mirror of
https://github.com/ldc-developers/ldc.git
synced 2025-05-04 00:55:49 +03:00
3284 lines
116 KiB
C++
3284 lines
116 KiB
C++
//===-- toir.cpp ----------------------------------------------------------===//
|
||
//
|
||
// LDC – the LLVM D compiler
|
||
//
|
||
// This file is distributed under the BSD-style LDC license. See the LICENSE
|
||
// file for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "attrib.h"
|
||
#include "enum.h"
|
||
#include "hdrgen.h"
|
||
#include "id.h"
|
||
#include "init.h"
|
||
#include "mtype.h"
|
||
#include "module.h"
|
||
#include "port.h"
|
||
#include "rmem.h"
|
||
#include "template.h"
|
||
#include "gen/aa.h"
|
||
#include "gen/abi.h"
|
||
#include "gen/abi-x86-64.h"
|
||
#include "gen/arrays.h"
|
||
#include "gen/classes.h"
|
||
#include "gen/complex.h"
|
||
#include "gen/dvalue.h"
|
||
#include "gen/functions.h"
|
||
#include "gen/irstate.h"
|
||
#include "gen/llvm.h"
|
||
#include "gen/llvmhelpers.h"
|
||
#include "gen/logger.h"
|
||
#include "gen/nested.h"
|
||
#include "gen/optimizer.h"
|
||
#include "gen/pragma.h"
|
||
#include "gen/runtime.h"
|
||
#include "gen/structs.h"
|
||
#include "gen/tollvm.h"
|
||
#include "gen/typeinf.h"
|
||
#include "gen/warnings.h"
|
||
#include "ir/irtypeclass.h"
|
||
#include "ir/irtypestruct.h"
|
||
#include "ir/irlandingpad.h"
|
||
#include "llvm/Support/CommandLine.h"
|
||
#include "llvm/Support/ManagedStatic.h"
|
||
#include <fstream>
|
||
#include <math.h>
|
||
#include <stack>
|
||
#include <stdio.h>
|
||
|
||
// Needs other includes.
|
||
#include "ctfe.h"
|
||
|
||
llvm::cl::opt<bool> checkPrintf("check-printf-calls",
|
||
llvm::cl::desc("Validate printf call format strings against arguments"),
|
||
llvm::cl::ZeroOrMore);
|
||
|
||
|
||
bool walkPostorder(Expression *e, StoppableVisitor *v);
|
||
extern LLConstant* get_default_initializer(VarDeclaration* vd, Initializer* init);
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
dinteger_t undoStrideMul(Loc& loc, Type* t, dinteger_t offset)
|
||
{
|
||
assert(t->ty == Tpointer);
|
||
d_uns64 elemSize = t->nextOf()->size(loc);
|
||
assert((offset % elemSize) == 0 &&
|
||
"Expected offset by an integer amount of elements");
|
||
|
||
return offset / elemSize;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
static LLValue* write_zeroes(LLValue* mem, unsigned start, unsigned end)
|
||
{
|
||
mem = DtoBitCast(mem, getVoidPtrType());
|
||
LLValue* gep = DtoGEPi1(mem, start, ".padding");
|
||
DtoMemSetZero(gep, DtoConstSize_t(end - start));
|
||
return mem;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
static void write_struct_literal(Loc loc, LLValue *mem, StructDeclaration *sd, Expressions *elements)
|
||
{
|
||
// ready elements data
|
||
assert(elements && "struct literal has null elements");
|
||
const size_t nexprs = elements->dim;
|
||
Expression **exprs = reinterpret_cast<Expression **>(elements->data);
|
||
|
||
// might be reset to an actual i8* value so only a single bitcast is emitted.
|
||
LLValue *voidptr = mem;
|
||
unsigned offset = 0;
|
||
|
||
// go through fields
|
||
const size_t nfields = sd->fields.dim;
|
||
for (size_t index = 0; index < nfields; ++index)
|
||
{
|
||
VarDeclaration *vd = sd->fields[index];
|
||
|
||
// get initializer expression
|
||
Expression* expr = (index < nexprs) ? exprs[index] : NULL;
|
||
if (!expr)
|
||
{
|
||
// In case of an union, we can't simply use the default initializer.
|
||
// Consider the type union U7727A1 { int i; double d; } and
|
||
// the declaration U7727A1 u = { d: 1.225 };
|
||
// The loop will first visit variable i and then d. Since d has an
|
||
// explicit initializer, we must use this one. The solution is to
|
||
// peek at the next variables.
|
||
for (size_t index2 = index+1; index2 < nfields; ++index2)
|
||
{
|
||
VarDeclaration *vd2 = sd->fields[index2];
|
||
if (vd->offset != vd2->offset) break;
|
||
++index; // skip var
|
||
Expression* expr2 = (index2 < nexprs) ? exprs[index2] : NULL;
|
||
if (expr2)
|
||
{
|
||
vd = vd2;
|
||
expr = expr2;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// don't re-initialize unions
|
||
if (vd->offset < offset)
|
||
{
|
||
IF_LOG Logger::println("skipping field: %s %s (+%u)", vd->type->toChars(), vd->toChars(), vd->offset);
|
||
continue;
|
||
}
|
||
|
||
// initialize any padding so struct comparisons work
|
||
if (vd->offset != offset)
|
||
voidptr = write_zeroes(voidptr, offset, vd->offset);
|
||
offset = vd->offset + vd->type->size();
|
||
|
||
IF_LOG Logger::println("initializing field: %s %s (+%u)", vd->type->toChars(), vd->toChars(), vd->offset);
|
||
LOG_SCOPE
|
||
|
||
// get initializer
|
||
DValue* val;
|
||
DConstValue cv(vd->type, NULL); // Only used in one branch; value is set beforehand
|
||
if (expr)
|
||
{
|
||
IF_LOG Logger::println("expr %zu = %s", index, expr->toChars());
|
||
val = toElem(expr);
|
||
}
|
||
else if (vd == sd->vthis) {
|
||
IF_LOG Logger::println("initializing vthis");
|
||
LOG_SCOPE
|
||
val = new DImValue(vd->type, DtoBitCast(DtoNestedContext(loc, sd), DtoType(vd->type)));
|
||
}
|
||
else
|
||
{
|
||
if (vd->init && vd->init->isVoidInitializer())
|
||
continue;
|
||
IF_LOG Logger::println("using default initializer");
|
||
LOG_SCOPE
|
||
cv.c = get_default_initializer(vd, NULL);
|
||
val = &cv;
|
||
}
|
||
|
||
// get a pointer to this field
|
||
DVarValue field(vd->type, vd, DtoIndexAggregate(mem, sd, vd));
|
||
|
||
// store the initializer there
|
||
DtoAssign(loc, &field, val, TOKconstruct, true);
|
||
|
||
if (expr)
|
||
callPostblit(loc, expr, field.getLVal());
|
||
|
||
// Also zero out padding bytes counted as being part of the type in DMD
|
||
// but not in LLVM; e.g. real/x86_fp80.
