ldc/dmd2/expression.c
2012-02-15 13:23:22 +04:00

12551 lines
338 KiB
C

// Compiler implementation of the D programming language
// Copyright (c) 1999-2011 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <math.h>
#include <assert.h>
#if _MSC_VER
#include <complex>
#else
#if IN_DMD
#include <complex.h>
#endif
#endif
#if _WIN32 && __DMC__
extern "C" char * __cdecl __locale_decpoint;
#endif
#if __MINGW32__
#ifndef isnan
#define isnan _isnan
#endif
#endif
#ifdef __APPLE__
#ifndef isnan
int isnan(double);
#endif
#endif
#include "rmem.h"
#if IN_DMD
#include "port.h"
#include "root.h"
#endif
#include "mtype.h"
#include "init.h"
#include "expression.h"
#include "template.h"
#include "utf.h"
#include "enum.h"
#include "scope.h"
#include "statement.h"
#include "declaration.h"
#include "aggregate.h"
#include "import.h"
#include "id.h"
#include "dsymbol.h"
#include "module.h"
#include "attrib.h"
#include "hdrgen.h"
#include "parse.h"
#include "doc.h"
#if IN_DMD
Expression *createTypeInfoArray(Scope *sc, Expression *args[], unsigned dim);
#endif
Expression *expandVar(int result, VarDeclaration *v);
#define LOGSEMANTIC 0
/*************************************************************
* Given var, we need to get the
* right 'this' pointer if var is in an outer class, but our
* existing 'this' pointer is in an inner class.
* Input:
* e1 existing 'this'
* ad struct or class we need the correct 'this' for
* var the specific member of ad we're accessing
*/
Expression *getRightThis(Loc loc, Scope *sc, AggregateDeclaration *ad,
Expression *e1, Declaration *var)
{
//printf("\ngetRightThis(e1 = %s, ad = %s, var = %s)\n", e1->toChars(), ad->toChars(), var->toChars());
L1:
Type *t = e1->type->toBasetype();
//printf("e1->type = %s, var->type = %s\n", e1->type->toChars(), var->type->toChars());
/* If e1 is not the 'this' pointer for ad
*/
if (ad &&
!(t->ty == Tpointer && t->nextOf()->ty == Tstruct &&
((TypeStruct *)t->nextOf())->sym == ad)
&&
!(t->ty == Tstruct &&
((TypeStruct *)t)->sym == ad)
)
{
ClassDeclaration *cd = ad->isClassDeclaration();
ClassDeclaration *tcd = t->isClassHandle();
/* e1 is the right this if ad is a base class of e1
*/
if (!cd || !tcd ||
!(tcd == cd || cd->isBaseOf(tcd, NULL))
)
{
/* Only classes can be inner classes with an 'outer'
* member pointing to the enclosing class instance
*/
if (tcd && tcd->isNested())
{ /* e1 is the 'this' pointer for an inner class: tcd.
* Rewrite it as the 'this' pointer for the outer class.
*/
e1 = new DotVarExp(loc, e1, tcd->vthis);
e1->type = tcd->vthis->type;
// Do not call checkNestedRef()
//e1 = e1->semantic(sc);
// Skip up over nested functions, and get the enclosing
// class type.
int n = 0;
Dsymbol *s;
for (s = tcd->toParent();
s && s->isFuncDeclaration();
s = s->toParent())
{ FuncDeclaration *f = s->isFuncDeclaration();
if (f->vthis)
{
//printf("rewriting e1 to %s's this\n", f->toChars());
n++;
// LDC seems dmd misses it sometimes here :/
if (f->isMember2()) {
f->vthis->nestedrefs.push(sc->parent->isFuncDeclaration());
f->closureVars.push(f->vthis);
}
e1 = new VarExp(loc, f->vthis);
}
else
{
e1->error("need 'this' of type %s to access member %s"
" from static function %s",
ad->toChars(), var->toChars(), f->toChars());
e1 = new ErrorExp();
return e1;
}
}
if (s && s->isClassDeclaration())
{ e1->type = s->isClassDeclaration()->type;
if (n > 1)
e1 = e1->semantic(sc);
}
else
e1 = e1->semantic(sc);
goto L1;
}
/* Can't find a path from e1 to ad
*/
e1->error("this for %s needs to be type %s not type %s",
var->toChars(), ad->toChars(), t->toChars());
e1 = new ErrorExp();
}
}
return e1;
}
/*****************************************
* Determine if 'this' is available.
* If it is, return the FuncDeclaration that has it.
*/
FuncDeclaration *hasThis(Scope *sc)
{ FuncDeclaration *fd;
FuncDeclaration *fdthis;
//printf("hasThis()\n");
fdthis = sc->parent->isFuncDeclaration();
//printf("fdthis = %p, '%s'\n", fdthis, fdthis ? fdthis->toChars() : "");
/* Special case for inside template constraint
*/
if (fdthis && (sc->flags & SCOPEstaticif) && fdthis->parent->isTemplateDeclaration())
{
//TemplateDeclaration *td = fdthis->parent->isTemplateDeclaration();
//printf("[%s] td = %s, fdthis->vthis = %p\n", td->loc.toChars(), td->toChars(), fdthis->vthis);
return fdthis->vthis ? fdthis : NULL;
}
// Go upwards until we find the enclosing member function
fd = fdthis;
while (1)
{
if (!fd)
{
goto Lno;
}
if (!fd->isNested())
break;
Dsymbol *parent = fd->parent;
while (1)
{
if (!parent)
goto Lno;
TemplateInstance *ti = parent->isTemplateInstance();
if (ti)
parent = ti->parent;
else
break;
}
fd = parent->isFuncDeclaration();
}
if (!fd->isThis())
{ //printf("test '%s'\n", fd->toChars());
goto Lno;
}
assert(fd->vthis);
return fd;
Lno:
return NULL; // don't have 'this' available
}
/***************************************
* Pull out any properties.
*/
Expression *resolveProperties(Scope *sc, Expression *e)
{
//printf("resolveProperties(%s)\n", e->toChars());
TemplateDeclaration *td;
Objects *targsi;
Expression *ethis;
if (e->op == TOKdotti)
{
DotTemplateInstanceExp* dti = (DotTemplateInstanceExp *)e;
td = dti->getTempdecl(sc);
dti->ti->semanticTiargs(sc);
targsi = dti->ti->tiargs;
ethis = dti->e1;
goto L1;
}
else if (e->op == TOKdottd)
{
DotTemplateExp *dte = (DotTemplateExp *)e;
td = dte->td;
targsi = NULL;
ethis = dte->e1;
goto L1;
}
else if (e->op == TOKtemplate)
{
td = ((TemplateExp *)e)->td;
targsi = NULL;
ethis = NULL;
L1:
assert(td);
unsigned errors = global.startGagging();
FuncDeclaration *fd = td->deduceFunctionTemplate(sc, e->loc, targsi, ethis, NULL, 1);
if (global.endGagging(errors))
fd = NULL; // eat "is not a function template" error
if (fd && fd->type)
{ assert(fd->type->ty == Tfunction);
TypeFunction *tf = (TypeFunction *)fd->type;
if (!tf->isproperty && global.params.enforcePropertySyntax)
{ error(e->loc, "not a property %s", e->toChars());
return new ErrorExp();
}
e = new CallExp(e->loc, e);
e = e->semantic(sc);
}
goto return_expr;
}
if (e->type)
{
Type *t = e->type->toBasetype();
if (t->ty == Tfunction || e->op == TOKoverloadset)
{
if (t->ty == Tfunction && !((TypeFunction *)t)->isproperty &&
global.params.enforcePropertySyntax)
{
error(e->loc, "not a property %s", e->toChars());
return new ErrorExp();
}
e = new CallExp(e->loc, e);
e = e->semantic(sc);
}
/* Look for e being a lazy parameter; rewrite as delegate call
*/
else if (e->op == TOKvar)
{ VarExp *ve = (VarExp *)e;
if (ve->var->storage_class & STClazy)
{
e = new CallExp(e->loc, e);
e = e->semantic(sc);
}
}
else if (e->op == TOKdotexp)
{
e->error("expression has no value");
return new ErrorExp();
}
}
return_expr:
if (!e->type)
{
error(e->loc, "cannot resolve type for %s", e->toChars());
e->type = new TypeError();
}
return e;
}
/******************************
* Perform semantic() on an array of Expressions.
*/
Expressions *arrayExpressionSemantic(Expressions *exps, Scope *sc)
{
if (exps)
{
for (size_t i = 0; i < exps->dim; i++)
{ Expression *e = (*exps)[i];
if (e)
{ e = e->semantic(sc);
(*exps)[i] = e;
}
}
}
return exps;
}
/******************************
* Perform canThrow() on an array of Expressions.
*/
#if DMDV2
int arrayExpressionCanThrow(Expressions *exps, bool mustNotThrow)
{
if (exps)
{
for (size_t i = 0; i < exps->dim; i++)
{ Expression *e = (*exps)[i];
if (e && e->canThrow(mustNotThrow))
return 1;
}
}
return 0;
}
#endif
/****************************************
* Expand tuples.
*/
void expandTuples(Expressions *exps)
{
//printf("expandTuples()\n");
if (exps)
{
for (size_t i = 0; i < exps->dim; i++)
{ Expression *arg = (*exps)[i];
if (!arg)
continue;
// Look for tuple with 0 members
if (arg->op == TOKtype)
{ TypeExp *e = (TypeExp *)arg;
if (e->type->toBasetype()->ty == Ttuple)
{ TypeTuple *tt = (TypeTuple *)e->type->toBasetype();
if (!tt->arguments || tt->arguments->dim == 0)
{
exps->remove(i);
if (i == exps->dim)
return;
i--;
continue;
}
}
}
// Inline expand all the tuples
while (arg->op == TOKtuple)
{ TupleExp *te = (TupleExp *)arg;
exps->remove(i); // remove arg
exps->insert(i, te->exps); // replace with tuple contents
if (i == exps->dim)
return; // empty tuple, no more arguments
arg = (*exps)[i];
}
}
}
}
/****************************************
* Expand alias this tuples.
*/
TupleDeclaration *isAliasThisTuple(Expression *e)
{
if (e->type)
{
Type *t = e->type->toBasetype();
AggregateDeclaration *ad;
if (t->ty == Tstruct)
{
ad = ((TypeStruct *)t)->sym;
goto L1;
}
else if (t->ty == Tclass)
{
ad = ((TypeClass *)t)->sym;
L1:
Dsymbol *s = ad->aliasthis;
if (s && s->isVarDeclaration())
{
TupleDeclaration *td = s->isVarDeclaration()->toAlias()->isTupleDeclaration();
if (td && td->isexp)
return td;
}
}
}
return NULL;
}
int expandAliasThisTuples(Expressions *exps, int starti)
{
if (!exps || exps->dim == 0)
return -1;
for (size_t u = starti; u < exps->dim; u++)
{
Expression *exp = exps->tdata()[u];
TupleDeclaration *td = isAliasThisTuple(exp);
if (td)
{
exps->remove(u);
for (size_t i = 0; i<td->objects->dim; ++i)
{
Expression *e = isExpression(td->objects->tdata()[i]);
assert(e);
assert(e->op == TOKdsymbol);
DsymbolExp *se = (DsymbolExp *)e;
Declaration *d = se->s->isDeclaration();
assert(d);
e = new DotVarExp(exp->loc, exp, d);
assert(d->type);
e->type = d->type;
exps->insert(u + i, e);
}
#if 0
printf("expansion ->\n");
for (size_t i = 0; i<exps->dim; ++i)
{
Expression *e = exps->tdata()[i];
printf("\texps[%d] e = %s %s\n", i, Token::tochars[e->op], e->toChars());
}
#endif
return u;
}
}
return -1;
}
Expressions *arrayExpressionToCommonType(Scope *sc, Expressions *exps, Type **pt)
{
#if DMDV1
/* The first element sets the type
*/
Type *t0 = NULL;
for (size_t i = 0; i < exps->dim; i++)
{ Expression *e = (*exps)[i];
if (!e->type)
{ error("%s has no value", e->toChars());
e = new ErrorExp();
}
e = resolveProperties(sc, e);
if (!t0)
t0 = e->type;
else
e = e->implicitCastTo(sc, t0);
(*exps)[i] = e;
}
if (!t0)
t0 = Type::tvoid;
if (pt)
*pt = t0;
// Eventually, we want to make this copy-on-write
return exps;
#endif
#if DMDV2
/* The type is determined by applying ?: to each pair.
*/
/* Still have a problem with:
* ubyte[][] = [ cast(ubyte[])"hello", [1]];
* which works if the array literal is initialized top down with the ubyte[][]
* type, but fails with this function doing bottom up typing.
*/
//printf("arrayExpressionToCommonType()\n");
IntegerExp integerexp(0);
CondExp condexp(0, &integerexp, NULL, NULL);
Type *t0 = NULL;
Expression *e0;
int j0;
for (size_t i = 0; i < exps->dim; i++)
{ Expression *e = (*exps)[i];
e = resolveProperties(sc, e);
if (!e->type)
{ error("%s has no value", e->toChars());
e = new ErrorExp();
}
if (t0)
{ if (t0 != e->type)
{
/* This applies ?: to merge the types. It's backwards;
* ?: should call this function to merge types.
*/
condexp.type = NULL;
condexp.e1 = e0;
condexp.e2 = e;
condexp.loc = e->loc;
condexp.semantic(sc);
(*exps)[j0] = condexp.e1;
e = condexp.e2;
j0 = i;
e0 = e;
t0 = e0->type;
}
}
else
{ j0 = i;
e0 = e;
t0 = e->type;
}
(*exps)[i] = e;
}
if (t0)
{
for (size_t i = 0; i < exps->dim; i++)
{ Expression *e = (*exps)[i];
e = e->implicitCastTo(sc, t0);
(*exps)[i] = e;
}
}
else
t0 = Type::tvoid; // [] is typed as void[]
if (pt)
*pt = t0;
// Eventually, we want to make this copy-on-write
return exps;
#endif
}
/****************************************
* Get TemplateDeclaration enclosing FuncDeclaration.
*/
TemplateDeclaration *getFuncTemplateDecl(Dsymbol *s)
{
FuncDeclaration *f = s->isFuncDeclaration();
if (f && f->parent)
{ TemplateInstance *ti = f->parent->isTemplateInstance();
if (ti &&
!ti->isTemplateMixin() &&
(ti->name == f->ident ||
ti->toAlias()->ident == f->ident)
&&
ti->tempdecl && ti->tempdecl->onemember)
{
return ti->tempdecl;
}
}
return NULL;
}
/****************************************
* Preprocess arguments to function.
*/
void preFunctionParameters(Loc loc, Scope *sc, Expressions *exps)
{
if (exps)
{
expandTuples(exps);
for (size_t i = 0; i < exps->dim; i++)
{ Expression *arg = (*exps)[i];
arg = resolveProperties(sc, arg);
(*exps)[i] = arg;
//arg->rvalue();
#if 0
if (arg->type->ty == Tfunction)
{
arg = new AddrExp(arg->loc, arg);
arg = arg->semantic(sc);
(*exps)[i] = arg;
}
#endif
}
}
}
/************************************************
* If we want the value of this expression, but do not want to call
* the destructor on it.
*/
void valueNoDtor(Expression *e)
{
if (e->op == TOKcall)
{
/* The struct value returned from the function is transferred
* so do not call the destructor on it.
* Recognize:
* ((S _ctmp = S.init), _ctmp).this(...)
* and make sure the destructor is not called on _ctmp
* BUG: if e is a CommaExp, we should go down the right side.
*/
CallExp *ce = (CallExp *)e;
if (ce->e1->op == TOKdotvar)
{ DotVarExp *dve = (DotVarExp *)ce->e1;
if (dve->var->isCtorDeclaration())
{ // It's a constructor call
if (dve->e1->op == TOKcomma)
{ CommaExp *comma = (CommaExp *)dve->e1;
if (comma->e2->op == TOKvar)
{ VarExp *ve = (VarExp *)comma->e2;
VarDeclaration *ctmp = ve->var->isVarDeclaration();
if (ctmp)
ctmp->noscope = 1;
}
}
}
}
}
}
/*********************************************
* Call copy constructor for struct value argument.
*/
#if DMDV2
Expression *callCpCtor(Loc loc, Scope *sc, Expression *e, int noscope)
{
Type *tb = e->type->toBasetype();
assert(tb->ty == Tstruct);
StructDeclaration *sd = ((TypeStruct *)tb)->sym;
if (sd->cpctor)
{
/* Create a variable tmp, and replace the argument e with:
* (tmp = e),tmp
* and let AssignExp() handle the construction.
* This is not the most efficent, ideally tmp would be constructed
* directly onto the stack.
*/
Identifier *idtmp = Lexer::uniqueId("__cpcttmp");
VarDeclaration *tmp = new VarDeclaration(loc, tb, idtmp, new ExpInitializer(0, e));
tmp->storage_class |= STCctfe;
tmp->noscope = noscope;
Expression *ae = new DeclarationExp(loc, tmp);
e = new CommaExp(loc, ae, new VarExp(loc, tmp));
e = e->semantic(sc);
}
return e;
}
#endif
// Check if this function is a member of a template which has only been
// instantiated speculatively, eg from inside is(typeof()).
// Return the speculative template instance it is part of,
// or NULL if not speculative.
TemplateInstance *isSpeculativeFunction(FuncDeclaration *fd)
{
Dsymbol * par = fd->parent;
while (par)
{
TemplateInstance *ti = par->isTemplateInstance();
if (ti && ti->speculative)
return ti;
par = par->toParent();
}
return NULL;
}
/****************************************
* Now that we know the exact type of the function we're calling,
* the arguments[] need to be adjusted:
* 1. implicitly convert argument to the corresponding parameter type
* 2. add default arguments for any missing arguments
* 3. do default promotions on arguments corresponding to ...
* 4. add hidden _arguments[] argument
* 5. call copy constructor for struct value arguments
* Returns:
* return type from function
*/
Type *functionParameters(Loc loc, Scope *sc, TypeFunction *tf,
Expression *ethis, Expressions *arguments, FuncDeclaration *fd)
{
//printf("functionParameters()\n");
assert(arguments);
assert(fd || tf->next);
size_t nargs = arguments ? arguments->dim : 0;
size_t nparams = Parameter::dim(tf->parameters);
if (nargs > nparams && tf->varargs == 0)
{ error(loc, "expected %zu arguments, not %zu for non-variadic function type %s", nparams, nargs, tf->toChars());
return Type::terror;
}
// If inferring return type, and semantic3() needs to be run if not already run
if (!tf->next && fd->inferRetType)
{
TemplateInstance *spec = isSpeculativeFunction(fd);
int olderrs = global.errors;
fd->semantic3(fd->scope);
// Update the template instantiation with the number
// of errors which occured.
if (spec && global.errors != olderrs)
spec->errors = global.errors - olderrs;
}
unsigned n = (nargs > nparams) ? nargs : nparams; // n = max(nargs, nparams)
unsigned wildmatch = 0;
if (ethis && tf->isWild())
{
Type *t = ethis->type;
if (t->isWild())
wildmatch |= MODwild;
else if (t->isConst())
wildmatch |= MODconst;
else if (t->isImmutable())
wildmatch |= MODimmutable;
else
wildmatch |= MODmutable;
}
int done = 0;
for (size_t i = 0; i < n; i++)
{
Expression *arg;
if (i < nargs)
arg = arguments->tdata()[i];
else
arg = NULL;
if (i < nparams)
{
Parameter *p = Parameter::getNth(tf->parameters, i);
if (!arg)
{
if (!p->defaultArg)
{
if (tf->varargs == 2 && i + 1 == nparams)
goto L2;
error(loc, "expected %zu function arguments, not %zu", nparams, nargs);
return Type::terror;
}
arg = p->defaultArg;
arg = arg->inlineCopy(sc);
#if DMDV2
arg = arg->resolveLoc(loc, sc); // __FILE__ and __LINE__
#endif
arguments->push(arg);
nargs++;
}
else if (arg->op == TOKfunction)
{ FuncExp *fe = (FuncExp *)arg;
Type *pt = p->type;
if (tf->varargs == 2 && i + 1 == nparams && pt->nextOf())
pt = pt->nextOf();
fe->setType(pt);
arg = fe->semantic(sc);
arguments->tdata()[i] = arg;
}
if (tf->varargs == 2 && i + 1 == nparams)
{
//printf("\t\tvarargs == 2, p->type = '%s'\n", p->type->toChars());
if (arg->implicitConvTo(p->type))
{
if (p->type->nextOf() && arg->implicitConvTo(p->type->nextOf()))
goto L2;
else if (nargs != nparams)
{ error(loc, "expected %zu function arguments, not %zu", nparams, nargs);
return Type::terror;
}
goto L1;
}
L2:
Type *tb = p->type->toBasetype();
Type *tret = p->isLazyArray();
switch (tb->ty)
{
case Tsarray:
case Tarray:
{ // Create a static array variable v of type arg->type
#ifdef IN_GCC
/* GCC 4.0 does not like zero length arrays used like
this; pass a null array value instead. Could also
just make a one-element array. */
if (nargs - i == 0)
{
arg = new NullExp(loc);
break;
}
#endif
Identifier *id = Lexer::uniqueId("__arrayArg");
Type *t = new TypeSArray(((TypeArray *)tb)->next, new IntegerExp(nargs - i));
t = t->semantic(loc, sc);
bool isSafe = fd ? fd->isSafe() : tf->trust == TRUSTsafe;
VarDeclaration *v = new VarDeclaration(loc, t, id,
isSafe ? NULL : new VoidInitializer(loc));
v->storage_class |= STCctfe;
v->semantic(sc);
v->parent = sc->parent;
//sc->insert(v);
Expression *c = new DeclarationExp(0, v);
c->type = v->type;
for (size_t u = i; u < nargs; u++)
{ Expression *a = arguments->tdata()[u];
if (tret && !((TypeArray *)tb)->next->equals(a->type))
a = a->toDelegate(sc, tret);
Expression *e = new VarExp(loc, v);
e = new IndexExp(loc, e, new IntegerExp(u + 1 - nparams));
ConstructExp *ae = new ConstructExp(loc, e, a);
if (c)
c = new CommaExp(loc, c, ae);
else
c = ae;
}
arg = new VarExp(loc, v);
if (c)
arg = new CommaExp(loc, c, arg);
break;
}
case Tclass:
{ /* Set arg to be:
* new Tclass(arg0, arg1, ..., argn)
*/
Expressions *args = new Expressions();
args->setDim(nargs - i);
for (size_t u = i; u < nargs; u++)
args->tdata()[u - i] = arguments->tdata()[u];
arg = new NewExp(loc, NULL, NULL, p->type, args);
break;
}
default:
if (!arg)
{ error(loc, "not enough arguments");
return Type::terror;
}
break;
}
arg = arg->semantic(sc);
//printf("\targ = '%s'\n", arg->toChars());
arguments->setDim(i + 1);
arguments->tdata()[i] = arg;
nargs = i + 1;
done = 1;
}
L1:
if (!(p->storageClass & STClazy && p->type->ty == Tvoid))
{
unsigned mod = arg->type->wildConvTo(p->type);
if (mod)
{
wildmatch |= mod;
}
}
}
if (done)
break;
}
if (wildmatch)
{ /* Calculate wild matching modifier
*/
if (wildmatch & MODconst || wildmatch & (wildmatch - 1))
wildmatch = MODconst;
else if (wildmatch & MODimmutable)
wildmatch = MODimmutable;
else if (wildmatch & MODwild)
wildmatch = MODwild;
else
{ assert(wildmatch & MODmutable);
wildmatch = MODmutable;
}
}
assert(nargs >= nparams);
for (size_t i = 0; i < nargs; i++)
{
Expression *arg = arguments->tdata()[i];
assert(arg);
if (i < nparams)
{
Parameter *p = Parameter::getNth(tf->parameters, i);
if (!(p->storageClass & STClazy && p->type->ty == Tvoid))
{
if (p->type->hasWild())
{
arg = arg->implicitCastTo(sc, p->type->substWildTo(wildmatch));
arg = arg->optimize(WANTvalue);
}
else if (p->type != arg->type)
{
//printf("arg->type = %s, p->type = %s\n", arg->type->toChars(), p->type->toChars());
if (arg->op == TOKtype)
{ arg->error("cannot pass type %s as function argument", arg->toChars());
arg = new ErrorExp();
goto L3;
}
else
arg = arg->implicitCastTo(sc, p->type);
arg = arg->optimize(WANTvalue);
}
}
if (p->storageClass & STCref)
{
arg = arg->toLvalue(sc, arg);
}
else if (p->storageClass & STCout)
{
arg = arg->modifiableLvalue(sc, arg);
}
Type *tb = arg->type->toBasetype();
// LDC we don't want this!
#if !IN_LLVM
#if !SARRAYVALUE
// Convert static arrays to pointers
if (tb->ty == Tsarray)
{
arg = arg->checkToPointer();
}
#endif
#endif
#if DMDV2
if (tb->ty == Tstruct && !(p->storageClass & (STCref | STCout)))
{
if (arg->op == TOKcall)
{
/* The struct value returned from the function is transferred
* to the function, so the callee should not call the destructor
* on it.
*/
valueNoDtor(arg);
}
else
{ /* Not transferring it, so call the copy constructor
*/
arg = callCpCtor(loc, sc, arg, 1);
}
}
#endif
//printf("arg: %s\n", arg->toChars());
//printf("type: %s\n", arg->type->toChars());
// Convert lazy argument to a delegate
if (p->storageClass & STClazy)
{
arg = arg->toDelegate(sc, p->type);
}
#if DMDV2
/* Look for arguments that cannot 'escape' from the called
* function.
*/
if (!tf->parameterEscapes(p))
{
Expression *a = arg;
if (a->op == TOKcast)
a = ((CastExp *)a)->e1;
/* Function literals can only appear once, so if this
* appearance was scoped, there cannot be any others.
*/
if (a->op == TOKfunction)
{ FuncExp *fe = (FuncExp *)a;
fe->fd->tookAddressOf = 0;
}
/* For passing a delegate to a scoped parameter,
* this doesn't count as taking the address of it.
* We only worry about 'escaping' references to the function.
*/
else if (a->op == TOKdelegate)
{ DelegateExp *de = (DelegateExp *)a;
if (de->e1->op == TOKvar)
{ VarExp *ve = (VarExp *)de->e1;
FuncDeclaration *f = ve->var->isFuncDeclaration();
if (f)
{ f->tookAddressOf--;
//printf("tookAddressOf = %d\n", f->tookAddressOf);
}
}
}
}
#endif
}
else
{
// If not D linkage, do promotions
// LDC: don't do promotions on intrinsics
if (tf->linkage != LINKd && tf->linkage != LINKintrinsic)
{
// Promote bytes, words, etc., to ints
arg = arg->integralPromotions(sc);
// Promote floats to doubles
switch (arg->type->ty)
{
case Tfloat32:
arg = arg->castTo(sc, Type::tfloat64);
break;
case Timaginary32:
arg = arg->castTo(sc, Type::timaginary64);
break;
}
}
// Do not allow types that need destructors
if (arg->type->needsDestruction())
{ arg->error("cannot pass types that need destruction as variadic arguments");
arg = new ErrorExp();
}
// Convert static arrays to dynamic arrays
// BUG: I don't think this is right for D2
Type *tb = arg->type->toBasetype();
if (tb->ty == Tsarray)
{ TypeSArray *ts = (TypeSArray *)tb;
Type *ta = ts->next->arrayOf();
if (ts->size(arg->loc) == 0)
arg = new NullExp(arg->loc, ta);
else
arg = arg->castTo(sc, ta);
}
#if DMDV2
if (tb->ty == Tstruct)
{
arg = callCpCtor(loc, sc, arg, 1);
}
#endif
// Give error for overloaded function addresses
#if IN_LLVM
if (arg->op == TOKaddress)
{ AddrExp *ae = (AddrExp *)arg;
if (ae->e1->op == TOKvar) {
VarExp *ve = (VarExp*)ae->e1;
FuncDeclaration *fd = ve->var->isFuncDeclaration();
if (fd &&
#if DMDV2
ve->hasOverloads &&
#endif
!fd->isUnique())
{
arg->error("function %s is overloaded", arg->toChars());
}
}
}
#else
if (arg->op == TOKsymoff)
{ SymOffExp *se = (SymOffExp *)arg;
if (
#if DMDV2
se->hasOverloads &&
#endif
!se->var->isFuncDeclaration()->isUnique())
{ arg->error("function %s is overloaded", arg->toChars());
arg = new ErrorExp();
}
}
#endif
arg->rvalue();
}
arg = arg->optimize(WANTvalue);
L3:
arguments->tdata()[i] = arg;
}
#if !IN_LLVM
// If D linkage and variadic, add _arguments[] as first argument
if (tf->linkage == LINKd && tf->varargs == 1)
{
assert(arguments->dim >= nparams);
Expression *e = createTypeInfoArray(sc, (Expression **)&arguments->tdata()[nparams],
arguments->dim - nparams);
arguments->insert(0, e);
}
#endif
Type *tret = tf->next;
if (wildmatch)
{ /* Adjust function return type based on wildmatch
*/
//printf("wildmatch = x%x, tret = %s\n", wildmatch, tret->toChars());
tret = tret->substWildTo(wildmatch);
}
return tret;
}
/**************************************************
* Write expression out to buf, but wrap it
* in ( ) if its precedence is less than pr.
*/
void expToCBuffer(OutBuffer *buf, HdrGenState *hgs, Expression *e, enum PREC pr)
{
#if !IN_LLVM
#ifdef DEBUG
if (precedence[e->op] == PREC_zero)
printf("precedence not defined for token '%s'\n",Token::tochars[e->op]);
#endif
assert(precedence[e->op] != PREC_zero);
assert(pr != PREC_zero);
#endif
//if (precedence[e->op] == 0) e->dump(0);
if (precedence[e->op] < pr ||
/* Despite precedence, we don't allow a<b<c expressions.
* They must be parenthesized.
*/
(pr == PREC_rel && precedence[e->op] == pr))
{
buf->writeByte('(');
e->toCBuffer(buf, hgs);
buf->writeByte(')');
}
else
e->toCBuffer(buf, hgs);
}
/**************************************************
* Write out argument list to buf.
*/
void argsToCBuffer(OutBuffer *buf, Expressions *arguments, HdrGenState *hgs)
{
if (arguments)
{
for (size_t i = 0; i < arguments->dim; i++)
{ Expression *arg = arguments->tdata()[i];
if (arg)
{ if (i)
buf->writeByte(',');
expToCBuffer(buf, hgs, arg, PREC_assign);
}
}
}
}
/**************************************************
* Write out argument types to buf.
*/
void argExpTypesToCBuffer(OutBuffer *buf, Expressions *arguments, HdrGenState *hgs)
{
if (arguments)
{ OutBuffer argbuf;
for (size_t i = 0; i < arguments->dim; i++)
{ Expression *arg = arguments->tdata()[i];
if (i)
buf->writeByte(',');
argbuf.reset();
arg->type->toCBuffer2(&argbuf, hgs, 0);
buf->write(&argbuf);
}
}
}
/******************************** Expression **************************/
Expression::Expression(Loc loc, enum TOK op, int size)
: loc(loc)
{
//printf("Expression::Expression(op = %d) this = %p\n", op, this);
this->loc = loc;
this->op = op;
this->size = size;
this->parens = 0;
type = NULL;
#if IN_LLVM
cachedLvalue = NULL;
#endif
}
Expression *Expression::syntaxCopy()
{
//printf("Expression::syntaxCopy()\n");
//dump(0);
return copy();
}
/*********************************
* Does *not* do a deep copy.
*/
Expression *Expression::copy()
{
Expression *e;
if (!size)
{
#ifdef DEBUG
fprintf(stdmsg, "No expression copy for: %s\n", toChars());
printf("op = %d\n", op);
dump(0);
#endif
assert(0);
}
e = (Expression *)mem.malloc(size);
//printf("Expression::copy(op = %d) e = %p\n", op, e);
return (Expression *)memcpy(e, this, size);
}
/**************************
* Semantically analyze Expression.
* Determine types, fold constants, etc.
*/
Expression *Expression::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("Expression::semantic() %s\n", toChars());
#endif
if (type)
type = type->semantic(loc, sc);
else
type = Type::tvoid;
return this;
}
/**********************************
* Try to run semantic routines.
* If they fail, return NULL.
*/
Expression *Expression::trySemantic(Scope *sc)
{
//printf("+trySemantic(%s)\n", toChars());
unsigned errors = global.startGagging();
Expression *e = semantic(sc);
if (global.endGagging(errors))
{
e = NULL;
}
//printf("-trySemantic(%s)\n", toChars());
return e;
}
void Expression::print()
{
fprintf(stdmsg, "%s\n", toChars());
fflush(stdmsg);
}
char *Expression::toChars()
{ OutBuffer *buf;
HdrGenState hgs;
memset(&hgs, 0, sizeof(hgs));
buf = new OutBuffer();
toCBuffer(buf, &hgs);
return buf->toChars();
}
void Expression::error(const char *format, ...)
{
if (type != Type::terror)
{
va_list ap;
va_start(ap, format);
::verror(loc, format, ap);
va_end( ap );
}
}
void Expression::warning(const char *format, ...)
{
if (type != Type::terror)
{
va_list ap;
va_start(ap, format);
::vwarning(loc, format, ap);
va_end( ap );
}
}
int Expression::rvalue()
{
if (type && type->toBasetype()->ty == Tvoid)
{ error("expression %s is void and has no value", toChars());
#if 0
dump(0);
halt();
#endif
if (!global.gag)
type = Type::terror;
return 0;
}
return 1;
}
Expression *Expression::combine(Expression *e1, Expression *e2)
{
if (e1)
{
if (e2)
{
e1 = new CommaExp(e1->loc, e1, e2);
e1->type = e2->type;
}
}
else
e1 = e2;
return e1;
}
dinteger_t Expression::toInteger()
{
//printf("Expression %s\n", Token::toChars(op));
error("Integer constant expression expected instead of %s", toChars());
return 0;
}
uinteger_t Expression::toUInteger()
{
//printf("Expression %s\n", Token::toChars(op));
return (uinteger_t)toInteger();
}
real_t Expression::toReal()
{
error("Floating point constant expression expected instead of %s", toChars());
return 0;
}
real_t Expression::toImaginary()
{
error("Floating point constant expression expected instead of %s", toChars());
return 0;
}
complex_t Expression::toComplex()
{
error("Floating point constant expression expected instead of %s", toChars());
#ifdef IN_GCC
return complex_t(real_t(0)); // %% nicer
#else
return 0;
#endif
}
StringExp *Expression::toString()
{
return NULL;
}
void Expression::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring(Token::toChars(op));
}
void Expression::toMangleBuffer(OutBuffer *buf)
{
error("expression %s is not a valid template value argument", toChars());
#ifdef DEBUG
dump(0);
#endif
}
/***************************************
* Return !=0 if expression is an lvalue.
*/
#if DMDV2
int Expression::isLvalue()
{
return 0;
}
#endif
/*******************************
* Give error if we're not an lvalue.
* If we can, convert expression to be an lvalue.
*/
Expression *Expression::toLvalue(Scope *sc, Expression *e)
{
if (!e)
e = this;
else if (!loc.filename)
loc = e->loc;
error("%s is not an lvalue", e->toChars());
return new ErrorExp();
}
Expression *Expression::modifiableLvalue(Scope *sc, Expression *e)
{
//printf("Expression::modifiableLvalue() %s, type = %s\n", toChars(), type->toChars());
// See if this expression is a modifiable lvalue (i.e. not const)
#if DMDV2
if (type && (!type->isMutable() || !type->isAssignable()))
{ error("%s is not mutable", e->toChars());
return new ErrorExp();
}
#endif
return toLvalue(sc, e);
}
/************************************
* Detect cases where pointers to the stack can 'escape' the
* lifetime of the stack frame.
*/
void Expression::checkEscape()
{
}
void Expression::checkEscapeRef()
{
}
void Expression::checkScalar()
{
if (!type->isscalar() && type->toBasetype() != Type::terror)
error("'%s' is not a scalar, it is a %s", toChars(), type->toChars());
rvalue();
}
void Expression::checkNoBool()
{
if (type->toBasetype()->ty == Tbool)
error("operation not allowed on bool '%s'", toChars());
}
Expression *Expression::checkIntegral()
{
if (!type->isintegral())
{ if (type->toBasetype() != Type::terror)
error("'%s' is not of integral type, it is a %s", toChars(), type->toChars());
return new ErrorExp();
}
if (!rvalue())
return new ErrorExp();
return this;
}
Expression *Expression::checkArithmetic()
{
if (!type->isintegral() && !type->isfloating())
{ if (type->toBasetype() != Type::terror)
error("'%s' is not of arithmetic type, it is a %s", toChars(), type->toChars());
return new ErrorExp();
}
if (!rvalue())
return new ErrorExp();
return this;
}
void Expression::checkDeprecated(Scope *sc, Dsymbol *s)
{
s->checkDeprecated(loc, sc);
}
#if DMDV2
/*********************************************
* Calling function f.
* Check the purity, i.e. if we're in a pure function
* we can only call other pure functions.
*/
void Expression::checkPurity(Scope *sc, FuncDeclaration *f)
{
#if 1
if (sc->func)
{
/* Given:
* void f()
* { pure void g()
* {
* void h()
* {
* void i() { }
* }
* }
* }
* g() can call h() but not f()
* i() can call h() and g() but not f()
*/
FuncDeclaration *outerfunc = sc->func;
// Find the closest pure parent of the calling function
while (outerfunc->toParent2() &&
!outerfunc->isPureBypassingInference() &&
outerfunc->toParent2()->isFuncDeclaration())
{
outerfunc = outerfunc->toParent2()->isFuncDeclaration();
}
// Find the closest pure parent of the called function
FuncDeclaration *calledparent = f;
while (calledparent->toParent2() && !calledparent->isPureBypassingInference()
&& calledparent->toParent2()->isFuncDeclaration() )
{
calledparent = calledparent->toParent2()->isFuncDeclaration();
}
// If the caller has a pure parent, then either the called func must be pure,
// OR, they must have the same pure parent.
if (/*outerfunc->isPure() &&*/ // comment out because we deduce purity now
!sc->intypeof &&
!(sc->flags & SCOPEdebug) &&
!(f->isPure() || (calledparent == outerfunc)))
{
if (outerfunc->setImpure())
error("pure function '%s' cannot call impure function '%s'",
outerfunc->toChars(), f->toChars());
}
}
#else
if (sc->func && sc->func->isPure() && !sc->intypeof && !f->isPure())
error("pure function '%s' cannot call impure function '%s'",
sc->func->toChars(), f->toChars());
#endif
}
/*******************************************
* Accessing variable v.
* Check for purity and safety violations.
* If ethis is not NULL, then ethis is the 'this' pointer as in ethis.v
*/
void Expression::checkPurity(Scope *sc, VarDeclaration *v, Expression *ethis)
{
/* Look for purity and safety violations when accessing variable v
* from current function.
