRState * p)
{
if (s->exp)
DtoLeaveMonitor(s->llsync);
else
DtoLeaveCritical(s->llsync);
}
EnclosingHandler* EnclosingSynchro::getEnclosing()
{
return s->enclosinghandler;
}
////////////////////////////////////////////////////////////////////////////////////////
void EnclosingVolatile::emitCode(IRState * p)
{
// store-load barrier
DtoMemoryBarrier(false, false, true, false);
}
EnclosingHandler* EnclosingVolatile::getEnclosing()
{
return v->enclosinghandler;
}
////////////////////////////////////////////////////////////////////////////////////////
void EnclosingTryFinally::emitCode(IRState * p)
{
assert(tf->finalbody);
tf->finalbody->toIR(p);
}
EnclosingHandler* EnclosingTryFinally::getEnclosing()
{
return tf->enclosinghandler;
}
////////////////////////////////////////////////////////////////////////////////////////
void DtoEnclosingHandlers(EnclosingHandler* start, EnclosingHandler* end)
{
// verify that end encloses start
EnclosingHandler* endfinally = start;
while(endfinally != NULL && endfinally != end) {
endfinally = endfinally->getEnclosing();
}
assert(endfinally == end);
//
// emit code for finallys between start and end
//
// since the labelstatements possibly inside are private
// and might already exist push a label scope
gIR->func()->pushUniqueLabelScope("enclosing");
EnclosingHandler* tf = start;
while(tf != end) {
tf->emitCode(gIR);
tf = tf->getEnclosing();
}
gIR->func()->popLabelScope();
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// SYNCHRONIZED SECTION HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
void DtoEnterCritical(LLValue* g)
{
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_criticalenter");
gIR->CreateCallOrInvoke(fn, g);
}
void DtoLeaveCritical(LLValue* g)
{
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_criticalexit");
gIR->CreateCallOrInvoke(fn, g);
}
void DtoEnterMonitor(LLValue* v)
{
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_monitorenter");
v = DtoBitCast(v, fn->getFunctionType()->getParamType(0));
gIR->CreateCallOrInvoke(fn, v);
}
void DtoLeaveMonitor(LLValue* v)
{
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_monitorexit");
v = DtoBitCast(v, fn->getFunctionType()->getParamType(0));
gIR->CreateCallOrInvoke(fn, v);
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// NESTED VARIABLE HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
DValue* DtoNestedVariable(Loc loc, Type* astype, VarDeclaration* vd)
{
Dsymbol* vdparent = vd->toParent2();
assert(vdparent);
IrFunction* irfunc = gIR->func();
// is the nested variable in this scope?
if (vdparent == irfunc->decl)
{
LLValue* val = vd->ir.getIrValue();
return new DVarValue(astype, vd, val);
}
// get it from the nested context
LLValue* ctx = 0;
if (irfunc->decl->isMember2())
{
ClassDeclaration* cd = irfunc->decl->isMember2()->isClassDeclaration();
LLValue* val = DtoLoad(irfunc->thisArg);
ctx = DtoLoad(DtoGEPi(val, 0,cd->vthis->ir.irField->index, ".vthis"));
}
else
ctx = irfunc->nestArg;
assert(ctx);
assert(vd->ir.irLocal);
LLValue* val = DtoBitCast(ctx, getPtrToType(getVoidPtrType()));
val = DtoGEPi1(val, vd->ir.irLocal->nestedIndex);
val = DtoLoad(val);
assert(vd->ir.irLocal->value);
val = DtoBitCast(val, vd->ir.irLocal->value->getType(), vd->toChars());
return new DVarValue(astype, vd, val);
}
LLValue* DtoNestedContext(Loc loc, Dsymbol* sym)
{
Logger::println("DtoNestedContext for %s", sym->toPrettyChars());
LOG_SCOPE;
IrFunction* irfunc = gIR->func();
// if this func has its own vars that are accessed by nested funcs
// use its own context
if (irfunc->nestedVar)
return irfunc->nestedVar;
// otherwise, it may have gotten a context from the caller
else if (irfunc->nestArg)
return irfunc->nestArg;
// or just have a this argument
else if (irfunc->thisArg)
{
ClassDeclaration* cd = irfunc->decl->isMember2()->isClassDeclaration();
if (!cd || !cd->vthis)
return getNullPtr(getVoidPtrType());
LLValue* val = DtoLoad(irfunc->thisArg);
return DtoLoad(DtoGEPi(val, 0,cd->vthis->ir.irField->index, ".vthis"));
}
else
{
return getNullPtr(getVoidPtrType());
}
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// ASSIGNMENT HELPER (store this in that)
////////////////////////////////////////////////////////////////////////////////////////*/