|
||
int implicitPadding =
|
||
vd->type->size() - gDataLayout->getTypeStoreSize(DtoType(vd->type));
|
||
assert(implicitPadding >= 0);
|
||
if (implicitPadding > 0)
|
||
{
|
||
IF_LOG Logger::println("zeroing %d padding bytes", implicitPadding);
|
||
voidptr = write_zeroes(voidptr, offset - implicitPadding, offset);
|
||
}
|
||
}
|
||
// initialize trailing padding
|
||
if (sd->structsize != offset)
|
||
voidptr = write_zeroes(voidptr, offset, sd->structsize);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
class ToElemVisitor : public Visitor
|
||
{
|
||
IRState *p;
|
||
DValue *result;
|
||
public:
|
||
ToElemVisitor(IRState *p_) : p(p_), result(0) { }
|
||
|
||
DValue *getResult() { return result; }
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
// Import all functions from class Visitor
|
||
using Visitor::visit;
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
class CacheLValueVisitor : public Visitor
|
||
{
|
||
public:
|
||
// Import all functions from class Visitor
|
||
using Visitor::visit;
|
||
|
||
template<typename T>
|
||
void cacheLvalue(T *e)
|
||
{
|
||
IF_LOG Logger::println("Caching l-value of %s", e->toChars());
|
||
LOG_SCOPE;
|
||
e->cachedLvalue = toElem(e)->getLVal();
|
||
}
|
||
|
||
void visit(Expression *e)
|
||
{
|
||
e->error("expression %s does not mask any l-value", e->toChars());
|
||
fatal();
|
||
}
|
||
|
||
#define IMPLEMENT(TYPE) void visit(TYPE *e) { cacheLvalue(e); }
|
||
|
||
IMPLEMENT(VarExp)
|
||
IMPLEMENT(CallExp)
|
||
IMPLEMENT(PtrExp)
|
||
IMPLEMENT(DotVarExp)
|
||
IMPLEMENT(IndexExp)
|
||
IMPLEMENT(CommaExp)
|
||
|
||
#undef IMPLEMENT
|
||
};
|
||
|
||
void cacheLvalue(Expression *e)
|
||
{
|
||
CacheLValueVisitor v;
|
||
e->accept(&v);
|
||
}
|
||
\
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(DeclarationExp *e)
|
||
{
|
||
IF_LOG Logger::print("DeclarationExp::toElem: %s | T=%s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
result = DtoDeclarationExp(e->declaration);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(VarExp *e)
|
||
{
|
||
IF_LOG Logger::print("VarExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
assert(e->var);
|
||
|
||
if (e->cachedLvalue)
|
||
{
|
||
LLValue* V = e->cachedLvalue;
|
||
result = new DVarValue(e->type, V);
|
||
return;
|
||
}
|
||
|
||
result = DtoSymbolAddress(e->loc, e->type, e->var);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(IntegerExp *e)
|
||
{
|
||
IF_LOG Logger::print("IntegerExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
LLConstant* c = toConstElem(e, p);
|
||
result = new DConstValue(e->type, c);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(RealExp *e)
|
||
{
|
||
IF_LOG Logger::print("RealExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
LLConstant* c = toConstElem(e, p);
|
||
result = new DConstValue(e->type, c);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(NullExp *e)
|
||
{
|
||
IF_LOG Logger::print("NullExp::toElem(type=%s): %s\n", e->type->toChars(), e->toChars());
|
||
LOG_SCOPE;
|
||
LLConstant* c = toConstElem(e, p);
|
||
result = new DNullValue(e->type, c);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(ComplexExp *e)
|
||
{
|
||
IF_LOG Logger::print("ComplexExp::toElem(): %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
LLConstant* c = toConstElem(e, p);
|
||
LLValue* res;
|
||
|
||
if (c->isNullValue()) {
|
||
switch (e->type->toBasetype()->ty) {
|
||
default: llvm_unreachable("Unexpected complex floating point type");
|
||
case Tcomplex32: c = DtoConstFP(Type::tfloat32, ldouble(0)); break;
|
||
case Tcomplex64: c = DtoConstFP(Type::tfloat64, ldouble(0)); break;
|
||
case Tcomplex80: c = DtoConstFP(Type::tfloat80, ldouble(0)); break;
|
||
}
|
||
res = DtoAggrPair(DtoType(e->type), c, c);
|
||
}
|
||
else {
|
||
res = DtoAggrPair(DtoType(e->type), c->getOperand(0), c->getOperand(1));
|
||
}
|
||
|
||
result = new DImValue(e->type, res);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(StringExp *e)
|
||
{
|
||
IF_LOG Logger::print("StringExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
Type* dtype = e->type->toBasetype();
|
||
Type* cty = dtype->nextOf()->toBasetype();
|
||
|
||
LLType* ct = voidToI8(DtoType(cty));
|
||
LLArrayType* at = LLArrayType::get(ct, e->len+1);
|
||
|
||
LLConstant* _init;
|
||
switch (cty->size())
|
||
{
|
||
default:
|
||
llvm_unreachable("Unknown char type");
|
||
case 1:
|
||
_init = toConstantArray(ct, at, static_cast<uint8_t *>(e->string), e->len);
|
||
break;
|
||
case 2:
|
||
_init = toConstantArray(ct, at, static_cast<uint16_t *>(e->string), e->len);
|
||
break;
|
||
case 4:
|
||
_init = toConstantArray(ct, at, static_cast<uint32_t *>(e->string), e->len);
|
||
break;
|
||
}
|
||
|
||
llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;
|
||
IF_LOG {
|
||
Logger::cout() << "type: " << *at << '\n';
|
||
Logger::cout() << "init: " << *_init << '\n';
|
||
}
|
||
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(*gIR->module, at, true, _linkage, _init, ".str");
|
||
gvar->setUnnamedAddr(true);
|
||
|
||
llvm::ConstantInt* zero = LLConstantInt::get(LLType::getInt32Ty(gIR->context()), 0, false);
|
||
LLConstant* idxs[2] = { zero, zero };
|
||
LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar, idxs, true);
|
||
|
||
if (dtype->ty == Tarray) {
|
||
LLConstant* clen = LLConstantInt::get(DtoSize_t(), e->len, false);
|
||
result = new DImValue(e->type, DtoConstSlice(clen, arrptr, dtype));
|
||
}
|
||
else if (dtype->ty == Tsarray) {
|
||
LLType* dstType = getPtrToType(LLArrayType::get(ct, e->len));
|
||
LLValue* emem = (gvar->getType() == dstType) ? gvar : DtoBitCast(gvar, dstType);
|
||
result = new DVarValue(e->type, emem);
|
||
}
|
||
else if (dtype->ty == Tpointer) {
|
||
result = new DImValue(e->type, arrptr);
|
||
} else {
|
||
llvm_unreachable("Unknown type for StringExp.");
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(AssignExp *e)
|
||
{
|
||
IF_LOG Logger::print("AssignExp::toElem: %s | (%s)(%s = %s)\n",
|
||
e->toChars(),
|
||
e->type->toChars(),
|
||
e->e1->type->toChars(),
|
||
e->e2->type ? e->e2->type->toChars() : 0);
|
||
LOG_SCOPE;
|
||
|
||
if (e->e1->op == TOKarraylength)
|
||
{
|
||
Logger::println("performing array.length assignment");
|
||
ArrayLengthExp *ale = static_cast<ArrayLengthExp *>(e->e1);
|
||
DValue* arr = toElem(ale->e1);
|
||
DVarValue arrval(ale->e1->type, arr->getLVal());
|
||
DValue* newlen = toElem(e->e2);
|
||
DSliceValue* slice = DtoResizeDynArray(e->loc, arrval.getType(), &arrval, newlen->getRVal());
|
||
DtoAssign(e->loc, &arrval, slice);
|
||
result = newlen;
|
||
return;
|
||
}
|
||
|
||
// Can't just override ConstructExp::toElem because not all TOKconstruct
|
||
// operations are actually instances of ConstructExp... Long live the DMD
|
||
// coding style!