*/
if (sc->func &&
!sc->intypeof && // allow violations inside typeof(expression)
!(sc->flags & SCOPEdebug) && // allow violations inside debug conditionals
v->ident != Id::ctfe && // magic variable never violates pure and safe
!v->isImmutable() && // always safe and pure to access immutables...
!(v->isConst() && v->isDataseg() && !v->type->hasPointers()) && // const global value types are immutable
!(v->storage_class & STCmanifest) // ...or manifest constants
)
{
if (v->isDataseg())
{
/* Accessing global mutable state.
* Therefore, this function and all its immediately enclosing
* functions must be pure.
*/
bool msg = FALSE;
for (Dsymbol *s = sc->func; s; s = s->toParent2())
{
FuncDeclaration *ff = s->isFuncDeclaration();
if (!ff)
break;
if (ff->setImpure() && !msg)
{ error("pure function '%s' cannot access mutable static data '%s'",
sc->func->toChars(), v->toChars());
msg = TRUE; // only need the innermost message
}
}
}
else
{
/* Given:
* void f()
* { int fx;
* pure void g()
* { int gx;
* void h()
* { int hx;
* void i() { }
* }
* }
* }
* i() can modify hx and gx but not fx
*/
Dsymbol *vparent = v->toParent2();
for (Dsymbol *s = sc->func; s; s = s->toParent2())
{
if (s == vparent)
break;
FuncDeclaration *ff = s->isFuncDeclaration();
if (!ff)
break;
if (ff->setImpure())
{ error("pure nested function '%s' cannot access mutable data '%s'",
ff->toChars(), v->toChars());
break;
}
}
}
/* Do not allow safe functions to access __gshared data
*/
if (v->storage_class & STCgshared)
{
if (sc->func->setUnsafe())
error("safe function '%s' cannot access __gshared data '%s'",
sc->func->toChars(), v->toChars());
}
}
}
void Expression::checkSafety(Scope *sc, FuncDeclaration *f)
{
if (sc->func && !sc->intypeof &&
!f->isSafe() && !f->isTrusted())
{
if (sc->func->setUnsafe())
error("safe function '%s' cannot call system function '%s'",
sc->func->toChars(), f->toChars());
}
}
#endif
/*****************************
* Check that expression can be tested for true or false.
*/
Expression *Expression::checkToBoolean(Scope *sc)
{
// Default is 'yes' - do nothing
#ifdef DEBUG
if (!type)
dump(0);
#endif
// Structs can be converted to bool using opCast(bool)()
Type *tb = type->toBasetype();
if (tb->ty == Tstruct)
{ AggregateDeclaration *ad = ((TypeStruct *)tb)->sym;
/* Don't really need to check for opCast first, but by doing so we
* get better error messages if it isn't there.
*/
Dsymbol *fd = search_function(ad, Id::cast);
if (fd)
{
Expression *e = new CastExp(loc, this, Type::tbool);
e = e->semantic(sc);
return e;
}
// Forward to aliasthis.
if (ad->aliasthis)
{
Expression *e = new DotIdExp(loc, this, ad->aliasthis->ident);
e = e->semantic(sc);
e = resolveProperties(sc, e);
e = e->checkToBoolean(sc);
return e;
}
}
if (!type->checkBoolean())
{ if (type->toBasetype() != Type::terror)
error("expression %s of type %s does not have a boolean value", toChars(), type->toChars());
return new ErrorExp();
}
return this;
}
/****************************
*/
Expression *Expression::checkToPointer()
{
//printf("Expression::checkToPointer()\n");
Expression *e = this;
#if !SARRAYVALUE
// If C static array, convert to pointer
Type *tb = type->toBasetype();
if (tb->ty == Tsarray)
{ TypeSArray *ts = (TypeSArray *)tb;
if (ts->size(loc) == 0)
e = new NullExp(loc);
else
e = new AddrExp(loc, this);
e->type = ts->next->pointerTo();
}
#endif
return e;
}
/******************************
* Take address of expression.
*/
Expression *Expression::addressOf(Scope *sc)
{
Expression *e;
Type *t = type;
//printf("Expression::addressOf()\n");
e = toLvalue(sc, NULL);
e = new AddrExp(loc, e);
e->type = t->pointerTo();
return e;
}
/******************************
* If this is a reference, dereference it.
*/
Expression *Expression::deref()
{
//printf("Expression::deref()\n");
// type could be null if forward referencing an 'auto' variable
if (type && type->ty == Treference)
{
Expression *e = new PtrExp(loc, this);
e->type = ((TypeReference *)type)->next;
return e;
}
return this;
}
/********************************
* Does this expression statically evaluate to a boolean TRUE or FALSE?
*/
int Expression::isBool(int result)
{
return FALSE;
}
/********************************
* Does this expression result in either a 1 or a 0?
*/
int Expression::isBit()
{
return FALSE;
}
/****************************************
* Resolve __LINE__ and __FILE__ to loc.
*/
Expression *Expression::resolveLoc(Loc loc, Scope *sc)
{
return this;
}
Expressions *Expression::arraySyntaxCopy(Expressions *exps)
{ Expressions *a = NULL;
if (exps)
{
a = new Expressions();
a->setDim(exps->dim);
for (size_t i = 0; i < a->dim; i++)
{ Expression *e = (*exps)[i];
if (e)
e = e->syntaxCopy();
a->tdata()[i] = e;
}
}
return a;
}
/***************************************************
* Recognize expressions of the form:
* ((T v = init), v)
* where v is a temp.
* This is used in optimizing out unnecessary temporary generation.
* Returns initializer expression of v if so, NULL if not.
*/
Expression *Expression::isTemp()
{
//printf("isTemp() %s\n", toChars());
if (op == TOKcomma)
{ CommaExp *ec = (CommaExp *)this;
if (ec->e1->op == TOKdeclaration &&
ec->e2->op == TOKvar)
{ DeclarationExp *de = (DeclarationExp *)ec->e1;
VarExp *ve = (VarExp *)ec->e2;
if (ve->var == de->declaration && ve->var->storage_class & STCctfe)
{ VarDeclaration *v = ve->var->isVarDeclaration();
if (v && v->init)
{
ExpInitializer *ei = v->init->isExpInitializer();
if (ei)
{ Expression *e = ei->exp;
if (e->op == TOKconstruct)
{ ConstructExp *ce = (ConstructExp *)e;
if (ce->e1->op == TOKvar && ((VarExp *)ce->e1)->var == ve->var)
e = ce->e2;
}
return e;
}
}
}
}
}
return NULL;
}
/************************************************
* Destructors are attached to VarDeclarations.
* Hence, if expression returns a temp that needs a destructor,
* make sure and create a VarDeclaration for that temp.
*/
Expression *Expression::addDtorHook(Scope *sc)
{
return this;
}
/******************************** IntegerExp **************************/
IntegerExp::IntegerExp(Loc loc, dinteger_t value, Type *type)
: Expression(loc, TOKint64, sizeof(IntegerExp))
{
//printf("IntegerExp(value = %lld, type = '%s')\n", value, type ? type->toChars() : "");
if (type && !type->isscalar())
{
//printf("%s, loc = %d\n", toChars(), loc.linnum);
if (type->ty != Terror)
error("integral constant must be scalar type, not %s", type->toChars());
type = Type::terror;
}
this->type = type;
this->value = value;
}
IntegerExp::IntegerExp(dinteger_t value)
: Expression(0, TOKint64, sizeof(IntegerExp))
{
this->type = Type::tint32;
this->value = value;
}
int IntegerExp::equals(Object *o)
{ IntegerExp *ne;
if (this == o ||
(((Expression *)o)->op == TOKint64 &&
((ne = (IntegerExp *)o), type->toHeadMutable()->equals(ne->type->toHeadMutable())) &&
value == ne->value))
return 1;
return 0;
}
char *IntegerExp::toChars()
{
#if 1
return Expression::toChars();
#else
static char buffer[sizeof(value) * 3 + 1];
sprintf(buffer, "%jd", value);
return buffer;
#endif
}
dinteger_t IntegerExp::toInteger()
{ Type *t;
t = type;
while (t)
{
switch (t->ty)
{
case Tbool: value = (value != 0); break;
case Tint8: value = (d_int8) value; break;
case Tchar:
case Tuns8: value = (d_uns8) value; break;
case Tint16: value = (d_int16) value; break;
case Twchar:
case Tuns16: value = (d_uns16) value; break;
case Tint32: value = (d_int32) value; break;
case Tdchar:
case Tuns32: value = (d_uns32) value; break;
case Tint64: value = (d_int64) value; break;
case Tuns64: value = (d_uns64) value; break;
case Tpointer:
if (PTRSIZE == 4)
value = (d_uns32) value;
else if (PTRSIZE == 8)
value = (d_uns64) value;
else
assert(0);
break;
case Tenum:
{
TypeEnum *te = (TypeEnum *)t;
t = te->sym->memtype;
continue;
}
case Ttypedef:
{
TypeTypedef *tt = (TypeTypedef *)t;
t = tt->sym->basetype;
continue;
}
default:
/* This can happen if errors, such as
* the type is painted on like in fromConstInitializer().
*/
if (!global.errors)
{
printf("e = %p, ty = %d\n", this, type->ty);
type->print();
assert(0);
}
break;
}
break;
}
return value;
}
real_t IntegerExp::toReal()
{
Type *t;
toInteger();
t = type->toBasetype();
if (t->ty == Tuns64)
return (real_t)(d_uns64)value;
else
return (real_t)(d_int64)value;
}
real_t IntegerExp::toImaginary()
{
return (real_t) 0;
}
complex_t IntegerExp::toComplex()
{
return toReal();
}
int IntegerExp::isBool(int result)
{
int r = toInteger() != 0;
return result ? r : !r;
}
Expression *IntegerExp::semantic(Scope *sc)
{
if (!type)
{
// Determine what the type of this number is
dinteger_t number = value;
if (number & 0x8000000000000000LL)
type = Type::tuns64;
else if (number & 0xFFFFFFFF80000000LL)
type = Type::tint64;
else
type = Type::tint32;
}
else
{ if (!type->deco)
type = type->semantic(loc, sc);
}
return this;
}
Expression *IntegerExp::toLvalue(Scope *sc, Expression *e)
{
if (!e)
e = this;
else if (!loc.filename)
loc = e->loc;
e->error("constant %s is not an lvalue", e->toChars());
return new ErrorExp();
}
void IntegerExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
dinteger_t v = toInteger();
if (type)
{ Type *t = type;
L1:
switch (t->ty)
{
case Tenum:
{ TypeEnum *te = (TypeEnum *)t;
buf->printf("cast(%s)", te->sym->toChars());
t = te->sym->memtype;
goto L1;
}
case Ttypedef:
{ TypeTypedef *tt = (TypeTypedef *)t;
buf->printf("cast(%s)", tt->sym->toChars());
t = tt->sym->basetype;
goto L1;
}
case Twchar: // BUG: need to cast(wchar)
case Tdchar: // BUG: need to cast(dchar)
if ((uinteger_t)v > 0xFF)
{
buf->printf("'\\U%08x'", (unsigned)v);
break;
}
case Tchar:
{
unsigned o = buf->offset;
if (v == '\'')
buf->writestring("'\\''");
else if (isprint(v) && v != '\\')
buf->printf("'%c'", (int)v);
else
buf->printf("'\\x%02x'", (int)v);
if (hgs->ddoc)
escapeDdocString(buf, o);
break;
}
case Tint8:
buf->writestring("cast(byte)");
goto L2;
case Tint16:
buf->writestring("cast(short)");
goto L2;
case Tint32:
L2:
buf->printf("%d", (int)v);
break;
case Tuns8:
buf->writestring("cast(ubyte)");
goto L3;
case Tuns16:
buf->writestring("cast(ushort)");
goto L3;
case Tuns32:
L3:
buf->printf("%du", (unsigned)v);
break;
case Tint64:
buf->printf("%jdL", v);
break;
case Tuns64:
L4:
buf->printf("%juLU", v);
break;
case Tbool:
buf->writestring((char *)(v ? "true" : "false"));
break;
case Tpointer:
buf->writestring("cast(");
buf->writestring(t->toChars());
buf->writeByte(')');
if (PTRSIZE == 4)
goto L3;
else if (PTRSIZE == 8)
goto L4;
else
assert(0);
default:
/* This can happen if errors, such as
* the type is painted on like in fromConstInitializer().
*/
if (!global.errors)
{
#ifdef DEBUG
t->print();
#endif
assert(0);
}
break;
}
}
else if (v & 0x8000000000000000LL)
buf->printf("0x%jx", v);
else
buf->printf("%jd", v);
}
void IntegerExp::toMangleBuffer(OutBuffer *buf)
{
if ((sinteger_t)value < 0)
buf->printf("N%jd", -value);
else
{
/* This is an awful hack to maintain backwards compatibility.
* There really always should be an 'i' before a number, but
* there wasn't in earlier implementations, so to maintain
* backwards compatibility it is only done if necessary to disambiguate.
* See bugzilla 3029
*/
if (buf->offset > 0 && isdigit(buf->data[buf->offset - 1]))
buf->writeByte('i');
buf->printf("%jd", value);
}
}
/******************************** ErrorExp **************************/
/* Use this expression for error recovery.
* It should behave as a 'sink' to prevent further cascaded error messages.
*/
ErrorExp::ErrorExp()
: IntegerExp(0, 0, Type::terror)
{
op = TOKerror;
}
Expression *ErrorExp::toLvalue(Scope *sc, Expression *e)
{
return this;
}
void ErrorExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("__error");
}
/******************************** RealExp **************************/
RealExp::RealExp(Loc loc, real_t value, Type *type)
: Expression(loc, TOKfloat64, sizeof(RealExp))
{
//printf("RealExp::RealExp(%Lg)\n", value);
this->value = value;
this->type = type;
}
char *RealExp::toChars()
{
char buffer[sizeof(value) * 3 + 8 + 1 + 1];
#ifdef IN_GCC
value.format(buffer, sizeof(buffer));
if (type->isimaginary())
strcat(buffer, "i");
#else
sprintf(buffer, type->isimaginary() ? "%Lgi" : "%Lg", value);
#endif
assert(strlen(buffer) < sizeof(buffer));
return mem.strdup(buffer);
}
dinteger_t RealExp::toInteger()
{
#ifdef IN_GCC
return toReal().toInt();
#else
return (sinteger_t) toReal();
#endif
}
uinteger_t RealExp::toUInteger()
{
#ifdef IN_GCC
return (uinteger_t) toReal().toInt();
#else
return (uinteger_t) toReal();
#endif
}
real_t RealExp::toReal()
{
return type->isreal() ? value : 0;
}
real_t RealExp::toImaginary()
{
return type->isreal() ? 0 : value;
}
complex_t RealExp::toComplex()
{
#ifdef __DMC__
return toReal() + toImaginary() * I;
#else
return complex_t(toReal(), toImaginary());
#endif
}
/********************************
* Test to see if two reals are the same.
* Regard NaN's as equivalent.
* Regard +0 and -0 as different.
*/
int RealEquals(real_t x1, real_t x2)
{
// return (Port::isNan(x1) && Port::isNan(x2)) ||
#if __APPLE__
return (__inline_isnan(x1) && __inline_isnan(x2)) ||
#else
return // special case nans
(isnan(x1) && isnan(x2)) ||
#endif
// and zero, in order to distinguish +0 from -0
(x1 == 0 && x2 == 0 && 1./x1 == 1./x2) ||
// otherwise just compare
(x1 != 0. && x1 == x2);
}
int RealExp::equals(Object *o)
{ RealExp *ne;
if (this == o ||
(((Expression *)o)->op == TOKfloat64 &&
((ne = (RealExp *)o), type->toHeadMutable()->equals(ne->type->toHeadMutable())) &&
RealEquals(value, ne->value)
)
)
return 1;
return 0;
}
Expression *RealExp::semantic(Scope *sc)
{
if (!type)
type = Type::tfloat64;
else
type = type->semantic(loc, sc);
return this;
}
int RealExp::isBool(int result)
{
#ifdef IN_GCC
return result ? (! value.isZero()) : (value.isZero());
#else
return result ? (value != 0)
: (value == 0);
#endif
}
void floatToBuffer(OutBuffer *buf, Type *type, real_t value)
{
/* In order to get an exact representation, try converting it
* to decimal then back again. If it matches, use it.
* If it doesn't, fall back to hex, which is
* always exact.
*/
char buffer[25];
sprintf(buffer, "%Lg", value);
assert(strlen(buffer) < sizeof(buffer));
#if _WIN32 && __DMC__
char *save = __locale_decpoint;
__locale_decpoint = ".";
real_t r = strtold(buffer, NULL);
__locale_decpoint = save;
#else
real_t r = strtold(buffer, NULL);
#endif
if (r == value) // if exact duplication
buf->writestring(buffer);
else
{
#ifdef __HAIKU__ // broken printf workaround
char buffer2[25];
char *ptr = (char *)&value;
for(int i = 0; i < sizeof(value); i++)
snprintf(buffer2, sizeof(char), "%x", ptr[i]);
buf->writestring(buffer2);
#else
buf->printf("%La", value); // ensure exact duplication
#endif
}
if (type)
{
Type *t = type->toBasetype();
switch (t->ty)
{
case Tfloat32:
case Timaginary32:
case Tcomplex32:
buf->writeByte('F');
break;
case Tfloat80:
case Timaginary80:
case Tcomplex80:
buf->writeByte('L');
break;
default:
break;
}
if (t->isimaginary())
buf->writeByte('i');
}
}
void RealExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
floatToBuffer(buf, type, value);
}
void realToMangleBuffer(OutBuffer *buf, real_t value)
{
/* Rely on %A to get portable mangling.
* Must munge result to get only identifier characters.
*
* Possible values from %A => mangled result
* NAN => NAN
* -INF => NINF
* INF => INF
* -0X1.1BC18BA997B95P+79 => N11BC18BA997B95P79
* 0X1.9P+2 => 19P2
*/
// if (Port::isNan(value))
#if __APPLE__
if (__inline_isnan(value))
#else
if (isnan(value))
#endif
buf->writestring("NAN"); // no -NAN bugs
else
{
char buffer[32];
int n = sprintf(buffer, "%LA", value);
assert(n > 0 && n < sizeof(buffer));
for (int i = 0; i < n; i++)
{ char c = buffer[i];
switch (c)
{
case '-':
buf->writeByte('N');
break;
case '+':
case 'X':
case '.':
break;
case '0':
if (i < 2)
break; // skip leading 0X
default:
buf->writeByte(c);
break;
}
}
}
}
void RealExp::toMangleBuffer(OutBuffer *buf)
{
buf->writeByte('e');
realToMangleBuffer(buf, value);
}
/******************************** ComplexExp **************************/
ComplexExp::ComplexExp(Loc loc, complex_t value, Type *type)
: Expression(loc, TOKcomplex80, sizeof(ComplexExp))
{
this->value = value;
this->type = type;
//printf("ComplexExp::ComplexExp(%s)\n", toChars());
}
char *ComplexExp::toChars()
{
char buffer[sizeof(value) * 3 + 8 + 1];
#ifdef IN_GCC
char buf1[sizeof(value) * 3 + 8 + 1];
char buf2[sizeof(value) * 3 + 8 + 1];
creall(value).format(buf1, sizeof(buf1));
cimagl(value).format(buf2, sizeof(buf2));
sprintf(buffer, "(%s+%si)", buf1, buf2);
#else
sprintf(buffer, "(%Lg+%Lgi)", creall(value), cimagl(value));
assert(strlen(buffer) < sizeof(buffer));
#endif
return mem.strdup(buffer);
}
dinteger_t ComplexExp::toInteger()
{
#ifdef IN_GCC
return (sinteger_t) toReal().toInt();
#else
return (sinteger_t) toReal();
#endif
}
uinteger_t ComplexExp::toUInteger()
{
#ifdef IN_GCC
return (uinteger_t) toReal().toInt();
#else
return (uinteger_t) toReal();
#endif
}
real_t ComplexExp::toReal()
{
return creall(value);
}
real_t ComplexExp::toImaginary()
{
return cimagl(value);
}
complex_t ComplexExp::toComplex()
{
return value;
}
int ComplexExp::equals(Object *o)
{ ComplexExp *ne;
if (this == o ||
(((Expression *)o)->op == TOKcomplex80 &&
((ne = (ComplexExp *)o), type->toHeadMutable()->equals(ne->type->toHeadMutable())) &&
RealEquals(creall(value), creall(ne->value)) &&
RealEquals(cimagl(value), cimagl(ne->value))
)
)
return 1;
return 0;
}
Expression *ComplexExp::semantic(Scope *sc)
{
if (!type)
type = Type::tcomplex80;
else
type = type->semantic(loc, sc);
return this;
}
int ComplexExp::isBool(int result)
{
if (result)
return (bool)(value);
else
return !value;
}
void ComplexExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
/* Print as:
* (re+imi)
*/
#ifdef IN_GCC
char buf1[sizeof(value) * 3 + 8 + 1];
char buf2[sizeof(value) * 3 + 8 + 1];
creall(value).format(buf1, sizeof(buf1));
cimagl(value).format(buf2, sizeof(buf2));
buf->printf("(%s+%si)", buf1, buf2);
#else
buf->writeByte('(');
floatToBuffer(buf, type, creall(value));
buf->writeByte('+');
floatToBuffer(buf, type, cimagl(value));
buf->writestring("i)");
#endif
}
void ComplexExp::toMangleBuffer(OutBuffer *buf)
{
buf->writeByte('c');
real_t r = toReal();
realToMangleBuffer(buf, r);
buf->writeByte('c'); // separate the two
r = toImaginary();
realToMangleBuffer(buf, r);
}
/******************************** IdentifierExp **************************/
IdentifierExp::IdentifierExp(Loc loc, Identifier *ident)
: Expression(loc, TOKidentifier, sizeof(IdentifierExp))
{
this->ident = ident;
}
Expression *IdentifierExp::semantic(Scope *sc)
{
Dsymbol *s;
Dsymbol *scopesym;
#if LOGSEMANTIC
printf("IdentifierExp::semantic('%s')\n", ident->toChars());
#endif
s = sc->search(loc, ident, &scopesym);
if (s)
{ Expression *e;
WithScopeSymbol *withsym;
/* See if the symbol was a member of an enclosing 'with'
*/
withsym = scopesym->isWithScopeSymbol();
if (withsym)
{
#if DMDV2
/* Disallow shadowing
*/
// First find the scope of the with
Scope *scwith = sc;
while (scwith->scopesym != scopesym)
{ scwith = scwith->enclosing;
assert(scwith);
}
// Look at enclosing scopes for symbols with the same name,
// in the same function
for (Scope *scx = scwith; scx && scx->func == scwith->func; scx = scx->enclosing)
{ Dsymbol *s2;
if (scx->scopesym && scx->scopesym->symtab &&
(s2 = scx->scopesym->symtab->lookup(s->ident)) != NULL &&
s != s2)
{
error("with symbol %s is shadowing local symbol %s", s->toPrettyChars(), s2->toPrettyChars());
return new ErrorExp();
}
}
#endif
s = s->toAlias();
// Same as wthis.ident
if (s->needThis() || s->isTemplateDeclaration())
{
e = new VarExp(loc, withsym->withstate->wthis);
e = new DotIdExp(loc, e, ident);
}
else
{ Type *t = withsym->withstate->wthis->type;
if (t->ty == Tpointer)
t = ((TypePointer *)t)->next;
e = typeDotIdExp(loc, t, ident);
}
}
else
{
/* If f is really a function template,
* then replace f with the function template declaration.
*/
FuncDeclaration *f = s->isFuncDeclaration();
if (f)
{ TemplateDeclaration *tempdecl = getFuncTemplateDecl(f);
if (tempdecl)
{
if (tempdecl->overroot) // if not start of overloaded list of TemplateDeclaration's
tempdecl = tempdecl->overroot; // then get the start
e = new TemplateExp(loc, tempdecl);
e = e->semantic(sc);
return e;
}
}
// Haven't done overload resolution yet, so pass 1
e = new DsymbolExp(loc, s, 1);
}
return e->semantic(sc);
}
#if DMDV2
if (hasThis(sc))
{
AggregateDeclaration *ad = sc->getStructClassScope();
if (ad && ad->aliasthis)
{
Expression *e;
e = new IdentifierExp(loc, Id::This);
e = new DotIdExp(loc, e, ad->aliasthis->ident);
e = new DotIdExp(loc, e, ident);
e = e->trySemantic(sc);
if (e)
return e;
}
}
if (ident == Id::ctfe)
{ // Create the magic __ctfe bool variable
VarDeclaration *vd = new VarDeclaration(loc, Type::tbool, Id::ctfe, NULL);
Expression *e = new VarExp(loc, vd);
e = e->semantic(sc);
return e;
}
#endif
const char *n = importHint(ident->toChars());
if (n)
error("'%s' is not defined, perhaps you need to import %s; ?", ident->toChars(), n);
else
{
s = sc->search_correct(ident);
if (s)
error("undefined identifier %s, did you mean %s %s?", ident->toChars(), s->kind(), s->toChars());
else
error("undefined identifier %s", ident->toChars());
}
return new ErrorExp();
}
char *IdentifierExp::toChars()
{
return ident->toChars();
}
void IdentifierExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
if (hgs->hdrgen)
buf->writestring(ident->toHChars2());
else
buf->writestring(ident->toChars());
}
#if DMDV2
int IdentifierExp::isLvalue()
{
return 1;
}
#endif
Expression *IdentifierExp::toLvalue(Scope *sc, Expression *e)
{
#if 0
tym = tybasic(e1->ET->Tty);
if (!(tyscalar(tym) ||
tym == TYstruct ||
tym == TYarray && e->Eoper == TOKaddr))
synerr(EM_lvalue); // lvalue expected
#endif
return this;
}
/******************************** DollarExp **************************/
DollarExp::DollarExp(Loc loc)
: IdentifierExp(loc, Id::dollar)
{
}
/******************************** DsymbolExp **************************/
DsymbolExp::DsymbolExp(Loc loc, Dsymbol *s, int hasOverloads)
: Expression(loc, TOKdsymbol, sizeof(DsymbolExp))
{
this->s = s;
this->hasOverloads = hasOverloads;
}
Expression *DsymbolExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("DsymbolExp::semantic('%s')\n", s->toChars());
#endif
Lagain:
EnumMember *em;
Expression *e;
VarDeclaration *v;
FuncDeclaration *f;
FuncLiteralDeclaration *fld;
OverloadSet *o;
ClassDeclaration *cd;
ClassDeclaration *thiscd = NULL;
Import *imp;
Package *pkg;
Type *t;
//printf("DsymbolExp:: %p '%s' is a symbol\n", this, toChars());
//printf("s = '%s', s->kind = '%s'\n", s->toChars(), s->kind());
if (type)
return this;
if (!s->isFuncDeclaration()) // functions are checked after overloading
checkDeprecated(sc, s);
Dsymbol *olds = s;
s = s->toAlias();
//printf("s = '%s', s->kind = '%s', s->needThis() = %p\n", s->toChars(), s->kind(), s->needThis());
if (s != olds && !s->isFuncDeclaration())
checkDeprecated(sc, s);
if (sc->func)
thiscd = sc->func->parent->isClassDeclaration();
// BUG: This should happen after overload resolution for functions, not before
if (s->needThis())
{
if (hasThis(sc)
#if DMDV2
&& !s->isFuncDeclaration()
#endif
)
{
// Supply an implicit 'this', as in
// this.ident
DotVarExp *de;
de = new DotVarExp(loc, new ThisExp(loc), s->isDeclaration());
return de->semantic(sc);
}
}
em = s->isEnumMember();
if (em)
{
e = em->value;
e = e->semantic(sc);
return e;
}
v = s->isVarDeclaration();
if (v)
{
//printf("Identifier '%s' is a variable, type '%s'\n", toChars(), v->type->toChars());
if (!type)
{ if ((!v->type || !v->type->deco) && v->scope)
v->semantic(v->scope);
type = v->type;
if (!v->type)
{ error("forward reference of %s %s", v->kind(), v->toChars());
return new ErrorExp();
}
}
if ((v->storage_class & STCmanifest) && v->init)
{
e = v->init->toExpression();
if (!e)
{ error("cannot make expression out of initializer for %s", v->toChars());
return new ErrorExp();
}
e = e->copy();
e->loc = loc; // for better error message
e = e->semantic(sc);
return e;
}
e = new VarExp(loc, v);
e->type = type;
e = e->semantic(sc);
return e->deref();
}
fld = s->isFuncLiteralDeclaration();
if (fld)
{ //printf("'%s' is a function literal\n", fld->toChars());
e = new FuncExp(loc, fld);
return e->semantic(sc);
}
f = s->isFuncDeclaration();
if (f)
{ //printf("'%s' is a function\n", f->toChars());
if (!f->originalType && f->scope) // semantic not yet run
f->semantic(f->scope);
// if inferring return type, sematic3 needs to be run
if (f->inferRetType && f->scope && f->type && !f->type->nextOf())
{
TemplateInstance *spec = isSpeculativeFunction(f);
int olderrs = global.errors;
f->semantic3(f->scope);
// Update the template instantiation with the number
// of errors which occured.
if (spec && global.errors != olderrs)
spec->errors = global.errors - olderrs;
}
if (f->isUnitTestDeclaration())
{
error("cannot call unittest function %s", toChars());
return new ErrorExp();
}
if (!f->type->deco)
{
error("forward reference to %s", toChars());
return new ErrorExp();
}
return new VarExp(loc, f, hasOverloads);
}
o = s->isOverloadSet();
if (o)
{ //printf("'%s' is an overload set\n", o->toChars());
return new OverExp(o);
}
cd = s->isClassDeclaration();
if (cd && thiscd && cd->isBaseOf(thiscd, NULL) && sc->func->needThis())
{
// We need to add an implicit 'this' if cd is this class or a base class.
DotTypeExp *dte;
dte = new DotTypeExp(loc, new ThisExp(loc), s);
return dte->semantic(sc);
}
imp = s->isImport();
if (imp)
{
if (!imp->pkg)
{ error("forward reference of import %s", imp->toChars());
return new ErrorExp();
}
ScopeExp *ie = new ScopeExp(loc, imp->pkg);
return ie->semantic(sc);
}
pkg = s->isPackage();
if (pkg)
{
ScopeExp *ie;
ie = new ScopeExp(loc, pkg);
return ie->semantic(sc);
}
Module *mod = s->isModule();
if (mod)
{
ScopeExp *ie;
ie = new ScopeExp(loc, mod);
return ie->semantic(sc);
}
t = s->getType();
if (t)
{
TypeExp *te = new TypeExp(loc, t);
return te->semantic(sc);
}
TupleDeclaration *tup = s->isTupleDeclaration();
if (tup)
{
e = new TupleExp(loc, tup);
e = e->semantic(sc);
return e;
}
TemplateInstance *ti = s->isTemplateInstance();
if (ti && !global.errors)
{ if (!ti->semanticRun)
ti->semantic(sc);
s = ti->inst->toAlias();
if (!s->isTemplateInstance())
goto Lagain;
e = new ScopeExp(loc, ti);
e = e->semantic(sc);
return e;
}
TemplateDeclaration *td = s->isTemplateDeclaration();
if (td)
{
Dsymbol *p = td->toParent2();
if (hasThis(sc) && p && p->isAggregateDeclaration())
e = new DotTemplateExp(loc, new ThisExp(loc), td);
else
e = new TemplateExp(loc, td);
e = e->semantic(sc);
return e;
}
error("%s '%s' is not a variable", s->kind(), s->toChars());
return new ErrorExp();
}
char *DsymbolExp::toChars()
{
return s->toChars();
}
void DsymbolExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring(s->toChars());
}
#if DMDV2
int DsymbolExp::isLvalue()
{
return 1;
}
#endif
Expression *DsymbolExp::toLvalue(Scope *sc, Expression *e)
{
#if 0
tym = tybasic(e1->ET->Tty);
if (!(tyscalar(tym) ||
tym == TYstruct ||
tym == TYarray && e->Eoper == TOKaddr))
synerr(EM_lvalue); // lvalue expected
#endif
return this;
}
/******************************** ThisExp **************************/
ThisExp::ThisExp(Loc loc)
: Expression(loc, TOKthis, sizeof(ThisExp))
{
//printf("ThisExp::ThisExp() loc = %d\n", loc.linnum);
var = NULL;
}
Expression *ThisExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("ThisExp::semantic()\n");
#endif
if (type && var)
{ //assert(global.errors || var);
#if IN_LLVM
var->isVarDeclaration()->checkNestedReference(sc, loc);
#endif
return this;
}
FuncDeclaration *fd = hasThis(sc); // fd is the uplevel function with the 'this' variable
/* Special case for typeof(this) and typeof(super) since both
* should work even if they are not inside a non-static member function
*/
if (!fd && sc->intypeof)
{
// Find enclosing struct or class
for (Dsymbol *s = sc->getStructClassScope(); 1; s = s->parent)
{
if (!s)
{
error("%s is not in a class or struct scope", toChars());
goto Lerr;
}
ClassDeclaration *cd = s->isClassDeclaration();
if (cd)
{
type = cd->type;
return this;
}
StructDeclaration *sd = s->isStructDeclaration();
if (sd)
{
#if STRUCTTHISREF
type = sd->type;
#else
type = sd->type->pointerTo();
#endif
return this;
}
}
}
if (!fd)
goto Lerr;
assert(fd->vthis);
var = fd->vthis;
assert(var->parent);
if (!type)
type = var->type;
var->isVarDeclaration()->checkNestedReference(sc, loc);
if (!sc->intypeof)
sc->callSuper |= CSXthis;
return this;
Lerr:
error("'this' is only defined in non-static member functions, not %s", sc->parent->toChars());
return new ErrorExp();
}
int ThisExp::isBool(int result)
{
return result ? TRUE : FALSE;
}
void ThisExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("this");
}
#if DMDV2
int ThisExp::isLvalue()
{
return 1;
}
#endif
Expression *ThisExp::toLvalue(Scope *sc, Expression *e)
{
return this;
}
/******************************** SuperExp **************************/
SuperExp::SuperExp(Loc loc)
: ThisExp(loc)
{
op = TOKsuper;
}
Expression *SuperExp::semantic(Scope *sc)
{
ClassDeclaration *cd;
Dsymbol *s;
#if LOGSEMANTIC
printf("SuperExp::semantic('%s')\n", toChars());
#endif
if (type)
return this;
FuncDeclaration *fd = hasThis(sc);
/* Special case for typeof(this) and typeof(super) since both
* should work even if they are not inside a non-static member function
*/
if (!fd && sc->intypeof)
{
// Find enclosing class
for (Dsymbol *s = sc->getStructClassScope(); 1; s = s->parent)
{
if (!s)
{
error("%s is not in a class scope", toChars());
goto Lerr;
}
ClassDeclaration *cd = s->isClassDeclaration();
if (cd)
{
cd = cd->baseClass;
if (!cd)
{ error("class %s has no 'super'", s->toChars());
goto Lerr;
}
type = cd->type;
return this;
}
}
}
if (!fd)
goto Lerr;
assert(fd->vthis);
var = fd->vthis;
assert(var->parent);
s = fd->toParent();
while (s && s->isTemplateInstance())
s = s->toParent();
assert(s);
cd = s->isClassDeclaration();
//printf("parent is %s %s\n", fd->toParent()->kind(), fd->toParent()->toChars());
if (!cd)
goto Lerr;
if (!cd->baseClass)
{
error("no base class for %s", cd->toChars());
type = fd->vthis->type;
}
else
{
type = cd->baseClass->type;
type = type->castMod(var->type->mod);
}
var->isVarDeclaration()->checkNestedReference(sc, loc);
if (!sc->intypeof)
sc->callSuper |= CSXsuper;
return this;
Lerr:
error("'super' is only allowed in non-static class member functions");
return new ErrorExp();
}
void SuperExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("super");
}
/******************************** NullExp **************************/
NullExp::NullExp(Loc loc, Type *type)
: Expression(loc, TOKnull, sizeof(NullExp))
{
committed = 0;
this->type = type;
}
int NullExp::equals(Object *o)
{
if (o && o->dyncast() == DYNCAST_EXPRESSION)
{ Expression *e = (Expression *)o;
if (e->op == TOKnull)
return TRUE;
}
return FALSE;
}
Expression *NullExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("NullExp::semantic('%s')\n", toChars());
#endif
// NULL is the same as (void *)0
if (!type)
type = Type::tnull;
return this;
}
int NullExp::isBool(int result)
{
return result ? FALSE : TRUE;
}
StringExp *NullExp::toString()
{
if (implicitConvTo(Type::tstring))
{
StringExp *se = new StringExp(loc, (char*)mem.calloc(1, 1), 0);
se->type = Type::tstring;
return se;
}
return NULL;
}
void NullExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("null");
}
void NullExp::toMangleBuffer(OutBuffer *buf)
{
buf->writeByte('n');
}
/******************************** StringExp **************************/
StringExp::StringExp(Loc loc, char *string)
: Expression(loc, TOKstring, sizeof(StringExp))
{
this->string = string;
this->len = strlen(string);
this->sz = 1;
this->committed = 0;
this->postfix = 0;
this->ownedByCtfe = false;
}
StringExp::StringExp(Loc loc, void *string, size_t len)
: Expression(loc, TOKstring, sizeof(StringExp))
{
this->string = string;
this->len = len;
this->sz = 1;
this->committed = 0;
this->postfix = 0;
this->ownedByCtfe = false;
}
StringExp::StringExp(Loc loc, void *string, size_t len, unsigned char postfix)
: Expression(loc, TOKstring, sizeof(StringExp))
{
this->string = string;
this->len = len;
this->sz = 1;
this->committed = 0;
this->postfix = postfix;
this->ownedByCtfe = false;
}
#if 0
Expression *StringExp::syntaxCopy()
{
printf("StringExp::syntaxCopy() %s\n", toChars());
return copy();
}
#endif
int StringExp::equals(Object *o)
{
//printf("StringExp::equals('%s') %s\n", o->toChars(), toChars());
if (o && o->dyncast() == DYNCAST_EXPRESSION)
{ Expression *e = (Expression *)o;
if (e->op == TOKstring)
{
return compare(o) == 0;
}
}
return FALSE;
}
char *StringExp::toChars()
{
OutBuffer buf;
HdrGenState hgs;
char *p;
memset(&hgs, 0, sizeof(hgs));
toCBuffer(&buf, &hgs);
buf.writeByte(0);
p = (char *)buf.data;
buf.data = NULL;
return p;
}
Expression *StringExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("StringExp::semantic() %s\n", toChars());
#endif
if (!type)
{ OutBuffer buffer;
size_t newlen = 0;
const char *p;
size_t u;
unsigned c;
switch (postfix)
{
case 'd':
for (u = 0; u < len;)
{
p = utf_decodeChar((unsigned char *)string, len, &u, &c);
if (p)
{ error("%s", p);
return new ErrorExp();
}
else
{ buffer.write4(c);
newlen++;
}
}
buffer.write4(0);
string = buffer.extractData();
len = newlen;
sz = 4;
//type = new TypeSArray(Type::tdchar, new IntegerExp(loc, len, Type::tindex));
type = new TypeDArray(Type::tdchar->invariantOf());
committed = 1;
break;
case 'w':
for (u = 0; u < len;)
{
p = utf_decodeChar((unsigned char *)string, len, &u, &c);
if (p)
{ error("%s", p);
return new ErrorExp();
}
else
{ buffer.writeUTF16(c);
newlen++;
if (c >= 0x10000)
newlen++;
}
}
buffer.writeUTF16(0);
string = buffer.extractData();
len = newlen;
sz = 2;
//type = new TypeSArray(Type::twchar, new IntegerExp(loc, len, Type::tindex));
type = new TypeDArray(Type::twchar->invariantOf());
committed = 1;
break;
case 'c':
committed = 1;
default:
//type = new TypeSArray(Type::tchar, new IntegerExp(loc, len, Type::tindex));
type = new TypeDArray(Type::tchar->invariantOf());
break;
}
type = type->semantic(loc, sc);
//type = type->invariantOf();
//printf("type = %s\n", type->toChars());
}
return this;
}
/**********************************
* Return length of string.