void DtoAssign(Loc& loc, DValue* lhs, DValue* rhs)
{
Logger::println("DtoAssign(...);\n");
LOG_SCOPE;
Type* t = lhs->getType()->toBasetype();
Type* t2 = rhs->getType()->toBasetype();
if (t->ty == Tstruct) {
if (!t->equals(t2)) {
// TODO: fix this, use 'rhs' for something
DtoAggrZeroInit(lhs->getLVal());
}
else {
DtoAggrCopy(lhs->getLVal(), rhs->getRVal());
}
}
else if (t->ty == Tarray) {
// lhs is slice
if (DSliceValue* s = lhs->isSlice()) {
if (DSliceValue* s2 = rhs->isSlice()) {
DtoArrayCopySlices(s, s2);
}
else if (t->nextOf()->toBasetype()->equals(t2)) {
DtoArrayInit(loc, s, rhs);
}
else {
DtoArrayCopyToSlice(s, rhs);
}
}
// rhs is slice
else if (DSliceValue* s = rhs->isSlice()) {
assert(s->getType()->toBasetype() == lhs->getType()->toBasetype());
DtoSetArray(lhs->getLVal(),DtoArrayLen(s),DtoArrayPtr(s));
}
// null
else if (rhs->isNull()) {
DtoSetArrayToNull(lhs->getLVal());
}
// reference assignment
else if (t2->ty == Tarray) {
DtoStore(rhs->getRVal(), lhs->getLVal());
}
// some implicitly converting ref assignment
else {
DtoSetArray(lhs->getLVal(), DtoArrayLen(rhs), DtoArrayPtr(rhs));
}
}
else if (t->ty == Tsarray) {
// T[n] = T[n]
if (DtoType(lhs->getType()) == DtoType(rhs->getType())) {
DtoStaticArrayCopy(lhs->getLVal(), rhs->getRVal());
}
// T[n] = T
else if (t->nextOf()->toBasetype()->equals(t2)) {
DtoArrayInit(loc, lhs, rhs);
}
// T[n] = T[] - generally only generated by frontend in rare cases
else if (t2->ty == Tarray && t->nextOf()->toBasetype()->equals(t2->nextOf()->toBasetype())) {
DtoMemCpy(lhs->getLVal(), DtoArrayPtr(rhs), DtoArrayLen(rhs));
} else {
assert(0 && "Unimplemented static array assign!");
}
}
else if (t->ty == Tdelegate) {
LLValue* l = lhs->getLVal();
LLValue* r = rhs->getRVal();
if (Logger::enabled())
Logger::cout() << "assign\nlhs: " << *l << "rhs: " << *r << '\n';
DtoStore(r, l);
}
else if (t->ty == Tclass) {
assert(t2->ty == Tclass);
LLValue* l = lhs->getLVal();
LLValue* r = rhs->getRVal();
if (Logger::enabled())
{
Logger::cout() << "l : " << *l << '\n';
Logger::cout() << "r : " << *r << '\n';
}
r = DtoBitCast(r, l->getType()->getContainedType(0));
DtoStore(r, l);
}
else if (t->iscomplex()) {
LLValue* dst;
if (DLRValue* lr = lhs->isLRValue()) {
dst = lr->getLVal();
rhs = DtoCastComplex(loc, rhs, lr->getLType());
}
else {
dst = lhs->getLVal();
}
DtoStore(rhs->getRVal(), dst);
}
else {
LLValue* l = lhs->getLVal();
LLValue* r = rhs->getRVal();
if (Logger::enabled())
Logger::cout() << "assign\nlhs: " << *l << "rhs: " << *r << '\n';
const LLType* lit = l->getType()->getContainedType(0);
if (r->getType() != lit) {
// handle lvalue cast assignments
if (DLRValue* lr = lhs->isLRValue()) {
Logger::println("lvalue cast!");
r = DtoCast(loc, rhs, lr->getLType())->getRVal();
}
else {
r = DtoCast(loc, rhs, lhs->getType())->getRVal();
}
if (Logger::enabled())
Logger::cout() << "really assign\nlhs: " << *l << "rhs: " << *r << '\n';
assert(r->getType() == l->getType()->getContainedType(0));
}
gIR->ir->CreateStore(r, l);
}
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// NULL VALUE HELPER
////////////////////////////////////////////////////////////////////////////////////////*/
DValue* DtoNullValue(Type* type)
{
Type* basetype = type->toBasetype();
TY basety = basetype->ty;
const LLType* lltype = DtoType(basetype);
// complex, needs to be first since complex are also floating
if (basetype->iscomplex())
{
const LLType* basefp = DtoComplexBaseType(basetype);
LLValue* res = DtoAggrPair(DtoType(type), LLConstant::getNullValue(basefp), LLConstant::getNullValue(basefp));
return new DImValue(type, res);
}
// integer, floating, pointer and class have no special representation
else if (basetype->isintegral() || basetype->isfloating() || basety == Tpointer || basety == Tclass)
{
return new DConstValue(type, LLConstant::getNullValue(lltype));
}
// dynamic array
else if (basety == Tarray)
{
LLValue* len = DtoConstSize_t(0);
LLValue* ptr = getNullPtr(getPtrToType(DtoType(basetype->nextOf())));
return new DSliceValue(type, len, ptr);
}
// delegate
else if (basety == Tdelegate)
{
return new DNullValue(type, LLConstant::getNullValue(lltype));
}
// unknown
std::cout << "unsupported: null value for " << type->toChars() << '\n';
assert(0);
return 0;