|
||
if (e->op == TOKconstruct)
|
||
{
|
||
if (e->e1->op == TOKvar)
|
||
{
|
||
VarExp* ve = (VarExp*)e->e1;
|
||
if (ve->var->storage_class & STCref)
|
||
{
|
||
Logger::println("performing ref variable initialization");
|
||
// Note that the variable value is accessed directly (instead
|
||
// of via getLVal(), which would perform a load from the
|
||
// uninitialized location), and that rhs is stored as an l-value!
|
||
DVarValue* lhs = toElem(e->e1)->isVar();
|
||
assert(lhs);
|
||
result = toElem(e->e2);
|
||
|
||
// We shouldn't really need makeLValue() here, but the 2.063
|
||
// frontend generates ref variables initialized from function
|
||
// calls.
|
||
DtoStore(makeLValue(e->loc, result), lhs->getRefStorage());
|
||
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (e->e1->op == TOKslice)
|
||
{
|
||
// Check if this is an initialization of a static array with an array
|
||
// literal that the frontend has foolishly rewritten into an
|
||
// assignment of a dynamic array literal to a slice.
|
||
Logger::println("performing static array literal assignment");
|
||
SliceExp * const se = static_cast<SliceExp *>(e->e1);
|
||
Type * const t2 = e->e2->type->toBasetype();
|
||
Type * const ta = se->e1->type->toBasetype();
|
||
|
||
if (se->lwr == NULL && ta->ty == Tsarray &&
|
||
e->e2->op == TOKarrayliteral &&
|
||
e->op == TOKconstruct && // DMD Bugzilla 11238: avoid aliasing issue
|
||
t2->nextOf()->mutableOf()->implicitConvTo(ta->nextOf()))
|
||
{
|
||
ArrayLiteralExp * const ale = static_cast<ArrayLiteralExp *>(e->e2);
|
||
initializeArrayLiteral(p, ale, toElem(se->e1)->getLVal());
|
||
result = toElem(e->e1);
|
||
return;
|
||
}
|
||
}
|
||
|
||
DValue* l = toElem(e->e1);
|
||
|
||
// NRVO for object field initialization in constructor
|
||
if (l->isVar() && e->op == TOKconstruct && e->e2->op == TOKcall)
|
||
{
|
||
CallExp *ce = static_cast<CallExp *>(e->e2);
|
||
if (DtoIsReturnInArg(ce))
|
||
{
|
||
DValue* fnval = toElem(ce->e1);
|
||
LLValue *lval = l->getLVal();
|
||
result = DtoCallFunction(ce->loc, ce->type, fnval, ce->arguments, lval);
|
||
return;
|
||
}
|
||
}
|
||
|
||
DValue* r = toElem(e->e2);
|
||
|
||
if (e->e1->type->toBasetype()->ty == Tstruct && e->e2->op == TOKint64)
|
||
{
|
||
Logger::println("performing aggregate zero initialization");
|
||
assert(e->e2->toInteger() == 0);
|
||
DtoAggrZeroInit(l->getLVal());
|
||
TypeStruct *ts = static_cast<TypeStruct*>(e->e1->type);
|
||
if (ts->sym->isNested() && ts->sym->vthis)
|
||
DtoResolveNestedContext(e->loc, ts->sym, l->getLVal());
|
||
// Return value should be irrelevant.
|
||
result = r;
|
||
return;
|
||
}
|
||
|
||
bool canSkipPostblit = false;
|
||
if (!(e->e2->op == TOKslice && ((UnaExp *)e->e2)->e1->isLvalue()) &&
|
||
!(e->e2->op == TOKcast && ((UnaExp *)e->e2)->e1->isLvalue()) &&
|
||
(e->e2->op == TOKslice || !e->e2->isLvalue()))
|
||
{
|
||
canSkipPostblit = true;
|
||
}
|
||
|
||
Logger::println("performing normal assignment (canSkipPostblit = %d)", canSkipPostblit);
|
||
DtoAssign(e->loc, l, r, e->op, canSkipPostblit);
|
||
|
||
result = l;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
/// Finds the proper lvalue for a binassign expressions.
|
||
/// Makes sure the given LHS expression is only evaluated once.
|
||
Expression* findLvalue(Expression* exp)
|
||
{
|
||
Expression* e = exp;
|
||
|
||
// skip past any casts
|
||
while(e->op == TOKcast)
|
||
e = static_cast<CastExp*>(e)->e1;
|
||
|
||
// cache lvalue and return
|
||
cacheLvalue(e);
|
||
return e;
|
||
}
|
||
|
||
template <typename Exp>
|
||
DValue *binAssign(BinAssignExp *be)
|
||
{
|
||
// Evaluate the expression
|
||
Loc loc = be->loc;
|
||
Exp e3(loc, be->e1, be->e2);
|
||
e3.type = be->e1->type;
|
||
DValue* dst = toElem(findLvalue(be->e1));
|
||
DValue* res = toElem(&e3);
|
||
|
||
// Now that we are done with the expression, clear the cached lvalue
|
||
Expression* e = be->e1;
|
||
while(e->op == TOKcast)
|
||
e = static_cast<CastExp*>(e)->e1;
|
||
e->cachedLvalue = NULL;
|
||
|
||
// Assign the (casted) value and return it
|
||
DValue* stval = DtoCast(loc, res, dst->getType());
|
||
DtoAssign(loc, dst, stval);
|
||
return DtoCast(loc, res, be->type);
|
||
}
|
||
|
||
template <typename Exp>
|
||
DValue *binShiftAssign(BinAssignExp *be)
|
||
{
|
||
Loc loc = be->loc;
|
||
// Find the lvalue for the expression
|
||
Expression *e1 = findLvalue(be->e1);
|
||
|
||
// Evaluate the expression
|
||
Exp e3(loc, e1, be->e2);
|
||
e3.type = e1->type;
|
||
DValue* dst = toElem(e1);
|
||
DValue* res = toElem(&e3);
|
||
|
||
// Now that we are done with the expression, clear the cached lvalue
|
||
e1->cachedLvalue = NULL;
|
||
|
||
// Assign the value and return it
|
||
DtoAssign(loc, dst, res);
|
||
return DtoCast(loc, res, be->type);
|
||
}
|
||
|
||
#define BIN_ASSIGN(X, op) \
|
||
void visit(X##AssignExp *e) \
|
||
{ \
|
||
IF_LOG Logger::print(#X"AssignExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars()); \
|
||
LOG_SCOPE; \
|
||
result = op <X##Exp>(e);\
|
||
}
|
||
|
||
BIN_ASSIGN(Add, binAssign)
|
||
BIN_ASSIGN(Min, binAssign)
|
||
BIN_ASSIGN(Mul, binAssign)
|
||
BIN_ASSIGN(Div, binAssign)
|
||
BIN_ASSIGN(Mod, binAssign)
|
||
BIN_ASSIGN(And, binAssign)
|
||
BIN_ASSIGN(Or, binAssign)
|
||
BIN_ASSIGN(Xor, binAssign)
|
||
BIN_ASSIGN(Shl, binShiftAssign)
|
||
BIN_ASSIGN(Shr, binShiftAssign)
|
||
BIN_ASSIGN(Ushr, binShiftAssign)
|
||
|
||
#undef BIN_ASSIGN
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void errorOnIllegalArrayOp(Expression* base, Expression* e1, Expression* e2)
|
||
{
|
||
Type* t1 = e1->type->toBasetype();
|
||
Type* t2 = e2->type->toBasetype();
|
||
|
||
// valid array ops would have been transformed by optimize
|
||
if ((t1->ty == Tarray || t1->ty == Tsarray) &&
|
||
(t2->ty == Tarray || t2->ty == Tsarray)
|
||
)
|
||
{
|
||
base->error("Array operation %s not recognized", base->toChars());
|
||
fatal();
|
||
}
|
||
}
|
||
|
||
/// Tries to remove a MulExp by a constant value of baseSize from e. Returns
|
||
/// NULL if not possible.