*/
size_t StringExp::length()
{
size_t result = 0;
dchar_t c;
const char *p;
switch (sz)
{
case 1:
for (size_t u = 0; u < len;)
{
p = utf_decodeChar((unsigned char *)string, len, &u, &c);
if (p)
{ error("%s", p);
return 0;
}
else
result++;
}
break;
case 2:
for (size_t u = 0; u < len;)
{
p = utf_decodeWchar((unsigned short *)string, len, &u, &c);
if (p)
{ error("%s", p);
return 0;
}
else
result++;
}
break;
case 4:
result = len;
break;
default:
assert(0);
}
return result;
}
StringExp *StringExp::toString()
{
return this;
}
/****************************************
* Convert string to char[].
*/
StringExp *StringExp::toUTF8(Scope *sc)
{
if (sz != 1)
{ // Convert to UTF-8 string
committed = 0;
Expression *e = castTo(sc, Type::tchar->arrayOf());
e = e->optimize(WANTvalue);
assert(e->op == TOKstring);
StringExp *se = (StringExp *)e;
assert(se->sz == 1);
return se;
}
return this;
}
int StringExp::compare(Object *obj)
{
//printf("StringExp::compare()\n");
// Used to sort case statement expressions so we can do an efficient lookup
StringExp *se2 = (StringExp *)(obj);
// This is a kludge so isExpression() in template.c will return 5
// for StringExp's.
if (!se2)
return 5;
assert(se2->op == TOKstring);
int len1 = len;
int len2 = se2->len;
//printf("sz = %d, len1 = %d, len2 = %d\n", sz, len1, len2);
if (len1 == len2)
{
switch (sz)
{
case 1:
return memcmp((char *)string, (char *)se2->string, len1);
case 2:
{ unsigned u;
d_wchar *s1 = (d_wchar *)string;
d_wchar *s2 = (d_wchar *)se2->string;
for (u = 0; u < len; u++)
{
if (s1[u] != s2[u])
return s1[u] - s2[u];
}
}
case 4:
{ unsigned u;
d_dchar *s1 = (d_dchar *)string;
d_dchar *s2 = (d_dchar *)se2->string;
for (u = 0; u < len; u++)
{
if (s1[u] != s2[u])
return s1[u] - s2[u];
}
}
break;
default:
assert(0);
}
}
return len1 - len2;
}
int StringExp::isBool(int result)
{
return result ? TRUE : FALSE;
}
#if DMDV2
int StringExp::isLvalue()
{
/* string literal is rvalue in default, but
* conversion to reference of static array is only allowed.
*/
return 0;
}
#endif
Expression *StringExp::toLvalue(Scope *sc, Expression *e)
{
//printf("StringExp::toLvalue(%s)\n", toChars());
return this;
}
Expression *StringExp::modifiableLvalue(Scope *sc, Expression *e)
{
error("Cannot modify '%s'", toChars());
return new ErrorExp();
}
unsigned StringExp::charAt(size_t i)
{ unsigned value;
switch (sz)
{
case 1:
value = ((unsigned char *)string)[i];
break;
case 2:
value = ((unsigned short *)string)[i];
break;
case 4:
value = ((unsigned int *)string)[i];
break;
default:
assert(0);
break;
}
return value;
}
void StringExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writeByte('"');
unsigned o = buf->offset;
for (size_t i = 0; i < len; i++)
{ unsigned c = charAt(i);
switch (c)
{
case '"':
case '\\':
if (!hgs->console)
buf->writeByte('\\');
default:
if (c <= 0xFF)
{ if (c <= 0x7F && (isprint(c) || hgs->console))
buf->writeByte(c);
else
buf->printf("\\x%02x", c);
}
else if (c <= 0xFFFF)
buf->printf("\\x%02x\\x%02x", c & 0xFF, c >> 8);
else
buf->printf("\\x%02x\\x%02x\\x%02x\\x%02x",
c & 0xFF, (c >> 8) & 0xFF, (c >> 16) & 0xFF, c >> 24);
break;
}
}
if (hgs->ddoc)
escapeDdocString(buf, o);
buf->writeByte('"');
if (postfix)
buf->writeByte(postfix);
}
void StringExp::toMangleBuffer(OutBuffer *buf)
{ char m;
OutBuffer tmp;
const char *p;
unsigned c;
size_t u;
unsigned char *q;
unsigned qlen;
/* Write string in UTF-8 format
*/
switch (sz)
{ case 1:
m = 'a';
q = (unsigned char *)string;
qlen = len;
break;
case 2:
m = 'w';
for (u = 0; u < len; )
{
p = utf_decodeWchar((unsigned short *)string, len, &u, &c);
if (p)
error("%s", p);
else
tmp.writeUTF8(c);
}
q = tmp.data;
qlen = tmp.offset;
break;
case 4:
m = 'd';
for (u = 0; u < len; u++)
{
c = ((unsigned *)string)[u];
if (!utf_isValidDchar(c))
error("invalid UCS-32 char \\U%08x", c);
else
tmp.writeUTF8(c);
}
q = tmp.data;
qlen = tmp.offset;
break;
default:
assert(0);
}
buf->reserve(1 + 11 + 2 * qlen);
buf->writeByte(m);
buf->printf("%d_", qlen); // nbytes <= 11
for (unsigned char *p = buf->data + buf->offset, *pend = p + 2 * qlen;
p < pend; p += 2, ++q)
{
unsigned char hi = *q >> 4 & 0xF;
p[0] = (hi < 10 ? hi + '0' : hi - 10 + 'a');
unsigned char lo = *q & 0xF;
p[1] = (lo < 10 ? lo + '0' : lo - 10 + 'a');
}
buf->offset += 2 * qlen;
}
/************************ ArrayLiteralExp ************************************/
// [ e1, e2, e3, ... ]
ArrayLiteralExp::ArrayLiteralExp(Loc loc, Expressions *elements)
: Expression(loc, TOKarrayliteral, sizeof(ArrayLiteralExp))
{
this->elements = elements;
this->ownedByCtfe = false;
}
ArrayLiteralExp::ArrayLiteralExp(Loc loc, Expression *e)
: Expression(loc, TOKarrayliteral, sizeof(ArrayLiteralExp))
{
elements = new Expressions;
elements->push(e);
}
Expression *ArrayLiteralExp::syntaxCopy()
{
return new ArrayLiteralExp(loc, arraySyntaxCopy(elements));
}
Expression *ArrayLiteralExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("ArrayLiteralExp::semantic('%s')\n", toChars());
#endif
if (type)
return this;
/* Perhaps an empty array literal [ ] should be rewritten as null?
*/
arrayExpressionSemantic(elements, sc); // run semantic() on each element
expandTuples(elements);
Type *t0;
elements = arrayExpressionToCommonType(sc, elements, &t0);
type = t0->arrayOf();
//type = new TypeSArray(t0, new IntegerExp(elements->dim));
type = type->semantic(loc, sc);
/* Disallow array literals of type void being used.
*/
if (elements->dim > 0 && t0->ty == Tvoid)
{ error("%s of type %s has no value", toChars(), type->toChars());
return new ErrorExp();
}
return this;
}
int ArrayLiteralExp::isBool(int result)
{
size_t dim = elements ? elements->dim : 0;
return result ? (dim != 0) : (dim == 0);
}
StringExp *ArrayLiteralExp::toString()
{
TY telem = type->nextOf()->toBasetype()->ty;
if (telem == Tchar || telem == Twchar || telem == Tdchar ||
(telem == Tvoid && (!elements || elements->dim == 0)))
{
OutBuffer buf;
if (elements)
for (int i = 0; i < elements->dim; ++i)
{
Expression *ch = elements->tdata()[i];
if (ch->op != TOKint64)
return NULL;
buf.writedchar(ch->toInteger());
}
buf.writebyte(0);
char prefix = 'c';
if (telem == Twchar) prefix = 'w';
else if (telem == Tdchar) prefix = 'd';
StringExp *se = new StringExp(loc, buf.extractData(), buf.size - 1, prefix);
se->type = type;
return se;
}
return NULL;
}
void ArrayLiteralExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writeByte('[');
argsToCBuffer(buf, elements, hgs);
buf->writeByte(']');
}
void ArrayLiteralExp::toMangleBuffer(OutBuffer *buf)
{
size_t dim = elements ? elements->dim : 0;
buf->printf("A%zu", dim);
for (size_t i = 0; i < dim; i++)
{ Expression *e = elements->tdata()[i];
e->toMangleBuffer(buf);
}
}
/************************ AssocArrayLiteralExp ************************************/
// [ key0 : value0, key1 : value1, ... ]
AssocArrayLiteralExp::AssocArrayLiteralExp(Loc loc,
Expressions *keys, Expressions *values)
: Expression(loc, TOKassocarrayliteral, sizeof(AssocArrayLiteralExp))
{
assert(keys->dim == values->dim);
this->keys = keys;
this->values = values;
this->ownedByCtfe = false;
}
Expression *AssocArrayLiteralExp::syntaxCopy()
{
return new AssocArrayLiteralExp(loc,
arraySyntaxCopy(keys), arraySyntaxCopy(values));
}
Expression *AssocArrayLiteralExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("AssocArrayLiteralExp::semantic('%s')\n", toChars());
#endif
if (type)
return this;
// Run semantic() on each element
arrayExpressionSemantic(keys, sc);
arrayExpressionSemantic(values, sc);
expandTuples(keys);
expandTuples(values);
if (keys->dim != values->dim)
{
error("number of keys is %u, must match number of values %u", keys->dim, values->dim);
return new ErrorExp();
}
Type *tkey = NULL;
Type *tvalue = NULL;
keys = arrayExpressionToCommonType(sc, keys, &tkey);
values = arrayExpressionToCommonType(sc, values, &tvalue);
type = new TypeAArray(tvalue, tkey);
type = type->semantic(loc, sc);
return this;
}
int AssocArrayLiteralExp::isBool(int result)
{
size_t dim = keys->dim;
return result ? (dim != 0) : (dim == 0);
}
void AssocArrayLiteralExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writeByte('[');
for (size_t i = 0; i < keys->dim; i++)
{ Expression *key = keys->tdata()[i];
Expression *value = values->tdata()[i];
if (i)
buf->writeByte(',');
expToCBuffer(buf, hgs, key, PREC_assign);
buf->writeByte(':');
expToCBuffer(buf, hgs, value, PREC_assign);
}
buf->writeByte(']');
}
void AssocArrayLiteralExp::toMangleBuffer(OutBuffer *buf)
{
size_t dim = keys->dim;
buf->printf("A%zu", dim);
for (size_t i = 0; i < dim; i++)
{ Expression *key = keys->tdata()[i];
Expression *value = values->tdata()[i];
key->toMangleBuffer(buf);
value->toMangleBuffer(buf);
}
}
/************************ StructLiteralExp ************************************/
// sd( e1, e2, e3, ... )
StructLiteralExp::StructLiteralExp(Loc loc, StructDeclaration *sd, Expressions *elements, Type *stype)
: Expression(loc, TOKstructliteral, sizeof(StructLiteralExp))
{
this->sd = sd;
this->elements = elements;
this->stype = stype;
#if IN_DMD
this->sym = NULL;
#endif
this->soffset = 0;
this->fillHoles = 1;
this->ownedByCtfe = false;
#if IN_LLVM
constType = NULL;
#endif
}
Expression *StructLiteralExp::syntaxCopy()
{
return new StructLiteralExp(loc, sd, arraySyntaxCopy(elements), stype);
}
Expression *StructLiteralExp::semantic(Scope *sc)
{ Expression *e;
size_t nfields = sd->fields.dim - sd->isnested;
#if LOGSEMANTIC
printf("StructLiteralExp::semantic('%s')\n", toChars());
#endif
if (type)
return this;
elements = arrayExpressionSemantic(elements, sc); // run semantic() on each element
expandTuples(elements);
size_t offset = 0;
for (size_t i = 0; i < elements->dim; i++)
{ e = elements->tdata()[i];
if (!e)
continue;
e = resolveProperties(sc, e);
if (i >= nfields)
{ error("more initializers than fields of %s", sd->toChars());
return new ErrorExp();
}
Dsymbol *s = sd->fields.tdata()[i];
VarDeclaration *v = s->isVarDeclaration();
assert(v);
if (v->offset < offset)
{ error("overlapping initialization for %s", v->toChars());
return new ErrorExp();
}
offset = v->offset + v->type->size();
Type *telem = v->type;
if (stype)
telem = telem->addMod(stype->mod);
while (!e->implicitConvTo(telem) && telem->toBasetype()->ty == Tsarray)
{ /* Static array initialization, as in:
* T[3][5] = e;
*/
telem = telem->toBasetype()->nextOf();
}
if (e->op == TOKfunction)
{ e = ((FuncExp *)e)->inferType(sc, telem);
if (!e)
{ error("cannot infer function literal type from %s", telem->toChars());
e = new ErrorExp();
}
}
e = e->implicitCastTo(sc, telem);
elements->tdata()[i] = e;
}
/* Fill out remainder of elements[] with default initializers for fields[]
*/
for (size_t i = elements->dim; i < nfields; i++)
{ Dsymbol *s = sd->fields.tdata()[i];
VarDeclaration *v = s->isVarDeclaration();
assert(v);
assert(!v->isThisDeclaration());
if (v->offset < offset)
{ e = NULL;
sd->hasUnions = 1;
}
else
{
if (v->init)
{ if (v->init->isVoidInitializer())
e = NULL;
else
{ e = v->init->toExpression();
if (!e)
{ error("cannot make expression out of initializer for %s", v->toChars());
return new ErrorExp();
}
else if (v->scope)
{ // Do deferred semantic analysis
Initializer *i2 = v->init->syntaxCopy();
i2 = i2->semantic(v->scope, v->type, WANTinterpret);
e = i2->toExpression();
// remove v->scope (see bug 3426)
// but not if gagged, for we might be called again.
if (!global.gag)
v->scope = NULL;
}
}
}
else
e = v->type->defaultInitLiteral(loc);
offset = v->offset + v->type->size();
}
elements->push(e);
}
type = stype ? stype : sd->type;
/* If struct requires a destructor, rewrite as:
* (S tmp = S()),tmp
* so that the destructor can be hung on tmp.
*/
if (sd->dtor && sc->func)
{
Identifier *idtmp = Lexer::uniqueId("__sl");
VarDeclaration *tmp = new VarDeclaration(loc, type, idtmp, new ExpInitializer(0, this));
tmp->storage_class |= STCctfe;
Expression *ae = new DeclarationExp(loc, tmp);
Expression *e = new CommaExp(loc, ae, new VarExp(loc, tmp));
e = e->semantic(sc);
return e;
}
return this;
}
/**************************************
* Gets expression at offset of type.
* Returns NULL if not found.
*/
Expression *StructLiteralExp::getField(Type *type, unsigned offset)
{
//printf("StructLiteralExp::getField(this = %s, type = %s, offset = %u)\n",
// /*toChars()*/"", type->toChars(), offset);
Expression *e = NULL;
int i = getFieldIndex(type, offset);
if (i != -1)
{
//printf("\ti = %d\n", i);
assert(i < elements->dim);
e = elements->tdata()[i];
if (e)
{
//printf("e = %s, e->type = %s\n", e->toChars(), e->type->toChars());
/* If type is a static array, and e is an initializer for that array,
* then the field initializer should be an array literal of e.
*/
if (e->type->castMod(0) != type->castMod(0) && type->ty == Tsarray)
{ TypeSArray *tsa = (TypeSArray *)type;
uinteger_t length = tsa->dim->toInteger();
Expressions *z = new Expressions;
z->setDim(length);
for (int q = 0; q < length; ++q)
z->tdata()[q] = e->copy();
e = new ArrayLiteralExp(loc, z);
e->type = type;
}
else
{
e = e->copy();
e->type = type;
}
}
}
return e;
}
/************************************
* Get index of field.
* Returns -1 if not found.
*/
int StructLiteralExp::getFieldIndex(Type *type, unsigned offset)
{
/* Find which field offset is by looking at the field offsets
*/
if (elements->dim)
{
for (size_t i = 0; i < sd->fields.dim; i++)
{
Dsymbol *s = sd->fields.tdata()[i];
VarDeclaration *v = s->isVarDeclaration();
assert(v);
if (offset == v->offset &&
type->size() == v->type->size())
{ Expression *e = elements->tdata()[i];
if (e)
{
return i;
}
break;
}
}
}
return -1;
}
#if DMDV2
int StructLiteralExp::isLvalue()
{
return 1;
}
#endif
Expression *StructLiteralExp::toLvalue(Scope *sc, Expression *e)
{
return this;
}
void StructLiteralExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring(sd->toChars());
buf->writeByte('(');
argsToCBuffer(buf, elements, hgs);
buf->writeByte(')');
}
void StructLiteralExp::toMangleBuffer(OutBuffer *buf)
{
size_t dim = elements ? elements->dim : 0;
buf->printf("S%zu", dim);
for (size_t i = 0; i < dim; i++)
{ Expression *e = elements->tdata()[i];
if (e)
e->toMangleBuffer(buf);
else
buf->writeByte('v'); // 'v' for void
}
}
/************************ TypeDotIdExp ************************************/
/* Things like:
* int.size
* foo.size
* (foo).size
* cast(foo).size
*/
Expression *typeDotIdExp(Loc loc, Type *type, Identifier *ident)
{
return new DotIdExp(loc, new TypeExp(loc, type), ident);
}
/************************************************************/
// Mainly just a placeholder
TypeExp::TypeExp(Loc loc, Type *type)
: Expression(loc, TOKtype, sizeof(TypeExp))
{
//printf("TypeExp::TypeExp(%s)\n", type->toChars());
this->type = type;
}
Expression *TypeExp::syntaxCopy()
{
//printf("TypeExp::syntaxCopy()\n");
return new TypeExp(loc, type->syntaxCopy());
}
Expression *TypeExp::semantic(Scope *sc)
{
//printf("TypeExp::semantic(%s)\n", type->toChars());
type = type->semantic(loc, sc);
return this;
}
int TypeExp::rvalue()
{
error("type %s has no value", toChars());
return 0;
}
void TypeExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
type->toCBuffer(buf, NULL, hgs);
}
/************************************************************/
// Mainly just a placeholder
ScopeExp::ScopeExp(Loc loc, ScopeDsymbol *pkg)
: Expression(loc, TOKimport, sizeof(ScopeExp))
{
//printf("ScopeExp::ScopeExp(pkg = '%s')\n", pkg->toChars());
//static int count; if (++count == 38) *(char*)0=0;
this->sds = pkg;
}
Expression *ScopeExp::syntaxCopy()
{
ScopeExp *se = new ScopeExp(loc, (ScopeDsymbol *)sds->syntaxCopy(NULL));
return se;
}
Expression *ScopeExp::semantic(Scope *sc)
{
TemplateInstance *ti;
ScopeDsymbol *sds2;
#if LOGSEMANTIC
printf("+ScopeExp::semantic('%s')\n", toChars());
#endif
Lagain:
ti = sds->isTemplateInstance();
if (ti && !global.errors)
{
if (!ti->semanticRun)
ti->semantic(sc);
if (ti->inst)
{
Dsymbol *s = ti->inst->toAlias();
sds2 = s->isScopeDsymbol();
if (!sds2)
{ Expression *e;
//printf("s = %s, '%s'\n", s->kind(), s->toChars());
if (ti->withsym)
{
// Same as wthis.s
e = new VarExp(loc, ti->withsym->withstate->wthis);
e = new DotVarExp(loc, e, s->isDeclaration());
}
else
e = new DsymbolExp(loc, s);
e = e->semantic(sc);
//printf("-1ScopeExp::semantic()\n");
return e;
}
if (sds2 != sds)
{
sds = sds2;
goto Lagain;
}
//printf("sds = %s, '%s'\n", sds->kind(), sds->toChars());
}
if (global.errors)
return new ErrorExp();
}
else
{
//printf("sds = %s, '%s'\n", sds->kind(), sds->toChars());
//printf("\tparent = '%s'\n", sds->parent->toChars());
sds->semantic(sc);
AggregateDeclaration *ad = sds->isAggregateDeclaration();
if (ad)
return (new TypeExp(loc, ad->type))->semantic(sc);
}
type = Type::tvoid;
//printf("-2ScopeExp::semantic() %s\n", toChars());
return this;
}
void ScopeExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
if (sds->isTemplateInstance())
{
sds->toCBuffer(buf, hgs);
}
else if (hgs != NULL && hgs->ddoc)
{ // fixes bug 6491
Module *module = sds->isModule();
if (module)
buf->writestring(module->md->toChars());
else
buf->writestring(sds->toChars());
}
else
{
buf->writestring(sds->kind());
buf->writestring(" ");
buf->writestring(sds->toChars());
}
}
/********************** TemplateExp **************************************/
// Mainly just a placeholder
TemplateExp::TemplateExp(Loc loc, TemplateDeclaration *td)
: Expression(loc, TOKtemplate, sizeof(TemplateExp))
{
//printf("TemplateExp(): %s\n", td->toChars());
this->td = td;
}
void TemplateExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring(td->toChars());
}
int TemplateExp::rvalue()
{
error("template %s has no value", toChars());
return 0;
}
/********************** NewExp **************************************/
/* thisexp.new(newargs) newtype(arguments) */
NewExp::NewExp(Loc loc, Expression *thisexp, Expressions *newargs,
Type *newtype, Expressions *arguments)
: Expression(loc, TOKnew, sizeof(NewExp))
{
this->thisexp = thisexp;
this->newargs = newargs;
this->newtype = newtype;
this->arguments = arguments;
member = NULL;
allocator = NULL;
onstack = 0;
}
Expression *NewExp::syntaxCopy()
{
return new NewExp(loc,
thisexp ? thisexp->syntaxCopy() : NULL,
arraySyntaxCopy(newargs),
newtype->syntaxCopy(), arraySyntaxCopy(arguments));
}
Expression *NewExp::semantic(Scope *sc)
{
Type *tb;
ClassDeclaration *cdthis = NULL;
#if LOGSEMANTIC
printf("NewExp::semantic() %s\n", toChars());
if (thisexp)
printf("\tthisexp = %s\n", thisexp->toChars());
printf("\tnewtype: %s\n", newtype->toChars());
#endif
if (type) // if semantic() already run
return this;
Lagain:
if (thisexp)
{ thisexp = thisexp->semantic(sc);
cdthis = thisexp->type->isClassHandle();
if (cdthis)
{
sc = sc->push(cdthis);
type = newtype->semantic(loc, sc);
sc = sc->pop();
}
else
{
error("'this' for nested class must be a class type, not %s", thisexp->type->toChars());
goto Lerr;
}
}
else
type = newtype->semantic(loc, sc);
newtype = type; // in case type gets cast to something else
tb = type->toBasetype();
//printf("tb: %s, deco = %s\n", tb->toChars(), tb->deco);
arrayExpressionSemantic(newargs, sc);
preFunctionParameters(loc, sc, newargs);
arrayExpressionSemantic(arguments, sc);
preFunctionParameters(loc, sc, arguments);
if (thisexp && tb->ty != Tclass)
{ error("e.new is only for allocating nested classes, not %s", tb->toChars());
goto Lerr;
}
if (tb->ty == Tclass)
{
TypeClass *tc = (TypeClass *)(tb);
ClassDeclaration *cd = tc->sym->isClassDeclaration();
if (cd->isInterfaceDeclaration())
{ error("cannot create instance of interface %s", cd->toChars());
goto Lerr;
}
else if (cd->isAbstract())
{ error("cannot create instance of abstract class %s", cd->toChars());
for (size_t i = 0; i < cd->vtbl.dim; i++)
{ FuncDeclaration *fd = cd->vtbl.tdata()[i]->isFuncDeclaration();
if (fd && fd->isAbstract())
error("function %s is abstract", fd->toChars());
}
goto Lerr;
}
if (cd->noDefaultCtor && (!arguments || !arguments->dim))
{ error("default construction is disabled for type %s", cd->toChars());
goto Lerr;
}
checkDeprecated(sc, cd);
if (cd->isNested())
{ /* We need a 'this' pointer for the nested class.
* Ensure we have the right one.
*/
Dsymbol *s = cd->toParent2();
ClassDeclaration *cdn = s->isClassDeclaration();
FuncDeclaration *fdn = s->isFuncDeclaration();
//printf("cd isNested, cdn = %s\n", cdn ? cdn->toChars() : "null");
if (cdn)
{
if (!cdthis)
{
// Supply an implicit 'this' and try again
thisexp = new ThisExp(loc);
for (Dsymbol *sp = sc->parent; 1; sp = sp->parent)
{ if (!sp)
{
error("outer class %s 'this' needed to 'new' nested class %s", cdn->toChars(), cd->toChars());
goto Lerr;
}
ClassDeclaration *cdp = sp->isClassDeclaration();
if (!cdp)
continue;
if (cdp == cdn || cdn->isBaseOf(cdp, NULL))
break;
// Add a '.outer' and try again
thisexp = new DotIdExp(loc, thisexp, Id::outer);
}
if (!global.errors)
goto Lagain;
}
if (cdthis)
{
//printf("cdthis = %s\n", cdthis->toChars());
if (cdthis != cdn && !cdn->isBaseOf(cdthis, NULL))
{ error("'this' for nested class must be of type %s, not %s", cdn->toChars(), thisexp->type->toChars());
goto Lerr;
}
}
#if 0
else
{
for (Dsymbol *sf = sc->func; 1; sf= sf->toParent2()->isFuncDeclaration())
{
if (!sf)
{
error("outer class %s 'this' needed to 'new' nested class %s", cdn->toChars(), cd->toChars());
goto Lerr;
}
printf("sf = %s\n", sf->toChars());
AggregateDeclaration *ad = sf->isThis();
if (ad && (ad == cdn || cdn->isBaseOf(ad->isClassDeclaration(), NULL)))
break;
}
}
#endif
}
#if 1
else if (thisexp)
{ error("e.new is only for allocating nested classes");
goto Lerr;
}
else if (fdn)
{
// make sure the parent context fdn of cd is reachable from sc
for (Dsymbol *sp = sc->parent; 1; sp = sp->parent)
{
if (fdn == sp)
break;
FuncDeclaration *fsp = sp ? sp->isFuncDeclaration() : NULL;
if (!sp || (fsp && fsp->isStatic()))
{
error("outer function context of %s is needed to 'new' nested class %s", fdn->toPrettyChars(), cd->toPrettyChars());
goto Lerr;
}
}
}
#else
else if (fdn)
{ /* The nested class cd is nested inside a function,
* we'll let getEthis() look for errors.
*/
//printf("nested class %s is nested inside function %s, we're in %s\n", cd->toChars(), fdn->toChars(), sc->func->toChars());
if (thisexp)
{ // Because thisexp cannot be a function frame pointer
error("e.new is only for allocating nested classes");
goto Lerr;
}
}
#endif
else
assert(0);
}
else if (thisexp)
{ error("e.new is only for allocating nested classes");
goto Lerr;
}
FuncDeclaration *f = NULL;
if (cd->ctor)
f = resolveFuncCall(sc, loc, cd->ctor, NULL, NULL, arguments, 0);
if (f)
{
checkDeprecated(sc, f);
member = f->isCtorDeclaration();
assert(member);
cd->accessCheck(loc, sc, member);
TypeFunction *tf = (TypeFunction *)f->type;
if (!arguments)
arguments = new Expressions();
unsigned olderrors = global.errors;
functionParameters(loc, sc, tf, NULL, arguments, f);
if (olderrors != global.errors)
return new ErrorExp();
type = type->addMod(tf->nextOf()->mod);
}
else
{
if (arguments && arguments->dim)
{ error("no constructor for %s", cd->toChars());
goto Lerr;
}
}
if (cd->aggNew)
{
// Prepend the size argument to newargs[]
Expression *e = new IntegerExp(loc, cd->size(loc), Type::tsize_t);
if (!newargs)
newargs = new Expressions();
newargs->shift(e);
f = cd->aggNew->overloadResolve(loc, NULL, newargs);
allocator = f->isNewDeclaration();
assert(allocator);
TypeFunction *tf = (TypeFunction *)f->type;
unsigned olderrors = global.errors;
functionParameters(loc, sc, tf, NULL, newargs, f);
if (olderrors != global.errors)
return new ErrorExp();
}
else
{
if (newargs && newargs->dim)
{ error("no allocator for %s", cd->toChars());
goto Lerr;
}
}
}
else if (tb->ty == Tstruct)
{
TypeStruct *ts = (TypeStruct *)tb;
StructDeclaration *sd = ts->sym;
TypeFunction *tf;
if (sd->noDefaultCtor && (!arguments || !arguments->dim))
{ error("default construction is disabled for type %s", sd->toChars());
goto Lerr;
}
FuncDeclaration *f = NULL;
if (sd->ctor)
f = resolveFuncCall(sc, loc, sd->ctor, NULL, NULL, arguments, 0);
if (f)
{
checkDeprecated(sc, f);
member = f->isCtorDeclaration();
assert(member);
sd->accessCheck(loc, sc, member);
tf = (TypeFunction *)f->type;
type = tf->next;
if (!arguments)
arguments = new Expressions();
unsigned olderrors = global.errors;
functionParameters(loc, sc, tf, NULL, arguments, f);
if (olderrors != global.errors)
return new ErrorExp();
}
else
{
if (arguments && arguments->dim)
{ error("no constructor for %s", sd->toChars());
goto Lerr;
}
}
if (sd->aggNew)
{
// Prepend the uint size argument to newargs[]
Expression *e = new IntegerExp(loc, sd->size(loc), Type::tuns32);
if (!newargs)
newargs = new Expressions();
newargs->shift(e);
f = sd->aggNew->overloadResolve(loc, NULL, newargs);
allocator = f->isNewDeclaration();
assert(allocator);
tf = (TypeFunction *)f->type;
unsigned olderrors = global.errors;
functionParameters(loc, sc, tf, NULL, newargs, f);
if (olderrors != global.errors)
return new ErrorExp();
#if 0
e = new VarExp(loc, f);
e = new CallExp(loc, e, newargs);
e = e->semantic(sc);
e->type = type->pointerTo();
return e;
#endif
}
else
{
if (newargs && newargs->dim)
{ error("no allocator for %s", sd->toChars());
goto Lerr;
}
}
type = type->pointerTo();
}
else if (tb->ty == Tarray && (arguments && arguments->dim))
{
for (size_t i = 0; i < arguments->dim; i++)
{
if (tb->ty != Tarray)
{ error("too many arguments for array");
goto Lerr;
}
Expression *arg = arguments->tdata()[i];
arg = resolveProperties(sc, arg);
arg = arg->implicitCastTo(sc, Type::tsize_t);
arg = arg->optimize(WANTvalue);
if (arg->op == TOKint64 && (sinteger_t)arg->toInteger() < 0)
{ error("negative array index %s", arg->toChars());
goto Lerr;
}
arguments->tdata()[i] = arg;
tb = ((TypeDArray *)tb)->next->toBasetype();
}
}
else if (tb->isscalar())
{
if (arguments && arguments->dim)
{ error("no constructor for %s", type->toChars());
goto Lerr;
}
type = type->pointerTo();
}
else
{
error("new can only create structs, dynamic arrays or class objects, not %s's", type->toChars());
goto Lerr;
}
//printf("NewExp: '%s'\n", toChars());
//printf("NewExp:type '%s'\n", type->toChars());
return this;
Lerr:
return new ErrorExp();
}
void NewExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
if (thisexp)
{ expToCBuffer(buf, hgs, thisexp, PREC_primary);
buf->writeByte('.');
}
buf->writestring("new ");
if (newargs && newargs->dim)
{
buf->writeByte('(');
argsToCBuffer(buf, newargs, hgs);
buf->writeByte(')');
}
newtype->toCBuffer(buf, NULL, hgs);
if (arguments && arguments->dim)
{
buf->writeByte('(');
argsToCBuffer(buf, arguments, hgs);
buf->writeByte(')');
}
}
/********************** NewAnonClassExp **************************************/
NewAnonClassExp::NewAnonClassExp(Loc loc, Expression *thisexp,
Expressions *newargs, ClassDeclaration *cd, Expressions *arguments)
: Expression(loc, TOKnewanonclass, sizeof(NewAnonClassExp))
{
this->thisexp = thisexp;
this->newargs = newargs;
this->cd = cd;
this->arguments = arguments;
}
Expression *NewAnonClassExp::syntaxCopy()
{
return new NewAnonClassExp(loc,
thisexp ? thisexp->syntaxCopy() : NULL,
arraySyntaxCopy(newargs),
(ClassDeclaration *)cd->syntaxCopy(NULL),
arraySyntaxCopy(arguments));
}
Expression *NewAnonClassExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("NewAnonClassExp::semantic() %s\n", toChars());
//printf("thisexp = %p\n", thisexp);
//printf("type: %s\n", type->toChars());
#endif
Expression *d = new DeclarationExp(loc, cd);
d = d->semantic(sc);
Expression *n = new NewExp(loc, thisexp, newargs, cd->type, arguments);
Expression *c = new CommaExp(loc, d, n);
return c->semantic(sc);
}
void NewAnonClassExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
if (thisexp)
{ expToCBuffer(buf, hgs, thisexp, PREC_primary);
buf->writeByte('.');
}
buf->writestring("new");
if (newargs && newargs->dim)
{
buf->writeByte('(');
argsToCBuffer(buf, newargs, hgs);
buf->writeByte(')');
}
buf->writestring(" class ");
if (arguments && arguments->dim)
{
buf->writeByte('(');
argsToCBuffer(buf, arguments, hgs);
buf->writeByte(')');
}
//buf->writestring(" { }");
if (cd)
{
cd->toCBuffer(buf, hgs);
}
}
/********************** SymbolExp **************************************/
#if DMDV2
SymbolExp::SymbolExp(Loc loc, enum TOK op, int size, Declaration *var, int hasOverloads)
: Expression(loc, op, size)
{
assert(var);
this->var = var;
this->hasOverloads = hasOverloads;
}
#endif
/********************** SymOffExp **************************************/
SymOffExp::SymOffExp(Loc loc, Declaration *var, unsigned offset, int hasOverloads)
: SymbolExp(loc, TOKsymoff, sizeof(SymOffExp), var, hasOverloads)
{
this->offset = offset;
m = NULL;
VarDeclaration *v = var->isVarDeclaration();
if (v && v->needThis())
error("need 'this' for address of %s", v->toChars());
}
Expression *SymOffExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("SymOffExp::semantic('%s')\n", toChars());
#endif
//var->semantic(sc);
m = sc->module;
if (!type)
type = var->type->pointerTo();
VarDeclaration *v = var->isVarDeclaration();
if (v)
v->checkNestedReference(sc, loc);
FuncDeclaration *f = var->isFuncDeclaration();
if (f)
f->checkNestedReference(sc, loc);
return this;
}
int SymOffExp::isBool(int result)
{
return result ? TRUE : FALSE;
}
void SymOffExp::checkEscape()
{
VarDeclaration *v = var->isVarDeclaration();
if (v)
{
if (!v->isDataseg() && !(v->storage_class & (STCref | STCout)))
{ /* BUG: This should be allowed:
* void foo()
* { int a;
* int* bar() { return &a; }
* }
*/
error("escaping reference to local %s", v->toChars());
}
}
}
void SymOffExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
if (offset)
buf->printf("(& %s+%u)", var->toChars(), offset);
else
buf->printf("& %s", var->toChars());
}
/******************************** VarExp **************************/
VarExp::VarExp(Loc loc, Declaration *var, int hasOverloads)
: SymbolExp(loc, TOKvar, sizeof(VarExp), var, hasOverloads)
{
//printf("VarExp(this = %p, '%s', loc = %s)\n", this, var->toChars(), loc.toChars());
//if (strcmp(var->ident->toChars(), "func") == 0) halt();
this->type = var->type;
}
int VarExp::equals(Object *o)
{ VarExp *ne;
if (this == o ||
(((Expression *)o)->op == TOKvar &&
((ne = (VarExp *)o), type->toHeadMutable()->equals(ne->type->toHeadMutable())) &&
var == ne->var))
return 1;
return 0;
}
Expression *VarExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("VarExp::semantic(%s)\n", toChars());
#endif
// if (var->sem == SemanticStart && var->scope) // if forward referenced
// var->semantic(sc);
if (!type)
{ type = var->type;
#if 0
if (var->storage_class & STClazy)
{
TypeFunction *tf = new TypeFunction(NULL, type, 0, LINKd);
type = new TypeDelegate(tf);
type = type->semantic(loc, sc);
}
#endif
}
if (type && !type->deco)
type = type->semantic(loc, sc);
/* Fix for 1161 doesn't work because it causes protection
* problems when instantiating imported templates passing private
* variables as alias template parameters.