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// CASTING HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
DValue* DtoCastInt(Loc& loc, DValue* val, Type* _to)
{
const LLType* tolltype = DtoType(_to);
Type* to = _to->toBasetype();
Type* from = val->getType()->toBasetype();
assert(from->isintegral());
size_t fromsz = from->size();
size_t tosz = to->size();
LLValue* rval = val->getRVal();
if (rval->getType() == tolltype) {
return new DImValue(_to, rval);
}
if (to->ty == Tbool) {
LLValue* zero = LLConstantInt::get(rval->getType(), 0, false);
rval = gIR->ir->CreateICmpNE(rval, zero, "tmp");
}
else if (to->isintegral()) {
if (fromsz < tosz || from->ty == Tbool) {
if (Logger::enabled())
Logger::cout() << "cast to: " << *tolltype << '\n';
if (from->isunsigned() || from->ty == Tbool) {
rval = new llvm::ZExtInst(rval, tolltype, "tmp", gIR->scopebb());
} else {
rval = new llvm::SExtInst(rval, tolltype, "tmp", gIR->scopebb());
}
}
else if (fromsz > tosz) {
rval = new llvm::TruncInst(rval, tolltype, "tmp", gIR->scopebb());
}
else {
rval = DtoBitCast(rval, tolltype);
}
}
else if (to->iscomplex()) {
return DtoComplex(loc, to, val);
}
else if (to->isfloating()) {
if (from->isunsigned()) {
rval = new llvm::UIToFPInst(rval, tolltype, "tmp", gIR->scopebb());
}
else {
rval = new llvm::SIToFPInst(rval, tolltype, "tmp", gIR->scopebb());
}
}
else if (to->ty == Tpointer) {
if (Logger::enabled())
Logger::cout() << "cast pointer: " << *tolltype << '\n';
rval = gIR->ir->CreateIntToPtr(rval, tolltype, "tmp");
}
else {
error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), _to->toChars());
fatal();
}
return new DImValue(_to, rval);
}
DValue* DtoCastPtr(Loc& loc, DValue* val, Type* to)
{
const LLType* tolltype = DtoType(to);
Type* totype = to->toBasetype();
Type* fromtype = val->getType()->toBasetype();
assert(fromtype->ty == Tpointer || fromtype->ty == Tfunction);
LLValue* rval;
if (totype->ty == Tpointer || totype->ty == Tclass) {
LLValue* src = val->getRVal();
if (Logger::enabled())
Logger::cout() << "src: " << *src << "to type: " << *tolltype << '\n';
rval = DtoBitCast(src, tolltype);
}
else if (totype->ty == Tbool) {
LLValue* src = val->getRVal();
LLValue* zero = LLConstant::getNullValue(src->getType());
rval = gIR->ir->CreateICmpNE(src, zero, "tmp");
}
else if (totype->isintegral()) {
rval = new llvm::PtrToIntInst(val->getRVal(), tolltype, "tmp", gIR->scopebb());
}
else {
error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars());
fatal();
}
return new DImValue(to, rval);
}
DValue* DtoCastFloat(Loc& loc, DValue* val, Type* to)
{
if (val->getType() == to)
return val;
const LLType* tolltype = DtoType(to);
Type* totype = to->toBasetype();
Type* fromtype = val->getType()->toBasetype();
assert(fromtype->isfloating());
size_t fromsz = fromtype->size();
size_t tosz = totype->size();
LLValue* rval;
if (totype->ty == Tbool) {
rval = val->getRVal();
LLValue* zero = LLConstant::getNullValue(rval->getType());
rval = gIR->ir->CreateFCmpUNE(rval, zero, "tmp");
}
else if (totype->iscomplex()) {
return DtoComplex(loc, to, val);
}
else if (totype->isfloating()) {
if (fromsz == tosz) {
rval = val->getRVal();
assert(rval->getType() == tolltype);
}
else if (fromsz < tosz) {
rval = new llvm::FPExtInst(val->getRVal(), tolltype, "tmp", gIR->scopebb());
}
else if (fromsz > tosz) {
rval = new llvm::FPTruncInst(val->getRVal(), tolltype, "tmp", gIR->scopebb());
}
else {
error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars());
fatal();
}
}
else if (totype->isintegral()) {
if (totype->isunsigned()) {
rval = new llvm::FPToUIInst(val->getRVal(), tolltype, "tmp", gIR->scopebb());
}
else {
rval = new llvm::FPToSIInst(val->getRVal(), tolltype, "tmp", gIR->scopebb());
}
}
else {
error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars());
fatal();
}
return new DImValue(to, rval);
}
DValue* DtoCastDelegate(Loc& loc, DValue* val, Type* to)
{
if (to->toBasetype()->ty == Tdelegate)
{
return DtoPaintType(loc, val, to);
}
else if (to->toBasetype()->ty == Tbool)
{
return new DImValue(to, DtoDelegateEquals(TOKnotequal, val->getRVal(), NULL));
}
else
{
error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars());
fatal();
}
}
DValue* DtoCast(Loc& loc, DValue* val, Type* to)
{
Type* fromtype = val->getType()->toBasetype();