|
||
Expression* extractNoStrideInc(Expression* e, d_uns64 baseSize, bool& negate)
|
||
{
|
||
MulExp* mul;
|
||
while (true)
|
||
{
|
||
if (e->op == TOKneg)
|
||
{
|
||
negate = !negate;
|
||
e = static_cast<NegExp*>(e)->e1;
|
||
continue;
|
||
}
|
||
|
||
if (e->op == TOKmul)
|
||
{
|
||
mul = static_cast<MulExp*>(e);
|
||
break;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
if (!mul->e2->isConst()) return NULL;
|
||
dinteger_t stride = mul->e2->toInteger();
|
||
|
||
if (stride != baseSize) return NULL;
|
||
|
||
return mul->e1;
|
||
}
|
||
|
||
DValue* emitPointerOffset(IRState* p, Loc loc, DValue* base,
|
||
Expression* offset, bool negateOffset, Type* resultType)
|
||
{
|
||
// The operand emitted by the frontend is in units of bytes, and not
|
||
// pointer elements. We try to undo this before resorting to
|
||
// temporarily bitcasting the pointer to i8.
|
||
|
||
llvm::Value* noStrideInc = NULL;
|
||
if (offset->isConst())
|
||
{
|
||
dinteger_t byteOffset = offset->toInteger();
|
||
if (byteOffset == 0)
|
||
{
|
||
Logger::println("offset is zero");
|
||
return base;
|
||
}
|
||
noStrideInc = DtoConstSize_t(undoStrideMul(loc, base->type, byteOffset));
|
||
}
|
||
else if (Expression* inc = extractNoStrideInc(offset,
|
||
base->type->nextOf()->size(loc), negateOffset))
|
||
{
|
||
noStrideInc = toElem(inc)->getRVal();
|
||
}
|
||
|
||
if (noStrideInc)
|
||
{
|
||
if (negateOffset) noStrideInc = p->ir->CreateNeg(noStrideInc);
|
||
return new DImValue(base->type,
|
||
DtoGEP1(base->getRVal(), noStrideInc, "", p->scopebb()));
|
||
}
|
||
|
||
// This might not actually be generated by the frontend, just to be
|
||
// safe.
|
||
llvm::Value* inc = toElem(offset)->getRVal();
|
||
if (negateOffset) inc = p->ir->CreateNeg(inc);
|
||
llvm::Value* bytePtr = DtoBitCast(base->getRVal(), getVoidPtrType());
|
||
DValue* result = new DImValue(Type::tvoidptr, DtoGEP1(bytePtr, inc));
|
||
return DtoCast(loc, result, resultType);
|
||
}
|
||
|
||
void visit(AddExp *e)
|
||
{
|
||
IF_LOG Logger::print("AddExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = toElem(e->e1);
|
||
|
||
Type* t = e->type->toBasetype();
|
||
Type* e1type = e->e1->type->toBasetype();
|
||
Type* e2type = e->e2->type->toBasetype();
|
||
|
||
errorOnIllegalArrayOp(e, e->e1, e->e2);
|
||
|
||
if (e1type != e2type && e1type->ty == Tpointer && e2type->isintegral())
|
||
{
|
||
Logger::println("Adding integer to pointer");
|
||
result = emitPointerOffset(p, e->loc, l, e->e2, false, e->type);
|
||
}
|
||
else if (t->iscomplex()) {
|
||
result = DtoComplexAdd(e->loc, e->type, l, toElem(e->e2));
|
||
}
|
||
else {
|
||
result = DtoBinAdd(l, toElem(e->e2));
|
||
}
|
||
}
|
||
|
||
void visit(MinExp *e)
|
||
{
|
||
IF_LOG Logger::print("MinExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = toElem(e->e1);
|
||
|
||
Type* t = e->type->toBasetype();
|
||
Type* t1 = e->e1->type->toBasetype();
|
||
Type* t2 = e->e2->type->toBasetype();
|
||
|
||
errorOnIllegalArrayOp(e, e->e1, e->e2);
|
||
|
||
if (t1->ty == Tpointer && t2->ty == Tpointer) {
|
||
LLValue* lv = l->getRVal();
|
||
LLValue* rv = toElem(e->e2)->getRVal();
|
||
IF_LOG Logger::cout() << "lv: " << *lv << " rv: " << *rv << '\n';
|
||
lv = p->ir->CreatePtrToInt(lv, DtoSize_t());
|
||
rv = p->ir->CreatePtrToInt(rv, DtoSize_t());
|
||
LLValue* diff = p->ir->CreateSub(lv,rv);
|
||
if (diff->getType() != DtoType(e->type))
|
||
diff = p->ir->CreateIntToPtr(diff, DtoType(e->type));
|
||
result = new DImValue(e->type, diff);
|
||
}
|
||
else if (t1->ty == Tpointer && t2->isintegral())
|
||
{
|
||
Logger::println("Subtracting integer from pointer");
|
||
result = emitPointerOffset(p, e->loc, l, e->e2, true, e->type);
|
||
}
|
||
else if (t->iscomplex()) {
|
||
result = DtoComplexSub(e->loc, e->type, l, toElem(e->e2));
|
||
}
|
||
else {
|
||
result = DtoBinSub(l, toElem(e->e2));
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(MulExp *e)
|
||
{
|
||
IF_LOG Logger::print("MulExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = toElem(e->e1);
|
||
DValue* r = toElem(e->e2);
|
||
|
||
errorOnIllegalArrayOp(e, e->e1, e->e2);
|
||
|
||
if (e->type->iscomplex())
|
||
result = DtoComplexMul(e->loc, e->type, l, r);
|
||
else
|
||
result = DtoBinMul(e->type, l, r);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(DivExp *e)
|
||
{
|
||
IF_LOG Logger::print("DivExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = toElem(e->e1);
|
||
DValue* r = toElem(e->e2);
|
||
|
||
errorOnIllegalArrayOp(e, e->e1, e->e2);
|
||
|
||
if (e->type->iscomplex())
|
||
result = DtoComplexDiv(e->loc, e->type, l, r);
|
||
else
|
||
result = DtoBinDiv(e->type, l, r);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(ModExp *e)
|
||
{
|
||
IF_LOG Logger::print("ModExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = toElem(e->e1);
|
||
DValue* r = toElem(e->e2);
|
||
|
||
errorOnIllegalArrayOp(e, e->e1, e->e2);
|
||
|
||
if (e->type->iscomplex())
|
||
result = DtoComplexRem(e->loc, e->type, l, r);
|
||
else
|
||
result = DtoBinRem(e->type, l, r);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(CallExp *e)
|
||
{
|
||
IF_LOG Logger::print("CallExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (e->cachedLvalue)
|
||
{
|
||
LLValue* V = e->cachedLvalue;
|
||
result = new DVarValue(e->type, V);
|
||
return;
|
||
}
|
||
|
||
// handle magic inline asm
|
||
if (e->e1->op == TOKvar)
|
||
{
|
||
VarExp* ve = static_cast<VarExp*>(e->e1);
|
||
if (FuncDeclaration* fd = ve->var->isFuncDeclaration())
|
||
{
|
||
if (fd->llvmInternal == LLVMinline_asm)
|
||
{
|
||
result = DtoInlineAsmExpr(e->loc, fd, e->arguments);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
// get the callee value
|
||
DValue* fnval = toElem(e->e1);
|
||
|
||
// get func value if any
|
||
DFuncValue* dfnval = fnval->isFunc();
|
||
|
||
// handle magic intrinsics (mapping to instructions)
|
||
if (dfnval && dfnval->func)
|
||
{
|
||
FuncDeclaration* fndecl = dfnval->func;
|
||
|
||
// The System V AMD64 ABI used for all x86-64 targets except for Windows
|
||
// uses a special native va_list type - a 24-bytes struct passed by reference.