*/
//accessCheck(loc, sc, NULL, var);
VarDeclaration *v = var->isVarDeclaration();
if (v)
{
v->checkNestedReference(sc, loc);
#if DMDV2
checkPurity(sc, v, NULL);
#endif
}
FuncDeclaration *f = var->isFuncDeclaration();
if (f)
f->checkNestedReference(sc, loc);
#if 0
else if ((fd = var->isFuncLiteralDeclaration()) != NULL)
{ Expression *e;
e = new FuncExp(loc, fd);
e->type = type;
return e;
}
#endif
return this;
}
char *VarExp::toChars()
{
return var->toChars();
}
void VarExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring(var->toChars());
}
void VarExp::checkEscape()
{
VarDeclaration *v = var->isVarDeclaration();
if (v)
{ Type *tb = v->type->toBasetype();
// if reference type
if (tb->ty == Tarray || tb->ty == Tsarray || tb->ty == Tclass || tb->ty == Tdelegate)
{
if (v->isScope() && (!v->noscope || tb->ty == Tclass))
error("escaping reference to scope local %s", v->toChars());
else if (v->storage_class & STCvariadic)
error("escaping reference to variadic parameter %s", v->toChars());
}
}
}
void VarExp::checkEscapeRef()
{
VarDeclaration *v = var->isVarDeclaration();
if (v)
{
if (!v->isDataseg() && !(v->storage_class & (STCref | STCout)))
error("escaping reference to local variable %s", v->toChars());
}
}
#if DMDV2
int VarExp::isLvalue()
{
if (var->storage_class & STClazy)
return 0;
return 1;
}
#endif
Expression *VarExp::toLvalue(Scope *sc, Expression *e)
{
#if 0
tym = tybasic(e1->ET->Tty);
if (!(tyscalar(tym) ||
tym == TYstruct ||
tym == TYarray && e->Eoper == TOKaddr))
synerr(EM_lvalue); // lvalue expected
#endif
if (var->storage_class & STClazy)
{ error("lazy variables cannot be lvalues");
return new ErrorExp();
}
return this;
}
Expression *VarExp::modifiableLvalue(Scope *sc, Expression *e)
{
//printf("VarExp::modifiableLvalue('%s')\n", var->toChars());
//if (type && type->toBasetype()->ty == Tsarray)
//error("cannot change reference to static array '%s'", var->toChars());
var->checkModify(loc, sc, type);
// See if this expression is a modifiable lvalue (i.e. not const)
return toLvalue(sc, e);
}
/******************************** OverExp **************************/
#if DMDV2
OverExp::OverExp(OverloadSet *s)
: Expression(loc, TOKoverloadset, sizeof(OverExp))
{
//printf("OverExp(this = %p, '%s')\n", this, var->toChars());
vars = s;
type = Type::tvoid;
}
int OverExp::isLvalue()
{
return 1;
}
Expression *OverExp::toLvalue(Scope *sc, Expression *e)
{
return this;
}
#endif
/******************************** TupleExp **************************/
TupleExp::TupleExp(Loc loc, Expressions *exps)
: Expression(loc, TOKtuple, sizeof(TupleExp))
{
//printf("TupleExp(this = %p)\n", this);
this->exps = exps;
this->type = NULL;
}
TupleExp::TupleExp(Loc loc, TupleDeclaration *tup)
: Expression(loc, TOKtuple, sizeof(TupleExp))
{
exps = new Expressions();
type = NULL;
exps->reserve(tup->objects->dim);
for (size_t i = 0; i < tup->objects->dim; i++)
{ Object *o = tup->objects->tdata()[i];
if (o->dyncast() == DYNCAST_EXPRESSION)
{
Expression *e = (Expression *)o;
if (e->op == TOKdsymbol)
e = e->syntaxCopy();
exps->push(e);
}
else if (o->dyncast() == DYNCAST_DSYMBOL)
{
Dsymbol *s = (Dsymbol *)o;
Expression *e = new DsymbolExp(loc, s);
exps->push(e);
}
else if (o->dyncast() == DYNCAST_TYPE)
{
Type *t = (Type *)o;
Expression *e = new TypeExp(loc, t);
exps->push(e);
}
else
{
error("%s is not an expression", o->toChars());
}
}
}
int TupleExp::equals(Object *o)
{
if (this == o)
return 1;
if (((Expression *)o)->op == TOKtuple)
{
TupleExp *te = (TupleExp *)o;
if (exps->dim != te->exps->dim)
return 0;
for (size_t i = 0; i < exps->dim; i++)
{ Expression *e1 = (*exps)[i];
Expression *e2 = (*te->exps)[i];
if (!e1->equals(e2))
return 0;
}
return 1;
}
return 0;
}
Expression *TupleExp::syntaxCopy()
{
return new TupleExp(loc, arraySyntaxCopy(exps));
}
Expression *TupleExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("+TupleExp::semantic(%s)\n", toChars());
#endif
if (type)
return this;
// Run semantic() on each argument
for (size_t i = 0; i < exps->dim; i++)
{ Expression *e = (*exps)[i];
e = e->semantic(sc);
if (!e->type)
{ error("%s has no value", e->toChars());
return new ErrorExp();
}
(*exps)[i] = e;
}
expandTuples(exps);
type = new TypeTuple(exps);
type = type->semantic(loc, sc);
//printf("-TupleExp::semantic(%s)\n", toChars());
return this;
}
void TupleExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("tuple(");
argsToCBuffer(buf, exps, hgs);
buf->writeByte(')');
}
void TupleExp::checkEscape()
{
for (size_t i = 0; i < exps->dim; i++)
{ Expression *e = (*exps)[i];
e->checkEscape();
}
}
/******************************** FuncExp *********************************/
FuncExp::FuncExp(Loc loc, FuncLiteralDeclaration *fd, TemplateDeclaration *td)
: Expression(loc, TOKfunction, sizeof(FuncExp))
{
this->fd = fd;
this->td = td;
tok = fd->tok; // save original kind of function/delegate/(infer)
tded = NULL;
scope = NULL;
}
Expression *FuncExp::syntaxCopy()
{
return new FuncExp(loc, (FuncLiteralDeclaration *)fd->syntaxCopy(NULL));
}
Expression *FuncExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("FuncExp::semantic(%s)\n", toChars());
#endif
if (!type || type == Type::tvoid)
{
// save for later use
scope = sc;
//printf("td = %p, tded = %p\n", td, tded);
if (td)
{
assert(td->parameters && td->parameters->dim);
td->semantic(sc);
if (!tded)
{ // defer type determination
type = Type::tvoid; // temporary type
return this;
}
else
{
Expression *e = inferType(sc, tded);
if (e)
{ e = e->castTo(sc, tded);
e = e->semantic(sc);
}
if (!e)
{ error("cannot infer function literal type");
e = new ErrorExp();
}
return e;
}
}
unsigned olderrors = global.errors;
fd->semantic(sc);
//fd->parent = sc->parent;
if (olderrors != global.errors)
{
}
else
{
fd->semantic2(sc);
if ( (olderrors == global.errors) ||
// need to infer return type
(fd->type && fd->type->ty == Tfunction && !fd->type->nextOf()))
{
fd->semantic3(sc);
if ( (olderrors == global.errors) && global.params.useInline)
fd->inlineScan();
}
}
// need to infer return type
if ((olderrors != global.errors) && fd->type && fd->type->ty == Tfunction && !fd->type->nextOf())
((TypeFunction *)fd->type)->next = Type::terror;
// Type is a "delegate to" or "pointer to" the function literal
if ((fd->isNested() && fd->tok == TOKdelegate) ||
(tok == TOKreserved && tded && tded->ty == Tdelegate))
{
type = new TypeDelegate(fd->type);
type = type->semantic(loc, sc);
}
else
{
type = fd->type->pointerTo();
}
fd->tookAddressOf++;
}
return this;
}
// used from CallExp::semantic()
Expression *FuncExp::semantic(Scope *sc, Expressions *arguments)
{
assert(!tded);
assert(!scope);
if ((!type || type == Type::tvoid) && td && arguments && arguments->dim)
{
for (size_t k = 0; k < arguments->dim; k++)
{ Expression *checkarg = arguments->tdata()[k];
if (checkarg->op == TOKerror)
return checkarg;
}
assert(td->parameters && td->parameters->dim);
td->semantic(sc);
TypeFunction *tfl = (TypeFunction *)fd->type;
size_t dim = Parameter::dim(tfl->parameters);
if ((!tfl->varargs && arguments->dim == dim) ||
( tfl->varargs && arguments->dim >= dim))
{
Objects *tiargs = new Objects();
tiargs->reserve(td->parameters->dim);
for (size_t i = 0; i < td->parameters->dim; i++)
{
TemplateParameter *tp = (*td->parameters)[i];
for (size_t u = 0; u < dim; u++)
{ Parameter *p = Parameter::getNth(tfl->parameters, u);
if (p->type->ty == Tident &&
((TypeIdentifier *)p->type)->ident == tp->ident)
{ Expression *e = (*arguments)[u];
tiargs->push(e->type);
u = dim; // break inner loop
}
}
}
TemplateInstance *ti = new TemplateInstance(loc, td, tiargs);
return (new ScopeExp(loc, ti))->semantic(sc);
}
error("cannot infer function literal type");
return new ErrorExp();
}
return semantic(sc);
}
Expression *FuncExp::inferType(Scope *sc, Type *to)
{
//printf("inferType sc = %p, to = %s\n", sc, to->toChars());
if (!sc)
{ // used from TypeFunction::callMatch()
assert(scope);
sc = scope;
}
#if IN_LLVM
if (fd->tok == TOKreserved && to->ty == Tpointer && to->nextOf()->ty == Tfunction)
fd->tok = TOKfunction;
#endif
Expression *e = NULL;
if (td)
{ /// Parameter types inference from
assert(!type || type == Type::tvoid);
Type *t = to;
if (t->ty == Tdelegate ||
t->ty == Tpointer && t->nextOf()->ty == Tfunction)
{ t = t->nextOf();
}
if (t->ty == Tfunction)
{
TypeFunction *tfv = (TypeFunction *)t;
TypeFunction *tfl = (TypeFunction *)fd->type;
size_t dim = Parameter::dim(tfl->parameters);
if (Parameter::dim(tfv->parameters) == dim &&
tfv->varargs == tfl->varargs)
{
Objects *tiargs = new Objects();
tiargs->reserve(td->parameters->dim);
for (size_t i = 0; i < td->parameters->dim; i++)
{
TemplateParameter *tp = (*td->parameters)[i];
for (size_t u = 0; u < dim; u++)
{ Parameter *p = Parameter::getNth(tfl->parameters, u);
if (p->type->ty == Tident &&
((TypeIdentifier *)p->type)->ident == tp->ident)
{ p = Parameter::getNth(tfv->parameters, u);
if (p->type->ty == Tident)
return NULL;
tiargs->push(p->type);
u = dim; // break inner loop
}
}
}
TemplateInstance *ti = new TemplateInstance(loc, td, tiargs);
e = (new ScopeExp(loc, ti))->semantic(sc);
}
}
}
else
{
assert(type && type != Type::tvoid); // semantic is already done
e = this;
}
if (e)
{ // Check implicit function to delegate conversion
if (e->implicitConvTo(to))
e = e->castTo(sc, to);
else
e = NULL;
}
return e;
}
void FuncExp::setType(Type *t)
{
assert(t);
if (t->ty == Tdelegate ||
t->ty == Tpointer && t->nextOf()->ty == Tfunction)
{ tded = t;
}
}
char *FuncExp::toChars()
{
return fd->toChars();
}
void FuncExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
fd->toCBuffer(buf, hgs);
//buf->writestring(fd->toChars());
}
/******************************** DeclarationExp **************************/
DeclarationExp::DeclarationExp(Loc loc, Dsymbol *declaration)
: Expression(loc, TOKdeclaration, sizeof(DeclarationExp))
{
this->declaration = declaration;
}
Expression *DeclarationExp::syntaxCopy()
{
return new DeclarationExp(loc, declaration->syntaxCopy(NULL));
}
Expression *DeclarationExp::semantic(Scope *sc)
{
if (type)
return this;
#if LOGSEMANTIC
printf("DeclarationExp::semantic() %s\n", toChars());
#endif
unsigned olderrors = global.errors;
/* This is here to support extern(linkage) declaration,
* where the extern(linkage) winds up being an AttribDeclaration
* wrapper.
*/
Dsymbol *s = declaration;
AttribDeclaration *ad = declaration->isAttribDeclaration();
if (ad)
{
if (ad->decl && ad->decl->dim == 1)
s = ad->decl->tdata()[0];
}
if (s->isVarDeclaration())
{ // Do semantic() on initializer first, so:
// int a = a;
// will be illegal.
declaration->semantic(sc);
s->parent = sc->parent;
}
//printf("inserting '%s' %p into sc = %p\n", s->toChars(), s, sc);
// Insert into both local scope and function scope.
// Must be unique in both.
if (s->ident)
{
if (!sc->insert(s))
{ error("declaration %s is already defined", s->toPrettyChars());
return new ErrorExp();
}
else if (sc->func)
{ VarDeclaration *v = s->isVarDeclaration();
if ( (s->isFuncDeclaration() || s->isTypedefDeclaration() ||
s->isAggregateDeclaration() || s->isEnumDeclaration() ||
s->isInterfaceDeclaration()) &&
!sc->func->localsymtab->insert(s))
{
error("declaration %s is already defined in another scope in %s",
s->toPrettyChars(), sc->func->toChars());
return new ErrorExp();
}
else if (!global.params.useDeprecated)
{ // Disallow shadowing
for (Scope *scx = sc->enclosing; scx && scx->func == sc->func; scx = scx->enclosing)
{ Dsymbol *s2;
if (scx->scopesym && scx->scopesym->symtab &&
(s2 = scx->scopesym->symtab->lookup(s->ident)) != NULL &&
s != s2)
{
error("shadowing declaration %s is deprecated", s->toPrettyChars());
return new ErrorExp();
}
}
}
}
}
if (!s->isVarDeclaration())
{
Scope *sc2 = sc;
if (sc2->stc & (STCpure | STCnothrow))
sc2 = sc->push();
sc2->stc &= ~(STCpure | STCnothrow);
declaration->semantic(sc2);
if (sc2 != sc)
sc2->pop();
s->parent = sc->parent;
}
if (global.errors == olderrors)
{
declaration->semantic2(sc);
if (global.errors == olderrors)
{
declaration->semantic3(sc);
if ((global.errors == olderrors) && global.params.useInline)
declaration->inlineScan();
}
}
type = Type::tvoid;
return this;
}
void DeclarationExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
declaration->toCBuffer(buf, hgs);
}
/************************ TypeidExp ************************************/
/*
* typeid(int)
*/
TypeidExp::TypeidExp(Loc loc, Object *o)
: Expression(loc, TOKtypeid, sizeof(TypeidExp))
{
this->obj = o;
}
Expression *TypeidExp::syntaxCopy()
{
return new TypeidExp(loc, objectSyntaxCopy(obj));
}
Expression *TypeidExp::semantic(Scope *sc)
{ Expression *e;
#if LOGSEMANTIC
printf("TypeidExp::semantic() %s\n", toChars());
#endif
Type *ta = isType(obj);
Expression *ea = isExpression(obj);
Dsymbol *sa = isDsymbol(obj);
//printf("ta %p ea %p sa %p\n", ta, ea, sa);
if (ta)
{
ta->resolve(loc, sc, &ea, &ta, &sa);
}
if (ea)
{
ea = ea->semantic(sc);
ea = resolveProperties(sc, ea);
ta = ea->type;
if (ea->op == TOKtype)
ea = NULL;
}
if (!ta)
{
//printf("ta %p ea %p sa %p\n", ta, ea, sa);
error("no type for typeid(%s)", ea ? ea->toChars() : (sa ? sa->toChars() : ""));
return new ErrorExp();
}
if (ea && ta->toBasetype()->ty == Tclass)
{ /* Get the dynamic type, which is .classinfo
*/
e = new DotIdExp(ea->loc, ea, Id::classinfo);
e = e->semantic(sc);
}
else
{ /* Get the static type
*/
e = ta->getTypeInfo(sc);
if (e->loc.linnum == 0)
e->loc = loc; // so there's at least some line number info
if (ea)
{
e = new CommaExp(loc, ea, e); // execute ea
e = e->semantic(sc);
}
}
return e;
}
void TypeidExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("typeid(");
ObjectToCBuffer(buf, hgs, obj);
buf->writeByte(')');
}
/************************ TraitsExp ************************************/
#if DMDV2
/*
* __traits(identifier, args...)
*/
TraitsExp::TraitsExp(Loc loc, Identifier *ident, Objects *args)
: Expression(loc, TOKtraits, sizeof(TraitsExp))
{
this->ident = ident;
this->args = args;
}
Expression *TraitsExp::syntaxCopy()
{
return new TraitsExp(loc, ident, TemplateInstance::arraySyntaxCopy(args));
}
void TraitsExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("__traits(");
buf->writestring(ident->toChars());
if (args)
{
for (size_t i = 0; i < args->dim; i++)
{
buf->writeByte(',');
Object *oarg = args->tdata()[i];
ObjectToCBuffer(buf, hgs, oarg);
}
}
buf->writeByte(')');
}
#endif
/************************************************************/
HaltExp::HaltExp(Loc loc)
: Expression(loc, TOKhalt, sizeof(HaltExp))
{
}
Expression *HaltExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("HaltExp::semantic()\n");
#endif
type = Type::tvoid;
return this;
}
void HaltExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("halt");
}
/************************************************************/
IsExp::IsExp(Loc loc, Type *targ, Identifier *id, enum TOK tok,
Type *tspec, enum TOK tok2, TemplateParameters *parameters)
: Expression(loc, TOKis, sizeof(IsExp))
{
this->targ = targ;
this->id = id;
this->tok = tok;
this->tspec = tspec;
this->tok2 = tok2;
this->parameters = parameters;
}
Expression *IsExp::syntaxCopy()
{
// This section is identical to that in TemplateDeclaration::syntaxCopy()
TemplateParameters *p = NULL;
if (parameters)
{
p = new TemplateParameters();
p->setDim(parameters->dim);
for (size_t i = 0; i < p->dim; i++)
{ TemplateParameter *tp = parameters->tdata()[i];
p->tdata()[i] = tp->syntaxCopy();
}
}
return new IsExp(loc,
targ->syntaxCopy(),
id,
tok,
tspec ? tspec->syntaxCopy() : NULL,
tok2,
p);
}
Expression *IsExp::semantic(Scope *sc)
{ Type *tded;
/* is(targ id tok tspec)
* is(targ id : tok2)
* is(targ id == tok2)
*/
//printf("IsExp::semantic(%s)\n", toChars());
if (id && !(sc->flags & (SCOPEstaticif | SCOPEstaticassert)))
{ error("can only declare type aliases within static if conditionals or static asserts");
return new ErrorExp();
}
Type *t = targ->trySemantic(loc, sc);
if (!t)
goto Lno; // errors, so condition is false
targ = t;
if (tok2 != TOKreserved)
{
switch (tok2)
{
case TOKtypedef:
if (targ->ty != Ttypedef)
goto Lno;
tded = ((TypeTypedef *)targ)->sym->basetype;
break;
case TOKstruct:
if (targ->ty != Tstruct)
goto Lno;
if (((TypeStruct *)targ)->sym->isUnionDeclaration())
goto Lno;
tded = targ;
break;
case TOKunion:
if (targ->ty != Tstruct)
goto Lno;
if (!((TypeStruct *)targ)->sym->isUnionDeclaration())
goto Lno;
tded = targ;
break;
case TOKclass:
if (targ->ty != Tclass)
goto Lno;
if (((TypeClass *)targ)->sym->isInterfaceDeclaration())
goto Lno;
tded = targ;
break;
case TOKinterface:
if (targ->ty != Tclass)
goto Lno;
if (!((TypeClass *)targ)->sym->isInterfaceDeclaration())
goto Lno;
tded = targ;
break;
#if DMDV2
case TOKconst:
if (!targ->isConst())
goto Lno;
tded = targ;
break;
case TOKinvariant:
if (!global.params.useDeprecated)
error("use of 'invariant' rather than 'immutable' is deprecated");
case TOKimmutable:
if (!targ->isImmutable())
goto Lno;
tded = targ;
break;
case TOKshared:
if (!targ->isShared())
goto Lno;
tded = targ;
break;
case TOKwild:
if (!targ->isWild())
goto Lno;
tded = targ;
break;
#endif
case TOKsuper:
// If class or interface, get the base class and interfaces
if (targ->ty != Tclass)
goto Lno;
else
{ ClassDeclaration *cd = ((TypeClass *)targ)->sym;
Parameters *args = new Parameters;
args->reserve(cd->baseclasses->dim);
for (size_t i = 0; i < cd->baseclasses->dim; i++)
{ BaseClass *b = cd->baseclasses->tdata()[i];
args->push(new Parameter(STCin, b->type, NULL, NULL));
}
tded = new TypeTuple(args);
}
break;
case TOKenum:
if (targ->ty != Tenum)
goto Lno;
tded = ((TypeEnum *)targ)->sym->memtype;
break;
case TOKdelegate:
if (targ->ty != Tdelegate)
goto Lno;
tded = ((TypeDelegate *)targ)->next; // the underlying function type
break;
case TOKfunction:
{
if (targ->ty != Tfunction)
goto Lno;
tded = targ;
/* Generate tuple from function parameter types.
*/
assert(tded->ty == Tfunction);
Parameters *params = ((TypeFunction *)tded)->parameters;
size_t dim = Parameter::dim(params);
Parameters *args = new Parameters;
args->reserve(dim);
for (size_t i = 0; i < dim; i++)
{ Parameter *arg = Parameter::getNth(params, i);
assert(arg && arg->type);
args->push(new Parameter(arg->storageClass, arg->type, NULL, NULL));
}
tded = new TypeTuple(args);
break;
}
case TOKreturn:
/* Get the 'return type' for the function,
* delegate, or pointer to function.
*/
if (targ->ty == Tfunction)
tded = ((TypeFunction *)targ)->next;
else if (targ->ty == Tdelegate)
{ tded = ((TypeDelegate *)targ)->next;
tded = ((TypeFunction *)tded)->next;
}
else if (targ->ty == Tpointer &&
((TypePointer *)targ)->next->ty == Tfunction)
{ tded = ((TypePointer *)targ)->next;
tded = ((TypeFunction *)tded)->next;
}
else
goto Lno;
break;
case TOKargTypes:
/* Generate a type tuple of the equivalent types used to determine if a
* function argument of this type can be passed in registers.
* The results of this are highly platform dependent, and intended
* primarly for use in implementing va_arg().
*/
tded = targ->toArgTypes();
if (!tded)
goto Lno; // not valid for a parameter
break;
default:
assert(0);
}
goto Lyes;
}
else if (id && tspec)
{
/* Evaluate to TRUE if targ matches tspec.
* If TRUE, declare id as an alias for the specialized type.
*/
assert(parameters && parameters->dim);
Objects dedtypes;
dedtypes.setDim(parameters->dim);
dedtypes.zero();
MATCH m = targ->deduceType(sc, tspec, parameters, &dedtypes);
//printf("targ: %s\n", targ->toChars());
//printf("tspec: %s\n", tspec->toChars());
if (m == MATCHnomatch ||
(m != MATCHexact && tok == TOKequal))
{
goto Lno;
}
else
{
tded = (Type *)dedtypes.tdata()[0];
if (!tded)
tded = targ;
#if DMDV2
Objects tiargs;
tiargs.setDim(1);
tiargs.tdata()[0] = targ;
/* Declare trailing parameters
*/
for (size_t i = 1; i < parameters->dim; i++)
{ TemplateParameter *tp = (*parameters)[i];
Declaration *s = NULL;
m = tp->matchArg(sc, &tiargs, i, parameters, &dedtypes, &s);
if (m == MATCHnomatch)
goto Lno;
s->semantic(sc);
if (sc->sd)
s->addMember(sc, sc->sd, 1);
else if (!sc->insert(s))
error("declaration %s is already defined", s->toChars());
}
#endif
goto Lyes;
}
}
else if (id)
{
/* Declare id as an alias for type targ. Evaluate to TRUE
*/
tded = targ;
goto Lyes;
}
else if (tspec)
{
/* Evaluate to TRUE if targ matches tspec
* is(targ == tspec)
* is(targ : tspec)
*/
tspec = tspec->semantic(loc, sc);
//printf("targ = %s, %s\n", targ->toChars(), targ->deco);
//printf("tspec = %s, %s\n", tspec->toChars(), tspec->deco);
if (tok == TOKcolon)
{ if (targ->implicitConvTo(tspec))
goto Lyes;
else
goto Lno;
}
else /* == */
{ if (targ->equals(tspec))
goto Lyes;
else
goto Lno;
}
}
Lyes:
if (id)
{
Dsymbol *s;
Tuple *tup = isTuple(tded);
if (tup)
s = new TupleDeclaration(loc, id, &(tup->objects));
else
s = new AliasDeclaration(loc, id, tded);
s->semantic(sc);
/* The reason for the !tup is unclear. It fails Phobos unittests if it is not there.
* More investigation is needed.
*/
if (!tup && !sc->insert(s))
error("declaration %s is already defined", s->toChars());
if (sc->sd)
s->addMember(sc, sc->sd, 1);
}
//printf("Lyes\n");
return new IntegerExp(loc, 1, Type::tbool);
Lno:
//printf("Lno\n");
return new IntegerExp(loc, 0, Type::tbool);
}
void IsExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("is(");
targ->toCBuffer(buf, id, hgs);
if (tok2 != TOKreserved)
{
buf->printf(" %s %s", Token::toChars(tok), Token::toChars(tok2));
}
else if (tspec)
{
if (tok == TOKcolon)
buf->writestring(" : ");
else
buf->writestring(" == ");
tspec->toCBuffer(buf, NULL, hgs);
}
#if DMDV2
if (parameters)
{ // First parameter is already output, so start with second
for (size_t i = 1; i < parameters->dim; i++)
{
buf->writeByte(',');
TemplateParameter *tp = parameters->tdata()[i];
tp->toCBuffer(buf, hgs);
}
}
#endif
buf->writeByte(')');
}
/************************************************************/
UnaExp::UnaExp(Loc loc, enum TOK op, int size, Expression *e1)
: Expression(loc, op, size)
{
this->e1 = e1;
}
Expression *UnaExp::syntaxCopy()
{
UnaExp *e = (UnaExp *)copy();
e->type = NULL;
e->e1 = e->e1->syntaxCopy();
return e;
}
Expression *UnaExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("UnaExp::semantic('%s')\n", toChars());
#endif
e1 = e1->semantic(sc);
// if (!e1->type)
// error("%s has no value", e1->toChars());
return this;
}
Expression *UnaExp::resolveLoc(Loc loc, Scope *sc)
{
e1 = e1->resolveLoc(loc, sc);
return this;
}
void UnaExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring(Token::toChars(op));
expToCBuffer(buf, hgs, e1, precedence[op]);
}
/************************************************************/
BinExp::BinExp(Loc loc, enum TOK op, int size, Expression *e1, Expression *e2)
: Expression(loc, op, size)
{
this->e1 = e1;
this->e2 = e2;
}
Expression *BinExp::syntaxCopy()
{
BinExp *e = (BinExp *)copy();
e->type = NULL;
e->e1 = e->e1->syntaxCopy();
e->e2 = e->e2->syntaxCopy();
return e;
}
Expression *BinExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("BinExp::semantic('%s')\n", toChars());
#endif
e1 = e1->semantic(sc);
e2 = e2->semantic(sc);
if (e1->op == TOKerror || e2->op == TOKerror)
return new ErrorExp();
return this;
}
Expression *BinExp::semanticp(Scope *sc)
{
BinExp::semantic(sc);
e1 = resolveProperties(sc, e1);
e2 = resolveProperties(sc, e2);
return this;
}
// generate an error if this is a nonsensical *=,/=, or %=, eg real *= imaginary
void BinExp::checkComplexMulAssign()
{
// Any multiplication by an imaginary or complex number yields a complex result.
// r *= c, i*=c, r*=i, i*=i are all forbidden operations.
const char *opstr = Token::toChars(op);
if ( e1->type->isreal() && e2->type->iscomplex())
{
error("%s %s %s is undefined. Did you mean %s %s %s.re ?",
e1->type->toChars(), opstr, e2->type->toChars(),
e1->type->toChars(), opstr, e2->type->toChars());
}
else if (e1->type->isimaginary() && e2->type->iscomplex())
{
error("%s %s %s is undefined. Did you mean %s %s %s.im ?",
e1->type->toChars(), opstr, e2->type->toChars(),
e1->type->toChars(), opstr, e2->type->toChars());
}
else if ((e1->type->isreal() || e1->type->isimaginary()) &&
e2->type->isimaginary())
{
error("%s %s %s is an undefined operation", e1->type->toChars(),
opstr, e2->type->toChars());
}
}
// generate an error if this is a nonsensical += or -=, eg real += imaginary
void BinExp::checkComplexAddAssign()
{
// Addition or subtraction of a real and an imaginary is a complex result.
// Thus, r+=i, r+=c, i+=r, i+=c are all forbidden operations.
if ( (e1->type->isreal() && (e2->type->isimaginary() || e2->type->iscomplex())) ||
(e1->type->isimaginary() && (e2->type->isreal() || e2->type->iscomplex()))
)
{
error("%s %s %s is undefined (result is complex)",
e1->type->toChars(), Token::toChars(op), e2->type->toChars());
}
}
void BinExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, e1, precedence[op]);
buf->writeByte(' ');
buf->writestring(Token::toChars(op));
buf->writeByte(' ');
expToCBuffer(buf, hgs, e2, (enum PREC)(precedence[op] + 1));
}
int BinExp::isunsigned()
{
return e1->type->isunsigned() || e2->type->isunsigned();
}
Expression *BinExp::incompatibleTypes()
{
if (e1->type->toBasetype() != Type::terror &&
e2->type->toBasetype() != Type::terror
)
{ error("incompatible types for ((%s) %s (%s)): '%s' and '%s'",
e1->toChars(), Token::toChars(op), e2->toChars(),
e1->type->toChars(), e2->type->toChars());
return new ErrorExp();
}
return this;
}
/********************** BinAssignExp **************************************/
/***************************
* Common semantic routine for some xxxAssignExp's.
*/
Expression *BinAssignExp::commonSemanticAssign(Scope *sc)
{ Expression *e;
if (!type)
{
if (e1->op == TOKarraylength)
{
e = ArrayLengthExp::rewriteOpAssign(this);
e = e->semantic(sc);
return e;
}
if (e1->op == TOKslice)
{ // T[] op= ...
e = typeCombine(sc);
if (e->op == TOKerror)
return e;
type = e1->type;
return arrayOp(sc);
}
e1 = e1->modifiableLvalue(sc, e1);
e1->checkScalar();
type = e1->type;
if (type->toBasetype()->ty == Tbool)
{
error("operator not allowed on bool expression %s", toChars());
return new ErrorExp();
}
typeCombine(sc);
e1->checkArithmetic();
e2->checkArithmetic();
if (op == TOKmodass)
{
if (e2->type->iscomplex())
{ error("cannot perform modulo complex arithmetic");
return new ErrorExp();
}
else if (type->toBasetype()->ty == Tvector)
return incompatibleTypes();
}
}
return this;
}
Expression *BinAssignExp::commonSemanticAssignIntegral(Scope *sc)
{ Expression *e;
if (!type)
{
e = op_overload(sc);
if (e)
return e;
if (e1->op == TOKarraylength)
{
e = ArrayLengthExp::rewriteOpAssign(this);
e = e->semantic(sc);
return e;
}
if (e1->op == TOKslice)
{ // T[] op= ...
e = typeCombine(sc);
if (e->op == TOKerror)
return e;
type = e1->type;
return arrayOp(sc);
}
e1 = e1->modifiableLvalue(sc, e1);
e1->checkScalar();
type = e1->type;
if (type->toBasetype()->ty == Tbool)
{
e2 = e2->implicitCastTo(sc, type);
}
typeCombine(sc);
e1->checkIntegral();
e2->checkIntegral();
}
return this;
}
#if DMDV2
int BinAssignExp::isLvalue()
{
return 1;
}
Expression *BinAssignExp::toLvalue(Scope *sc, Expression *ex)
{ Expression *e;
if (e1->op == TOKvar)
{
/* Convert (e1 op= e2) to
* e1 op= e2;
* e1
*/
e = e1->copy();
e = new CommaExp(loc, this, e);
e = e->semantic(sc);
}
else
{
/* Convert (e1 op= e2) to
* ref v = e1;
* v op= e2;
* v
*/
// ref v = e1;
Identifier *id = Lexer::uniqueId("__assignop");
ExpInitializer *ei = new ExpInitializer(loc, e1);
VarDeclaration *v = new VarDeclaration(loc, e1->type, id, ei);
v->storage_class |= STCref | STCforeach;
Expression *de = new DeclarationExp(loc, v);
// v op= e2
e1 = new VarExp(e1->loc, v);
e = new CommaExp(loc, de, this);
e = new CommaExp(loc, e, new VarExp(loc, v));
e = e->semantic(sc);
}
return e;
}
Expression *BinAssignExp::modifiableLvalue(Scope *sc, Expression *e)
{
return toLvalue(sc, this);
}
#endif
/************************************************************/
CompileExp::CompileExp(Loc loc, Expression *e)
: UnaExp(loc, TOKmixin, sizeof(CompileExp), e)
{
}
Expression *CompileExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("CompileExp::semantic('%s')\n", toChars());
#endif
UnaExp::semantic(sc);
e1 = resolveProperties(sc, e1);
if (e1->op == TOKerror)
return e1;
if (!e1->type->isString())
{
error("argument to mixin must be a string type, not %s\n", e1->type->toChars());
return new ErrorExp();
}
e1 = e1->optimize(WANTvalue | WANTinterpret);
StringExp *se = e1->toString();
if (!se)
{ error("argument to mixin must be a string, not (%s)", e1->toChars());
return new ErrorExp();
}
se = se->toUTF8(sc);
Parser p(sc->module, (unsigned char *)se->string, se->len, 0);
p.loc = loc;
p.nextToken();
//printf("p.loc.linnum = %d\n", p.loc.linnum);
Expression *e = p.parseExpression();
if (p.token.value != TOKeof)
{ error("incomplete mixin expression (%s)", se->toChars());
return new ErrorExp();
}
return e->semantic(sc);
}
void CompileExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("mixin(");
expToCBuffer(buf, hgs, e1, PREC_assign);
buf->writeByte(')');
}
/************************************************************/
FileExp::FileExp(Loc loc, Expression *e)
: UnaExp(loc, TOKmixin, sizeof(FileExp), e)
{
}
Expression *FileExp::semantic(Scope *sc)
{ char *name;
StringExp *se;
#if LOGSEMANTIC
printf("FileExp::semantic('%s')\n", toChars());
#endif
UnaExp::semantic(sc);
e1 = resolveProperties(sc, e1);
e1 = e1->optimize(WANTvalue | WANTinterpret);
if (e1->op != TOKstring)
{ error("file name argument must be a string, not (%s)", e1->toChars());
goto Lerror;
}
se = (StringExp *)e1;
se = se->toUTF8(sc);
name = (char *)se->string;
if (!global.params.fileImppath)
{ error("need -Jpath switch to import text file %s", name);
goto Lerror;
}
/* Be wary of CWE-22: Improper Limitation of a Pathname to a Restricted Directory
* ('Path Traversal') attacks.
* http://cwe.mitre.org/data/definitions/22.html
*/
name = FileName::safeSearchPath(global.filePath, name);
if (!name)
{ error("file %s cannot be found or not in a path specified with -J", se->toChars());
goto Lerror;
}
if (global.params.verbose)
printf("file %s\t(%s)\n", (char *)se->string, name);
{ File f(name);
if (f.read())
{ error("cannot read file %s", f.toChars());
goto Lerror;
}
else
{
f.ref = 1;
se = new StringExp(loc, f.buffer, f.len);
}
}
return se->semantic(sc);
Lerror:
return new ErrorExp();
}
void FileExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("import(");
expToCBuffer(buf, hgs, e1, PREC_assign);
buf->writeByte(')');
}
/************************************************************/
AssertExp::AssertExp(Loc loc, Expression *e, Expression *msg)
: UnaExp(loc, TOKassert, sizeof(AssertExp), e)
{
this->msg = msg;
}
Expression *AssertExp::syntaxCopy()
{
AssertExp *ae = new AssertExp(loc, e1->syntaxCopy(),
msg ? msg->syntaxCopy() : NULL);
return ae;
}
Expression *AssertExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("AssertExp::semantic('%s')\n", toChars());
#endif
UnaExp::semantic(sc);
e1 = resolveProperties(sc, e1);
// BUG: see if we can do compile time elimination of the Assert
e1 = e1->optimize(WANTvalue);
e1 = e1->checkToBoolean(sc);
if (msg)
{
msg = msg->semantic(sc);
msg = resolveProperties(sc, msg);
msg = msg->implicitCastTo(sc, Type::tchar->constOf()->arrayOf());
msg = msg->optimize(WANTvalue);
}
if (e1->isBool(FALSE))
{
FuncDeclaration *fd = sc->parent->isFuncDeclaration();
if (fd)
fd->hasReturnExp |= 4;
if (!global.params.useAssert)
{ Expression *e = new HaltExp(loc);
e = e->semantic(sc);
return e;
}
}
type = Type::tvoid;
return this;
}
void AssertExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("assert(");
expToCBuffer(buf, hgs, e1, PREC_assign);
if (msg)
{
buf->writeByte(',');
expToCBuffer(buf, hgs, msg, PREC_assign);
}
buf->writeByte(')');
}
/************************************************************/
DotIdExp::DotIdExp(Loc loc, Expression *e, Identifier *ident)
: UnaExp(loc, TOKdot, sizeof(DotIdExp), e)
{
this->ident = ident;
}
Expression *DotIdExp::semantic(Scope *sc)
{
// Indicate we didn't come from CallExp::semantic()
return semantic(sc, 0);
}
Expression *DotIdExp::semantic(Scope *sc, int flag)
{ Expression *e;
Expression *eleft;
Expression *eright;
#if LOGSEMANTIC
printf("DotIdExp::semantic(this = %p, '%s')\n", this, toChars());
//printf("e1->op = %d, '%s'\n", e1->op, Token::toChars(e1->op));
#endif
//{ static int z; fflush(stdout); if (++z == 10) *(char*)0=0; }
#if 0
/* Don't do semantic analysis if we'll be converting
* it to a string.
*/
if (ident == Id::stringof)
{ char *s = e1->toChars();
e = new StringExp(loc, s, strlen(s), 'c');
e = e->semantic(sc);
return e;
}
#endif
/* Special case: rewrite this.id and super.id
* to be classtype.id and baseclasstype.id
* if we have no this pointer.
*/
if ((e1->op == TOKthis || e1->op == TOKsuper) && !hasThis(sc))
{ ClassDeclaration *cd;
StructDeclaration *sd;
AggregateDeclaration *ad;
ad = sc->getStructClassScope();
if (ad)
{
cd = ad->isClassDeclaration();
if (cd)
{
if (e1->op == TOKthis)
{
e = typeDotIdExp(loc, cd->type, ident);
return e->semantic(sc);
}
else if (cd->baseClass && e1->op == TOKsuper)
{
e = typeDotIdExp(loc, cd->baseClass->type, ident);
return e->semantic(sc);
}
}
else
{
sd = ad->isStructDeclaration();
if (sd)
{
if (e1->op == TOKthis)
{
e = typeDotIdExp(loc, sd->type, ident);
return e->semantic(sc);
}
}
}
}
}
UnaExp::semantic(sc);
if (ident == Id::mangleof)
{ // symbol.mangleof
Dsymbol *ds;
switch (e1->op)
{
case TOKimport: ds = ((ScopeExp *)e1)->sds; goto L1;
case TOKvar: ds = ((VarExp *)e1)->var; goto L1;
case TOKdotvar: ds = ((DotVarExp *)e1)->var; goto L1;
L1:
char* s = ds->mangle();
e = new StringExp(loc, s, strlen(s), 'c');
e = e->semantic(sc);
return e;
}
}
if (e1->op == TOKdotexp)
{
DotExp *de = (DotExp *)e1;
eleft = de->e1;
eright = de->e2;
}
else
{
if (e1->op != TOKtype)
e1 = resolveProperties(sc, e1);
eleft = NULL;
eright = e1;
}
#if DMDV2
if (e1->op == TOKtuple && ident == Id::offsetof)
{ /* 'distribute' the .offsetof to each of the tuple elements.