Logger::println("Casting from '%s' to '%s'", fromtype->toChars(), to->toChars());
if (fromtype->isintegral()) {
return DtoCastInt(loc, val, to);
}
else if (fromtype->iscomplex()) {
return DtoCastComplex(loc, val, to);
}
else if (fromtype->isfloating()) {
return DtoCastFloat(loc, val, to);
}
else if (fromtype->ty == Tclass) {
return DtoCastClass(val, to);
}
else if (fromtype->ty == Tarray || fromtype->ty == Tsarray) {
return DtoCastArray(loc, val, to);
}
else if (fromtype->ty == Tpointer || fromtype->ty == Tfunction) {
return DtoCastPtr(loc, val, to);
}
else if (fromtype->ty == Tdelegate) {
return DtoCastDelegate(loc, val, to);
}
else {
error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars());
fatal();
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoPaintType(Loc& loc, DValue* val, Type* to)
{
Type* from = val->getType()->toBasetype();
Logger::println("repainting from '%s' to '%s'", from->toChars(), to->toChars());
if (from->ty == Tarray)
{
Type* at = to->toBasetype();
assert(at->ty == Tarray);
Type* elem = at->nextOf()->pointerTo();
if (DSliceValue* slice = val->isSlice())
{
return new DSliceValue(to, slice->len, DtoBitCast(slice->ptr, DtoType(elem)));
}
else if (val->isLVal())
{
LLValue* ptr = val->getLVal();
ptr = DtoBitCast(ptr, DtoType(at->pointerTo()));
return new DVarValue(to, ptr);
}
else
{
LLValue *len, *ptr;
len = DtoArrayLen(val);
ptr = DtoArrayPtr(val);
ptr = DtoBitCast(ptr, DtoType(elem));
return new DImValue(to, DtoAggrPair(len, ptr, "tmp"));
}
}
else if (from->ty == Tdelegate)
{
Type* dgty = to->toBasetype();
assert(dgty->ty == Tdelegate);
if (val->isLVal())
{
LLValue* ptr = val->getLVal();
assert(isaPointer(ptr));
ptr = DtoBitCast(ptr, getPtrToType(DtoType(dgty)));
if (Logger::enabled())
Logger::cout() << "dg ptr: " << *ptr << '\n';
return new DVarValue(to, ptr);
}
else
{
LLValue* dg = val->getRVal();
LLValue* context = gIR->ir->CreateExtractValue(dg, 0, ".context");
LLValue* funcptr = gIR->ir->CreateExtractValue(dg, 1, ".funcptr");
funcptr = DtoBitCast(funcptr, DtoType(dgty)->getContainedType(1));
LLValue* aggr = DtoAggrPair(context, funcptr, "tmp");
if (Logger::enabled())
Logger::cout() << "dg: " << *aggr << '\n';
return new DImValue(to, aggr);
}
}
else if (from->ty == Tpointer || from->ty == Tclass || from->ty == Taarray)
{
Type* b = to->toBasetype();
assert(b->ty == Tpointer || b->ty == Tclass || b->ty == Taarray);
LLValue* ptr = DtoBitCast(val->getRVal(), DtoType(b));
return new DImValue(to, ptr);
}
else
{
assert(!val->isLVal());
assert(DtoType(to) == DtoType(to));
return new DImValue(to, val->getRVal());
}
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// TEMPLATE HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
bool DtoIsTemplateInstance(Dsymbol* s)
{
if (!s) return false;
if (s->isTemplateInstance() && !s->isTemplateMixin())
return true;
else if (s->parent)
return DtoIsTemplateInstance(s->parent);
return false;
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// LAZY STATIC INIT HELPER
////////////////////////////////////////////////////////////////////////////////////////*/
void DtoLazyStaticInit(bool istempl, LLValue* gvar, Initializer* init, Type* t)
{
// create a flag to make sure initialization only happens once
llvm::GlobalValue::LinkageTypes gflaglink = istempl ? llvm::GlobalValue::WeakLinkage : llvm::GlobalValue::InternalLinkage;
std::string gflagname(gvar->getName());
gflagname.append("__initflag");
llvm::GlobalVariable* gflag = new llvm::GlobalVariable(LLType::Int1Ty,false,gflaglink,DtoConstBool(false),gflagname,gIR->module);
// check flag and do init if not already done
llvm::BasicBlock* oldend = gIR->scopeend();
llvm::BasicBlock* initbb = llvm::BasicBlock::Create("ifnotinit",gIR->topfunc(),oldend);
llvm::BasicBlock* endinitbb = llvm::BasicBlock::Create("ifnotinitend",gIR->topfunc(),oldend);
LLValue* cond = gIR->ir->CreateICmpEQ(gIR->ir->CreateLoad(gflag,"tmp"),DtoConstBool(false));
gIR->ir->CreateCondBr(cond, initbb, endinitbb);
gIR->scope() = IRScope(initbb,endinitbb);
DValue* ie = DtoInitializer(gvar, init);
DVarValue dst(t, gvar);
DtoAssign(init->loc, &dst, ie);
gIR->ir->CreateStore(DtoConstBool(true), gflag);
gIR->ir->CreateBr(endinitbb);
gIR->scope() = IRScope(endinitbb,oldend);