|
||
// In druntime, the struct is defined as core.stdc.stdarg.__va_list;
|
||
// the actually used core.stdc.stdarg.va_list type is a raw char* pointer
|
||
// though to achieve byref semantics.
|
||
// This requires a little bit of compiler magic here in the following
|
||
// implementations of LDC's va_start and va_copy intrinsics.
|
||
const bool isSystemVTarget = isSystemVAMD64Target();
|
||
LLType* systemVValistType = getSystemVAMD64NativeValistType();
|
||
|
||
// as requested by bearophile, see if it's a C printf call and that it's valid.
|
||
if (global.params.warnings && checkPrintf)
|
||
{
|
||
if (fndecl->linkage == LINKc && strcmp(fndecl->ident->string, "printf") == 0)
|
||
{
|
||
warnInvalidPrintfCall(e->loc, (*e->arguments)[0], e->arguments->dim);
|
||
}
|
||
}
|
||
|
||
// va_start instruction
|
||
if (fndecl->llvmInternal == LLVMva_start) {
|
||
if (e->arguments->dim != 2) {
|
||
e->error("va_start instruction expects 2 arguments");
|
||
fatal();
|
||
}
|
||
Expression* exp = (*e->arguments)[0];
|
||
LLValue* arg = toElem(exp)->getLVal(); // arg = &<passed ap> [va_list*]
|
||
if (LLValue* argptr = p->func()->_argptr) { // variadic extern(D) function with hidden _argptr:
|
||
DtoStore(DtoLoad(argptr), arg); // *arg = *_argptr_mem
|
||
// => <passed ap> = _argptr
|
||
result = new DImValue(e->type, arg);
|
||
} else if (isSystemVTarget) { // System V AMD64 ABI:
|
||
// Since the user only created a char* pointer on the stack before invoking va_start, we first
|
||
// need to allocate the actual __va_list struct and set the passed pointer to its address
|
||
// before invoking va_start.
|
||
LLValue* valistmem = DtoRawAlloca(systemVValistType,
|
||
0, "__va_list_mem"); // __va_list_mem = new __va_list
|
||
valistmem = DtoBitCast(valistmem, getVoidPtrType()); // valistmem = (char*)__va_list_mem
|
||
DtoStore(valistmem, arg); // *arg = valistmem
|
||
// => <passed ap> = (char*)__va_list_mem
|
||
result = new DImValue(e->type, gIR->ir->CreateCall( // llvm.va_start(valistmem)
|
||
GET_INTRINSIC_DECL(vastart), valistmem, "")); // => llvm.va_start(<passed ap>)
|
||
} else { // all other ABIs:
|
||
arg = DtoBitCast(arg, getVoidPtrType()); // arg = (char*)arg
|
||
result = new DImValue(e->type, gIR->ir->CreateCall( // llvm.va_start(arg)
|
||
GET_INTRINSIC_DECL(vastart), arg, "")); // => llvm.va_start((char*)&<passed ap>)
|
||
}
|
||
}
|
||
// va_copy instruction
|
||
else if (fndecl->llvmInternal == LLVMva_copy) {
|
||
if (e->arguments->dim != 2) {
|
||
e->error("va_copy instruction expects 2 arguments");
|
||
fatal();
|
||
}
|
||
|
||
LLValue* arg1 = toElem((*e->arguments)[0])->getLVal(); // arg1 = &<passed dest> [va_list*]
|
||
LLValue* arg2 = toElem((*e->arguments)[1])->getRVal(); // arg2 = <passed src> [va_list]
|
||
|
||
if (isSystemVTarget) {
|
||
// Similar to va_start, we need to allocate a new __va_list struct on the stack first
|
||
// and set the passed destination char* pointer to its address.
|
||
LLValue* valistmem = DtoRawAlloca(systemVValistType,
|
||
0, "__va_list_mem"); // __va_list_mem = new __va_list
|
||
DtoStore(DtoBitCast(valistmem, getVoidPtrType()), // *arg1 = (char*)__va_list_mem
|
||
arg1); // => <passed dest> = (char*)__va_list_mem
|
||
|
||
// Now simply bitcopy the source struct over the destination struct.
|
||
arg2 = DtoBitCast(arg2, valistmem->getType()); // arg2 = (__va_list*)arg2
|
||
DtoStore(DtoLoad(arg2), valistmem); // *__va_list_mem = *arg2
|
||
// => *(__va_list*)<passed dest> = *(__va_list*)<passed src>
|
||
} else { // all other ABIs:
|
||
DtoStore(arg2, arg1); // *arg1 = arg2
|
||
// => <passed dest> = <passed src>
|
||
}
|
||
|
||
result = new DVarValue(e->type, arg1);
|
||
}
|
||
// va_arg instruction
|
||
else if (fndecl->llvmInternal == LLVMva_arg) {
|
||
if (e->arguments->dim != 1) {
|
||
e->error("va_arg instruction expects 1 arguments");
|
||
fatal();
|
||
}
|
||
result = DtoVaArg(e->loc, e->type, (*e->arguments)[0]);
|
||
}
|
||
// C alloca
|
||
else if (fndecl->llvmInternal == LLVMalloca) {
|
||
if (e->arguments->dim != 1) {
|
||
e->error("alloca expects 1 arguments");
|
||
fatal();
|
||
}
|
||
Expression* exp = (*e->arguments)[0];
|
||
DValue* expv = toElem(exp);
|
||
if (expv->getType()->toBasetype()->ty != Tint32)
|
||
expv = DtoCast(e->loc, expv, Type::tint32);
|
||
result = new DImValue(e->type, p->ir->CreateAlloca(LLType::getInt8Ty(gIR->context()), expv->getRVal(), ".alloca"));
|
||
}
|
||
// fence instruction
|
||
else if (fndecl->llvmInternal == LLVMfence) {
|
||
if (e->arguments->dim != 1) {
|
||
e->error("fence instruction expects 1 arguments");
|
||
fatal();
|
||
}
|
||
gIR->ir->CreateFence(llvm::AtomicOrdering((*e->arguments)[0]->toInteger()));
|
||
return;
|
||
}
|
||
// atomic store instruction
|
||
else if (fndecl->llvmInternal == LLVMatomic_store) {
|
||
if (e->arguments->dim != 3) {
|
||
e->error("atomic store instruction expects 3 arguments");
|
||
fatal();
|
||
}
|
||
Expression* exp1 = (*e->arguments)[0];
|
||
Expression* exp2 = (*e->arguments)[1];
|
||
int atomicOrdering = (*e->arguments)[2]->toInteger();
|
||
LLValue* val = toElem(exp1)->getRVal();
|
||
LLValue* ptr = toElem(exp2)->getRVal();
|
||
|
||
if (!val->getType()->isIntegerTy()) {
|
||
e->error("atomic store only supports integer types, not '%s'", exp1->type->toChars());
|
||
fatal();
|
||
}
|
||
|
||
llvm::StoreInst* ret = gIR->ir->CreateStore(val, ptr);
|
||
ret->setAtomic(llvm::AtomicOrdering(atomicOrdering));
|
||
ret->setAlignment(getTypeAllocSize(val->getType()));
|
||
return;
|
||
}
|
||
// atomic load instruction
|
||
else if (fndecl->llvmInternal == LLVMatomic_load) {
|
||
if (e->arguments->dim != 2) {
|
||
e->error("atomic load instruction expects 2 arguments");
|
||
fatal();
|
||
}
|
||
|
||
Expression* exp = (*e->arguments)[0];
|
||
int atomicOrdering = (*e->arguments)[1]->toInteger();
|
||
|
||
LLValue* ptr = toElem(exp)->getRVal();
|
||
Type* retType = exp->type->nextOf();