*/
TupleExp *te = (TupleExp *)e1;
Expressions *exps = new Expressions();
exps->setDim(te->exps->dim);
for (size_t i = 0; i < exps->dim; i++)
{ Expression *e = (*te->exps)[i];
e = e->semantic(sc);
e = new DotIdExp(e->loc, e, Id::offsetof);
(*exps)[i] = e;
}
e = new TupleExp(loc, exps);
e = e->semantic(sc);
return e;
}
#endif
if (e1->op == TOKtuple && ident == Id::length)
{
TupleExp *te = (TupleExp *)e1;
e = new IntegerExp(loc, te->exps->dim, Type::tsize_t);
return e;
}
if (e1->op == TOKdottd)
{
error("template %s does not have property %s", e1->toChars(), ident->toChars());
return new ErrorExp();
}
if (!e1->type)
{
error("expression %s does not have property %s", e1->toChars(), ident->toChars());
return new ErrorExp();
}
Type *t1b = e1->type->toBasetype();
if (eright->op == TOKimport) // also used for template alias's
{
ScopeExp *ie = (ScopeExp *)eright;
/* Disable access to another module's private imports.
* The check for 'is sds our current module' is because
* the current module should have access to its own imports.
*/
Dsymbol *s = ie->sds->search(loc, ident,
(ie->sds->isModule() && ie->sds != sc->module) ? 1 : 0);
if (s)
{
/* Check for access before resolving aliases because public
* aliases to private symbols are public.
*/
if (Declaration *d = s->isDeclaration())
accessCheck(loc, sc, 0, d);
s = s->toAlias();
checkDeprecated(sc, s);
EnumMember *em = s->isEnumMember();
if (em)
{
e = em->value;
e = e->semantic(sc);
return e;
}
VarDeclaration *v = s->isVarDeclaration();
if (v)
{
//printf("DotIdExp:: Identifier '%s' is a variable, type '%s'\n", toChars(), v->type->toChars());
if (v->inuse)
{
error("circular reference to '%s'", v->toChars());
return new ErrorExp();
}
type = v->type;
if (v->needThis())
{
if (!eleft)
eleft = new ThisExp(loc);
e = new DotVarExp(loc, eleft, v);
e = e->semantic(sc);
}
else
{
e = new VarExp(loc, v);
if (eleft)
{ e = new CommaExp(loc, eleft, e);
e->type = v->type;
}
}
e = e->deref();
return e->semantic(sc);
}
FuncDeclaration *f = s->isFuncDeclaration();
if (f)
{
//printf("it's a function\n");
if (f->needThis())
{
if (!eleft)
eleft = new ThisExp(loc);
e = new DotVarExp(loc, eleft, f);
e = e->semantic(sc);
}
else
{
e = new VarExp(loc, f, 1);
if (eleft)
{ e = new CommaExp(loc, eleft, e);
e->type = f->type;
}
}
return e;
}
#if DMDV2
OverloadSet *o = s->isOverloadSet();
if (o)
{ //printf("'%s' is an overload set\n", o->toChars());
return new OverExp(o);
}
#endif
Type *t = s->getType();
if (t)
{
return new TypeExp(loc, t);
}
TupleDeclaration *tup = s->isTupleDeclaration();
if (tup)
{
if (eleft)
{ error("cannot have e.tuple");
return new ErrorExp();
}
e = new TupleExp(loc, tup);
e = e->semantic(sc);
return e;
}
ScopeDsymbol *sds = s->isScopeDsymbol();
if (sds)
{
//printf("it's a ScopeDsymbol\n");
e = new ScopeExp(loc, sds);
e = e->semantic(sc);
if (eleft)
e = new DotExp(loc, eleft, e);
return e;
}
Import *imp = s->isImport();
if (imp)
{
ScopeExp *ie;
ie = new ScopeExp(loc, imp->pkg);
return ie->semantic(sc);
}
// BUG: handle other cases like in IdentifierExp::semantic()
#ifdef DEBUG
printf("s = '%s', kind = '%s'\n", s->toChars(), s->kind());
#endif
assert(0);
}
else if (ident == Id::stringof)
{ char *s = ie->toChars();
e = new StringExp(loc, s, strlen(s), 'c');
e = e->semantic(sc);
return e;
}
error("undefined identifier %s", toChars());
return new ErrorExp();
}
else if (t1b->ty == Tpointer &&
ident != Id::init && ident != Id::__sizeof &&
ident != Id::__xalignof && ident != Id::offsetof &&
ident != Id::mangleof && ident != Id::stringof)
{ /* Rewrite:
* p.ident
* as:
* (*p).ident
*/
e = new PtrExp(loc, e1);
e->type = ((TypePointer *)t1b)->next;
return e->type->dotExp(sc, e, ident);
}
#if DMDV2
else if ((t1b->ty == Tarray || t1b->ty == Tsarray ||
t1b->ty == Taarray) &&
ident != Id::sort && ident != Id::reverse &&
ident != Id::dup && ident != Id::idup)
{ /* If ident is not a valid property, rewrite:
* e1.ident
* as:
* .ident(e1)
*/
unsigned errors = global.startGagging();
Type *t1 = e1->type;
e = e1->type->dotExp(sc, e1, ident);
if (global.endGagging(errors)) // if failed to find the property
{
e1->type = t1; // kludge to restore type
e = new DotIdExp(loc, new IdentifierExp(loc, Id::empty), ident);
e = new CallExp(loc, e, e1);
}
e = e->semantic(sc);
return e;
}
#endif
else
{
e = e1->type->dotExp(sc, e1, ident);
if (!(flag && e->op == TOKdotti)) // let CallExp::semantic() handle this
e = e->semantic(sc);
return e;
}
}
void DotIdExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
//printf("DotIdExp::toCBuffer()\n");
expToCBuffer(buf, hgs, e1, PREC_primary);
buf->writeByte('.');
buf->writestring(ident->toChars());
}
/********************** DotTemplateExp ***********************************/
// Mainly just a placeholder
DotTemplateExp::DotTemplateExp(Loc loc, Expression *e, TemplateDeclaration *td)
: UnaExp(loc, TOKdottd, sizeof(DotTemplateExp), e)
{
this->td = td;
}
void DotTemplateExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, e1, PREC_primary);
buf->writeByte('.');
buf->writestring(td->toChars());
}
/************************************************************/
DotVarExp::DotVarExp(Loc loc, Expression *e, Declaration *v, int hasOverloads)
: UnaExp(loc, TOKdotvar, sizeof(DotVarExp), e)
{
//printf("DotVarExp()\n");
this->var = v;
this->hasOverloads = hasOverloads;
}
Expression *DotVarExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("DotVarExp::semantic('%s')\n", toChars());
#endif
if (!type)
{
var = var->toAlias()->isDeclaration();
TupleDeclaration *tup = var->isTupleDeclaration();
if (tup)
{ /* Replace:
* e1.tuple(a, b, c)
* with:
* tuple(e1.a, e1.b, e1.c)
*/
Expressions *exps = new Expressions;
Expression *ev = e1;
exps->reserve(tup->objects->dim);
for (size_t i = 0; i < tup->objects->dim; i++)
{ Object *o = tup->objects->tdata()[i];
if (o->dyncast() != DYNCAST_EXPRESSION)
{
error("%s is not an expression", o->toChars());
goto Lerr;
}
Expression *e = (Expression *)o;
if (e->op != TOKdsymbol)
{ error("%s is not a member", e->toChars());
goto Lerr;
}
Dsymbol *s = ((DsymbolExp *)e)->s;
if (i == 0 && sc->func && tup->objects->dim > 1 &&
e1->hasSideEffect())
{
Identifier *id = Lexer::uniqueId("__tup");
ExpInitializer *ei = new ExpInitializer(e1->loc, e1);
VarDeclaration *v = new VarDeclaration(e1->loc, NULL, id, ei);
v->storage_class |= STCctfe | STCref | STCforeach;
ev = new VarExp(e->loc, v);
e = new CommaExp(e1->loc, new DeclarationExp(e1->loc, v), ev);
e = new DotVarExp(loc, e, s->isDeclaration());
}
else
e = new DotVarExp(loc, ev, s->isDeclaration());
exps->push(e);
}
Expression *e = new TupleExp(loc, exps);
e = e->semantic(sc);
return e;
}
e1 = e1->semantic(sc);
e1 = e1->addDtorHook(sc);
type = var->type;
if (!type && global.errors)
{ // var is goofed up, just return 0
return new ErrorExp();
}
assert(type);
Type *t1 = e1->type;
if (!var->isFuncDeclaration()) // for functions, do checks after overload resolution
{
if (t1->ty == Tpointer)
t1 = t1->nextOf();
type = type->addMod(t1->mod);
Dsymbol *vparent = var->toParent();
AggregateDeclaration *ad = vparent ? vparent->isAggregateDeclaration() : NULL;
e1 = getRightThis(loc, sc, ad, e1, var);
if (!sc->noaccesscheck)
accessCheck(loc, sc, e1, var);
VarDeclaration *v = var->isVarDeclaration();
Expression *e = expandVar(WANTvalue, v);
if (e)
return e;
}
Dsymbol *s;
if (sc->func && !sc->intypeof && t1->hasPointers() &&
(s = t1->toDsymbol(sc)) != NULL)
{
AggregateDeclaration *ad = s->isAggregateDeclaration();
if (ad && ad->hasUnions)
{
if (sc->func->setUnsafe())
{ error("union %s containing pointers are not allowed in @safe functions", t1->toChars());
goto Lerr;
}
}
}
}
//printf("-DotVarExp::semantic('%s')\n", toChars());
return this;
Lerr:
return new ErrorExp();
}
#if DMDV2
int DotVarExp::isLvalue()
{
return 1;
}
#endif
Expression *DotVarExp::toLvalue(Scope *sc, Expression *e)
{
//printf("DotVarExp::toLvalue(%s)\n", toChars());
return this;
}
/***********************************************
* Mark variable v as modified if it is inside a constructor that var
* is a field in.
*/
void modifyFieldVar(Loc loc, Scope *sc, VarDeclaration *var, Expression *e1)
{
//printf("modifyFieldVar(var = %s)\n", var->toChars());
Dsymbol *s = sc->func;
while (1)
{
FuncDeclaration *fd = NULL;
if (s)
fd = s->isFuncDeclaration();
if (fd &&
((fd->isCtorDeclaration() && var->storage_class & STCfield) ||
(fd->isStaticCtorDeclaration() && !(var->storage_class & STCfield))) &&
fd->toParent2() == var->toParent2() &&
(!e1 || e1->op == TOKthis)
)
{
var->ctorinit = 1;
//printf("setting ctorinit\n");
}
else
{
if (s)
{ s = s->toParent2();
continue;
}
else if (var->storage_class & STCctorinit)
{
const char *p = var->isStatic() ? "static " : "";
error(loc, "can only initialize %sconst member %s inside %sconstructor",
p, var->toChars(), p);
}
}
break;
}
}
Expression *DotVarExp::modifiableLvalue(Scope *sc, Expression *e)
{
#if 0
printf("DotVarExp::modifiableLvalue(%s)\n", toChars());
printf("e1->type = %s\n", e1->type->toChars());
printf("var->type = %s\n", var->type->toChars());
#endif
Type *t1 = e1->type->toBasetype();
if (!t1->isMutable() ||
(t1->ty == Tpointer && !t1->nextOf()->isMutable()) ||
!var->type->isMutable() ||
!var->type->isAssignable() ||
var->storage_class & STCmanifest
)
{
if (var->isCtorinit())
{ // It's only modifiable if inside the right constructor
modifyFieldVar(loc, sc, var->isVarDeclaration(), e1);
}
else
{
error("cannot modify const/immutable/inout expression %s", toChars());
}
}
else if (var->storage_class & STCnodefaultctor)
{
modifyFieldVar(loc, sc, var->isVarDeclaration(), e1);
}
return this;
}
void DotVarExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, e1, PREC_primary);
buf->writeByte('.');
buf->writestring(var->toChars());
}
/************************************************************/
/* Things like:
* foo.bar!(args)
*/
DotTemplateInstanceExp::DotTemplateInstanceExp(Loc loc, Expression *e, Identifier *name, Objects *tiargs)
: UnaExp(loc, TOKdotti, sizeof(DotTemplateInstanceExp), e)
{
//printf("DotTemplateInstanceExp()\n");
this->ti = new TemplateInstance(loc, name);
this->ti->tiargs = tiargs;
}
Expression *DotTemplateInstanceExp::syntaxCopy()
{
DotTemplateInstanceExp *de = new DotTemplateInstanceExp(loc,
e1->syntaxCopy(),
ti->name,
TemplateInstance::arraySyntaxCopy(ti->tiargs));
return de;
}
TemplateDeclaration *DotTemplateInstanceExp::getTempdecl(Scope *sc)
{
#if LOGSEMANTIC
printf("DotTemplateInstanceExp::getTempdecl('%s')\n", toChars());
#endif
if (!ti->tempdecl)
{
Expression *e = new DotIdExp(loc, e1, ti->name);
e = e->semantic(sc);
if (e->op == TOKdottd)
{
DotTemplateExp *dte = (DotTemplateExp *)e;
ti->tempdecl = dte->td;
}
else if (e->op == TOKimport)
{ ScopeExp *se = (ScopeExp *)e;
ti->tempdecl = se->sds->isTemplateDeclaration();
}
}
return ti->tempdecl;
}
Expression *DotTemplateInstanceExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("DotTemplateInstanceExp::semantic('%s')\n", toChars());
#endif
Expression *eleft;
Expression *e = new DotIdExp(loc, e1, ti->name);
L1:
e = e->semantic(sc);
if (e->op == TOKerror)
return e;
if (e->op == TOKdottd)
{
if (global.errors)
return new ErrorExp(); // TemplateInstance::semantic() will fail anyway
DotTemplateExp *dte = (DotTemplateExp *)e;
TemplateDeclaration *td = dte->td;
eleft = dte->e1;
ti->tempdecl = td;
if (ti->needsTypeInference(sc))
{
e1 = eleft; // save result of semantic()
return this;
}
else
ti->semantic(sc);
if (!ti->inst) // if template failed to expand
return new ErrorExp();
Dsymbol *s = ti->inst->toAlias();
Declaration *v = s->isDeclaration();
if (v)
{
/* Fix for Bugzilla 4003
* The problem is a class template member function v returning a reference to the same
* type as the enclosing template instantiation. This results in a nested instantiation,
* which of course gets short circuited. The return type then gets set to
* the template instance type before instantiation, rather than after.
* We can detect this by the deco not being set. If so, go ahead and retry
* the return type semantic.
* The offending code is the return type from std.typecons.Tuple.slice:
* ref Tuple!(Types[from .. to]) slice(uint from, uint to)()
* {
* return *cast(typeof(return) *) &(field[from]);
* }
* and this line from the following unittest:
* auto s = a.slice!(1, 3);
* where s's type wound up not having semantic() run on it.
*/
if (v->type && !v->type->deco)
v->type = v->type->semantic(v->loc, sc);
e = new DotVarExp(loc, eleft, v);
e = e->semantic(sc);
return e;
}
e = new ScopeExp(loc, ti);
e = new DotExp(loc, eleft, e);
e = e->semantic(sc);
return e;
}
else if (e->op == TOKimport)
{ ScopeExp *se = (ScopeExp *)e;
TemplateDeclaration *td = se->sds->isTemplateDeclaration();
if (!td)
{ error("%s is not a template", e->toChars());
return new ErrorExp();
}
ti->tempdecl = td;
e = new ScopeExp(loc, ti);
e = e->semantic(sc);
return e;
}
else if (e->op == TOKdotexp)
{ DotExp *de = (DotExp *)e;
if (de->e2->op == TOKoverloadset)
{
return e;
}
if (de->e2->op == TOKimport)
{ // This should *really* be moved to ScopeExp::semantic()
ScopeExp *se = (ScopeExp *)de->e2;
de->e2 = new DsymbolExp(loc, se->sds);
de->e2 = de->e2->semantic(sc);
}
if (de->e2->op == TOKtemplate)
{ TemplateExp *te = (TemplateExp *) de->e2;
e = new DotTemplateExp(loc,de->e1,te->td);
}
goto L1;
}
error("%s isn't a template", e->toChars());
return new ErrorExp();
}
void DotTemplateInstanceExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, e1, PREC_primary);
buf->writeByte('.');
ti->toCBuffer(buf, hgs);
}
/************************************************************/
DelegateExp::DelegateExp(Loc loc, Expression *e, FuncDeclaration *f, int hasOverloads)
: UnaExp(loc, TOKdelegate, sizeof(DelegateExp), e)
{
this->func = f;
this->hasOverloads = hasOverloads;
}
Expression *DelegateExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("DelegateExp::semantic('%s')\n", toChars());
#endif
if (!type)
{
m = sc->module;
e1 = e1->semantic(sc);
#if IN_LLVM
// LDC we need a copy as we store the LLVM type in TypeFunction,
// and delegate/members have different types for 'this'
Type *funcType = func->type->syntaxCopy();
funcType->deco = func->type->deco;
type = new TypeDelegate(funcType);
#else
type = new TypeDelegate(func->type);
#endif
type = type->semantic(loc, sc);
AggregateDeclaration *ad = func->toParent()->isAggregateDeclaration();
if (func->needThis())
e1 = getRightThis(loc, sc, ad, e1, func);
if (ad && ad->isClassDeclaration() && ad->type != e1->type)
{ // A downcast is required for interfaces, see Bugzilla 3706
e1 = new CastExp(loc, e1, ad->type);
e1 = e1->semantic(sc);
}
}
return this;
}
void DelegateExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writeByte('&');
if (!func->isNested())
{
expToCBuffer(buf, hgs, e1, PREC_primary);
buf->writeByte('.');
}
buf->writestring(func->toChars());
}
/************************************************************/
DotTypeExp::DotTypeExp(Loc loc, Expression *e, Dsymbol *s)
: UnaExp(loc, TOKdottype, sizeof(DotTypeExp), e)
{
this->sym = s;
this->type = s->getType();
}
Expression *DotTypeExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("DotTypeExp::semantic('%s')\n", toChars());
#endif
UnaExp::semantic(sc);
return this;
}
void DotTypeExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, e1, PREC_primary);
buf->writeByte('.');
buf->writestring(sym->toChars());
}
/************************************************************/
CallExp::CallExp(Loc loc, Expression *e, Expressions *exps)
: UnaExp(loc, TOKcall, sizeof(CallExp), e)
{
this->arguments = exps;
this->f = NULL;
}
CallExp::CallExp(Loc loc, Expression *e)
: UnaExp(loc, TOKcall, sizeof(CallExp), e)
{
this->arguments = NULL;
}
CallExp::CallExp(Loc loc, Expression *e, Expression *earg1)
: UnaExp(loc, TOKcall, sizeof(CallExp), e)
{
Expressions *arguments = new Expressions();
if (earg1)
{ arguments->setDim(1);
arguments->tdata()[0] = earg1;
}
this->arguments = arguments;
}
CallExp::CallExp(Loc loc, Expression *e, Expression *earg1, Expression *earg2)
: UnaExp(loc, TOKcall, sizeof(CallExp), e)
{
Expressions *arguments = new Expressions();
arguments->setDim(2);
arguments->tdata()[0] = earg1;
arguments->tdata()[1] = earg2;
this->arguments = arguments;
}
Expression *CallExp::syntaxCopy()
{
return new CallExp(loc, e1->syntaxCopy(), arraySyntaxCopy(arguments));
}
Expression *CallExp::resolveUFCS(Scope *sc)
{
Expression *ethis = NULL;
DotIdExp *dotid;
DotTemplateInstanceExp *dotti;
Identifier *ident;
if (e1->op == TOKdot)
{
dotid = (DotIdExp *)e1;
ident = dotid->ident;
ethis = dotid->e1 = dotid->e1->semantic(sc);
if (ethis->op == TOKdotexp)
return NULL;
ethis = resolveProperties(sc, ethis);
}
else if (e1->op == TOKdotti)
{
dotti = (DotTemplateInstanceExp *)e1;
ident = dotti->ti->name;
ethis = dotti->e1 = dotti->e1->semantic(sc);
if (ethis->op == TOKdotexp)
return NULL;
ethis = resolveProperties(sc, ethis);
}
if (ethis && ethis->type)
{
AggregateDeclaration *ad;
Lagain:
Type *tthis = ethis->type->toBasetype();
if (tthis->ty == Tclass)
{
ad = ((TypeClass *)tthis)->sym;
if (search_function(ad, ident))
return NULL;
goto L1;
}
else if (tthis->ty == Tstruct)
{
ad = ((TypeStruct *)tthis)->sym;
if (search_function(ad, ident))
return NULL;
L1:
if (ad->aliasthis)
{
ethis = new DotIdExp(ethis->loc, ethis, ad->aliasthis->ident);
ethis = ethis->semantic(sc);
ethis = resolveProperties(sc, ethis);
goto Lagain;
}
}
else if (tthis->ty == Taarray && e1->op == TOKdot)
{
if (ident == Id::remove)
{
/* Transform:
* aa.remove(arg) into delete aa[arg]
*/
if (!arguments || arguments->dim != 1)
{ error("expected key as argument to aa.remove()");
return new ErrorExp();
}
Expression *key = arguments->tdata()[0];
key = key->semantic(sc);
key = resolveProperties(sc, key);
if (!key->rvalue())
return new ErrorExp();
TypeAArray *taa = (TypeAArray *)tthis;
key = key->implicitCastTo(sc, taa->index);
return new RemoveExp(loc, ethis, key);
}
else if (ident == Id::apply || ident == Id::applyReverse)
{
return NULL;
}
else
{ TypeAArray *taa = (TypeAArray *)tthis;
assert(taa->ty == Taarray);
StructDeclaration *sd = taa->getImpl();
Dsymbol *s = sd->search(0, ident, 2);
if (s)
return NULL;
goto Lshift;
}
}
else if (tthis->ty == Tarray || tthis->ty == Tsarray)
{
Lshift:
if (!arguments)
arguments = new Expressions();
arguments->shift(ethis);
if (e1->op == TOKdot)
{
/* Transform:
* array.id(args) into .id(array,args)
*/
#if DMDV2
e1 = new DotIdExp(dotid->loc,
new IdentifierExp(dotid->loc, Id::empty),
ident);
#else
e1 = new IdentifierExp(dotid->loc, ident);
#endif
}
else if (e1->op == TOKdotti)
{
/* Transform:
* array.foo!(tiargs)(args) into .foo!(tiargs)(array,args)
*/
#if DMDV2
e1 = new DotTemplateInstanceExp(dotti->loc,
new IdentifierExp(dotti->loc, Id::empty),
dotti->ti->name, dotti->ti->tiargs);
#else
e1 = new ScopeExp(dotti->loc, dotti->ti);
#endif
}
//printf("-> this = %s\n", toChars());
}
}
return NULL;
}
Expression *CallExp::semantic(Scope *sc)
{
TypeFunction *tf;
Type *t1;
int istemp;
Objects *targsi = NULL; // initial list of template arguments
TemplateInstance *tierror = NULL;
Expression *ethis = NULL;
#if LOGSEMANTIC
printf("CallExp::semantic() %s\n", toChars());
#endif
if (type)
return this; // semantic() already run
#if 0
if (arguments && arguments->dim)
{
Expression *earg = arguments->tdata()[0];
earg->print();
if (earg->type) earg->type->print();
}
#endif
if (e1->op == TOKcomma)
{ /* Rewrite (a,b)(args) as (a,(b(args)))
*/
CommaExp *ce = (CommaExp *)e1;
e1 = ce->e2;
e1->type = ce->type;
ce->e2 = this;
ce->type = NULL;
return ce->semantic(sc);
}
if (e1->op == TOKdelegate)
{ DelegateExp *de = (DelegateExp *)e1;
e1 = new DotVarExp(de->loc, de->e1, de->func);
return semantic(sc);
}
if (e1->op == TOKfunction)
{ FuncExp *fe = (FuncExp *)e1;
arguments = arrayExpressionSemantic(arguments, sc);
preFunctionParameters(loc, sc, arguments);
e1 = fe->semantic(sc, arguments);
if (e1->op == TOKerror)
return e1;
}
Expression *e = resolveUFCS(sc);
if (e)
return e;
#if 1
/* This recognizes:
* foo!(tiargs)(funcargs)
*/
if (e1->op == TOKimport && !e1->type)
{ ScopeExp *se = (ScopeExp *)e1;
TemplateInstance *ti = se->sds->isTemplateInstance();
if (ti && !ti->semanticRun)
{
/* Attempt to instantiate ti. If that works, go with it.
* If not, go with partial explicit specialization.
*/
ti->semanticTiargs(sc);
if (ti->needsTypeInference(sc))
{
/* Go with partial explicit specialization
*/
targsi = ti->tiargs;
tierror = ti; // for error reporting
e1 = new IdentifierExp(loc, ti->name);
}
else
{
ti->semantic(sc);
}
}
}
/* This recognizes:
* expr.foo!(tiargs)(funcargs)
*/
Ldotti:
if (e1->op == TOKdotti && !e1->type)
{ DotTemplateInstanceExp *se = (DotTemplateInstanceExp *)e1;
TemplateInstance *ti = se->ti;
if (!ti->semanticRun)
{
/* Attempt to instantiate ti. If that works, go with it.
* If not, go with partial explicit specialization.
*/
ti->semanticTiargs(sc);
#if 0
Expression *etmp = e1->trySemantic(sc);
if (etmp)
e1 = etmp; // it worked
else // didn't work
{
targsi = ti->tiargs;
tierror = ti; // for error reporting
e1 = new DotIdExp(loc, se->e1, ti->name);
}
#else
if (!ti->tempdecl)
{
se->getTempdecl(sc);
}
if (ti->tempdecl && ti->needsTypeInference(sc))
{
/* Go with partial explicit specialization
*/
targsi = ti->tiargs;
tierror = ti; // for error reporting
e1 = new DotIdExp(loc, se->e1, ti->name);
}
else
{
e1 = e1->semantic(sc);
}
#endif
}
}
#endif
istemp = 0;
Lagain:
//printf("Lagain: %s\n", toChars());
f = NULL;
if (e1->op == TOKthis || e1->op == TOKsuper)
{
// semantic() run later for these
}
else
{
if (e1->op == TOKdot)
{ DotIdExp *die = (DotIdExp *)e1;
e1 = die->semantic(sc, 1);
/* Look for e1 having been rewritten to expr.opDispatch!(string)
* We handle such earlier, so go back.
* Note that in the rewrite, we carefully did not run semantic() on e1
*/
if (e1->op == TOKdotti && !e1->type)
{
goto Ldotti;
}
}
else
{
static int nest;
if (++nest > 500)
{
error("recursive evaluation of %s", toChars());
--nest;
return new ErrorExp();
}
UnaExp::semantic(sc);
--nest;
}
/* Look for e1 being a lazy parameter
*/
if (e1->op == TOKvar)
{ VarExp *ve = (VarExp *)e1;
if (ve->var->storage_class & STClazy)
{
// lazy paramaters can be called without violating purity and safety
TypeFunction *tf = new TypeFunction(NULL, ve->var->type, 0, LINKd, STCsafe | STCpure);
TypeDelegate *t = new TypeDelegate(tf);
ve->type = t->semantic(loc, sc);
}
}
if (e1->op == TOKimport)
{ // Perhaps this should be moved to ScopeExp::semantic()
ScopeExp *se = (ScopeExp *)e1;
e1 = new DsymbolExp(loc, se->sds);
e1 = e1->semantic(sc);
}
else if (e1->op == TOKsymoff && ((SymOffExp *)e1)->hasOverloads)
{
SymOffExp *se = (SymOffExp *)e1;
e1 = new VarExp(se->loc, se->var, 1);
e1 = e1->semantic(sc);
}
#if 1 // patch for #540 by Oskar Linde
else if (e1->op == TOKdotexp)
{
DotExp *de = (DotExp *) e1;
if (de->e2->op == TOKoverloadset)
{
ethis = de->e1;
e1 = de->e2;
}
if (de->e2->op == TOKimport)
{ // This should *really* be moved to ScopeExp::semantic()
ScopeExp *se = (ScopeExp *)de->e2;
de->e2 = new DsymbolExp(loc, se->sds);
de->e2 = de->e2->semantic(sc);
}
if (de->e2->op == TOKtemplate)
{ TemplateExp *te = (TemplateExp *) de->e2;
e1 = new DotTemplateExp(loc,de->e1,te->td);
}
}
#endif
}
t1 = NULL;
if (e1->type)
t1 = e1->type->toBasetype();
// Check for call operator overload
if (t1)
{ AggregateDeclaration *ad;
if (t1->ty == Tstruct)
{
ad = ((TypeStruct *)t1)->sym;
#if DMDV2
// First look for constructor
if (ad->ctor && arguments && arguments->dim)
{
// Create variable that will get constructed
Identifier *idtmp = Lexer::uniqueId("__ctmp");
VarDeclaration *tmp = new VarDeclaration(loc, t1, idtmp, NULL);
tmp->storage_class |= STCctfe;
Expression *av = new DeclarationExp(loc, tmp);
av = new CommaExp(loc, av, new VarExp(loc, tmp));
Expression *e;
CtorDeclaration *cf = ad->ctor->isCtorDeclaration();
if (cf)
e = new DotVarExp(loc, av, cf, 1);
else
{ TemplateDeclaration *td = ad->ctor->isTemplateDeclaration();
assert(td);
e = new DotTemplateExp(loc, av, td);
}
e = new CallExp(loc, e, arguments);
#if !STRUCTTHISREF
/* Constructors return a pointer to the instance
*/
e = new PtrExp(loc, e);
#endif
e = e->semantic(sc);
return e;
}
#endif
// No constructor, look for overload of opCall
if (search_function(ad, Id::call))
goto L1; // overload of opCall, therefore it's a call
if (e1->op != TOKtype)
{ error("%s %s does not overload ()", ad->kind(), ad->toChars());
return new ErrorExp();
}
/* It's a struct literal
*/
Expression *e = new StructLiteralExp(loc, (StructDeclaration *)ad, arguments, e1->type);
e = e->semantic(sc);
return e;
}
else if (t1->ty == Tclass)
{
ad = ((TypeClass *)t1)->sym;
goto L1;
L1:
// Rewrite as e1.call(arguments)
Expression *e = new DotIdExp(loc, e1, Id::call);
e = new CallExp(loc, e, arguments);
e = e->semantic(sc);
return e;
}
}
arguments = arrayExpressionSemantic(arguments, sc);
preFunctionParameters(loc, sc, arguments);
// If there was an error processing any argument, or the call,
// return an error without trying to resolve the function call.
if (arguments && arguments->dim)
{
for (size_t k = 0; k < arguments->dim; k++)
{ Expression *checkarg = arguments->tdata()[k];
if (checkarg->op == TOKerror)
return checkarg;
}
}
if (e1->op == TOKerror)
return e1;
if (e1->op == TOKdotvar && t1->ty == Tfunction ||
e1->op == TOKdottd)
{
DotVarExp *dve;
DotTemplateExp *dte;
AggregateDeclaration *ad;
UnaExp *ue = (UnaExp *)(e1);
if (e1->op == TOKdotvar)
{ // Do overload resolution
dve = (DotVarExp *)(e1);
f = dve->var->isFuncDeclaration();
assert(f);
f = f->overloadResolve(loc, ue->e1, arguments);
ad = f->toParent()->isAggregateDeclaration();
}
else
{ dte = (DotTemplateExp *)(e1);
TemplateDeclaration *td = dte->td;
assert(td);
if (!arguments)
// Should fix deduceFunctionTemplate() so it works on NULL argument
arguments = new Expressions();
f = td->deduceFunctionTemplate(sc, loc, targsi, ue->e1, arguments);
if (!f)
return new ErrorExp();
ad = td->toParent()->isAggregateDeclaration();
}
if (f->needThis())
{
ue->e1 = getRightThis(loc, sc, ad, ue->e1, f);
ethis = ue->e1;
}
/* Cannot call public functions from inside invariant
* (because then the invariant would have infinite recursion)
*/
if (sc->func && sc->func->isInvariantDeclaration() &&
ue->e1->op == TOKthis &&
f->addPostInvariant()
)
{
error("cannot call public/export function %s from invariant", f->toChars());
return new ErrorExp();
}
checkDeprecated(sc, f);
#if DMDV2
checkPurity(sc, f);
checkSafety(sc, f);
#endif
accessCheck(loc, sc, ue->e1, f);
if (!f->needThis())
{
VarExp *ve = new VarExp(loc, f);
if ((ue->e1)->op == TOKtype) // just a FQN
e1 = ve;
else // things like (new Foo).bar()
e1 = new CommaExp(loc, ue->e1, ve);
e1->type = f->type;
}
else
{
if (e1->op == TOKdotvar)
{
dve->var = f;
e1->type = f->type;
}
else
{
e1 = new DotVarExp(loc, dte->e1, f);
e1 = e1->semantic(sc);
}
#if 0
printf("ue->e1 = %s\n", ue->e1->toChars());
printf("f = %s\n", f->toChars());
printf("t = %s\n", t->toChars());
printf("e1 = %s\n", e1->toChars());
printf("e1->type = %s\n", e1->type->toChars());
#endif
// Const member function can take const/immutable/mutable/inout this
if (!(f->type->isConst()))
{
// Check for const/immutable compatibility
Type *tthis = ue->e1->type->toBasetype();
if (tthis->ty == Tpointer)
tthis = tthis->nextOf()->toBasetype();
#if 0 // this checking should have been already done
if (f->type->isImmutable())
{
if (tthis->mod != MODimmutable)
error("%s can only be called with an immutable object", e1->toChars());
}
else if (f->type->isShared())
{
if (tthis->mod != MODimmutable &&
tthis->mod != MODshared &&
tthis->mod != (MODshared | MODconst))
error("shared %s can only be called with a shared or immutable object", e1->toChars());
}
else
{
if (tthis->mod != 0)
{ //printf("mod = %x\n", tthis->mod);
error("%s can only be called with a mutable object, not %s", e1->toChars(), tthis->toChars());
}
}
#endif
/* Cannot call mutable method on a final struct
*/
if (tthis->ty == Tstruct &&
ue->e1->op == TOKvar)
{ VarExp *v = (VarExp *)ue->e1;
if (v->var->storage_class & STCfinal)
error("cannot call mutable method on final struct");
}
}
// See if we need to adjust the 'this' pointer
AggregateDeclaration *ad = f->isThis();
ClassDeclaration *cd = ue->e1->type->isClassHandle();
if (ad && cd && ad->isClassDeclaration() && ad != cd &&
ue->e1->op != TOKsuper)
{
ue->e1 = ue->e1->castTo(sc, ad->type); //new CastExp(loc, ue->e1, ad->type);
ue->e1 = ue->e1->semantic(sc);
}
}
t1 = e1->type;
}
else if (e1->op == TOKsuper)
{
// Base class constructor call
ClassDeclaration *cd = NULL;
if (sc->func)
cd = sc->func->toParent()->isClassDeclaration();
if (!cd || !cd->baseClass || !sc->func->isCtorDeclaration())
{
error("super class constructor call must be in a constructor");
return new ErrorExp();
}
else
{
if (!cd->baseClass->ctor)
{ error("no super class constructor for %s", cd->baseClass->toChars());
return new ErrorExp();
}
else
{
if (!sc->intypeof)
{
#if 0
if (sc->callSuper & (CSXthis | CSXsuper))
error("reference to this before super()");
#endif
if (sc->noctor || sc->callSuper & CSXlabel)
error("constructor calls not allowed in loops or after labels");
if (sc->callSuper & (CSXsuper_ctor | CSXthis_ctor))
error("multiple constructor calls");
sc->callSuper |= CSXany_ctor | CSXsuper_ctor;
}
f = resolveFuncCall(sc, loc, cd->baseClass->ctor, NULL, NULL, arguments, 0);
accessCheck(loc, sc, NULL, f);
checkDeprecated(sc, f);
#if DMDV2
checkPurity(sc, f);
checkSafety(sc, f);
#endif
e1 = new DotVarExp(e1->loc, e1, f);
e1 = e1->semantic(sc);
t1 = e1->type;
}
}
}
else if (e1->op == TOKthis)
{
// same class constructor call
AggregateDeclaration *cd = NULL;
if (sc->func)
cd = sc->func->toParent()->isAggregateDeclaration();
if (!cd || !sc->func->isCtorDeclaration())
{
error("constructor call must be in a constructor");
return new ErrorExp();
}
else
{
if (!sc->intypeof)
{
#if 0
if (sc->callSuper & (CSXthis | CSXsuper))
error("reference to this before super()");
#endif
if (sc->noctor || sc->callSuper & CSXlabel)
error("constructor calls not allowed in loops or after labels");
if (sc->callSuper & (CSXsuper_ctor | CSXthis_ctor))
error("multiple constructor calls");
sc->callSuper |= CSXany_ctor | CSXthis_ctor;
}
f = resolveFuncCall(sc, loc, cd->ctor, NULL, NULL, arguments, 0);
checkDeprecated(sc, f);
#if DMDV2
checkPurity(sc, f);
checkSafety(sc, f);
#endif
e1 = new DotVarExp(e1->loc, e1, f);
e1 = e1->semantic(sc);
t1 = e1->type;
// BUG: this should really be done by checking the static
// call graph
if (f == sc->func)
{ error("cyclic constructor call");
return new ErrorExp();
}
}
}
else if (e1->op == TOKoverloadset)
{
OverExp *eo = (OverExp *)e1;
FuncDeclaration *f = NULL;
Dsymbol *s = NULL;
for (size_t i = 0; i < eo->vars->a.dim; i++)
{ s = eo->vars->a.tdata()[i];
FuncDeclaration *f2 = s->isFuncDeclaration();
if (f2)
{
f2 = f2->overloadResolve(loc, ethis, arguments, 1);
}
else
{ TemplateDeclaration *td = s->isTemplateDeclaration();
assert(td);
f2 = td->deduceFunctionTemplate(sc, loc, targsi, ethis, arguments, 1);
}
if (f2)
{ if (f)
/* Error if match in more than one overload set,
* even if one is a 'better' match than the other.