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// PROCESSING QUEUE HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
void DtoResolveDsymbol(Dsymbol* dsym)
{
if (StructDeclaration* sd = dsym->isStructDeclaration()) {
DtoResolveStruct(sd);
}
else if (ClassDeclaration* cd = dsym->isClassDeclaration()) {
DtoResolveClass(cd);
}
else if (FuncDeclaration* fd = dsym->isFuncDeclaration()) {
DtoResolveFunction(fd);
}
else if (TypeInfoDeclaration* fd = dsym->isTypeInfoDeclaration()) {
DtoResolveTypeInfo(fd);
}
else {
error(dsym->loc, "unsupported dsymbol: %s", dsym->toChars());
assert(0 && "unsupported dsymbol for DtoResolveDsymbol");
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoDeclareDsymbol(Dsymbol* dsym)
{
if (StructDeclaration* sd = dsym->isStructDeclaration()) {
DtoDeclareStruct(sd);
}
else if (ClassDeclaration* cd = dsym->isClassDeclaration()) {
DtoDeclareClass(cd);
}
else if (FuncDeclaration* fd = dsym->isFuncDeclaration()) {
DtoDeclareFunction(fd);
}
else if (TypeInfoDeclaration* fd = dsym->isTypeInfoDeclaration()) {
DtoDeclareTypeInfo(fd);
}
else {
error(dsym->loc, "unsupported dsymbol: %s", dsym->toChars());
assert(0 && "unsupported dsymbol for DtoDeclareDsymbol");
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoConstInitDsymbol(Dsymbol* dsym)
{
if (StructDeclaration* sd = dsym->isStructDeclaration()) {
DtoConstInitStruct(sd);
}
else if (ClassDeclaration* cd = dsym->isClassDeclaration()) {
DtoConstInitClass(cd);
}
else if (TypeInfoDeclaration* fd = dsym->isTypeInfoDeclaration()) {
DtoConstInitTypeInfo(fd);
}
else if (VarDeclaration* vd = dsym->isVarDeclaration()) {
DtoConstInitGlobal(vd);
}
else {
error(dsym->loc, "unsupported dsymbol: %s", dsym->toChars());
assert(0 && "unsupported dsymbol for DtoConstInitDsymbol");
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoDefineDsymbol(Dsymbol* dsym)
{
if (StructDeclaration* sd = dsym->isStructDeclaration()) {
DtoDefineStruct(sd);
}
else if (ClassDeclaration* cd = dsym->isClassDeclaration()) {
DtoDefineClass(cd);
}
else if (FuncDeclaration* fd = dsym->isFuncDeclaration()) {
DtoDefineFunc(fd);
}
else if (TypeInfoDeclaration* fd = dsym->isTypeInfoDeclaration()) {
DtoDefineTypeInfo(fd);
}
else {
error(dsym->loc, "unsupported dsymbol: %s", dsym->toChars());
assert(0 && "unsupported dsymbol for DtoDefineDsymbol");
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoConstInitGlobal(VarDeclaration* vd)
{
if (vd->ir.initialized) return;
vd->ir.initialized = gIR->dmodule;
Logger::println("DtoConstInitGlobal(%s) @ %s", vd->toChars(), vd->locToChars());
LOG_SCOPE;
// if the variable is a function local static variable with a runtime initializer
// we must do lazy initialization, which involves a boolean flag to make sure it happens only once
// FIXME: I don't think it's thread safe ...
bool doLazyInit = false;
Dsymbol* par = vd->toParent2();
if (par && par->isFuncDeclaration() && vd->init)
{
if (ExpInitializer* einit = vd->init->isExpInitializer())
{
if (!einit->exp->isConst())
{
// mark as needing lazy now
doLazyInit = true;
}
}
}
// if we do lazy init, we start out with an undefined initializer
LLConstant* initVal;
if (doLazyInit)
{
initVal = llvm::UndefValue::get(DtoType(vd->type));
}
// otherwise we build it
else
{
initVal = DtoConstInitializer(vd->loc, vd->type, vd->init);
}
// set the initializer if appropriate
IrGlobal* glob = vd->ir.irGlobal;
llvm::GlobalVariable* gvar = llvm::cast<llvm::GlobalVariable>(glob->value);
// refine the global's opaque type to the type of the initializer
llvm::cast<LLOpaqueType>(glob->type.get())->refineAbstractTypeTo(initVal->getType());
glob->constInit = initVal;
bool istempl = false;
if ((vd->storage_class & STCcomdat) || (vd->parent && DtoIsTemplateInstance(vd->parent))) {
istempl = true;
}
// assign the initializer
llvm::GlobalVariable* globalvar = llvm::cast<llvm::GlobalVariable>(glob->value);
if (!(vd->storage_class & STCextern) && (vd->getModule() == gIR->dmodule || istempl))
{
if (Logger::enabled())
{
Logger::println("setting initializer");
Logger::cout() << "global: " << *gvar << '\n';
Logger::cout() << "init: " << *initVal << '\n';
}
gvar->setInitializer(initVal);
// do debug info
if (global.params.symdebug)
{
LLGlobalVariable* gv = DtoDwarfGlobalVariable(gvar, vd);
// keep a reference so GDCE doesn't delete it !