|
||
|
||
if (!ptr->getType()->getContainedType(0)->isIntegerTy()) {
|
||
e->error("atomic load only supports integer types, not '%s'", retType->toChars());
|
||
fatal();
|
||
}
|
||
|
||
llvm::LoadInst* val = gIR->ir->CreateLoad(ptr);
|
||
val->setAlignment(getTypeAllocSize(val->getType()));
|
||
val->setAtomic(llvm::AtomicOrdering(atomicOrdering));
|
||
result = new DImValue(retType, val);
|
||
}
|
||
// cmpxchg instruction
|
||
else if (fndecl->llvmInternal == LLVMatomic_cmp_xchg) {
|
||
if (e->arguments->dim != 4) {
|
||
e->error("cmpxchg instruction expects 4 arguments");
|
||
fatal();
|
||
}
|
||
Expression* exp1 = (*e->arguments)[0];
|
||
Expression* exp2 = (*e->arguments)[1];
|
||
Expression* exp3 = (*e->arguments)[2];
|
||
int atomicOrdering = (*e->arguments)[3]->toInteger();
|
||
LLValue* ptr = toElem(exp1)->getRVal();
|
||
LLValue* cmp = toElem(exp2)->getRVal();
|
||
LLValue* val = toElem(exp3)->getRVal();
|
||
#if LDC_LLVM_VER >= 305
|
||
LLValue* ret = gIR->ir->CreateAtomicCmpXchg(ptr, cmp, val, llvm::AtomicOrdering(atomicOrdering), llvm::AtomicOrdering(atomicOrdering));
|
||
// Use the same quickfix as for dragonegg - see r210956
|
||
ret = gIR->ir->CreateExtractValue(ret, 0);
|
||
#else
|
||
LLValue* ret = gIR->ir->CreateAtomicCmpXchg(ptr, cmp, val, llvm::AtomicOrdering(atomicOrdering));
|
||
#endif
|
||
result = new DImValue(exp3->type, ret);
|
||
}
|
||
// atomicrmw instruction
|
||
else if (fndecl->llvmInternal == LLVMatomic_rmw) {
|
||
if (e->arguments->dim != 3) {
|
||
e->error("atomic_rmw instruction expects 3 arguments");
|
||
fatal();
|
||
}
|
||
|
||
static const char *ops[] = {
|
||
"xchg",
|
||
"add",
|
||
"sub",
|
||
"and",
|
||
"nand",
|
||
"or",
|
||
"xor",
|
||
"max",
|
||
"min",
|
||
"umax",
|
||
"umin",
|
||
0
|
||
};
|
||
|
||
int op = 0;
|
||
for (; ; ++op) {
|
||
if (ops[op] == 0) {
|
||
e->error("unknown atomic_rmw operation %s", fndecl->intrinsicName.c_str());
|
||
fatal();
|
||
}
|
||
if (fndecl->intrinsicName == ops[op])
|
||
break;
|
||
}
|
||
|
||
Expression* exp1 = (*e->arguments)[0];
|
||
Expression* exp2 = (*e->arguments)[1];
|
||
int atomicOrdering = (*e->arguments)[2]->toInteger();
|
||
LLValue* ptr = toElem(exp1)->getRVal();
|
||
LLValue* val = toElem(exp2)->getRVal();
|
||
LLValue* ret = gIR->ir->CreateAtomicRMW(llvm::AtomicRMWInst::BinOp(op), ptr, val,
|
||
llvm::AtomicOrdering(atomicOrdering));
|
||
result = new DImValue(exp2->type, ret);
|
||
}
|
||
// bitop
|
||
else if (fndecl->llvmInternal == LLVMbitop_bt ||
|
||
fndecl->llvmInternal == LLVMbitop_btr ||
|
||
fndecl->llvmInternal == LLVMbitop_btc ||
|
||
fndecl->llvmInternal == LLVMbitop_bts)
|
||
{
|
||
if (e->arguments->dim != 2) {
|
||
e->error("bitop intrinsic expects 2 arguments");
|
||
fatal();
|
||
}
|
||
|
||
Expression* exp1 = (*e->arguments)[0];
|
||
Expression* exp2 = (*e->arguments)[1];
|
||
LLValue* ptr = toElem(exp1)->getRVal();
|
||
LLValue* bitnum = toElem(exp2)->getRVal();
|
||
|
||
unsigned bitmask = DtoSize_t()->getBitWidth() - 1;
|
||
assert(bitmask == 31 || bitmask == 63);
|
||
// auto q = cast(size_t*)ptr + (bitnum >> (64bit ? 6 : 5));
|
||
LLValue* q = DtoBitCast(ptr, DtoSize_t()->getPointerTo());
|
||
q = DtoGEP1(q, p->ir->CreateLShr(bitnum, bitmask == 63 ? 6 : 5), "bitop.q");
|
||
|
||
// auto mask = 1 << (bitnum & bitmask);
|
||
LLValue* mask = p->ir->CreateAnd(bitnum, DtoConstSize_t(bitmask), "bitop.tmp");
|
||
mask = p->ir->CreateShl(DtoConstSize_t(1), mask, "bitop.mask");
|
||
|
||
// auto result = (*q & mask) ? -1 : 0;
|
||
LLValue* val = p->ir->CreateZExt(DtoLoad(q, "bitop.tmp"), DtoSize_t(), "bitop.val");
|
||
LLValue* ret = p->ir->CreateAnd(val, mask, "bitop.tmp");
|
||
ret = p->ir->CreateICmpNE(ret, DtoConstSize_t(0), "bitop.tmp");
|
||
ret = p->ir->CreateSelect(ret, DtoConstInt(-1), DtoConstInt(0), "bitop.result");
|
||
|
||
if (fndecl->llvmInternal != LLVMbitop_bt) {
|
||
llvm::Instruction::BinaryOps op;
|
||
if (fndecl->llvmInternal == LLVMbitop_btc) {
|
||
// *q ^= mask;
|
||
op = llvm::Instruction::Xor;
|
||
} else if (fndecl->llvmInternal == LLVMbitop_btr) {
|
||
// *q &= ~mask;
|
||
mask = p->ir->CreateNot(mask);
|
||
op = llvm::Instruction::And;
|
||
} else if (fndecl->llvmInternal == LLVMbitop_bts) {
|
||
// *q |= mask;
|
||
op = llvm::Instruction::Or;
|
||
} else {
|
||
llvm_unreachable("Unrecognized bitop intrinsic.");
|
||
}
|
||
|
||
LLValue *newVal = p->ir->CreateBinOp(op, val, mask, "bitop.new_val");
|
||
newVal = p->ir->CreateTrunc(newVal, DtoSize_t(), "bitop.tmp");
|
||
DtoStore(newVal, q);
|
||
}
|
||
|
||
result = new DImValue(e->type, ret);
|
||
}
|
||
}
|
||
|
||
if (!result)
|
||
result = DtoCallFunction(e->loc, e->type, fnval, e->arguments);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(CastExp *e)
|
||
{
|
||
IF_LOG Logger::print("CastExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// get the value to cast
|
||
DValue* u = toElem(e->e1);
|
||
|
||
// handle cast to void (usually created by frontend to avoid "has no effect" error)
|
||
if (e->to == Type::tvoid) {
|
||
result = new DImValue(Type::tvoid, llvm::UndefValue::get(voidToI8(DtoType(Type::tvoid))));
|
||
return;
|
||
}
|
||
|
||
// cast it to the 'to' type, if necessary
|
||
result = u;
|
||
if (!e->to->equals(e->e1->type))
|
||
result = DtoCast(e->loc, u, e->to);
|
||
|
||
// paint the type, if necessary
|
||
if (!e->type->equals(e->to))
|
||
result = DtoPaintType(e->loc, result, e->type);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(SymOffExp *e)
|
||
{
|
||
IF_LOG Logger::print("SymOffExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* base = DtoSymbolAddress(e->loc, e->var->type, e->var);
|
||
|
||
// This weird setup is required to be able to handle both variables as
|
||
// well as functions and TypeInfo references (which are not a DVarValue
|
||
// as well due to the level-of-indirection hack in Type::getTypeInfo that
|
||
// is unfortunately required by the frontend).