*/
ScopeDsymbol::multiplyDefined(loc, f, f2);
else
f = f2;
}
}
if (!f)
{ /* No overload matches
*/
error("no overload matches for %s", s->toChars());
return new ErrorExp();
}
if (ethis)
e1 = new DotVarExp(loc, ethis, f);
else
e1 = new VarExp(loc, f);
goto Lagain;
}
else if (!t1)
{
error("function expected before (), not '%s'", e1->toChars());
return new ErrorExp();
}
else if (t1->ty != Tfunction)
{
if (t1->ty == Tdelegate)
{ TypeDelegate *td = (TypeDelegate *)t1;
assert(td->next->ty == Tfunction);
tf = (TypeFunction *)(td->next);
if (sc->func && !tf->purity && !(sc->flags & SCOPEdebug))
{
if (sc->func->setImpure())
error("pure function '%s' cannot call impure delegate '%s'", sc->func->toChars(), e1->toChars());
}
if (sc->func && tf->trust <= TRUSTsystem)
{
if (sc->func->setUnsafe())
error("safe function '%s' cannot call system delegate '%s'", sc->func->toChars(), e1->toChars());
}
goto Lcheckargs;
}
else if (t1->ty == Tpointer && ((TypePointer *)t1)->next->ty == Tfunction)
{
Expression *e = new PtrExp(loc, e1);
t1 = ((TypePointer *)t1)->next;
if (sc->func && !((TypeFunction *)t1)->purity && !(sc->flags & SCOPEdebug))
{
if (sc->func->setImpure())
error("pure function '%s' cannot call impure function pointer '%s'", sc->func->toChars(), e1->toChars());
}
if (sc->func && ((TypeFunction *)t1)->trust <= TRUSTsystem)
{
if (sc->func->setUnsafe())
error("safe function '%s' cannot call system function pointer '%s'", sc->func->toChars(), e1->toChars());
}
e->type = t1;
e1 = e;
}
else if (e1->op == TOKtemplate)
{
TemplateExp *te = (TemplateExp *)e1;
f = te->td->deduceFunctionTemplate(sc, loc, targsi, NULL, arguments);
if (!f)
{ if (tierror)
tierror->error("errors instantiating template"); // give better error message
return new ErrorExp();
}
if (f->needThis() && hasThis(sc))
{
// Supply an implicit 'this', as in
// this.ident
e1 = new DotTemplateExp(loc, (new ThisExp(loc))->semantic(sc), te->td);
goto Lagain;
}
e1 = new VarExp(loc, f);
goto Lagain;
}
else
{ error("function expected before (), not %s of type %s", e1->toChars(), e1->type->toChars());
return new ErrorExp();
}
}
else if (e1->op == TOKvar)
{
// Do overload resolution
VarExp *ve = (VarExp *)e1;
f = ve->var->isFuncDeclaration();
assert(f);
if (ve->hasOverloads)
f = f->overloadResolve(loc, NULL, arguments);
checkDeprecated(sc, f);
#if DMDV2
checkPurity(sc, f);
checkSafety(sc, f);
#endif
f->checkNestedReference(sc, loc);
if (f->needThis() && hasThis(sc))
{
// Supply an implicit 'this', as in
// this.ident
e1 = new DotVarExp(loc, new ThisExp(loc), f);
goto Lagain;
}
accessCheck(loc, sc, NULL, f);
ethis = NULL;
ve->var = f;
// ve->hasOverloads = 0;
ve->type = f->type;
t1 = f->type;
}
assert(t1->ty == Tfunction);
tf = (TypeFunction *)(t1);
Lcheckargs:
assert(tf->ty == Tfunction);
if (!arguments)
arguments = new Expressions();
int olderrors = global.errors;
type = functionParameters(loc, sc, tf, ethis, arguments, f);
if (olderrors != global.errors)
return new ErrorExp();
if (!type)
{
error("forward reference to inferred return type of function call %s", toChars());
return new ErrorExp();
}
if (f && f->tintro)
{
Type *t = type;
int offset = 0;
TypeFunction *tf = (TypeFunction *)f->tintro;
if (tf->next->isBaseOf(t, &offset) && offset)
{
type = tf->next;
return castTo(sc, t);
}
}
return this;
}
#if DMDV2
int CallExp::isLvalue()
{
// if (type->toBasetype()->ty == Tstruct)
// return 1;
Type *tb = e1->type->toBasetype();
if (tb->ty == Tfunction && ((TypeFunction *)tb)->isref)
return 1; // function returns a reference
return 0;
}
#endif
Expression *CallExp::toLvalue(Scope *sc, Expression *e)
{
if (isLvalue())
return this;
return Expression::toLvalue(sc, e);
}
Expression *CallExp::addDtorHook(Scope *sc)
{
/* Only need to add dtor hook if it's a type that needs destruction.
* Use same logic as VarDeclaration::callScopeDtor()
*/
if (e1->type && e1->type->ty == Tfunction)
{
TypeFunction *tf = (TypeFunction *)e1->type;
if (tf->isref)
return this;
}
Type *tv = type->toBasetype();
while (tv->ty == Tsarray)
{ TypeSArray *ta = (TypeSArray *)tv;
tv = tv->nextOf()->toBasetype();
}
if (tv->ty == Tstruct)
{ TypeStruct *ts = (TypeStruct *)tv;
StructDeclaration *sd = ts->sym;
if (sd->dtor)
{ /* Type needs destruction, so declare a tmp
* which the back end will recognize and call dtor on
*/
Identifier *idtmp = Lexer::uniqueId("__tmpfordtor");
VarDeclaration *tmp = new VarDeclaration(loc, type, idtmp, new ExpInitializer(loc, this));
tmp->storage_class |= STCctfe;
Expression *ae = new DeclarationExp(loc, tmp);
Expression *e = new CommaExp(loc, ae, new VarExp(loc, tmp));
e = e->semantic(sc);
return e;
}
}
Lnone:
return this;
}
void CallExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
if (e1->op == TOKtype)
/* Avoid parens around type to prevent forbidden cast syntax:
* (sometype)(arg1)
* This is ok since types in constructor calls
* can never depend on parens anyway
*/
e1->toCBuffer(buf, hgs);
else
expToCBuffer(buf, hgs, e1, precedence[op]);
buf->writeByte('(');
argsToCBuffer(buf, arguments, hgs);
buf->writeByte(')');
}
/************************************************************/
AddrExp::AddrExp(Loc loc, Expression *e)
: UnaExp(loc, TOKaddress, sizeof(AddrExp), e)
{
#if IN_LLVM
m = NULL;
#endif
}
Expression *AddrExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("AddrExp::semantic('%s')\n", toChars());
#endif
if (!type)
{
#if IN_LLVM
m = sc->module;
#endif
UnaExp::semantic(sc);
if (e1->type == Type::terror)
return new ErrorExp();
e1 = e1->toLvalue(sc, NULL);
if (e1->op == TOKerror)
return e1;
if (!e1->type)
{
error("cannot take address of %s", e1->toChars());
return new ErrorExp();
}
if (!e1->type->deco)
{
/* No deco means semantic() was not run on the type.
* We have to run semantic() on the symbol to get the right type:
* auto x = &bar;
* pure: int bar() { return 1;}
* otherwise the 'pure' is missing from the type assigned to x.
*/
error("forward reference to %s", e1->toChars());
return new ErrorExp();
}
type = e1->type->pointerTo();
// See if this should really be a delegate
if (e1->op == TOKdotvar)
{
DotVarExp *dve = (DotVarExp *)e1;
FuncDeclaration *f = dve->var->isFuncDeclaration();
if (f)
{
if (!dve->hasOverloads)
f->tookAddressOf++;
Expression *e = new DelegateExp(loc, dve->e1, f, dve->hasOverloads);
e = e->semantic(sc);
return e;
}
}
else if (e1->op == TOKvar)
{
VarExp *ve = (VarExp *)e1;
VarDeclaration *v = ve->var->isVarDeclaration();
if (v)
{
if (!v->canTakeAddressOf())
{ error("cannot take address of %s", e1->toChars());
return new ErrorExp();
}
if (sc->func && !sc->intypeof && !v->isDataseg())
{
if (sc->func->setUnsafe())
{
error("cannot take address of %s %s in @safe function %s",
v->isParameter() ? "parameter" : "local",
v->toChars(),
sc->func->toChars());
}
}
}
FuncDeclaration *f = ve->var->isFuncDeclaration();
if (f)
{
#if IN_LLVM
if (f->isIntrinsic())
{
error("cannot take the address of intrinsic function %s", e1->toChars());
return this;
}
#endif
if (!ve->hasOverloads ||
/* Because nested functions cannot be overloaded,
* mark here that we took its address because castTo()
* may not be called with an exact match.
*/
f->toParent2()->isFuncDeclaration())
f->tookAddressOf++;
if (f->isNested())
{
Expression *e = new DelegateExp(loc, e1, f, ve->hasOverloads);
e = e->semantic(sc);
return e;
}
if (f->needThis() && hasThis(sc))
{
/* Should probably supply 'this' after overload resolution,
* not before.
*/
Expression *ethis = new ThisExp(loc);
Expression *e = new DelegateExp(loc, ethis, f, ve->hasOverloads);
e = e->semantic(sc);
return e;
}
}
}
return optimize(WANTvalue);
}
return this;
}
void AddrExp::checkEscape()
{
e1->checkEscapeRef();
}
/************************************************************/
PtrExp::PtrExp(Loc loc, Expression *e)
: UnaExp(loc, TOKstar, sizeof(PtrExp), e)
{
// if (e->type)
// type = ((TypePointer *)e->type)->next;
}
PtrExp::PtrExp(Loc loc, Expression *e, Type *t)
: UnaExp(loc, TOKstar, sizeof(PtrExp), e)
{
type = t;
}
Expression *PtrExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("PtrExp::semantic('%s')\n", toChars());
#endif
if (!type)
{
Expression *e = op_overload(sc);
if (e)
return e;
Type *tb = e1->type->toBasetype();
switch (tb->ty)
{
case Tpointer:
type = ((TypePointer *)tb)->next;
break;
case Tsarray:
case Tarray:
if (!global.params.useDeprecated)
error("using * on an array is deprecated; use *(%s).ptr instead", e1->toChars());
type = ((TypeArray *)tb)->next;
e1 = e1->castTo(sc, type->pointerTo());
break;
default:
error("can only * a pointer, not a '%s'", e1->type->toChars());
case Terror:
return new ErrorExp();
}
if (!rvalue())
return new ErrorExp();
}
return this;
}
#if DMDV2
int PtrExp::isLvalue()
{
return 1;
}
#endif
void PtrExp::checkEscapeRef()
{
e1->checkEscape();
}
Expression *PtrExp::toLvalue(Scope *sc, Expression *e)
{
#if 0
tym = tybasic(e1->ET->Tty);
if (!(tyscalar(tym) ||
tym == TYstruct ||
tym == TYarray && e->Eoper == TOKaddr))
synerr(EM_lvalue); // lvalue expected
#endif
return this;
}
#if DMDV2
Expression *PtrExp::modifiableLvalue(Scope *sc, Expression *e)
{
//printf("PtrExp::modifiableLvalue() %s, type %s\n", toChars(), type->toChars());
if (e1->op == TOKsymoff)
{ SymOffExp *se = (SymOffExp *)e1;
se->var->checkModify(loc, sc, type);
//return toLvalue(sc, e);
}
return Expression::modifiableLvalue(sc, e);
}
#endif
void PtrExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writeByte('*');
expToCBuffer(buf, hgs, e1, precedence[op]);
}
/************************************************************/
NegExp::NegExp(Loc loc, Expression *e)
: UnaExp(loc, TOKneg, sizeof(NegExp), e)
{
}
Expression *NegExp::semantic(Scope *sc)
{ Expression *e;
#if LOGSEMANTIC
printf("NegExp::semantic('%s')\n", toChars());
#endif
if (!type)
{
e = op_overload(sc);
if (e)
return e;
e1->checkNoBool();
if (!e1->isArrayOperand())
e1->checkArithmetic();
type = e1->type;
}
return this;
}
/************************************************************/
UAddExp::UAddExp(Loc loc, Expression *e)
: UnaExp(loc, TOKuadd, sizeof(UAddExp), e)
{
}
Expression *UAddExp::semantic(Scope *sc)
{ Expression *e;
#if LOGSEMANTIC
printf("UAddExp::semantic('%s')\n", toChars());
#endif
assert(!type);
e = op_overload(sc);
if (e)
return e;
e1->checkNoBool();
e1->checkArithmetic();
return e1;
}
/************************************************************/
ComExp::ComExp(Loc loc, Expression *e)
: UnaExp(loc, TOKtilde, sizeof(ComExp), e)
{
}
Expression *ComExp::semantic(Scope *sc)
{ Expression *e;
if (!type)
{
e = op_overload(sc);
if (e)
return e;
e1->checkNoBool();
if (!e1->isArrayOperand())
e1 = e1->checkIntegral();
type = e1->type;
}
return this;
}
/************************************************************/
NotExp::NotExp(Loc loc, Expression *e)
: UnaExp(loc, TOKnot, sizeof(NotExp), e)
{
}
Expression *NotExp::semantic(Scope *sc)
{
if (!type)
{ // Note there is no operator overload
UnaExp::semantic(sc);
e1 = resolveProperties(sc, e1);
e1 = e1->checkToBoolean(sc);
type = Type::tboolean;
}
return this;
}
int NotExp::isBit()
{
return TRUE;
}
/************************************************************/
BoolExp::BoolExp(Loc loc, Expression *e, Type *t)
: UnaExp(loc, TOKtobool, sizeof(BoolExp), e)
{
type = t;
}
Expression *BoolExp::semantic(Scope *sc)
{
if (!type)
{ // Note there is no operator overload
UnaExp::semantic(sc);
e1 = resolveProperties(sc, e1);
e1 = e1->checkToBoolean(sc);
type = Type::tboolean;
}
return this;
}
int BoolExp::isBit()
{
return TRUE;
}
/************************************************************/
DeleteExp::DeleteExp(Loc loc, Expression *e)
: UnaExp(loc, TOKdelete, sizeof(DeleteExp), e)
{
}
Expression *DeleteExp::semantic(Scope *sc)
{
Type *tb;
UnaExp::semantic(sc);
e1 = resolveProperties(sc, e1);
e1 = e1->modifiableLvalue(sc, NULL);
if (e1->op == TOKerror)
return e1;
type = Type::tvoid;
tb = e1->type->toBasetype();
switch (tb->ty)
{ case Tclass:
{ TypeClass *tc = (TypeClass *)tb;
ClassDeclaration *cd = tc->sym;
if (cd->isCOMinterface())
{ /* Because COM classes are deleted by IUnknown.Release()
*/
error("cannot delete instance of COM interface %s", cd->toChars());
}
break;
}
case Tpointer:
tb = ((TypePointer *)tb)->next->toBasetype();
if (tb->ty == Tstruct)
{
TypeStruct *ts = (TypeStruct *)tb;
StructDeclaration *sd = ts->sym;
FuncDeclaration *f = sd->aggDelete;
FuncDeclaration *fd = sd->dtor;
if (!f && !fd)
break;
/* Construct:
* ea = copy e1 to a tmp to do side effects only once
* eb = call destructor
* ec = call deallocator
*/
Expression *ea = NULL;
Expression *eb = NULL;
Expression *ec = NULL;
VarDeclaration *v;
if (fd && f)
{ Identifier *id = Lexer::idPool("__tmp");
v = new VarDeclaration(loc, e1->type, id, new ExpInitializer(loc, e1));
v->semantic(sc);
v->parent = sc->parent;
ea = new DeclarationExp(loc, v);
ea->type = v->type;
}
if (fd)
{ Expression *e = ea ? new VarExp(loc, v) : e1;
e = new DotVarExp(0, e, fd, 0);
eb = new CallExp(loc, e);
eb = eb->semantic(sc);
}
if (f)
{
Type *tpv = Type::tvoid->pointerTo();
Expression *e = ea ? new VarExp(loc, v) : e1->castTo(sc, tpv);
e = new CallExp(loc, new VarExp(loc, f), e);
ec = e->semantic(sc);
}
ea = combine(ea, eb);
ea = combine(ea, ec);
assert(ea);
return ea;
}
break;
case Tarray:
/* BUG: look for deleting arrays of structs with dtors.
*/
break;
default:
if (e1->op == TOKindex)
{
IndexExp *ae = (IndexExp *)(e1);
Type *tb1 = ae->e1->type->toBasetype();
if (tb1->ty == Taarray)
break;
}
error("cannot delete type %s", e1->type->toChars());
return new ErrorExp();
}
if (e1->op == TOKindex)
{
IndexExp *ae = (IndexExp *)(e1);
Type *tb1 = ae->e1->type->toBasetype();
if (tb1->ty == Taarray)
{ if (!global.params.useDeprecated)
error("delete aa[key] deprecated, use aa.remove(key)");
}
}
return this;
}
Expression *DeleteExp::checkToBoolean(Scope *sc)
{
error("delete does not give a boolean result");
return new ErrorExp();
}
void DeleteExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("delete ");
expToCBuffer(buf, hgs, e1, precedence[op]);
}
/************************************************************/
CastExp::CastExp(Loc loc, Expression *e, Type *t)
: UnaExp(loc, TOKcast, sizeof(CastExp), e)
{
to = t;
this->mod = ~0;
#if IN_LLVM
disableOptimization = false;
#endif
}
#if DMDV2
/* For cast(const) and cast(immutable)
*/
CastExp::CastExp(Loc loc, Expression *e, unsigned mod)
: UnaExp(loc, TOKcast, sizeof(CastExp), e)
{
to = NULL;
this->mod = mod;
#if IN_LLVM
disableOptimization = false;
#endif
}
#endif
Expression *CastExp::syntaxCopy()
{
return to ? new CastExp(loc, e1->syntaxCopy(), to->syntaxCopy())
: new CastExp(loc, e1->syntaxCopy(), mod);
}
Expression *CastExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("CastExp::semantic('%s')\n", toChars());
#endif
//static int x; assert(++x < 10);
if (type)
return this;
UnaExp::semantic(sc);
if (e1->type) // if not a tuple
{
e1 = resolveProperties(sc, e1);
if (!to)
{
/* Handle cast(const) and cast(immutable), etc.
*/
to = e1->type->castMod(mod);
}
else
to = to->semantic(loc, sc);
if (!to->equals(e1->type))
{
#if 0 // attempt at fixing 6720
if (e1->type->ty == Tvoid)
{
error("cannot cast from void to %s", to->toChars());
return new ErrorExp();
}
#endif
Expression *e = op_overload(sc);
if (e)
{
return e->implicitCastTo(sc, to);
}
}
if (e1->op == TOKtemplate)
{
error("cannot cast template %s to type %s", e1->toChars(), to->toChars());
return new ErrorExp();
}
Type *t1b = e1->type->toBasetype();
Type *tob = to->toBasetype();
if (e1->op == TOKfunction &&
(tob->ty == Tdelegate || tob->ty == Tpointer && tob->nextOf()->ty == Tfunction))
{
FuncExp *fe = (FuncExp *)e1;
Expression *e = NULL;
if (e1->type == Type::tvoid)
{
e = fe->inferType(sc, tob);
}
else if (e1->type->ty == Tpointer && e1->type->nextOf()->ty == Tfunction &&
fe->tok == TOKreserved &&
tob->ty == Tdelegate)
{
if (fe->implicitConvTo(tob))
e = fe->castTo(sc, tob);
}
if (e)
e1 = e->semantic(sc);
}
if (tob->ty == Tstruct &&
!tob->equals(t1b)
)
{
/* Look to replace:
* cast(S)t
* with:
* S(t)
*/
// Rewrite as to.call(e1)
Expression *e = new TypeExp(loc, to);
e = new CallExp(loc, e, e1);
e = e->trySemantic(sc);
if (e)
return e;
}
// Struct casts are possible only when the sizes match
// Same with static array -> static array
if (tob->ty == Tstruct || t1b->ty == Tstruct ||
(tob->ty == Tsarray && t1b->ty == Tsarray))
{
size_t fromsize = t1b->size(loc);
size_t tosize = tob->size(loc);
if (fromsize != tosize)
{
error("cannot cast from %s to %s", e1->type->toChars(), to->toChars());
return new ErrorExp();
}
}
// Look for casting to a vector type
if (tob->ty == Tvector && t1b->ty != Tvector)
{
return new VectorExp(loc, e1, to);
}
}
else if (!to)
{ error("cannot cast tuple");
return new ErrorExp();
}
if (!e1->type)
{ error("cannot cast %s", e1->toChars());
return new ErrorExp();
}
// Check for unsafe casts
if (sc->func && !sc->intypeof)
{ // Disallow unsafe casts
Type *tob = to->toBasetype();
Type *t1b = e1->type->toBasetype();
// Implicit conversions are always safe
if (t1b->implicitConvTo(tob))
goto Lsafe;
if (!t1b->isMutable() && tob->isMutable())
goto Lunsafe;
if (t1b->isShared() && !tob->isShared())
// Cast away shared
goto Lunsafe;
if (!tob->hasPointers())
goto Lsafe;
if (tob->ty == Tclass && t1b->ty == Tclass)
{
ClassDeclaration *cdfrom = t1b->isClassHandle();
ClassDeclaration *cdto = tob->isClassHandle();
int offset;
if (!cdfrom->isBaseOf(cdto, &offset))
goto Lunsafe;
if (cdfrom->isCPPinterface() ||
cdto->isCPPinterface())
goto Lunsafe;
goto Lsafe;
}
if (tob->ty == Tarray && t1b->ty == Tarray)
{
Type* tobn = tob->nextOf()->toBasetype();
Type* t1bn = t1b->nextOf()->toBasetype();
if (!tobn->hasPointers() && MODimplicitConv(t1bn->mod, tobn->mod))
goto Lsafe;
}
if (tob->ty == Tpointer && t1b->ty == Tpointer)
{
Type* tobn = tob->nextOf()->toBasetype();
Type* t1bn = t1b->nextOf()->toBasetype();
if (!tobn->hasPointers() &&
tobn->ty != Tfunction && t1bn->ty != Tfunction &&
tobn->size() <= t1bn->size() &&
MODimplicitConv(t1bn->mod, tobn->mod))
goto Lsafe;
}
Lunsafe:
if (sc->func->setUnsafe())
{ error("cast from %s to %s not allowed in safe code", e1->type->toChars(), to->toChars());
return new ErrorExp();
}
}
Lsafe:
Expression *e = e1->castTo(sc, to);
return e;
}
void CastExp::checkEscape()
{ Type *tb = type->toBasetype();
#if IN_LLVM
if (e1->op == TOKvar &&
tb->ty == Tpointer &&
e1->type->toBasetype()->ty == Tsarray)
{
VarDeclaration *v = ((VarExp*)e1)->var->isVarDeclaration();
if (v)
{
if (!v->isDataseg() && !(v->storage_class & (STCref | STCout)))
error("escaping reference to local variable %s", v->toChars());
}
}
#endif
if (tb->ty == Tarray && e1->op == TOKvar &&
e1->type->toBasetype()->ty == Tsarray)
{ VarExp *ve = (VarExp *)e1;
VarDeclaration *v = ve->var->isVarDeclaration();
if (v)
{
if (!v->isDataseg() && !v->isParameter())
error("escaping reference to local %s", v->toChars());
}
}
}
void CastExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("cast(");
#if DMDV1
to->toCBuffer(buf, NULL, hgs);
#else
if (to)
to->toCBuffer(buf, NULL, hgs);
else
{
MODtoBuffer(buf, mod);
}
#endif
buf->writeByte(')');
expToCBuffer(buf, hgs, e1, precedence[op]);
}
/************************************************************/
VectorExp::VectorExp(Loc loc, Expression *e, Type *t)
: UnaExp(loc, TOKvector, sizeof(VectorExp), e)
{
assert(t->ty == Tvector);
to = t;
dim = ~0;
}
Expression *VectorExp::syntaxCopy()
{
return new VectorExp(loc, e1->syntaxCopy(), to->syntaxCopy());
}
Expression *VectorExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("VectorExp::semantic('%s')\n", toChars());
#endif
if (type)
return this;
e1 = e1->semantic(sc);
type = to->semantic(loc, sc);
if (e1->op == TOKerror || type->ty == Terror)
return e1;
Type *tb = type->toBasetype();
assert(tb->ty == Tvector);
TypeVector *tv = (TypeVector *)tb;
Type *te = tv->elementType();
dim = tv->size(loc) / te->size(loc);
return this;
}
void VectorExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("cast(");
to->toCBuffer(buf, NULL, hgs);
buf->writeByte(')');
expToCBuffer(buf, hgs, e1, precedence[op]);
}
/************************************************************/
SliceExp::SliceExp(Loc loc, Expression *e1, Expression *lwr, Expression *upr)
: UnaExp(loc, TOKslice, sizeof(SliceExp), e1)
{
this->upr = upr;
this->lwr = lwr;
lengthVar = NULL;
}
Expression *SliceExp::syntaxCopy()
{
Expression *lwr = NULL;
if (this->lwr)
lwr = this->lwr->syntaxCopy();
Expression *upr = NULL;
if (this->upr)
upr = this->upr->syntaxCopy();
return new SliceExp(loc, e1->syntaxCopy(), lwr, upr);
}
Expression *SliceExp::semantic(Scope *sc)
{ Expression *e;
AggregateDeclaration *ad;
//FuncDeclaration *fd;
ScopeDsymbol *sym;
#if LOGSEMANTIC
printf("SliceExp::semantic('%s')\n", toChars());
#endif
if (type)
return this;
Lagain:
UnaExp::semantic(sc);
e1 = resolveProperties(sc, e1);
e = this;
Type *t = e1->type->toBasetype();
if (t->ty == Tpointer)
{
if (!lwr || !upr)
{ error("need upper and lower bound to slice pointer");
return new ErrorExp();
}
}
else if (t->ty == Tarray)
{
}
else if (t->ty == Tsarray)
{
}
else if (t->ty == Tclass)
{
ad = ((TypeClass *)t)->sym;
goto L1;
}
else if (t->ty == Tstruct)
{
ad = ((TypeStruct *)t)->sym;
L1:
if (search_function(ad, Id::slice))
{
// Rewrite as e1.slice(lwr, upr)
e = new DotIdExp(loc, e1, Id::slice);
if (lwr)
{
assert(upr);
e = new CallExp(loc, e, lwr, upr);
}
else
{ assert(!upr);
e = new CallExp(loc, e);
}
e = e->semantic(sc);
return e;
}
if (ad->aliasthis)
{
e1 = new DotIdExp(e1->loc, e1, ad->aliasthis->ident);
goto Lagain;
}
goto Lerror;
}
else if (t->ty == Ttuple)
{
if (!lwr && !upr)
return e1;
if (!lwr || !upr)
{ error("need upper and lower bound to slice tuple");
goto Lerror;
}
}
else if (t == Type::terror)
goto Lerr;
else
goto Lerror;
{
Scope *sc2 = sc;
if (t->ty == Tsarray || t->ty == Tarray || t->ty == Ttuple)
{
sym = new ArrayScopeSymbol(sc, this);
sym->loc = loc;
sym->parent = sc->scopesym;
sc2 = sc->push(sym);
}
if (lwr)
{ lwr = lwr->semantic(sc2);
lwr = resolveProperties(sc2, lwr);
lwr = lwr->implicitCastTo(sc2, Type::tsize_t);
if (lwr->type == Type::terror)
goto Lerr;
}
if (upr)
{ upr = upr->semantic(sc2);
upr = resolveProperties(sc2, upr);
upr = upr->implicitCastTo(sc2, Type::tsize_t);
if (upr->type == Type::terror)
goto Lerr;
}
if (sc2 != sc)
sc2->pop();
}
if (t->ty == Ttuple)
{
lwr = lwr->optimize(WANTvalue | WANTinterpret);
upr = upr->optimize(WANTvalue | WANTinterpret);
uinteger_t i1 = lwr->toUInteger();
uinteger_t i2 = upr->toUInteger();
size_t length;
TupleExp *te;
TypeTuple *tup;
if (e1->op == TOKtuple) // slicing an expression tuple
{ te = (TupleExp *)e1;
length = te->exps->dim;
}
else if (e1->op == TOKtype) // slicing a type tuple
{ tup = (TypeTuple *)t;
length = Parameter::dim(tup->arguments);
}
else
assert(0);
if (i1 <= i2 && i2 <= length)
{ size_t j1 = (size_t) i1;
size_t j2 = (size_t) i2;
if (e1->op == TOKtuple)
{ Expressions *exps = new Expressions;
exps->setDim(j2 - j1);
for (size_t i = 0; i < j2 - j1; i++)
{ Expression *e = (*te->exps)[j1 + i];
(*exps)[i] = e;
}
if (j1 > 0 && j2 - j1 > 0 && sc->func && (*te->exps)[0]->op == TOKdotvar)
{
Expression *einit = ((DotVarExp *)(*te->exps)[0])->e1->isTemp();
if (einit)
((DotVarExp *)(*exps)[0])->e1 = einit;
}
e = new TupleExp(loc, exps);
}
else
{ Parameters *args = new Parameters;
args->reserve(j2 - j1);
for (size_t i = j1; i < j2; i++)
{ Parameter *arg = Parameter::getNth(tup->arguments, i);
args->push(arg);
}
e = new TypeExp(e1->loc, new TypeTuple(args));
}
e = e->semantic(sc);
}
else
{
error("string slice [%ju .. %ju] is out of bounds", i1, i2);
goto Lerr;
}
return e;
}
type = t->nextOf()->arrayOf();
// Allow typedef[] -> typedef[]
if (type->equals(t))
type = e1->type;
return e;
Lerror:
if (e1->op == TOKerror)
return e1;
char *s;
if (t->ty == Tvoid)
s = e1->toChars();
else
s = t->toChars();
error("%s cannot be sliced with []", s);
Lerr:
e = new ErrorExp();
return e;
}
void SliceExp::checkEscape()
{
e1->checkEscape();
}
void SliceExp::checkEscapeRef()
{
e1->checkEscapeRef();
}
#if DMDV2
int SliceExp::isLvalue()
{
return 1;
}
#endif
Expression *SliceExp::toLvalue(Scope *sc, Expression *e)
{
return this;
}
Expression *SliceExp::modifiableLvalue(Scope *sc, Expression *e)
{
error("slice expression %s is not a modifiable lvalue", toChars());
return this;
}
int SliceExp::isBool(int result)
{
return e1->isBool(result);
}
void SliceExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, e1, precedence[op]);
buf->writeByte('[');
if (upr || lwr)
{
if (lwr)
expToCBuffer(buf, hgs, lwr, PREC_assign);
else
buf->writeByte('0');
buf->writestring("..");
if (upr)
expToCBuffer(buf, hgs, upr, PREC_assign);
else
buf->writestring("length"); // BUG: should be array.length
}
buf->writeByte(']');
}
/********************** ArrayLength **************************************/
ArrayLengthExp::ArrayLengthExp(Loc loc, Expression *e1)
: UnaExp(loc, TOKarraylength, sizeof(ArrayLengthExp), e1)
{
}
Expression *ArrayLengthExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("ArrayLengthExp::semantic('%s')\n", toChars());
#endif
if (!type)
{
UnaExp::semantic(sc);
e1 = resolveProperties(sc, e1);
type = Type::tsize_t;
}
return this;
}
Expression *opAssignToOp(Loc loc, enum TOK op, Expression *e1, Expression *e2)
{ Expression *e;
switch (op)
{
case TOKaddass: e = new AddExp(loc, e1, e2); break;
case TOKminass: e = new MinExp(loc, e1, e2); break;
case TOKmulass: e = new MulExp(loc, e1, e2); break;
case TOKdivass: e = new DivExp(loc, e1, e2); break;
case TOKmodass: e = new ModExp(loc, e1, e2); break;
case TOKandass: e = new AndExp(loc, e1, e2); break;
case TOKorass: e = new OrExp (loc, e1, e2); break;
case TOKxorass: e = new XorExp(loc, e1, e2); break;
case TOKshlass: e = new ShlExp(loc, e1, e2); break;
case TOKshrass: e = new ShrExp(loc, e1, e2); break;
case TOKushrass: e = new UshrExp(loc, e1, e2); break;
default: assert(0);
}
return e;
}
/*********************
* Rewrite:
* array.length op= e2
* as:
* array.length = array.length op e2
* or:
* auto tmp = &array;
* (*tmp).length = (*tmp).length op e2
*/
Expression *ArrayLengthExp::rewriteOpAssign(BinExp *exp)
{ Expression *e;
assert(exp->e1->op == TOKarraylength);
ArrayLengthExp *ale = (ArrayLengthExp *)exp->e1;
if (ale->e1->op == TOKvar)
{ e = opAssignToOp(exp->loc, exp->op, ale, exp->e2);
e = new AssignExp(exp->loc, ale->syntaxCopy(), e);
}
else
{
/* auto tmp = &array;
* (*tmp).length = (*tmp).length op e2
*/
Identifier *id = Lexer::uniqueId("__arraylength");
ExpInitializer *ei = new ExpInitializer(ale->loc, new AddrExp(ale->loc, ale->e1));
VarDeclaration *tmp = new VarDeclaration(ale->loc, ale->e1->type->pointerTo(), id, ei);
Expression *e1 = new ArrayLengthExp(ale->loc, new PtrExp(ale->loc, new VarExp(ale->loc, tmp)));
Expression *elvalue = e1->syntaxCopy();
e = opAssignToOp(exp->loc, exp->op, e1, exp->e2);
e = new AssignExp(exp->loc, elvalue, e);
e = new CommaExp(exp->loc, new DeclarationExp(ale->loc, tmp), e);
}
return e;
}
void ArrayLengthExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, e1, PREC_primary);
buf->writestring(".length");
}
/*********************** ArrayExp *************************************/
// e1 [ i1, i2, i3, ... ]
ArrayExp::ArrayExp(Loc loc, Expression *e1, Expressions *args)
: UnaExp(loc, TOKarray, sizeof(ArrayExp), e1)
{
arguments = args;
lengthVar = NULL;
currentDimension = 0;
}
Expression *ArrayExp::syntaxCopy()
{
return new ArrayExp(loc, e1->syntaxCopy(), arraySyntaxCopy(arguments));
}
Expression *ArrayExp::semantic(Scope *sc)
{ Expression *e;
Type *t1;
#if LOGSEMANTIC
printf("ArrayExp::semantic('%s')\n", toChars());
#endif
UnaExp::semantic(sc);
e1 = resolveProperties(sc, e1);
t1 = e1->type->toBasetype();
if (t1->ty != Tclass && t1->ty != Tstruct)
{ // Convert to IndexExp
if (arguments->dim != 1)
{ error("only one index allowed to index %s", t1->toChars());
goto Lerr;
}
e = new IndexExp(loc, e1, arguments->tdata()[0]);
return e->semantic(sc);
}
e = op_overload(sc);
if (!e)
{ error("no [] operator overload for type %s", e1->type->toChars());
goto Lerr;
}
return e;
Lerr:
return new ErrorExp();
}
#if DMDV2
int ArrayExp::isLvalue()
{
if (type && type->toBasetype()->ty == Tvoid)
return 0;
return 1;
}
#endif
Expression *ArrayExp::toLvalue(Scope *sc, Expression *e)
{
if (type && type->toBasetype()->ty == Tvoid)
error("voids have no value");
return this;
}
void ArrayExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, e1, PREC_primary);
buf->writeByte('[');
argsToCBuffer(buf, arguments, hgs);
buf->writeByte(']');
}
/************************* DotExp ***********************************/
DotExp::DotExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKdotexp, sizeof(DotExp), e1, e2)
{
}
Expression *DotExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
printf("DotExp::semantic('%s')\n", toChars());
if (type) printf("\ttype = %s\n", type->toChars());
#endif
e1 = e1->semantic(sc);
e2 = e2->semantic(sc);
if (e2->op == TOKimport)
{
ScopeExp *se = (ScopeExp *)e2;
TemplateDeclaration *td = se->sds->isTemplateDeclaration();
if (td)
{ Expression *e = new DotTemplateExp(loc, e1, td);
e = e->semantic(sc);
return e;
}
}
if (!type)
type = e2->type;
return this;
}
void DotExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, e1, PREC_primary);
buf->writeByte('.');
expToCBuffer(buf, hgs, e2, PREC_primary);
}
/************************* CommaExp ***********************************/
CommaExp::CommaExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKcomma, sizeof(CommaExp), e1, e2)
{
}
Expression *CommaExp::semantic(Scope *sc)
{
if (!type)
{ BinExp::semanticp(sc);
e1 = e1->addDtorHook(sc);
type = e2->type;
}
return this;
}
void CommaExp::checkEscape()
{
e2->checkEscape();
}
void CommaExp::checkEscapeRef()
{
e2->checkEscapeRef();
}
#if DMDV2
int CommaExp::isLvalue()
{
return e2->isLvalue();
}
#endif
Expression *CommaExp::toLvalue(Scope *sc, Expression *e)
{
e2 = e2->toLvalue(sc, NULL);
return this;
}
Expression *CommaExp::modifiableLvalue(Scope *sc, Expression *e)
{
e2 = e2->modifiableLvalue(sc, e);
return this;
}
int CommaExp::isBool(int result)
{
return e2->isBool(result);
}
Expression *CommaExp::addDtorHook(Scope *sc)
{
e2 = e2->addDtorHook(sc);
return this;
}
/************************** IndexExp **********************************/
// e1 [ e2 ]
IndexExp::IndexExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKindex, sizeof(IndexExp), e1, e2)
{
//printf("IndexExp::IndexExp('%s')\n", toChars());
lengthVar = NULL;
modifiable = 0; // assume it is an rvalue
}
Expression *IndexExp::semantic(Scope *sc)
{ Expression *e;
Type *t1;
ScopeDsymbol *sym;
#if LOGSEMANTIC
printf("IndexExp::semantic('%s')\n", toChars());
#endif
if (type)
return this;
if (!e1->type)
e1 = e1->semantic(sc);
assert(e1->type); // semantic() should already be run on it
if (e1->op == TOKerror)
goto Lerr;
e = this;
// Note that unlike C we do not implement the int[ptr]
t1 = e1->type->toBasetype();
if (t1->ty == Tsarray || t1->ty == Tarray || t1->ty == Ttuple)
{ // Create scope for 'length' variable
sym = new ArrayScopeSymbol(sc, this);
sym->loc = loc;
sym->parent = sc->scopesym;
sc = sc->push(sym);
}
e2 = e2->semantic(sc);
e2 = resolveProperties(sc, e2);
if (e2->type == Type::terror)
goto Lerr;
if (e2->type->ty == Ttuple && ((TupleExp *)e2)->exps->dim == 1) // bug 4444 fix
e2 = ((TupleExp *)e2)->exps->tdata()[0];
if (t1->ty == Tsarray || t1->ty == Tarray || t1->ty == Ttuple)
sc = sc->pop();
switch (t1->ty)
{
case Tpointer:
case Tarray:
e2 = e2->implicitCastTo(sc, Type::tsize_t);
e->type = ((TypeNext *)t1)->next;
break;
case Tsarray:
{
e2 = e2->implicitCastTo(sc, Type::tsize_t);
TypeSArray *tsa = (TypeSArray *)t1;
#if 0 // Don't do now, because it might be short-circuit evaluated
// Do compile time array bounds checking if possible
e2 = e2->optimize(WANTvalue);
if (e2->op == TOKint64)
{
dinteger_t index = e2->toInteger();
dinteger_t length = tsa->dim->toInteger();
if (index < 0 || index >= length)
error("array index [%lld] is outside array bounds [0 .. %lld]",
index, length);
}
#endif
e->type = t1->nextOf();
break;
}
case Taarray:
{ TypeAArray *taa = (TypeAArray *)t1;
/* We can skip the implicit conversion if they differ only by
* constness (Bugzilla 2684, see also bug 2954b)
*/
if (!arrayTypeCompatibleWithoutCasting(e2->loc, e2->type, taa->index))
{
e2 = e2->implicitCastTo(sc, taa->index); // type checking
}
type = taa->next;
break;
}
case Ttuple:
{
e2 = e2->implicitCastTo(sc, Type::tsize_t);
e2 = e2->optimize(WANTvalue | WANTinterpret);
uinteger_t index = e2->toUInteger();
size_t length;
TupleExp *te;
TypeTuple *tup;
if (e1->op == TOKtuple)
{ te = (TupleExp *)e1;
length = te->exps->dim;
}
else if (e1->op == TOKtype)
{
tup = (TypeTuple *)t1;
length = Parameter::dim(tup->arguments);
}
else
assert(0);
if (index < length)
{
if (e1->op == TOKtuple)
{
e = (*te->exps)[(size_t)index];
if (sc->func && (*te->exps)[0]->op == TOKdotvar)
{
Expression *einit = ((DotVarExp *)(*te->exps)[0])->e1->isTemp();
if (einit)
((DotVarExp *)e)->e1 = einit;
}
}
else
e = new TypeExp(e1->loc, Parameter::getNth(tup->arguments, (size_t)index)->type);
}
else
{
error("array index [%ju] is outside array bounds [0 .. %zu]",
index, length);
e = e1;
}
break;
}
default:
if (e1->op == TOKerror)
goto Lerr;
error("%s must be an array or pointer type, not %s",
e1->toChars(), e1->type->toChars());
case Terror:
goto Lerr;
}
return e;
Lerr:
return new ErrorExp();
}
#if DMDV2
int IndexExp::isLvalue()
{
return 1;
}
#endif
Expression *IndexExp::toLvalue(Scope *sc, Expression *e)
{
// if (type && type->toBasetype()->ty == Tvoid)
// error("voids have no value");
return this;
}
Expression *IndexExp::modifiableLvalue(Scope *sc, Expression *e)
{
//printf("IndexExp::modifiableLvalue(%s)\n", toChars());
modifiable = 1;
if (e1->op == TOKstring)
error("string literals are immutable");
if (type && (!type->isMutable() || !type->isAssignable()))
error("%s isn't mutable", e->toChars());
Type *t1 = e1->type->toBasetype();
if (t1->ty == Taarray)
{ TypeAArray *taa = (TypeAArray *)t1;
Type *t2b = e2->type->toBasetype();
if (t2b->ty == Tarray && t2b->nextOf()->isMutable())
error("associative arrays can only be assigned values with immutable keys, not %s", e2->type->toChars());
e1 = e1->modifiableLvalue(sc, e1);
}
return toLvalue(sc, e);
}
void IndexExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, e1, PREC_primary);
buf->writeByte('[');
expToCBuffer(buf, hgs, e2, PREC_assign);
buf->writeByte(']');
}
/************************* PostExp ***********************************/
PostExp::PostExp(enum TOK op, Loc loc, Expression *e)
: BinExp(loc, op, sizeof(PostExp), e,
new IntegerExp(loc, 1, Type::tint32))
{
}
Expression *PostExp::semantic(Scope *sc)
{ Expression *e = this;
if (!type)
{
BinExp::semantic(sc);
e1 = resolveProperties(sc, e1);
e = op_overload(sc);
if (e)
return e;
e1 = e1->modifiableLvalue(sc, e1);
Type *t1 = e1->type->toBasetype();
if (t1->ty == Tclass || t1->ty == Tstruct)
{ /* Check for operator overloading,
* but rewrite in terms of ++e instead of e++
*/
/* If e1 is not trivial, take a reference to it
*/
Expression *de = NULL;
if (e1->op != TOKvar)
{
// ref v = e1;
Identifier *id = Lexer::uniqueId("__postref");
ExpInitializer *ei = new ExpInitializer(loc, e1);
VarDeclaration *v = new VarDeclaration(loc, e1->type, id, ei);
v->storage_class |= STCref | STCforeach;
de = new DeclarationExp(loc, v);
e1 = new VarExp(e1->loc, v);
}
/* Rewrite as:
* auto tmp = e1; ++e1; tmp
*/
Identifier *id = Lexer::uniqueId("__pitmp");
ExpInitializer *ei = new ExpInitializer(loc, e1);
VarDeclaration *tmp = new VarDeclaration(loc, e1->type, id, ei);
Expression *ea = new DeclarationExp(loc, tmp);
Expression *eb = e1->syntaxCopy();
eb = new PreExp(op == TOKplusplus ? TOKpreplusplus : TOKpreminusminus, loc, eb);
Expression *ec = new VarExp(loc, tmp);
// Combine de,ea,eb,ec
if (de)
ea = new CommaExp(loc, de, ea);
e = new CommaExp(loc, ea, eb);
e = new CommaExp(loc, e, ec);
e = e->semantic(sc);
return e;
}
e = this;
e1->checkScalar();
e1->checkNoBool();
if (e1->type->ty == Tpointer)
e = scaleFactor(sc);
else
e2 = e2->castTo(sc, e1->type);
e->type = e1->type;
}
return e;
}
void PostExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, e1, precedence[op]);
buf->writestring(Token::toChars(op));
}
/************************* PreExp ***********************************/
PreExp::PreExp(enum TOK op, Loc loc, Expression *e)
: UnaExp(loc, op, sizeof(PreExp), e)
{
}
Expression *PreExp::semantic(Scope *sc)
{
Expression *e;
e = op_overload(sc);
if (e)
return e;
// Rewrite as e1+=1 or e1-=1
if (op == TOKpreplusplus)
e = new AddAssignExp(loc, e1, new IntegerExp(loc, 1, Type::tint32));
else
e = new MinAssignExp(loc, e1, new IntegerExp(loc, 1, Type::tint32));
return e->semantic(sc);
}
void PreExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring(Token::toChars(op));
expToCBuffer(buf, hgs, e1, precedence[op]);
}
/************************************************************/
/* op can be TOKassign, TOKconstruct, or TOKblit */
AssignExp::AssignExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKassign, sizeof(AssignExp), e1, e2)
{
ismemset = 0;
}
Expression *AssignExp::semantic(Scope *sc)
{
Expression *e1old = e1;
#if LOGSEMANTIC
printf("AssignExp::semantic('%s')\n", toChars());
#endif
//printf("e1->op = %d, '%s'\n", e1->op, Token::toChars(e1->op));
//printf("e2->op = %d, '%s'\n", e2->op, Token::toChars(e2->op));
if (type)
return this;
if (e2->op == TOKcomma)
{ /* Rewrite to get rid of the comma from rvalue
*/
AssignExp *ea = new AssignExp(loc, e1, ((CommaExp *)e2)->e2);
ea->op = op;
Expression *e = new CommaExp(loc, ((CommaExp *)e2)->e1, ea);
return e->semantic(sc);
}
/* Look for operator overloading of a[i]=value.