gIR->usedArray.push_back(llvm::ConstantExpr::getBitCast(gv, getVoidPtrType()));
}
}
if (doLazyInit)
DtoLazyStaticInit(istempl, gvar, vd->init, vd->type);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoEmptyResolveList()
{
//Logger::println("DtoEmptyResolveList()");
Dsymbol* dsym;
while (!gIR->resolveList.empty()) {
dsym = gIR->resolveList.front();
gIR->resolveList.pop_front();
DtoResolveDsymbol(dsym);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoEmptyDeclareList()
{
//Logger::println("DtoEmptyDeclareList()");
Dsymbol* dsym;
while (!gIR->declareList.empty()) {
dsym = gIR->declareList.front();
gIR->declareList.pop_front();
DtoDeclareDsymbol(dsym);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoEmptyConstInitList()
{
//Logger::println("DtoEmptyConstInitList()");
Dsymbol* dsym;
while (!gIR->constInitList.empty()) {
dsym = gIR->constInitList.front();
gIR->constInitList.pop_front();
DtoConstInitDsymbol(dsym);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoEmptyDefineList()
{
//Logger::println("DtoEmptyDefineList()");
Dsymbol* dsym;
while (!gIR->defineList.empty()) {
dsym = gIR->defineList.front();
gIR->defineList.pop_front();
DtoDefineDsymbol(dsym);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoEmptyAllLists()
{
for(;;)
{
Dsymbol* dsym;
if (!gIR->resolveList.empty()) {
dsym = gIR->resolveList.front();
gIR->resolveList.pop_front();
DtoResolveDsymbol(dsym);
}
else if (!gIR->declareList.empty()) {
dsym = gIR->declareList.front();
gIR->declareList.pop_front();
DtoDeclareDsymbol(dsym);
}
else if (!gIR->constInitList.empty()) {
dsym = gIR->constInitList.front();
gIR->constInitList.pop_front();
DtoConstInitDsymbol(dsym);
}
else if (!gIR->defineList.empty()) {
dsym = gIR->defineList.front();
gIR->defineList.pop_front();
DtoDefineDsymbol(dsym);
}
else {
break;
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoForceDeclareDsymbol(Dsymbol* dsym)
{
if (dsym->ir.declared) return;
Logger::println("DtoForceDeclareDsymbol(%s)", dsym->toPrettyChars());
LOG_SCOPE;
DtoResolveDsymbol(dsym);
DtoEmptyResolveList();
DtoDeclareDsymbol(dsym);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoForceConstInitDsymbol(Dsymbol* dsym)
{
if (dsym->ir.initialized) return;
Logger::println("DtoForceConstInitDsymbol(%s)", dsym->toPrettyChars());
LOG_SCOPE;
DtoResolveDsymbol(dsym);
DtoEmptyResolveList();
DtoEmptyDeclareList();
DtoConstInitDsymbol(dsym);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoForceDefineDsymbol(Dsymbol* dsym)
{
if (dsym->ir.defined) return;
Logger::println("DtoForceDefineDsymbol(%s)", dsym->toPrettyChars());
LOG_SCOPE;
DtoResolveDsymbol(dsym);
DtoEmptyResolveList();
DtoEmptyDeclareList();
DtoEmptyConstInitList();
DtoDefineDsymbol(dsym);
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// DECLARATION EXP HELPER
////////////////////////////////////////////////////////////////////////////////////////*/
DValue* DtoDeclarationExp(Dsymbol* declaration)
{
Logger::print("DtoDeclarationExp: %s\n", declaration->toChars());
LOG_SCOPE;
// variable declaration
if (VarDeclaration* vd = declaration->isVarDeclaration())
{
Logger::println("VarDeclaration");
// if aliassym is set, this VarDecl is redone as an alias to another symbol
// this seems to be done to rewrite Tuple!(...) v;
// as a TupleDecl that contains a bunch of individual VarDecls
if (vd->aliassym)
return DtoDeclarationExp(vd->aliassym);
// static
if (vd->isDataseg())
{
vd->toObjFile(0); // TODO: multiobj
}
else
{
if (global.params.llvmAnnotate)
DtoAnnotation(declaration->toChars());
Logger::println("vdtype = %s", vd->type->toChars());
// referenced by nested delegate?
#if DMDV2
if (vd->nestedrefs.dim) {
#else
if (vd->nestedref) {
#endif
Logger::println("has nestedref set");
assert(vd->ir.irLocal);
// alloca as usual if no value already
if (!vd->ir.irLocal->value)
{
vd->ir.irLocal->value = DtoAlloca(DtoType(vd->type), vd->toChars());
}
// store the address into the nested vars array
assert(vd->ir.irLocal->nestedIndex >= 0);
LLValue* gep = DtoGEPi(gIR->func()->decl->ir.irFunc->nestedVar, 0, vd->ir.irLocal->nestedIndex);
assert(isaPointer(vd->ir.irLocal->value));
LLValue* val = DtoBitCast(vd->ir.irLocal->value, getVoidPtrType());
DtoStore(val, gep);
}
// normal stack variable, allocate storage on the stack if it has not already been done
else if(!vd->ir.irLocal) {
const LLType* lltype = DtoType(vd->type);
llvm::Value* allocainst;
if(gTargetData->getTypeSizeInBits(lltype) == 0)
allocainst = llvm::ConstantPointerNull::get(getPtrToType(lltype));
else
allocainst = DtoAlloca(lltype, vd->toChars());
//allocainst->setAlignment(vd->type->alignsize()); // TODO
vd->ir.irLocal = new IrLocal(vd);
vd->ir.irLocal->value = allocainst;
if (global.params.symdebug)
{
DtoDwarfLocalVariable(allocainst, vd);
}
}
else
{
assert(vd->ir.irLocal->value);
}
if (Logger::enabled())
Logger::cout() << "llvm value for decl: " << *vd->ir.irLocal->value << '\n';
DValue* ie = DtoInitializer(vd->ir.irLocal->value, vd->init);
}
return new DVarValue(vd->type, vd, vd->ir.getIrValue());
}
// struct declaration
else if (StructDeclaration* s = declaration->isStructDeclaration())
{
Logger::println("StructDeclaration");