|
||
llvm::Value* baseValue;
|
||
if (base->isLVal())
|
||
baseValue = base->getLVal();
|
||
else
|
||
baseValue = base->getRVal();
|
||
assert(isaPointer(baseValue));
|
||
|
||
llvm::Value* offsetValue;
|
||
Type* offsetType;
|
||
|
||
if (e->offset == 0)
|
||
{
|
||
offsetValue = baseValue;
|
||
offsetType = base->type->pointerTo();
|
||
}
|
||
else
|
||
{
|
||
uint64_t elemSize = gDataLayout->getTypeStoreSize(
|
||
baseValue->getType()->getContainedType(0));
|
||
if (e->offset % elemSize == 0)
|
||
{
|
||
// We can turn this into a "nice" GEP.
|
||
offsetValue = DtoGEPi1(baseValue, e->offset / elemSize);
|
||
offsetType = base->type->pointerTo();
|
||
}
|
||
else
|
||
{
|
||
// Offset isn't a multiple of base type size, just cast to i8* and
|
||
// apply the byte offset.
|
||
offsetValue = DtoGEPi1(DtoBitCast(baseValue, getVoidPtrType()), e->offset);
|
||
offsetType = Type::tvoidptr;
|
||
}
|
||
}
|
||
|
||
// Casts are also "optimized into" SymOffExp by the frontend.
|
||
result = DtoCast(e->loc, new DImValue(offsetType, offsetValue), e->type);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(AddrExp *e)
|
||
{
|
||
IF_LOG Logger::println("AddrExp::toElem: %s @ %s", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// The address of a StructLiteralExp can in fact be a global variable, check
|
||
// for that instead of re-codegening the literal.
|
||
if (e->e1->op == TOKstructliteral)
|
||
{
|
||
IF_LOG Logger::println("is struct literal");
|
||
StructLiteralExp* se = static_cast<StructLiteralExp*>(e->e1);
|
||
|
||
// DMD uses origin here as well, necessary to handle messed-up AST on
|
||
// forward references.
|
||
if (se->origin->globalVar)
|
||
{
|
||
IF_LOG Logger::cout() << "returning address of global: " <<
|
||
*se->globalVar << '\n';
|
||
result = new DImValue(e->type, DtoBitCast(se->origin->globalVar, DtoType(e->type)));
|
||
return;
|
||
}
|
||
}
|
||
|
||
DValue* v = toElem(e->e1);
|
||
if (v->isField()) {
|
||
Logger::println("is field");
|
||
result = v;
|
||
return;
|
||
}
|
||
else if (DFuncValue* fv = v->isFunc()) {
|
||
Logger::println("is func");
|
||
//Logger::println("FuncDeclaration");
|
||
FuncDeclaration* fd = fv->func;
|
||
assert(fd);
|
||
DtoResolveFunction(fd);
|
||
result = new DFuncValue(fd, getIrFunc(fd)->func);
|
||
return;
|
||
}
|
||
else if (v->isIm()) {
|
||
Logger::println("is immediate");
|
||
result = v;
|
||
return;
|
||
}
|
||
Logger::println("is nothing special");
|
||
|
||
// we special case here, since apparently taking the address of a slice is ok
|
||
LLValue* lval;
|
||
if (v->isLVal())
|
||
lval = v->getLVal();
|
||
else
|
||
{
|
||
assert(v->isSlice());
|
||
LLValue* rval = v->getRVal();
|
||
lval = DtoRawAlloca(rval->getType(), 0, ".tmp_slice_storage");
|
||
DtoStore(rval, lval);
|
||
}
|
||
|
||
IF_LOG Logger::cout() << "lval: " << *lval << '\n';
|
||
result = new DImValue(e->type, DtoBitCast(lval, DtoType(e->type)));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(PtrExp *e)
|
||
{
|
||
IF_LOG Logger::println("PtrExp::toElem: %s @ %s", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// function pointers are special
|
||
if (e->type->toBasetype()->ty == Tfunction)
|
||
{
|
||
assert(!e->cachedLvalue);
|
||
DValue *dv = toElem(e->e1);
|
||
if (DFuncValue *dfv = dv->isFunc())
|
||
result = new DFuncValue(e->type, dfv->func, dfv->getRVal());
|
||
else
|
||
result = new DImValue(e->type, dv->getRVal());
|
||
return;
|
||
}
|
||
|
||
// get the rvalue and return it as an lvalue
|
||
LLValue* V;
|
||
if (e->cachedLvalue)
|
||
{
|
||
V = e->cachedLvalue;
|
||
}
|
||
else
|
||
{
|
||
V = toElem(e->e1)->getRVal();
|
||
}
|
||
|
||
// The frontend emits dereferences of class/interfaces types to access the
|
||
// first member, which is the .classinfo property.
|
||
Type* origType = e->e1->type->toBasetype();
|
||
if (origType->ty == Tclass)
|
||
{
|
||
TypeClass* ct = static_cast<TypeClass*>(origType);
|
||
|
||
Type* resultType;
|
||
if (ct->sym->isInterfaceDeclaration())
|
||
{
|
||
// For interfaces, the first entry in the vtbl is actually a pointer
|
||
// to an Interface instance, which has the type info as its first
|
||
// member, so we have to add an extra layer of indirection.