* Do it before semantic() otherwise the a[i] will have been
* converted to a.opIndex() already.
*/
if (e1->op == TOKarray)
{
ArrayExp *ae = (ArrayExp *)e1;
AggregateDeclaration *ad = NULL;
Identifier *id = Id::index;
ae->e1 = ae->e1->semantic(sc);
Type *t1 = ae->e1->type->toBasetype();
if (t1->ty == Tstruct)
{
ad = ((TypeStruct *)t1)->sym;
goto L1;
}
else if (t1->ty == Tclass)
{
ad = ((TypeClass *)t1)->sym;
L1:
// Rewrite (a[i] = value) to (a.opIndexAssign(value, i))
if (search_function(ad, Id::indexass))
{ Expression *e = new DotIdExp(loc, ae->e1, Id::indexass);
// Deal with $
for (size_t i = 0; i < ae->arguments->dim; i++)
{ Expression *x = ae->arguments->tdata()[i];
// Create scope for '$' variable for this dimension
ArrayScopeSymbol *sym = new ArrayScopeSymbol(sc, ae);
sym->loc = loc;
sym->parent = sc->scopesym;
sc = sc->push(sym);
ae->lengthVar = NULL; // Create it only if required
ae->currentDimension = i; // Dimension for $, if required
x = x->semantic(sc);
if (!x->type)
ae->error("%s has no value", x->toChars());
if (ae->lengthVar)
{ // If $ was used, declare it now
Expression *av = new DeclarationExp(ae->loc, ae->lengthVar);
x = new CommaExp(0, av, x);
x->semantic(sc);
}
ae->arguments->tdata()[i] = x;
sc = sc->pop();
}
Expressions *a = (Expressions *)ae->arguments->copy();
a->insert(0, e2);
e = new CallExp(loc, e, a);
e = e->semantic(sc);
return e;
}
#if 0 // Turned off to allow rewriting (a[i]=value) to (a.opIndex(i)=value)
else
{
// Rewrite (a[i] = value) to (a.opIndex(i, value))
if (search_function(ad, id))
{ Expression *e = new DotIdExp(loc, ae->e1, id);
if (1 || !global.params.useDeprecated)
{ error("operator [] assignment overload with opIndex(i, value) illegal, use opIndexAssign(value, i)");
return new ErrorExp();
}
e = new CallExp(loc, e, ae->arguments->tdata()[0], e2);
e = e->semantic(sc);
return e;
}
}
#endif
}
// No opIndexAssign found yet, but there might be an alias this to try.
if (ad && ad->aliasthis)
{ Expression *at = new DotIdExp(loc, ae->e1, ad->aliasthis->ident);
at = at->semantic(sc);
Type *attype = at->type->toBasetype();
if (attype->ty == Tstruct)
{
ad = ((TypeStruct *)attype)->sym;
goto L1;
}
else if (attype->ty == Tclass)
{
ad = ((TypeClass *)attype)->sym;
goto L1;
}
}
}
/* Look for operator overloading of a[i..j]=value.
* Do it before semantic() otherwise the a[i..j] will have been
* converted to a.opSlice() already.
*/
if (e1->op == TOKslice)
{ Type *t1;
SliceExp *ae = (SliceExp *)e1;
AggregateDeclaration *ad = NULL;
Identifier *id = Id::index;
ae->e1 = ae->e1->semantic(sc);
ae->e1 = resolveProperties(sc, ae->e1);
t1 = ae->e1->type->toBasetype();
if (t1->ty == Tstruct)
{
ad = ((TypeStruct *)t1)->sym;
goto L2;
}
else if (t1->ty == Tclass)
{
ad = ((TypeClass *)t1)->sym;
L2:
// Rewrite (a[i..j] = value) to (a.opSliceAssign(value, i, j))
if (search_function(ad, Id::sliceass))
{ Expression *e = new DotIdExp(loc, ae->e1, Id::sliceass);
Expressions *a = new Expressions();
a->push(e2);
if (ae->lwr)
{ a->push(ae->lwr);
assert(ae->upr);
a->push(ae->upr);
}
else
assert(!ae->upr);
e = new CallExp(loc, e, a);
e = e->semantic(sc);
return e;
}
}
// No opSliceAssign found yet, but there might be an alias this to try.
if (ad && ad->aliasthis)
{ Expression *at = new DotIdExp(loc, ae->e1, ad->aliasthis->ident);
at = at->semantic(sc);
Type *attype = at->type->toBasetype();
if (attype->ty == Tstruct)
{
ad = ((TypeStruct *)attype)->sym;
goto L2;
}
else if (attype->ty == Tclass)
{
ad = ((TypeClass *)attype)->sym;
goto L2;
}
}
}
{
Expression *e = BinExp::semantic(sc);
if (e->op == TOKerror)
return e;
}
e2 = resolveProperties(sc, e2);
/* We have f = value.
* Could mean:
* f(value)
* or:
* f() = value
*/
TemplateDeclaration *td;
Objects *targsi;
FuncDeclaration *fd;
Expression *ethis;
if (e1->op == TOKdotti)
{
DotTemplateInstanceExp* dti = (DotTemplateInstanceExp *)e1;
td = dti->getTempdecl(sc);
dti->ti->semanticTiargs(sc);
targsi = dti->ti->tiargs;
ethis = dti->e1;
goto L3;
}
else if (e1->op == TOKdottd)
{
DotTemplateExp *dte = (DotTemplateExp *)e1;
td = dte->td;
targsi = NULL;
ethis = dte->e1;
goto L3;
}
else if (e1->op == TOKtemplate)
{
td = ((TemplateExp *)e1)->td;
targsi = NULL;
ethis = NULL;
L3:
{
assert(td);
Expressions a;
a.push(e2);
fd = td->deduceFunctionTemplate(sc, loc, targsi, ethis, &a, 1);
if (fd && fd->type)
goto Lsetter;
fd = td->deduceFunctionTemplate(sc, loc, targsi, ethis, NULL, 1);
if (fd && fd->type)
goto Lgetter;
}
goto Leprop;
}
else if (e1->op == TOKdotvar && e1->type->toBasetype()->ty == Tfunction)
{
DotVarExp *dve = (DotVarExp *)e1;
fd = dve->var->isFuncDeclaration();
ethis = dve->e1;
goto L4;
}
else if (e1->op == TOKvar && e1->type->toBasetype()->ty == Tfunction)
{
fd = ((VarExp *)e1)->var->isFuncDeclaration();
ethis = NULL;
L4:
{
assert(fd);
FuncDeclaration *f = fd;
Expressions a;
a.push(e2);
fd = f->overloadResolve(loc, ethis, &a, 1);
if (fd && fd->type)
goto Lsetter;
fd = f->overloadResolve(loc, ethis, NULL, 1);
if (fd && fd->type)
goto Lgetter;
goto Leprop;
}
Expression *e;
TypeFunction *tf;
Lsetter:
assert(fd->type->ty == Tfunction);
tf = (TypeFunction *)fd->type;
if (!tf->isproperty && global.params.enforcePropertySyntax)
goto Leprop;
e = new CallExp(loc, e1, e2);
return e->semantic(sc);
Lgetter:
assert(fd->type->ty == Tfunction);
tf = (TypeFunction *)fd->type;
if (!tf->isref)
goto Leprop;
if (!tf->isproperty && global.params.enforcePropertySyntax)
goto Leprop;
e = new CallExp(loc, e1);
e = new AssignExp(loc, e, e2);
return e->semantic(sc);
Leprop:
::error(e1->loc, "not a property %s", e1->toChars());
return new ErrorExp();
}
assert(e1->type);
/* Rewrite tuple assignment as a tuple of assignments.
*/
Ltupleassign:
if (e1->op == TOKtuple && e2->op == TOKtuple)
{ TupleExp *tup1 = (TupleExp *)e1;
TupleExp *tup2 = (TupleExp *)e2;
size_t dim = tup1->exps->dim;
if (dim != tup2->exps->dim)
{
error("mismatched tuple lengths, %d and %d", (int)dim, (int)tup2->exps->dim);
return new ErrorExp();
}
else
{ Expressions *exps = new Expressions;
exps->setDim(dim);
for (size_t i = 0; i < dim; i++)
{ Expression *ex1 = (*tup1->exps)[i];
Expression *ex2 = (*tup2->exps)[i];
(*exps)[i] = new AssignExp(loc, ex1, ex2);
}
Expression *e = new TupleExp(loc, exps);
e = e->semantic(sc);
return e;
}
}
if (e1->op == TOKtuple)
{
if (TupleDeclaration *td = isAliasThisTuple(e2))
{
assert(e1->type->ty == Ttuple);
TypeTuple *tt = (TypeTuple *)e1->type;
Identifier *id = Lexer::uniqueId("__tup");
VarDeclaration *v = new VarDeclaration(e2->loc, NULL, id, new ExpInitializer(e2->loc, e2));
v->storage_class = STCctfe | STCref | STCforeach;
Expression *ve = new VarExp(e2->loc, v);
ve->type = e2->type;
Expressions *iexps = new Expressions();
iexps->push(ve);
for (size_t u = 0; u < iexps->dim ; u++)
{
Lexpand:
Expression *e = iexps->tdata()[u];
Parameter *arg = Parameter::getNth(tt->arguments, u);
//printf("[%d] iexps->dim = %d, ", u, iexps->dim);
//printf("e = (%s %s, %s), ", Token::tochars[e->op], e->toChars(), e->type->toChars());
//printf("arg = (%s, %s)\n", arg->toChars(), arg->type->toChars());
if (!e->type->implicitConvTo(arg->type))
{
// expand initializer to tuple
if (expandAliasThisTuples(iexps, u) != -1)
goto Lexpand;
goto Lnomatch;
}
}
iexps->tdata()[0] = new CommaExp(loc, new DeclarationExp(e2->loc, v), iexps->tdata()[0]);
e2 = new TupleExp(e2->loc, iexps);
e2 = e2->semantic(sc);
goto Ltupleassign;
Lnomatch:
;
}
}
// Determine if this is an initialization of a reference
int refinit = 0;
if (op == TOKconstruct && e1->op == TOKvar)
{ VarExp *ve = (VarExp *)e1;
VarDeclaration *v = ve->var->isVarDeclaration();
if (v->storage_class & (STCout | STCref))
refinit = 1;
}
Type *t1 = e1->type->toBasetype();
if (t1->ty == Tdelegate || (t1->ty == Tpointer && t1->nextOf()->ty == Tfunction)
&& e2->op == TOKfunction)
{
FuncExp *fe = (FuncExp *)e2;
if (e2->type == Type::tvoid)
{
e2 = fe->inferType(sc, t1);
}
else if (e2->type->ty == Tpointer && e2->type->nextOf()->ty == Tfunction &&
fe->tok == TOKreserved &&
t1->ty == Tdelegate)
{
if (fe->implicitConvTo(t1))
e2 = fe->castTo(sc, t1);
}
if (!e2)
{ error("cannot infer function literal type from %s", t1->toChars());
e2 = new ErrorExp();
}
}
/* If it is an assignment from a 'foreign' type,
* check for operator overloading.
*/
if (t1->ty == Tstruct)
{
StructDeclaration *sd = ((TypeStruct *)t1)->sym;
if (op == TOKassign)
{
/* See if we need to set ctorinit, i.e. track
* assignments to fields. An assignment to a field counts even
* if done through an opAssign overload.
*/
if (e1->op == TOKdotvar)
{ DotVarExp *dve = (DotVarExp *)e1;
VarDeclaration *v = dve->var->isVarDeclaration();
if (v && v->storage_class & STCnodefaultctor)
modifyFieldVar(loc, sc, v, dve->e1);
}
Expression *e = op_overload(sc);
if (e && e1->op == TOKindex &&
((IndexExp *)e1)->e1->type->toBasetype()->ty == Taarray)
{
// Deal with AAs (Bugzilla 2451)
// Rewrite as:
// e1 = (typeof(aa.value) tmp = void, tmp = e2, tmp);
Type * aaValueType = ((TypeAArray *)((IndexExp*)e1)->e1->type->toBasetype())->next;
Identifier *id = Lexer::uniqueId("__aatmp");
VarDeclaration *v = new VarDeclaration(loc, aaValueType,
id, new VoidInitializer(0));
v->storage_class |= STCctfe;
v->semantic(sc);
v->parent = sc->parent;
Expression *de = new DeclarationExp(loc, v);
VarExp *ve = new VarExp(loc, v);
AssignExp *ae = new AssignExp(loc, ve, e2);
e = ae->op_overload(sc);
e2 = new CommaExp(loc, new CommaExp(loc, de, e), ve);
e2 = e2->semantic(sc);
}
else if (e)
return e;
}
else if (op == TOKconstruct && !refinit)
{ Type *t2 = e2->type->toBasetype();
if (t2->ty == Tstruct &&
sd == ((TypeStruct *)t2)->sym &&
sd->cpctor)
{ /* We have a copy constructor for this
*/
// Scan past commma's
Expression *ec = NULL;
while (e2->op == TOKcomma)
{ CommaExp *ecomma = (CommaExp *)e2;
e2 = ecomma->e2;
if (ec)
ec = new CommaExp(ecomma->loc, ec, ecomma->e1);
else
ec = ecomma->e1;
}
if (e2->op == TOKquestion)
{ /* Write as:
* a ? e1 = b : e1 = c;
*/
CondExp *econd = (CondExp *)e2;
AssignExp *ea1 = new AssignExp(econd->e1->loc, e1, econd->e1);
ea1->op = op;
AssignExp *ea2 = new AssignExp(econd->e1->loc, e1, econd->e2);
ea2->op = op;
Expression *e = new CondExp(loc, econd->econd, ea1, ea2);
if (ec)
e = new CommaExp(loc, ec, e);
return e->semantic(sc);
}
else if (e2->op == TOKvar ||
e2->op == TOKdotvar ||
e2->op == TOKstar ||
e2->op == TOKthis ||
e2->op == TOKindex)
{ /* Write as:
* e1.cpctor(e2);
*/
if (!e2->type->implicitConvTo(e1->type))
error("conversion error from %s to %s", e2->type->toChars(), e1->type->toChars());
Expression *e = new DotVarExp(loc, e1, sd->cpctor, 0);
e = new CallExp(loc, e, e2);
if (ec)
e = new CommaExp(loc, ec, e);
return e->semantic(sc);
}
else if (e2->op == TOKcall)
{
/* The struct value returned from the function is transferred
* so should not call the destructor on it.
*/
valueNoDtor(e2);
}
}
}
}
else if (t1->ty == Tclass)
{ // Disallow assignment operator overloads for same type
if (!e2->implicitConvTo(e1->type))
{
Expression *e = op_overload(sc);
if (e)
return e;
}
}
if (t1->ty == Tsarray && !refinit)
{
if (e1->op == TOKindex &&
((IndexExp *)e1)->e1->type->toBasetype()->ty == Taarray)
{
// Assignment to an AA of fixed-length arrays.
// Convert T[n][U] = T[] into T[n][U] = T[n]
e2 = e2->implicitCastTo(sc, e1->type);
if (e2->type == Type::terror)
return e2;
}
else
{
Type *t2 = e2->type->toBasetype();
// Convert e2 to e2[], unless e2-> e1[0]
if (t2->ty == Tsarray && !t2->implicitConvTo(t1->nextOf()))
{
e2 = new SliceExp(e2->loc, e2, NULL, NULL);
e2 = e2->semantic(sc);
}
// Convert e1 to e1[]
Expression *e = new SliceExp(e1->loc, e1, NULL, NULL);
e1 = e->semantic(sc);
t1 = e1->type->toBasetype();
}
}
if (!e2->rvalue())
return new ErrorExp();
if (e1->op == TOKarraylength)
{
// e1 is not an lvalue, but we let code generator handle it
ArrayLengthExp *ale = (ArrayLengthExp *)e1;
ale->e1 = ale->e1->modifiableLvalue(sc, e1);
}
else if (e1->op == TOKslice)
{
Type *tn = e1->type->nextOf();
if (op == TOKassign && tn && (!tn->isMutable() || !tn->isAssignable()))
{ error("slice %s is not mutable", e1->toChars());
return new ErrorExp();
}
}
else
{ // Try to do a decent error message with the expression
// before it got constant folded
if (e1->op != TOKvar)
e1 = e1->optimize(WANTvalue);
if (op != TOKconstruct)
e1 = e1->modifiableLvalue(sc, e1old);
}
Type *t2 = e2->type->toBasetype();
#if 0
if (t1->ty == Tvector && t2->ty != Tvector &&
e2->implicitConvTo(((TypeVector *)t1)->basetype->nextOf())
)
{ // memset
ismemset = 1; // make it easy for back end to tell what this is
e2 = e2->implicitCastTo(sc, ((TypeVector *)t1)->basetype->nextOf());
}
else
#endif
if (e1->op == TOKslice &&
t1->nextOf() &&
e2->implicitConvTo(t1->nextOf())
)
{ // memset
ismemset = 1; // make it easy for back end to tell what this is
e2 = e2->implicitCastTo(sc, t1->nextOf());
}
else if (t1->ty == Tsarray)
{
/* Should have already converted e1 => e1[]
* unless it is an AA
*/
if (!(e1->op == TOKindex && t2->ty == Tsarray &&
((IndexExp *)e1)->e1->type->toBasetype()->ty == Taarray))
{
assert(op == TOKconstruct);
}
//error("cannot assign to static array %s", e1->toChars());
}
else if (e1->op == TOKslice && t2->ty == Tarray &&
t2->nextOf()->implicitConvTo(t1->nextOf()))
{
e2 = e2->implicitCastTo(sc, e1->type->constOf());
}
else
{
e2 = e2->implicitCastTo(sc, e1->type);
}
/* Look for array operations
*/
if (e1->op == TOKslice && !ismemset &&
(e2->op == TOKadd || e2->op == TOKmin ||
e2->op == TOKmul || e2->op == TOKdiv ||
e2->op == TOKmod || e2->op == TOKxor ||
e2->op == TOKand || e2->op == TOKor ||
#if DMDV2
e2->op == TOKpow ||
#endif
e2->op == TOKtilde || e2->op == TOKneg))
{
type = e1->type;
return arrayOp(sc);
}
if (e1->op == TOKvar &&
(((VarExp *)e1)->var->storage_class & STCscope) &&
op == TOKassign)
{
error("cannot rebind scope variables");
}
type = e1->type;
assert(type);
return this;
}
Expression *AssignExp::checkToBoolean(Scope *sc)
{
// Things like:
// if (a = b) ...
// are usually mistakes.
error("assignment cannot be used as a condition, perhaps == was meant?");
return new ErrorExp();
}
/************************************************************/
ConstructExp::ConstructExp(Loc loc, Expression *e1, Expression *e2)
: AssignExp(loc, e1, e2)
{
op = TOKconstruct;
}
/************************************************************/
AddAssignExp::AddAssignExp(Loc loc, Expression *e1, Expression *e2)
: BinAssignExp(loc, TOKaddass, sizeof(AddAssignExp), e1, e2)
{
}
Expression *AddAssignExp::semantic(Scope *sc)
{ Expression *e;
if (type)
return this;
e = op_overload(sc);
if (e)
return e;
Type *tb1 = e1->type->toBasetype();
Type *tb2 = e2->type->toBasetype();
if (e1->op == TOKarraylength)
{
e = ArrayLengthExp::rewriteOpAssign(this);
e = e->semantic(sc);
return e;
}
if (e1->op == TOKslice)
{
e = typeCombine(sc);
if (e->op == TOKerror)
return e;
type = e1->type;
return arrayOp(sc);
}
else
{
e1 = e1->modifiableLvalue(sc, e1);
}
if ((tb1->ty == Tarray || tb1->ty == Tsarray) &&
(tb2->ty == Tarray || tb2->ty == Tsarray) &&
tb1->nextOf()->equals(tb2->nextOf())
)
{
type = e1->type;
typeCombine(sc);
e = this;
}
else
{
e1->checkScalar();
e1->checkNoBool();
if (tb1->ty == Tpointer && tb2->isintegral())
e = scaleFactor(sc);
else if (tb1->ty == Tbool)
{
#if 0
// Need to rethink this
if (e1->op != TOKvar)
{ // Rewrite e1+=e2 to (v=&e1),*v=*v+e2
VarDeclaration *v;
Expression *ea;
Expression *ex;
Identifier *id = Lexer::uniqueId("__name");
v = new VarDeclaration(loc, tb1->pointerTo(), id, NULL);
v->semantic(sc);
if (!sc->insert(v))
assert(0);
v->parent = sc->func;
ea = new AddrExp(loc, e1);
ea = new AssignExp(loc, new VarExp(loc, v), ea);
ex = new VarExp(loc, v);
ex = new PtrExp(loc, ex);
e = new AddExp(loc, ex, e2);
e = new CastExp(loc, e, e1->type);
e = new AssignExp(loc, ex->syntaxCopy(), e);
e = new CommaExp(loc, ea, e);
}
else
#endif
{ // Rewrite e1+=e2 to e1=e1+e2
// BUG: doesn't account for side effects in e1
// BUG: other assignment operators for bits aren't handled at all
e = new AddExp(loc, e1, e2);
e = new CastExp(loc, e, e1->type);
e = new AssignExp(loc, e1->syntaxCopy(), e);
}
e = e->semantic(sc);
}
else
{
type = e1->type;
typeCombine(sc);
e1->checkArithmetic();
e2->checkArithmetic();
checkComplexAddAssign();
if (type->isreal() || type->isimaginary())
{
assert(global.errors || e2->type->isfloating());
e2 = e2->castTo(sc, e1->type);
}
e = this;
if (e2->type->iscomplex() && !type->iscomplex())
error("Cannot assign %s to %s", e2->type->toChars(), type->toChars());
}
}
return e;
}
/************************************************************/
MinAssignExp::MinAssignExp(Loc loc, Expression *e1, Expression *e2)
: BinAssignExp(loc, TOKminass, sizeof(MinAssignExp), e1, e2)
{
}
Expression *MinAssignExp::semantic(Scope *sc)
{ Expression *e;
if (type)
return this;
e = op_overload(sc);
if (e)
return e;
if (e1->op == TOKarraylength)
{
e = ArrayLengthExp::rewriteOpAssign(this);
e = e->semantic(sc);
return e;
}
if (e1->op == TOKslice)
{ // T[] -= ...
e = typeCombine(sc);
if (e->op == TOKerror)
return e;
type = e1->type;
return arrayOp(sc);
}
e1 = e1->modifiableLvalue(sc, e1);
e1->checkScalar();
e1->checkNoBool();
if (e1->type->ty == Tpointer && e2->type->isintegral())
e = scaleFactor(sc);
else
{
e1 = e1->checkArithmetic();
e2 = e2->checkArithmetic();
checkComplexAddAssign();
type = e1->type;
typeCombine(sc);
if (type->isreal() || type->isimaginary())
{
assert(e2->type->isfloating());
e2 = e2->castTo(sc, e1->type);
}
e = this;
if (e2->type->iscomplex() && !type->iscomplex())
error("Cannot assign %s to %s", e2->type->toChars(), type->toChars());
}
return e;
}
/************************************************************/
CatAssignExp::CatAssignExp(Loc loc, Expression *e1, Expression *e2)
: BinAssignExp(loc, TOKcatass, sizeof(CatAssignExp), e1, e2)
{
}
Expression *CatAssignExp::semantic(Scope *sc)
{ Expression *e;
//printf("CatAssignExp::semantic() %s\n", toChars());
e = op_overload(sc);
if (e)
return e;
if (e1->op == TOKslice)
{ SliceExp *se = (SliceExp *)e1;
if (se->e1->type->toBasetype()->ty == Tsarray)
{ error("cannot append to static array %s", se->e1->type->toChars());
return new ErrorExp();
}
}
e1 = e1->modifiableLvalue(sc, e1);
Type *tb1 = e1->type->toBasetype();
Type *tb2 = e2->type->toBasetype();
if (!e2->rvalue())
return new ErrorExp();
Type *tb1next = tb1->nextOf();
if ((tb1->ty == Tarray) &&
(tb2->ty == Tarray || tb2->ty == Tsarray) &&
(e2->implicitConvTo(e1->type)
#if DMDV2
|| tb2->nextOf()->implicitConvTo(tb1next)
#endif
)
)
{ // Append array
e2 = e2->castTo(sc, e1->type);
type = e1->type;
e = this;
}
else if ((tb1->ty == Tarray) &&
e2->implicitConvTo(tb1next)
)
{ // Append element
e2 = e2->castTo(sc, tb1next);
type = e1->type;
e = this;
}
else if (tb1->ty == Tarray &&
(tb1next->ty == Tchar || tb1next->ty == Twchar) &&
e2->type->ty != tb1next->ty &&
e2->implicitConvTo(Type::tdchar)
)
{ // Append dchar to char[] or wchar[]
e2 = e2->castTo(sc, Type::tdchar);
type = e1->type;
e = this;
/* Do not allow appending wchar to char[] because if wchar happens
* to be a surrogate pair, nothing good can result.
*/
}
else
{
if (tb1 != Type::terror && tb2 != Type::terror)
error("cannot append type %s to type %s", tb2->toChars(), tb1->toChars());
e = new ErrorExp();
}
return e;
}
/************************************************************/
MulAssignExp::MulAssignExp(Loc loc, Expression *e1, Expression *e2)
: BinAssignExp(loc, TOKmulass, sizeof(MulAssignExp), e1, e2)
{
}
Expression *MulAssignExp::semantic(Scope *sc)
{ Expression *e;
e = op_overload(sc);
if (e)
return e;
#if DMDV2
if (e1->op == TOKarraylength)
{
e = ArrayLengthExp::rewriteOpAssign(this);
e = e->semantic(sc);
return e;
}
#endif
if (e1->op == TOKslice)
{ // T[] *= ...
e = typeCombine(sc);
if (e->op == TOKerror)
return e;
return arrayOp(sc);
}
e1 = e1->modifiableLvalue(sc, e1);
e1->checkScalar();
e1->checkNoBool();
type = e1->type;
typeCombine(sc);
e1->checkArithmetic();
e2->checkArithmetic();
checkComplexMulAssign();
if (e2->type->isfloating())
{
Type *t1 = e1->type;
Type *t2 = e2->type;
if (t1->isreal())
{
if (t2->isimaginary() || t2->iscomplex())
{
e2 = e2->castTo(sc, t1);
}
}
else if (t1->isimaginary())
{
if (t2->isimaginary() || t2->iscomplex())
{
switch (t1->ty)
{
case Timaginary32: t2 = Type::tfloat32; break;
case Timaginary64: t2 = Type::tfloat64; break;
case Timaginary80: t2 = Type::tfloat80; break;
default:
assert(0);
}
e2 = e2->castTo(sc, t2);
}
}
if (e2->type->iscomplex() && !type->iscomplex())
error("Cannot assign %s to %s", e2->type->toChars(), type->toChars());
}
else if (type->toBasetype()->ty == Tvector &&
((TypeVector *)type->toBasetype())->elementType()->size(loc) != 2)
{ // Only short[8] and ushort[8] work with multiply
return incompatibleTypes();
}
return this;
}
/************************************************************/
DivAssignExp::DivAssignExp(Loc loc, Expression *e1, Expression *e2)
: BinAssignExp(loc, TOKdivass, sizeof(DivAssignExp), e1, e2)
{
}
Expression *DivAssignExp::semantic(Scope *sc)
{ Expression *e;
e = op_overload(sc);
if (e)
return e;
#if DMDV2
if (e1->op == TOKarraylength)
{
e = ArrayLengthExp::rewriteOpAssign(this);
e = e->semantic(sc);
return e;
}
#endif
if (e1->op == TOKslice)
{ // T[] /= ...
e = typeCombine(sc);
if (e->op == TOKerror)
return e;
type = e1->type;
return arrayOp(sc);
}
e1 = e1->modifiableLvalue(sc, e1);
e1->checkScalar();
e1->checkNoBool();
type = e1->type;
typeCombine(sc);
e1->checkArithmetic();
e2->checkArithmetic();
checkComplexMulAssign();
if (e2->type->isimaginary())
{
Type *t1 = e1->type;
if (t1->isreal())
{ // x/iv = i(-x/v)
// Therefore, the result is 0
e2 = new CommaExp(loc, e2, new RealExp(loc, 0, t1));
e2->type = t1;
e = new AssignExp(loc, e1, e2);
e->type = t1;
return e;
}
else if (t1->isimaginary())
{ Type *t2;
switch (t1->ty)
{
case Timaginary32: t2 = Type::tfloat32; break;
case Timaginary64: t2 = Type::tfloat64; break;
case Timaginary80: t2 = Type::tfloat80; break;
default:
assert(0);
}
e2 = e2->castTo(sc, t2);
Expression *e = new AssignExp(loc, e1, e2);
e->type = t1;
return e;
}
}
else if (type->toBasetype()->ty == Tvector && !e1->type->isfloating())
return incompatibleTypes();
if (e2->type->iscomplex() && !type->iscomplex())
error("Cannot assign %s to %s", e2->type->toChars(), type->toChars());
return this;
}
/************************************************************/
ModAssignExp::ModAssignExp(Loc loc, Expression *e1, Expression *e2)
: BinAssignExp(loc, TOKmodass, sizeof(ModAssignExp), e1, e2)
{
}
Expression *ModAssignExp::semantic(Scope *sc)
{
if (!type)
{
Expression *e = op_overload(sc);
if (e)
return e;
checkComplexMulAssign();
return commonSemanticAssign(sc);
}
return this;
}
/************************************************************/
ShlAssignExp::ShlAssignExp(Loc loc, Expression *e1, Expression *e2)
: BinAssignExp(loc, TOKshlass, sizeof(ShlAssignExp), e1, e2)
{
}
Expression *ShlAssignExp::semantic(Scope *sc)
{ Expression *e;
//printf("ShlAssignExp::semantic()\n");
e = op_overload(sc);
if (e)
return e;
if (e1->op == TOKarraylength)
{
e = ArrayLengthExp::rewriteOpAssign(this);
e = e->semantic(sc);
return e;
}
e1 = e1->modifiableLvalue(sc, e1);
e1->checkScalar();
e1->checkNoBool();
type = e1->type;
if (e1->type->toBasetype()->ty == Tvector || e2->type->toBasetype()->ty == Tvector)
return incompatibleTypes();
typeCombine(sc);
e1->checkIntegral();
e2 = e2->checkIntegral();
#if IN_DMD
e2 = e2->castTo(sc, Type::tshiftcnt);
#elif IN_LLVM
e2 = e2->castTo(sc, e1->type);
#endif
return this;
}
/************************************************************/
ShrAssignExp::ShrAssignExp(Loc loc, Expression *e1, Expression *e2)
: BinAssignExp(loc, TOKshrass, sizeof(ShrAssignExp), e1, e2)
{
}
Expression *ShrAssignExp::semantic(Scope *sc)
{ Expression *e;
e = op_overload(sc);
if (e)
return e;
if (e1->op == TOKarraylength)
{
e = ArrayLengthExp::rewriteOpAssign(this);
e = e->semantic(sc);
return e;
}
e1 = e1->modifiableLvalue(sc, e1);
e1->checkScalar();
e1->checkNoBool();
type = e1->type;
if (e1->type->toBasetype()->ty == Tvector || e2->type->toBasetype()->ty == Tvector)
return incompatibleTypes();
typeCombine(sc);
e1->checkIntegral();
e2 = e2->checkIntegral();
#if IN_DMD
e2 = e2->castTo(sc, Type::tshiftcnt);
#elif IN_LLVM
e2 = e2->castTo(sc, e1->type);
#endif
return this;
}
/************************************************************/
UshrAssignExp::UshrAssignExp(Loc loc, Expression *e1, Expression *e2)
: BinAssignExp(loc, TOKushrass, sizeof(UshrAssignExp), e1, e2)
{
}
Expression *UshrAssignExp::semantic(Scope *sc)
{ Expression *e;
e = op_overload(sc);
if (e)
return e;
if (e1->op == TOKarraylength)
{
e = ArrayLengthExp::rewriteOpAssign(this);
e = e->semantic(sc);
return e;
}
e1 = e1->modifiableLvalue(sc, e1);
e1->checkScalar();
e1->checkNoBool();
type = e1->type;
if (e1->type->toBasetype()->ty == Tvector || e2->type->toBasetype()->ty == Tvector)
return incompatibleTypes();
typeCombine(sc);
e1->checkIntegral();
e2 = e2->checkIntegral();
//e2 = e2->castTo(sc, Type::tshiftcnt);
e2 = e2->castTo(sc, e1->type); // LDC
return this;
}
/************************************************************/
AndAssignExp::AndAssignExp(Loc loc, Expression *e1, Expression *e2)
: BinAssignExp(loc, TOKandass, sizeof(AndAssignExp), e1, e2)
{
}
Expression *AndAssignExp::semantic(Scope *sc)
{
return commonSemanticAssignIntegral(sc);
}
/************************************************************/
OrAssignExp::OrAssignExp(Loc loc, Expression *e1, Expression *e2)
: BinAssignExp(loc, TOKorass, sizeof(OrAssignExp), e1, e2)
{
}
Expression *OrAssignExp::semantic(Scope *sc)
{
return commonSemanticAssignIntegral(sc);
}
/************************************************************/
XorAssignExp::XorAssignExp(Loc loc, Expression *e1, Expression *e2)
: BinAssignExp(loc, TOKxorass, sizeof(XorAssignExp), e1, e2)
{
}
Expression *XorAssignExp::semantic(Scope *sc)
{
return commonSemanticAssignIntegral(sc);
}
/***************** PowAssignExp *******************************************/
PowAssignExp::PowAssignExp(Loc loc, Expression *e1, Expression *e2)
: BinAssignExp(loc, TOKpowass, sizeof(PowAssignExp), e1, e2)
{
}
Expression *PowAssignExp::semantic(Scope *sc)
{
Expression *e;
if (type)
return this;
e = op_overload(sc);
if (e)
return e;
assert(e1->type && e2->type);
if (e1->op == TOKslice)
{ // T[] ^^= ...