DtoForceConstInitDsymbol(s);
}
// function declaration
else if (FuncDeclaration* f = declaration->isFuncDeclaration())
{
Logger::println("FuncDeclaration");
DtoForceDeclareDsymbol(f);
}
// alias declaration
else if (AliasDeclaration* a = declaration->isAliasDeclaration())
{
Logger::println("AliasDeclaration - no work");
// do nothing
}
// enum
else if (EnumDeclaration* e = declaration->isEnumDeclaration())
{
Logger::println("EnumDeclaration - no work");
// do nothing
}
// class
else if (ClassDeclaration* e = declaration->isClassDeclaration())
{
Logger::println("ClassDeclaration");
DtoForceConstInitDsymbol(e);
}
// typedef
else if (TypedefDeclaration* tdef = declaration->isTypedefDeclaration())
{
Logger::println("TypedefDeclaration");
DtoTypeInfoOf(tdef->type, false);
}
// attribute declaration
else if (AttribDeclaration* a = declaration->isAttribDeclaration())
{
Logger::println("AttribDeclaration");
for (int i=0; i < a->decl->dim; ++i)
{
DtoDeclarationExp((Dsymbol*)a->decl->data[i]);
}
}
// mixin declaration
else if (TemplateMixin* m = declaration->isTemplateMixin())
{
Logger::println("TemplateMixin");
for (int i=0; i < m->members->dim; ++i)
{
Dsymbol* mdsym = (Dsymbol*)m->members->data[i];
DtoDeclarationExp(mdsym);
}
}
// tuple declaration
else if (TupleDeclaration* tupled = declaration->isTupleDeclaration())
{
Logger::println("TupleDeclaration");
if(!tupled->isexp) {
error(declaration->loc, "don't know how to handle non-expression tuple decls yet");
assert(0);
}
assert(tupled->objects);
for (int i=0; i < tupled->objects->dim; ++i)
{
DsymbolExp* exp = (DsymbolExp*)tupled->objects->data[i];
DtoDeclarationExp(exp->s);
}
}
// unsupported declaration
else
{
error(declaration->loc, "Unimplemented Declaration type for DeclarationExp. kind: %s", declaration->kind());
assert(0);
}
return NULL;
}
// does pretty much the same as DtoDeclarationExp, except it doesn't initialize, and only handles var declarations
LLValue* DtoRawVarDeclaration(VarDeclaration* var)
{
// we don't handle globals with this one
assert(!var->isDataseg());
// we don't handle aliases either
assert(!var->aliassym);
// if this already has storage, it must've been handled already
if (var->ir.irLocal && var->ir.irLocal->value)
return var->ir.irLocal->value;
// referenced by nested function?
#if DMDV2
if (var->nestedrefs.dim)
#else
if (var->nestedref)
#endif
{
assert(var->ir.irLocal);
assert(!var->ir.irLocal->value);
// alloca
var->ir.irLocal->value = DtoAlloca(DtoType(var->type), var->toChars());
// store the address into the nested vars array
assert(var->ir.irLocal->nestedIndex >= 0);
LLValue* gep = DtoGEPi(gIR->func()->decl->ir.irFunc->nestedVar, 0, var->ir.irLocal->nestedIndex);
assert(isaPointer(var->ir.irLocal->value));
LLValue* val = DtoBitCast(var->ir.irLocal->value, getVoidPtrType());
DtoStore(val, gep);
}
// normal local variable
else
{
assert(!var->ir.isSet());
var->ir.irLocal = new IrLocal(var);
var->ir.irLocal->value = DtoAlloca(DtoType(var->type), var->toChars());
}
// add debug info
if (global.params.symdebug)
DtoDwarfLocalVariable(var->ir.irLocal->value, var);
// return the alloca
return var->ir.irLocal->value;
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// INITIALIZER HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
LLConstant* DtoConstInitializer(Loc loc, Type* type, Initializer* init)
{
LLConstant* _init = 0; // may return zero
if (!init)
{
Logger::println("const default initializer for %s", type->toChars());
_init = DtoConstExpInit(loc, type, type->defaultInit());
}
else if (ExpInitializer* ex = init->isExpInitializer())
{
Logger::println("const expression initializer");
_init = DtoConstExpInit(loc, type, ex->exp);;
}
else if (StructInitializer* si = init->isStructInitializer())
{
Logger::println("const struct initializer");
_init = DtoConstStructInitializer(si);
}
else if (ArrayInitializer* ai = init->isArrayInitializer())
{
Logger::println("const array initializer");
_init = DtoConstArrayInitializer(ai);
}
else if (init->isVoidInitializer())
{
Logger::println("const void initializer");
const LLType* ty = DtoType(type);
_init = llvm::Constant::getNullValue(ty);
}
else {
Logger::println("unsupported const initializer: %s", init->toChars());
}
return _init;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* DtoConstFieldInitializer(Loc loc, Type* t, Initializer* init)
{
Logger::println("DtoConstFieldInitializer");
LOG_SCOPE;
const LLType* _type = DtoType(t);
LLConstant* _init = DtoConstInitializer(loc, t, init);
assert(_init);
if (_type != _init->getType())
{
if (Logger::enabled())
Logger::cout() << "field init is: " << *_init << " type should be " << *_type << '\n';
if (t->ty == Tsarray)
{
const LLArrayType* arrty = isaArray(_type);
uint64_t n = arrty->getNumElements();
std::vector<LLConstant*> vals(n,_init);
_init = llvm::ConstantArray::get(arrty, vals);
}
else if (t->ty == Tarray)
{
assert(isaStruct(_type));
_init = llvm::ConstantAggregateZero::get(_type);
}
else if (t->ty == Tstruct)
{
const LLStructType* structty = isaStruct(_type);
TypeStruct* ts = (TypeStruct*)t;
assert(ts);
assert(ts->sym);
assert(ts->sym->ir.irStruct->constInit);
_init = ts->sym->ir.irStruct->constInit;