e = typeCombine(sc);
if (e->op == TOKerror)
return e;
// Check element types are arithmetic
Type *tb1 = e1->type->nextOf()->toBasetype();
Type *tb2 = e2->type->toBasetype();
if (tb2->ty == Tarray || tb2->ty == Tsarray)
tb2 = tb2->nextOf()->toBasetype();
if ( (tb1->isintegral() || tb1->isfloating()) &&
(tb2->isintegral() || tb2->isfloating()))
{
type = e1->type;
return arrayOp(sc);
}
}
else
{
e1 = e1->modifiableLvalue(sc, e1);
}
if ( (e1->type->isintegral() || e1->type->isfloating()) &&
(e2->type->isintegral() || e2->type->isfloating()))
{
if (e1->op == TOKvar)
{ // Rewrite: e1 = e1 ^^ e2
e = new PowExp(loc, e1->syntaxCopy(), e2);
e = new AssignExp(loc, e1, e);
}
else
{ // Rewrite: ref tmp = e1; tmp = tmp ^^ e2
Identifier *id = Lexer::uniqueId("__powtmp");
VarDeclaration *v = new VarDeclaration(e1->loc, e1->type, id, new ExpInitializer(loc, e1));
v->storage_class |= STCref | STCforeach;
Expression *de = new DeclarationExp(e1->loc, v);
VarExp *ve = new VarExp(e1->loc, v);
e = new PowExp(loc, ve, e2);
e = new AssignExp(loc, new VarExp(e1->loc, v), e);
e = new CommaExp(loc, de, e);
}
e = e->semantic(sc);
if (e->type->toBasetype()->ty == Tvector)
return incompatibleTypes();
return e;
}
return incompatibleTypes();
}
/************************* AddExp *****************************/
AddExp::AddExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKadd, sizeof(AddExp), e1, e2)
{
}
Expression *AddExp::semantic(Scope *sc)
{ Expression *e;
#if LOGSEMANTIC
printf("AddExp::semantic('%s')\n", toChars());
#endif
if (!type)
{
BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
Type *tb1 = e1->type->toBasetype();
Type *tb2 = e2->type->toBasetype();
if ((tb1->ty == Tarray || tb1->ty == Tsarray) &&
(tb2->ty == Tarray || tb2->ty == Tsarray) &&
tb1->nextOf()->equals(tb2->nextOf())
)
{
type = e1->type;
e = this;
}
else if (tb1->ty == Tpointer && e2->type->isintegral() ||
tb2->ty == Tpointer && e1->type->isintegral())
e = scaleFactor(sc);
else if (tb1->ty == Tpointer && tb2->ty == Tpointer)
{
return incompatibleTypes();
}
else
{
typeCombine(sc);
Type *tb1 = e1->type->toBasetype();
if (tb1->ty == Tvector && !tb1->isscalar())
{
return incompatibleTypes();
}
if ((tb1->isreal() && e2->type->isimaginary()) ||
(tb1->isimaginary() && e2->type->isreal()))
{
switch (type->toBasetype()->ty)
{
case Tfloat32:
case Timaginary32:
type = Type::tcomplex32;
break;
case Tfloat64:
case Timaginary64:
type = Type::tcomplex64;
break;
case Tfloat80:
case Timaginary80:
type = Type::tcomplex80;
break;
default:
assert(0);
}
}
e = this;
}
return e;
}
return this;
}
/************************************************************/
MinExp::MinExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKmin, sizeof(MinExp), e1, e2)
{
}
Expression *MinExp::semantic(Scope *sc)
{ Expression *e;
#if LOGSEMANTIC
printf("MinExp::semantic('%s')\n", toChars());
#endif
if (type)
return this;
BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
e = this;
Type *t1 = e1->type->toBasetype();
Type *t2 = e2->type->toBasetype();
if (t1->ty == Tpointer)
{
if (t2->ty == Tpointer)
{ // Need to divide the result by the stride
// Replace (ptr - ptr) with (ptr - ptr) / stride
d_int64 stride;
Expression *e;
typeCombine(sc); // make sure pointer types are compatible
type = Type::tptrdiff_t;
stride = t2->nextOf()->size();
if (stride == 0)
{
e = new IntegerExp(loc, 0, Type::tptrdiff_t);
}
else
{
e = new DivExp(loc, this, new IntegerExp(0, stride, Type::tptrdiff_t));
e->type = Type::tptrdiff_t;
}
return e;
}
else if (t2->isintegral())
e = scaleFactor(sc);
else
{ error("can't subtract %s from pointer", t2->toChars());
return new ErrorExp();
}
}
else if (t2->ty == Tpointer)
{
type = e2->type;
error("can't subtract pointer from %s", e1->type->toChars());
return new ErrorExp();
}
else
{
typeCombine(sc);
t1 = e1->type->toBasetype();
t2 = e2->type->toBasetype();
if (t1->ty == Tvector && !t1->isscalar())
{
return incompatibleTypes();
}
if ((t1->isreal() && t2->isimaginary()) ||
(t1->isimaginary() && t2->isreal()))
{
switch (type->ty)
{
case Tfloat32:
case Timaginary32:
type = Type::tcomplex32;
break;
case Tfloat64:
case Timaginary64:
type = Type::tcomplex64;
break;
case Tfloat80:
case Timaginary80:
type = Type::tcomplex80;
break;
default:
assert(0);
}
}
}
return e;
}
/************************* CatExp *****************************/
CatExp::CatExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKcat, sizeof(CatExp), e1, e2)
{
}
Expression *CatExp::semantic(Scope *sc)
{ Expression *e;
//printf("CatExp::semantic() %s\n", toChars());
if (!type)
{
BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
Type *tb1 = e1->type->toBasetype();
Type *tb2 = e2->type->toBasetype();
/* BUG: Should handle things like:
* char c;
* c ~ ' '
* ' ' ~ c;
*/
#if 0
e1->type->print();
e2->type->print();
#endif
Type *tb1next = tb1->nextOf();
Type *tb2next = tb2->nextOf();
if ((tb1->ty == Tsarray || tb1->ty == Tarray) &&
e2->implicitConvTo(tb1next) >= MATCHconvert)
{
e2 = e2->implicitCastTo(sc, tb1next);
type = tb1next->arrayOf();
if (tb2->ty == Tarray)
{ // Make e2 into [e2]
e2 = new ArrayLiteralExp(e2->loc, e2);
e2->type = type;
}
return this;
}
else if ((tb2->ty == Tsarray || tb2->ty == Tarray) &&
e1->implicitConvTo(tb2next) >= MATCHconvert)
{
e1 = e1->implicitCastTo(sc, tb2next);
type = tb2next->arrayOf();
if (tb1->ty == Tarray)
{ // Make e1 into [e1]
e1 = new ArrayLiteralExp(e1->loc, e1);
e1->type = type;
}
return this;
}
if ((tb1->ty == Tsarray || tb1->ty == Tarray) &&
(tb2->ty == Tsarray || tb2->ty == Tarray) &&
(tb1next->mod || tb2next->mod) &&
(tb1next->mod != tb2next->mod)
)
{
Type *t1 = tb1next->mutableOf()->constOf()->arrayOf();
Type *t2 = tb2next->mutableOf()->constOf()->arrayOf();
if (e1->op == TOKstring && !((StringExp *)e1)->committed)
e1->type = t1;
else
e1 = e1->castTo(sc, t1);
if (e2->op == TOKstring && !((StringExp *)e2)->committed)
e2->type = t2;
else
e2 = e2->castTo(sc, t2);
}
typeCombine(sc);
type = type->toHeadMutable();
Type *tb = type->toBasetype();
if (tb->ty == Tsarray)
type = tb->nextOf()->arrayOf();
if (type->ty == Tarray && tb1next && tb2next &&
tb1next->mod != tb2next->mod)
{
type = type->nextOf()->toHeadMutable()->arrayOf();
}
#if 0
e1->type->print();
e2->type->print();
type->print();
print();
#endif
Type *t1 = e1->type->toBasetype();
Type *t2 = e2->type->toBasetype();
if (e1->op == TOKstring && e2->op == TOKstring)
e = optimize(WANTvalue);
else if ((t1->ty == Tarray || t1->ty == Tsarray) &&
(t2->ty == Tarray || t2->ty == Tsarray))
{
e = this;
}
else
{
//printf("(%s) ~ (%s)\n", e1->toChars(), e2->toChars());
incompatibleTypes();
return new ErrorExp();
}
e->type = e->type->semantic(loc, sc);
return e;
}
return this;
}
/************************************************************/
MulExp::MulExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKmul, sizeof(MulExp), e1, e2)
{
}
Expression *MulExp::semantic(Scope *sc)
{ Expression *e;
#if 0
printf("MulExp::semantic() %s\n", toChars());
#endif
if (type)
{
return this;
}
BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
typeCombine(sc);
if (!e1->isArrayOperand())
e1->checkArithmetic();
if (!e2->isArrayOperand())
e2->checkArithmetic();
if (type->isfloating())
{ Type *t1 = e1->type;
Type *t2 = e2->type;
if (t1->isreal())
{
type = t2;
}
else if (t2->isreal())
{
type = t1;
}
else if (t1->isimaginary())
{
if (t2->isimaginary())
{ Expression *e;
switch (t1->toBasetype()->ty)
{
case Timaginary32: type = Type::tfloat32; break;
case Timaginary64: type = Type::tfloat64; break;
case Timaginary80: type = Type::tfloat80; break;
default: assert(0);
}
// iy * iv = -yv
e1->type = type;
e2->type = type;
e = new NegExp(loc, this);
e = e->semantic(sc);
return e;
}
else
type = t2; // t2 is complex
}
else if (t2->isimaginary())
{
type = t1; // t1 is complex
}
}
else if (type->toBasetype()->ty == Tvector &&
((TypeVector *)type->toBasetype())->elementType()->size(loc) != 2)
{ // Only short[8] and ushort[8] work with multiply
return incompatibleTypes();
}
return this;
}
/************************************************************/
DivExp::DivExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKdiv, sizeof(DivExp), e1, e2)
{
}
Expression *DivExp::semantic(Scope *sc)
{ Expression *e;
if (type)
return this;
BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
typeCombine(sc);
if (!e1->isArrayOperand())
e1->checkArithmetic();
if (!e2->isArrayOperand())
e2->checkArithmetic();
if (type->isfloating())
{ Type *t1 = e1->type;
Type *t2 = e2->type;
if (t1->isreal())
{
type = t2;
if (t2->isimaginary())
{ Expression *e;
// x/iv = i(-x/v)
e2->type = t1;
e = new NegExp(loc, this);
e = e->semantic(sc);
return e;
}
}
else if (t2->isreal())
{
type = t1;
}
else if (t1->isimaginary())
{
if (t2->isimaginary())
{
switch (t1->toBasetype()->ty)
{
case Timaginary32: type = Type::tfloat32; break;
case Timaginary64: type = Type::tfloat64; break;
case Timaginary80: type = Type::tfloat80; break;
default: assert(0);
}
}
else
type = t2; // t2 is complex
}
else if (t2->isimaginary())
{
type = t1; // t1 is complex
}
}
else if (type->toBasetype()->ty == Tvector)
{ incompatibleTypes();
return new ErrorExp();
}
return this;
}
/************************************************************/
ModExp::ModExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKmod, sizeof(ModExp), e1, e2)
{
}
Expression *ModExp::semantic(Scope *sc)
{ Expression *e;
if (type)
return this;
BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
typeCombine(sc);
if (!e1->isArrayOperand())
e1->checkArithmetic();
if (!e2->isArrayOperand())
e2->checkArithmetic();
if (type->toBasetype()->ty == Tvector)
{ incompatibleTypes();
return new ErrorExp();
}
if (type->isfloating())
{ type = e1->type;
if (e2->type->iscomplex())
{ error("cannot perform modulo complex arithmetic");
return new ErrorExp();
}
}
return this;
}
/************************************************************/
PowExp::PowExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKpow, sizeof(PowExp), e1, e2)
{
}
Expression *PowExp::semantic(Scope *sc)
{ Expression *e;
if (type)
return this;
//printf("PowExp::semantic() %s\n", toChars());
BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
assert(e1->type && e2->type);
typeCombine(sc);
if (e1->op == TOKslice)
{
// Check element types are arithmetic
Type *tb1 = e1->type->nextOf()->toBasetype();
Type *tb2 = e2->type->toBasetype();
if (tb2->ty == Tarray || tb2->ty == Tsarray)
tb2 = tb2->nextOf()->toBasetype();
if ( (tb1->isintegral() || tb1->isfloating()) &&
(tb2->isintegral() || tb2->isfloating()))
{
type = e1->type;
return this;
}
}
if ( (e1->type->isintegral() || e1->type->isfloating()) &&
(e2->type->isintegral() || e2->type->isfloating()))
{
// For built-in numeric types, there are several cases.
// TODO: backend support, especially for e1 ^^ 2.
bool wantSqrt = false;
// First, attempt to fold the expression.
e = optimize(WANTvalue);
if (e->op != TOKpow)
{
e = e->semantic(sc);
return e;
}
// Determine if we're raising to an integer power.
sinteger_t intpow = 0;
if (e2->op == TOKint64 && ((sinteger_t)e2->toInteger() == 2 || (sinteger_t)e2->toInteger() == 3))
intpow = e2->toInteger();
else if (e2->op == TOKfloat64 && (e2->toReal() == (sinteger_t)(e2->toReal())))
intpow = (sinteger_t)(e2->toReal());
// Deal with x^^2, x^^3 immediately, since they are of practical importance.
if (intpow == 2 || intpow == 3)
{
// Replace x^^2 with (tmp = x, tmp*tmp)
// Replace x^^3 with (tmp = x, tmp*tmp*tmp)
Identifier *idtmp = Lexer::uniqueId("__powtmp");
VarDeclaration *tmp = new VarDeclaration(loc, e1->type->toBasetype(), idtmp, new ExpInitializer(0, e1));
tmp->storage_class = STCctfe;
Expression *ve = new VarExp(loc, tmp);
Expression *ae = new DeclarationExp(loc, tmp);
/* Note that we're reusing ve. This should be ok.
*/
Expression *me = new MulExp(loc, ve, ve);
if (intpow == 3)
me = new MulExp(loc, me, ve);
e = new CommaExp(loc, ae, me);
e = e->semantic(sc);
return e;
}
static int importMathChecked = 0;
if (!importMathChecked)
{
importMathChecked = 1;
for (size_t i = 0; i < Module::amodules.dim; i++)
{ Module *mi = Module::amodules.tdata()[i];
//printf("\t[%d] %s\n", i, mi->toChars());
if (mi->ident == Id::math &&
mi->parent->ident == Id::std &&
!mi->parent->parent)
goto L1;
}
error("must import std.math to use ^^ operator");
return new ErrorExp();
L1: ;
}
e = new IdentifierExp(loc, Id::empty);
e = new DotIdExp(loc, e, Id::std);
e = new DotIdExp(loc, e, Id::math);
if (e2->op == TOKfloat64 && e2->toReal() == 0.5)
{ // Replace e1 ^^ 0.5 with .std.math.sqrt(x)
e = new CallExp(loc, new DotIdExp(loc, e, Id::_sqrt), e1);
}
else
{
// Replace e1 ^^ e2 with .std.math.pow(e1, e2)
e = new CallExp(loc, new DotIdExp(loc, e, Id::_pow), e1, e2);
}
e = e->semantic(sc);
return e;
}
return incompatibleTypes();
}
/************************************************************/
ShlExp::ShlExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKshl, sizeof(ShlExp), e1, e2)
{
}
Expression *ShlExp::semantic(Scope *sc)
{ Expression *e;
//printf("ShlExp::semantic(), type = %p\n", type);
if (!type)
{ BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
e1 = e1->checkIntegral();
e2 = e2->checkIntegral();
if (e1->type->toBasetype()->ty == Tvector ||
e2->type->toBasetype()->ty == Tvector)
return incompatibleTypes();
e1 = e1->integralPromotions(sc);
//e2 = e2->castTo(sc, Type::tshiftcnt);
e2 = e2->castTo(sc, e1->type); // LDC
type = e1->type;
}
return this;
}
/************************************************************/
ShrExp::ShrExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKshr, sizeof(ShrExp), e1, e2)
{
}
Expression *ShrExp::semantic(Scope *sc)
{ Expression *e;
if (!type)
{ BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
e1 = e1->checkIntegral();
e2 = e2->checkIntegral();
if (e1->type->toBasetype()->ty == Tvector ||
e2->type->toBasetype()->ty == Tvector)
return incompatibleTypes();
e1 = e1->integralPromotions(sc);
//e2 = e2->castTo(sc, Type::tshiftcnt);
e2 = e2->castTo(sc, e1->type); // LDC
type = e1->type;
}
return this;
}
/************************************************************/
UshrExp::UshrExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKushr, sizeof(UshrExp), e1, e2)
{
}
Expression *UshrExp::semantic(Scope *sc)
{ Expression *e;
if (!type)
{ BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
e1 = e1->checkIntegral();
e2 = e2->checkIntegral();
if (e1->type->toBasetype()->ty == Tvector ||
e2->type->toBasetype()->ty == Tvector)
return incompatibleTypes();
e1 = e1->integralPromotions(sc);
//e2 = e2->castTo(sc, Type::tshiftcnt);
e2 = e2->castTo(sc, e1->type); // LDC
type = e1->type;
}
return this;
}
/************************************************************/
AndExp::AndExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKand, sizeof(AndExp), e1, e2)
{
}
Expression *AndExp::semantic(Scope *sc)
{ Expression *e;
if (!type)
{ BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
if (e1->type->toBasetype()->ty == Tbool &&
e2->type->toBasetype()->ty == Tbool)
{
type = e1->type;
e = this;
}
else
{
typeCombine(sc);
if (!e1->isArrayOperand())
e1->checkIntegral();
if (!e2->isArrayOperand())
e2->checkIntegral();
}
}
return this;
}
/************************************************************/
OrExp::OrExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKor, sizeof(OrExp), e1, e2)
{
}
Expression *OrExp::semantic(Scope *sc)
{ Expression *e;
if (!type)
{ BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
if (e1->type->toBasetype()->ty == Tbool &&
e2->type->toBasetype()->ty == Tbool)
{
type = e1->type;
e = this;
}
else
{
typeCombine(sc);
if (!e1->isArrayOperand())
e1->checkIntegral();
if (!e2->isArrayOperand())
e2->checkIntegral();
}
}
return this;
}
/************************************************************/
XorExp::XorExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKxor, sizeof(XorExp), e1, e2)
{
}
Expression *XorExp::semantic(Scope *sc)
{ Expression *e;
if (!type)
{ BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
if (e1->type->toBasetype()->ty == Tbool &&
e2->type->toBasetype()->ty == Tbool)
{
type = e1->type;
e = this;
}
else
{
typeCombine(sc);
if (!e1->isArrayOperand())
e1->checkIntegral();
if (!e2->isArrayOperand())
e2->checkIntegral();
}
}
return this;
}
/************************************************************/
OrOrExp::OrOrExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKoror, sizeof(OrOrExp), e1, e2)
{
}
Expression *OrOrExp::semantic(Scope *sc)
{
unsigned cs1;
// same as for AndAnd
e1 = e1->semantic(sc);
e1 = resolveProperties(sc, e1);
e1 = e1->checkToPointer();
e1 = e1->checkToBoolean(sc);
cs1 = sc->callSuper;
if (sc->flags & SCOPEstaticif)
{
/* If in static if, don't evaluate e2 if we don't have to.
*/
e1 = e1->optimize(WANTflags);
if (e1->isBool(TRUE))
{
return new IntegerExp(loc, 1, Type::tboolean);
}
}
e2 = e2->semantic(sc);
sc->mergeCallSuper(loc, cs1);
e2 = resolveProperties(sc, e2);
e2 = e2->checkToPointer();
if (e2->type->ty == Tvoid)
type = Type::tvoid;
else
{
e2 = e2->checkToBoolean(sc);
type = Type::tboolean;
}
if (e2->op == TOKtype || e2->op == TOKimport)
{ error("%s is not an expression", e2->toChars());
return new ErrorExp();
}
if (e1->op == TOKerror)
return e1;
if (e2->op == TOKerror)
return e2;
return this;
}
Expression *OrOrExp::checkToBoolean(Scope *sc)
{
e2 = e2->checkToBoolean(sc);
return this;
}
int OrOrExp::isBit()
{
return TRUE;
}
/************************************************************/
AndAndExp::AndAndExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKandand, sizeof(AndAndExp), e1, e2)
{
}
Expression *AndAndExp::semantic(Scope *sc)
{
unsigned cs1;
// same as for OrOr
e1 = e1->semantic(sc);
e1 = resolveProperties(sc, e1);
e1 = e1->checkToPointer();
e1 = e1->checkToBoolean(sc);
cs1 = sc->callSuper;
if (sc->flags & SCOPEstaticif)
{
/* If in static if, don't evaluate e2 if we don't have to.
*/
e1 = e1->optimize(WANTflags);
if (e1->isBool(FALSE))
{
return new IntegerExp(loc, 0, Type::tboolean);
}
}
e2 = e2->semantic(sc);
sc->mergeCallSuper(loc, cs1);
e2 = resolveProperties(sc, e2);
e2 = e2->checkToPointer();
if (e2->type->ty == Tvoid)
type = Type::tvoid;
else
{
e2 = e2->checkToBoolean(sc);
type = Type::tboolean;
}
if (e2->op == TOKtype || e2->op == TOKimport)
{ error("%s is not an expression", e2->toChars());
return new ErrorExp();
}
if (e1->op == TOKerror)
return e1;
if (e2->op == TOKerror)
return e2;
return this;
}
Expression *AndAndExp::checkToBoolean(Scope *sc)
{
e2 = e2->checkToBoolean(sc);
return this;
}
int AndAndExp::isBit()
{
return TRUE;
}
/************************************************************/
InExp::InExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKin, sizeof(InExp), e1, e2)
{
}
Expression *InExp::semantic(Scope *sc)
{ Expression *e;
if (type)
return this;
BinExp::semanticp(sc);
e = op_overload(sc);
if (e)
return e;
//type = Type::tboolean;
Type *t2b = e2->type->toBasetype();
switch (t2b->ty)
{
case Taarray:
{
TypeAArray *ta = (TypeAArray *)t2b;
#if DMDV2
// Special handling for array keys
if (!arrayTypeCompatible(e1->loc, e1->type, ta->index))
#endif
{
// Convert key to type of key
e1 = e1->implicitCastTo(sc, ta->index);
}
// Return type is pointer to value
type = ta->nextOf()->pointerTo();
break;
}
default:
error("rvalue of in expression must be an associative array, not %s", e2->type->toChars());
case Terror:
return new ErrorExp();
}
return this;
}
int InExp::isBit()
{
return FALSE;
}
/************************************************************/
/* This deletes the key e1 from the associative array e2
*/
RemoveExp::RemoveExp(Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, TOKremove, sizeof(RemoveExp), e1, e2)
{
type = Type::tboolean;
}
void RemoveExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, e1, PREC_primary);
buf->writestring(".remove(");
expToCBuffer(buf, hgs, e2, PREC_assign);
buf->writestring(")");
}
/************************************************************/
CmpExp::CmpExp(enum TOK op, Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, op, sizeof(CmpExp), e1, e2)
{
}
Expression *CmpExp::semantic(Scope *sc)
{ Expression *e;
#if LOGSEMANTIC
printf("CmpExp::semantic('%s')\n", toChars());
#endif
if (type)
return this;
BinExp::semanticp(sc);
Type *t1 = e1->type->toBasetype();
Type *t2 = e2->type->toBasetype();
if (t1->ty == Tclass && e2->op == TOKnull ||
t2->ty == Tclass && e1->op == TOKnull)
{
error("do not use null when comparing class types");
return new ErrorExp();
}
e = op_overload(sc);
if (e)
{
if (!e->type->isscalar() && e->type->equals(e1->type))
{
error("recursive opCmp expansion");
e = new ErrorExp();
}
else if (e->op == TOKcall)
{ e = new CmpExp(op, loc, e, new IntegerExp(loc, 0, Type::tint32));
e = e->semantic(sc);
}
return e;
}
/* Disallow comparing T[]==T and T==T[]
*/
if (e1->op == TOKslice && t1->ty == Tarray && e2->implicitConvTo(t1->nextOf()) ||
e2->op == TOKslice && t2->ty == Tarray && e1->implicitConvTo(t2->nextOf()))
{
incompatibleTypes();
return new ErrorExp();
}
Expression *eb1 = e1;
Expression *eb2 = e2;
e = typeCombine(sc);
if (e->op == TOKerror)
return e;
#if 0
// For integer comparisons, ensure the combined type can hold both arguments.
if (type && type->isintegral() && (op == TOKlt || op == TOKle ||
op == TOKgt || op == TOKge))
{
IntRange trange = IntRange::fromType(type);
Expression *errorexp = 0;
if (!trange.contains(eb1->getIntRange()))
errorexp = eb1;
if (!trange.contains(eb2->getIntRange()))
errorexp = eb2;
if (errorexp)
{
error("implicit conversion of '%s' to '%s' is unsafe in '(%s) %s (%s)'",
errorexp->toChars(), type->toChars(), eb1->toChars(), Token::toChars(op), eb2->toChars());
return new ErrorExp();
}
}
#endif
type = Type::tboolean;
// Special handling for array comparisons
t1 = e1->type->toBasetype();
t2 = e2->type->toBasetype();
if ((t1->ty == Tarray || t1->ty == Tsarray || t1->ty == Tpointer) &&
(t2->ty == Tarray || t2->ty == Tsarray || t2->ty == Tpointer))
{
if (t1->nextOf()->implicitConvTo(t2->nextOf()) < MATCHconst &&
t2->nextOf()->implicitConvTo(t1->nextOf()) < MATCHconst &&
(t1->nextOf()->ty != Tvoid && t2->nextOf()->ty != Tvoid))
error("array comparison type mismatch, %s vs %s", t1->nextOf()->toChars(), t2->nextOf()->toChars());
e = this;
}
else if (t1->ty == Tstruct || t2->ty == Tstruct ||
(t1->ty == Tclass && t2->ty == Tclass))
{
if (t2->ty == Tstruct)
error("need member function opCmp() for %s %s to compare", t2->toDsymbol(sc)->kind(), t2->toChars());
else
error("need member function opCmp() for %s %s to compare", t1->toDsymbol(sc)->kind(), t1->toChars());
e = new ErrorExp();
}
#if 1
else if (t1->iscomplex() || t2->iscomplex())
{
error("compare not defined for complex operands");
e = new ErrorExp();
}
#endif
else if (t1->ty == Tvector)
return incompatibleTypes();
else
{ if (!e1->rvalue() || !e2->rvalue())
return new ErrorExp();
e = this;
}
//printf("CmpExp: %s, type = %s\n", e->toChars(), e->type->toChars());
return e;
}
int CmpExp::isBit()
{
return TRUE;
}
/************************************************************/
EqualExp::EqualExp(enum TOK op, Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, op, sizeof(EqualExp), e1, e2)
{
assert(op == TOKequal || op == TOKnotequal);
}
int needDirectEq(Type *t1, Type *t2)
{
assert(t1->ty == Tarray || t1->ty == Tsarray);
assert(t2->ty == Tarray || t2->ty == Tsarray);
Type *t1n = t1->nextOf()->toBasetype();
Type *t2n = t2->nextOf()->toBasetype();
if (((t1n->ty == Tchar || t1n->ty == Twchar || t1n->ty == Tdchar) &&
(t2n->ty == Tchar || t2n->ty == Twchar || t2n->ty == Tdchar)) ||
(t1n->ty == Tvoid || t2n->ty == Tvoid))
{
return FALSE;
}
if (t1n->constOf() != t2n->constOf())
return TRUE;
Type *t = t1n;
while (t->toBasetype()->nextOf())
t = t->nextOf()->toBasetype();
if (t->ty != Tstruct)
return FALSE;
return ((TypeStruct *)t)->sym->xeq == StructDeclaration::xerreq;
}
Expression *EqualExp::semantic(Scope *sc)
{ Expression *e;
//printf("EqualExp::semantic('%s')\n", toChars());
if (type)
return this;
BinExp::semanticp(sc);
/* Before checking for operator overloading, check to see if we're
* comparing the addresses of two statics. If so, we can just see
* if they are the same symbol.
*/
if (e1->op == TOKaddress && e2->op == TOKaddress)
{ AddrExp *ae1 = (AddrExp *)e1;
AddrExp *ae2 = (AddrExp *)e2;
if (ae1->e1->op == TOKvar && ae2->e1->op == TOKvar)
{ VarExp *ve1 = (VarExp *)ae1->e1;
VarExp *ve2 = (VarExp *)ae2->e1;
if (ve1->var == ve2->var /*|| ve1->var->toSymbol() == ve2->var->toSymbol()*/)
{
// They are the same, result is 'true' for ==, 'false' for !=
e = new IntegerExp(loc, (op == TOKequal), Type::tboolean);
return e;
}
}
}
Type *t1 = e1->type->toBasetype();
Type *t2 = e2->type->toBasetype();
if (t1->ty == Tclass && e2->op == TOKnull ||
t2->ty == Tclass && e1->op == TOKnull)
{
error("use '%s' instead of '%s' when comparing with null",
Token::toChars(op == TOKequal ? TOKidentity : TOKnotidentity),
Token::toChars(op));
return new ErrorExp();
}
if ((t1->ty == Tarray || t1->ty == Tsarray) &&
(t2->ty == Tarray || t2->ty == Tsarray))
{
if (needDirectEq(t1, t2))
{ /* Rewrite as:
* _ArrayEq(e1, e2)
*/
Expression *eq = new IdentifierExp(loc, Id::_ArrayEq);
Expressions *args = new Expressions();
args->push(e1);
args->push(e2);
e = new CallExp(loc, eq, args);
if (op == TOKnotequal)
e = new NotExp(loc, e);
e = e->trySemantic(sc); // for better error message
if (!e)
{ error("cannot compare %s and %s", t1->toChars(), t2->toChars());
return new ErrorExp();
}
return e;
}
}
//if (e2->op != TOKnull)
{
e = op_overload(sc);
if (e)
{
if (e->op == TOKcall && op == TOKnotequal)
{
e = new NotExp(e->loc, e);
e = e->semantic(sc);
}
return e;
}
}
/* Disallow comparing T[]==T and T==T[]
*/
if (e1->op == TOKslice && t1->ty == Tarray && e2->implicitConvTo(t1->nextOf()) ||
e2->op == TOKslice && t2->ty == Tarray && e1->implicitConvTo(t2->nextOf()))
{
incompatibleTypes();
return new ErrorExp();
}
e = typeCombine(sc);
if (e->op == TOKerror)
return e;
type = Type::tboolean;
// Special handling for array comparisons
if (!arrayTypeCompatible(loc, e1->type, e2->type))
{
if (e1->type != e2->type && e1->type->isfloating() && e2->type->isfloating())
{
// Cast both to complex
e1 = e1->castTo(sc, Type::tcomplex80);
e2 = e2->castTo(sc, Type::tcomplex80);
}
}
if (e1->type->toBasetype()->ty == Tvector)
return incompatibleTypes();
return e;
}
int EqualExp::isBit()
{
return TRUE;
}
/************************************************************/
IdentityExp::IdentityExp(enum TOK op, Loc loc, Expression *e1, Expression *e2)
: BinExp(loc, op, sizeof(IdentityExp), e1, e2)
{
}
Expression *IdentityExp::semantic(Scope *sc)
{
if (type)
return this;
BinExp::semanticp(sc);
type = Type::tboolean;
Expression *e = typeCombine(sc);
if (e->op == TOKerror)
return e;
if (e1->type != e2->type && e1->type->isfloating() && e2->type->isfloating())
{
// Cast both to complex
e1 = e1->castTo(sc, Type::tcomplex80);
e2 = e2->castTo(sc, Type::tcomplex80);
}
if (e1->type->toBasetype()->ty == Tvector)
return incompatibleTypes();
return this;
}
int IdentityExp::isBit()
{
return TRUE;
}
/****************************************************************/
CondExp::CondExp(Loc loc, Expression *econd, Expression *e1, Expression *e2)
: BinExp(loc, TOKquestion, sizeof(CondExp), e1, e2)
{
this->econd = econd;
}
Expression *CondExp::syntaxCopy()
{
return new CondExp(loc, econd->syntaxCopy(), e1->syntaxCopy(), e2->syntaxCopy());
}
Expression *CondExp::semantic(Scope *sc)
{ Type *t1;
Type *t2;
unsigned cs0;
unsigned cs1;
#if LOGSEMANTIC
printf("CondExp::semantic('%s')\n", toChars());
#endif
if (type)
return this;
econd = econd->semantic(sc);
econd = resolveProperties(sc, econd);
econd = econd->checkToPointer();
econd = econd->checkToBoolean(sc);
#if 0 /* this cannot work right because the types of e1 and e2
* both contribute to the type of the result.
*/
if (sc->flags & SCOPEstaticif)
{
/* If in static if, don't evaluate what we don't have to.
*/
econd = econd->optimize(WANTflags);
if (econd->isBool(TRUE))
{
e1 = e1->semantic(sc);
e1 = resolveProperties(sc, e1);
return e1;
}
else if (econd->isBool(FALSE))
{
e2 = e2->semantic(sc);
e2 = resolveProperties(sc, e2);
return e2;
}
}
#endif
cs0 = sc->callSuper;
e1 = e1->semantic(sc);
e1 = resolveProperties(sc, e1);
cs1 = sc->callSuper;
sc->callSuper = cs0;
e2 = e2->semantic(sc);
e2 = resolveProperties(sc, e2);
sc->mergeCallSuper(loc, cs1);
// If either operand is void, the result is void
t1 = e1->type;
t2 = e2->type;
if (t1->ty == Tvoid || t2->ty == Tvoid)
type = Type::tvoid;
else if (t1 == t2)
type = t1;
else
{
typeCombine(sc);
switch (e1->type->toBasetype()->ty)
{
case Tcomplex32:
case Tcomplex64:
case Tcomplex80:
e2 = e2->castTo(sc, e1->type);
break;
}
switch (e2->type->toBasetype()->ty)
{
case Tcomplex32:
case Tcomplex64:
case Tcomplex80:
e1 = e1->castTo(sc, e2->type);
break;
}
if (type->toBasetype()->ty == Tarray)
{
e1 = e1->castTo(sc, type);
e2 = e2->castTo(sc, type);
}
}
#if 0
printf("res: %s\n", type->toChars());
printf("e1 : %s\n", e1->type->toChars());
printf("e2 : %s\n", e2->type->toChars());
#endif
return this;
}
#if DMDV2
int CondExp::isLvalue()
{
return e1->isLvalue() && e2->isLvalue();
}
#endif
Expression *CondExp::toLvalue(Scope *sc, Expression *ex)
{
PtrExp *e;
// convert (econd ? e1 : e2) to *(econd ? &e1 : &e2)
e = new PtrExp(loc, this, type);
e1 = e1->addressOf(sc);
e2 = e2->addressOf(sc);
typeCombine(sc);
type = e2->type;
return e;
}
Expression *CondExp::modifiableLvalue(Scope *sc, Expression *e)
{
//error("conditional expression %s is not a modifiable lvalue", toChars());
e1 = e1->modifiableLvalue(sc, e1);
e2 = e2->modifiableLvalue(sc, e1);
return toLvalue(sc, this);
}
void CondExp::checkEscape()
{
e1->checkEscape();
e2->checkEscape();
}
void CondExp::checkEscapeRef()
{
e1->checkEscapeRef();
e2->checkEscapeRef();
}
Expression *CondExp::checkToBoolean(Scope *sc)
{
e1 = e1->checkToBoolean(sc);
e2 = e2->checkToBoolean(sc);
return this;
}
void CondExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, econd, PREC_oror);
buf->writestring(" ? ");
expToCBuffer(buf, hgs, e1, PREC_expr);
buf->writestring(" : ");
expToCBuffer(buf, hgs, e2, PREC_cond);
}
/************************************************************/
#if IN_LLVM
// Strictly LDC specific stuff
GEPExp::GEPExp(Loc loc, Expression* e, Identifier* id, unsigned idx)
: UnaExp(loc, TOKgep, sizeof(GEPExp), e)
{
index = idx;
ident = id;
}
void GEPExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
expToCBuffer(buf, hgs, e1, PREC_primary);
buf->writeByte('.');
buf->writestring(ident->toChars());
}
Expression* GEPExp::toLvalue(Scope* sc, Expression* e)
{
// GEP's are always lvalues, at least in the "LLVM sense" ...
return this;
}
#endif
/****************************************************************/
DefaultInitExp::DefaultInitExp(Loc loc, enum TOK subop, int size)
: Expression(loc, TOKdefault, size)
{
this->subop = subop;
}
void DefaultInitExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring(Token::toChars(subop));
}
/****************************************************************/
FileInitExp::FileInitExp(Loc loc)
: DefaultInitExp(loc, TOKfile, sizeof(FileInitExp))
{
}
Expression *FileInitExp::semantic(Scope *sc)
{
//printf("FileInitExp::semantic()\n");
type = Type::tchar->invariantOf()->arrayOf();
return this;
}
Expression *FileInitExp::resolveLoc(Loc loc, Scope *sc)
{
//printf("FileInitExp::resolve() %s\n", toChars());
const char *s = loc.filename ? loc.filename : sc->module->ident->toChars();
Expression *e = new StringExp(loc, (char *)s);
e = e->semantic(sc);
e = e->castTo(sc, type);
return e;
}
/****************************************************************/
LineInitExp::LineInitExp(Loc loc)
: DefaultInitExp(loc, TOKline, sizeof(LineInitExp))
{
}
Expression *LineInitExp::semantic(Scope *sc)
{
type = Type::tint32;
return this;
}
Expression *LineInitExp::resolveLoc(Loc loc, Scope *sc)
{
Expression *e = new IntegerExp(loc, loc.linnum, Type::tint32);
e = e->castTo(sc, type);
return e;
}