}
else if (t->ty == Tclass)
{
_init = llvm::Constant::getNullValue(_type);
}
else {
Logger::println("failed for type %s", t->toChars());
assert(0);
}
}
return _init;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoInitializer(LLValue* target, Initializer* init)
{
if (!init)
return 0;
else if (ExpInitializer* ex = init->isExpInitializer())
{
Logger::println("expression initializer");
assert(ex->exp);
DValue* res = ex->exp->toElem(gIR);
assert(llvm::isa<llvm::PointerType>(target->getType()) && "init target must be ptr");
const LLType* targetty = target->getType()->getContainedType(0);
if(targetty == LLType::X86_FP80Ty)
{
Logger::println("setting fp80 padding to zero");
LLValue* castv = DtoBitCast(target, getPtrToType(LLType::Int16Ty));
LLValue* padding = DtoGEPi1(castv, 5);
DtoStore(llvm::Constant::getNullValue(LLType::Int16Ty), padding);
}
else if(targetty == DtoComplexType(Type::tcomplex80))
{
Logger::println("setting complex fp80 padding to zero");
LLValue* castv = DtoBitCast(target, getPtrToType(LLType::Int16Ty));
LLValue* padding = DtoGEPi1(castv, 5);
DtoStore(llvm::Constant::getNullValue(LLType::Int16Ty), padding);
padding = DtoGEPi1(castv, 11);
DtoStore(llvm::Constant::getNullValue(LLType::Int16Ty), padding);
}
return res;
}
else if (init->isVoidInitializer())
{
// do nothing
}
else {
Logger::println("unsupported initializer: %s", init->toChars());
assert(0);
}
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
static LLConstant* expand_to_sarray(Type *base, Expression* exp)
{
Logger::println("building type %s from expression (%s) of type %s", base->toChars(), exp->toChars(), exp->type->toChars());
const LLType* dstTy = DtoType(base);
if (Logger::enabled())
Logger::cout() << "final llvm type requested: " << *dstTy << '\n';
LLConstant* val = exp->toConstElem(gIR);
Type* expbase = exp->type->toBasetype();
Logger::println("expbase: %s", expbase->toChars());
Type* t = base->toBasetype();
LLSmallVector<size_t, 4> dims;
// handle zero initializers
if (expbase->isintegral() && exp->isConst())
{
if (!exp->toInteger())
return LLConstant::getNullValue(dstTy);
}
else if (exp->op == TOKnull)
{
return LLConstant::getNullValue(dstTy);
}
while(1)
{
Logger::println("t: %s", t->toChars());
if (t->equals(expbase))
break;
assert(t->ty == Tsarray);
TypeSArray* tsa = (TypeSArray*)t;
dims.push_back(tsa->dim->toInteger());
assert(t->nextOf());
t = t->nextOf()->toBasetype();
}
size_t i = dims.size();
assert(i);
std::vector<LLConstant*> inits;
while (i--)
{
const LLArrayType* arrty = LLArrayType::get(val->getType(), dims[i]);
inits.clear();
inits.insert(inits.end(), dims[i], val);
val = LLConstantArray::get(arrty, inits);
}
return val;
}
LLConstant* DtoConstExpInit(Loc loc, Type* type, Expression* exp)
{
Type* expbase = exp->type->toBasetype();
Type* base = type->toBasetype();
// if not the same basetypes, we won't get the same llvm types either
if (!expbase->equals(base))
{
if (base->ty == Tsarray)
{
if (base->nextOf()->toBasetype()->ty == Tvoid) {
error(loc, "static arrays of voids have no default initializer");
fatal();
}
Logger::println("type is a static array, building constant array initializer to single value");
return expand_to_sarray(base, exp);
}
else
{
error("cannot yet convert default initializer %s to type %s to %s", exp->toChars(), exp->type->toChars(), type->toChars());
fatal();
}
assert(0);
}
return exp->toConstElem(gIR);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoAnnotation(const char* str)
{
std::string s("CODE: ");
s.append(str);
char* p = &s[0];
while (*p)
{
if (*p == '"')
*p = '\'';
++p;
}
// create a noop with the code as the result name!
// FIXME: this is const folded and eliminated immediately ... :/
gIR->ir->CreateAnd(DtoConstSize_t(0),DtoConstSize_t(0),s.c_str());
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* DtoTypeInfoOf(Type* type, bool base)
{
type = type->merge(); // needed.. getTypeInfo does the same
type->getTypeInfo(NULL);
TypeInfoDeclaration* tidecl = type->vtinfo;
assert(tidecl);
DtoForceDeclareDsymbol(tidecl);
assert(tidecl->ir.irGlobal != NULL);
LLConstant* c = isaConstant(tidecl->ir.irGlobal->value);
assert(c != NULL);
if (base)
return llvm::ConstantExpr::getBitCast(c, DtoType(Type::typeinfo->type));
return c;
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoOverloadedIntrinsicName(TemplateInstance* ti, TemplateDeclaration* td, std::string& name)
{
Logger::println("DtoOverloadedIntrinsicName");
LOG_SCOPE;
Logger::println("template instance: %s", ti->toChars());
Logger::println("template declaration: %s", td->toChars());
Logger::println("intrinsic name: %s", td->intrinsicName.c_str());
// for now use the size in bits of the first template param in the instance
assert(ti->tdtypes.dim == 1);
Type* T = (Type*)ti->tdtypes.data[0];
char tmp[10];
if (T->toBasetype()->ty == Tbool) // otherwise we'd get a mismatch
sprintf(tmp, "1");
else
sprintf(tmp, "%lu", T->size()*8);
// replace # in name with bitsize
name = td->intrinsicName;
std::string needle("#");
size_t pos;
while(std::string::npos != (pos = name.find(needle)))
name.replace(pos, 1, tmp);
Logger::println("final intrinsic name: %s", name.c_str());
}