|
||
resultType = Type::typeinfointerface->type->pointerTo();
|
||
}
|
||
else
|
||
{
|
||
resultType = Type::typeinfointerface->type;
|
||
}
|
||
|
||
V = DtoBitCast(V, DtoType(resultType->pointerTo()->pointerTo()));
|
||
}
|
||
|
||
result = new DVarValue(e->type, V);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(DotVarExp *e)
|
||
{
|
||
IF_LOG Logger::print("DotVarExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (e->cachedLvalue)
|
||
{
|
||
Logger::println("using cached lvalue");
|
||
LLValue *V = e->cachedLvalue;
|
||
VarDeclaration* vd = e->var->isVarDeclaration();
|
||
assert(vd);
|
||
result = new DVarValue(e->type, vd, V);
|
||
return;
|
||
}
|
||
|
||
DValue* l = toElem(e->e1);
|
||
|
||
Type* e1type = e->e1->type->toBasetype();
|
||
|
||
//Logger::println("e1type=%s", e1type->toChars());
|
||
//Logger::cout() << *DtoType(e1type) << '\n';
|
||
|
||
if (VarDeclaration* vd = e->var->isVarDeclaration()) {
|
||
LLValue* arrptr;
|
||
// indexing struct pointer
|
||
if (e1type->ty == Tpointer) {
|
||
assert(e1type->nextOf()->ty == Tstruct);
|
||
TypeStruct* ts = static_cast<TypeStruct*>(e1type->nextOf());
|
||
arrptr = DtoIndexAggregate(l->getRVal(), ts->sym, vd);
|
||
}
|
||
// indexing normal struct
|
||
else if (e1type->ty == Tstruct) {
|
||
TypeStruct* ts = static_cast<TypeStruct*>(e1type);
|
||
arrptr = DtoIndexAggregate(l->getRVal(), ts->sym, vd);
|
||
}
|
||
// indexing class
|
||
else if (e1type->ty == Tclass) {
|
||
TypeClass* tc = static_cast<TypeClass*>(e1type);
|
||
arrptr = DtoIndexAggregate(l->getRVal(), tc->sym, vd);
|
||
}
|
||
else
|
||
llvm_unreachable("Unknown DotVarExp type for VarDeclaration.");
|
||
|
||
//Logger::cout() << "mem: " << *arrptr << '\n';
|
||
result = new DVarValue(e->type, vd, arrptr);
|
||
}
|
||
else if (FuncDeclaration* fdecl = e->var->isFuncDeclaration())
|
||
{
|
||
DtoResolveFunction(fdecl);
|
||
|
||
// This is a bit more convoluted than it would need to be, because it
|
||
// has to take templated interface methods into account, for which
|
||
// isFinalFunc is not necessarily true.
|
||
// Also, private methods are always not virtual.
|
||
const bool nonFinal = !fdecl->isFinalFunc() &&
|
||
(fdecl->isAbstract() || fdecl->isVirtual()) &&
|
||
fdecl->prot() != PROTprivate;
|
||
|
||
// If we are calling a non-final interface function, we need to get
|
||
// the pointer to the underlying object instead of passing the
|
||
// interface pointer directly.
|
||
// Unless it is a cpp interface, in that case, we have to match
|
||
// C++ behavior and pass the interface pointer.
|
||
LLValue* passedThis = 0;
|
||
if (e1type->ty == Tclass)
|
||
{
|
||
TypeClass* tc = static_cast<TypeClass*>(e1type);
|
||
if (tc->sym->isInterfaceDeclaration() && nonFinal && !tc->sym->isCPPinterface())
|
||
passedThis = DtoCastInterfaceToObject(e->loc, l, NULL)->getRVal();
|
||
}
|
||
LLValue* vthis = l->getRVal();
|
||
if (!passedThis) passedThis = vthis;
|
||
|
||
// Decide whether this function needs to be looked up in the vtable.
|
||
// Even virtual functions are looked up directly if super or DotTypeExp
|
||
// are used, thus we need to walk through the this expression and check.
|
||
bool vtbllookup = nonFinal;
|
||
Expression* exp = e->e1;
|
||
while (exp && vtbllookup)
|
||
{
|
||
if (exp->op == TOKsuper || exp->op == TOKdottype)
|
||
vtbllookup = false;
|
||
else if (exp->op == TOKcast)
|
||
exp = static_cast<CastExp*>(exp)->e1;
|
||
else
|
||
break;
|
||
}
|
||
|
||
// Get the actual function value to call.
|
||
LLValue* funcval = 0;
|
||
if (vtbllookup)
|
||
{
|
||
DImValue thisVal(e1type, vthis);
|
||
funcval = DtoVirtualFunctionPointer(&thisVal, fdecl, e->toChars());
|
||
}
|
||
else
|
||
{
|
||
funcval = getIrFunc(fdecl)->func;
|
||
}
|
||
assert(funcval);
|
||
|
||
result = new DFuncValue(fdecl, funcval, passedThis);
|
||
} else {
|
||
llvm_unreachable("Unknown target for VarDeclaration.");
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(ThisExp *e)
|
||
{
|
||
IF_LOG Logger::print("ThisExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// special cases: `this(int) { this(); }` and `this(int) { super(); }`
|
||
if (!e->var) {
|
||
Logger::println("this exp without var declaration");
|
||
LLValue* v = p->func()->thisArg;
|
||
result = new DVarValue(e->type, v);
|
||
return;
|
||
}
|
||
// regular this expr
|
||
else if (VarDeclaration* vd = e->var->isVarDeclaration()) {
|
||
LLValue* v;
|
||
Dsymbol* vdparent = vd->toParent2();
|
||
Identifier *ident = p->func()->decl->ident;
|
||
// In D1, contracts are treated as normal nested methods, 'this' is
|
||
// just passed in the context struct along with any used parameters.
|
||
if (ident == Id::ensure || ident == Id::require) {
|
||
Logger::println("contract this exp");
|
||
v = p->func()->nestArg;
|
||
v = DtoBitCast(v, DtoType(e->type)->getPointerTo());
|
||
} else
|
||
if (vdparent != p->func()->decl) {
|
||
Logger::println("nested this exp");
|
||
result = DtoNestedVariable(e->loc, e->type, vd, e->type->ty == Tstruct);
|
||
return;
|
||
}
|
||
else {
|
||
Logger::println("normal this exp");
|
||
v = p->func()->thisArg;
|
||
}
|
||
result = new DVarValue(e->type, vd, v);
|
||
} else {
|
||
llvm_unreachable("No VarDeclaration in ThisExp.");
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(IndexExp *e)
|
||
{
|
||
IF_LOG Logger::print("IndexExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (e->cachedLvalue)
|
||
{
|
||
LLValue* V = e->cachedLvalue;
|
||
result = new DVarValue(e->type, V);
|
||
return;
|
||
}
|
||
|
||
DValue* l = toElem(e->e1);
|
||
|
||
Type* e1type = e->e1->type->toBasetype();
|
||
|
||
p->arrays.push_back(l); // if $ is used it must be an array so this is fine.
|
||
DValue* r = toElem(e->e2);
|
||
p->arrays.pop_back();
|
||
|
||
LLValue* zero = DtoConstUint(0);
|
||
|
||
LLValue* arrptr = 0;
|
||
if (e1type->ty == Tpointer) {
|
||
arrptr = DtoGEP1(l->getRVal(),r->getRVal());
|
||
}
|
||
else if (e1type->ty == Tsarray) {
|
||
if (p->emitArrayBoundsChecks() && !e->skipboundscheck)
|
||
DtoArrayBoundsCheck(e->loc, l, r);
|
||
arrptr = DtoGEP(l->getRVal(), zero, r->getRVal());
|
||
}
|
||
else if (e1type->ty == Tarray) {
|
||
if (p->emitArrayBoundsChecks() && !e->skipboundscheck)
|
||
DtoArrayBoundsCheck(e->loc, l, r);
|
||
arrptr = DtoArrayPtr(l);
|
||
arrptr = DtoGEP1(arrptr,r->getRVal());
|
||
}
|
||
else if (e1type->ty == Taarray) {
|
||
result = DtoAAIndex(e->loc, e->type, l, r, e->modifiable);
|
||
return;
|
||
}
|
||
else {
|
||
IF_LOG Logger::println("e1type: %s", e1type->toChars());
|
||
llvm_unreachable("Unknown IndexExp target.");
|
||
}
|
||
result = new DVarValue(e->type, arrptr);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(SliceExp *e)
|
||
{
|
||
IF_LOG Logger::print("SliceExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// this is the new slicing code, it's different in that a full slice will no longer retain the original pointer.
|
||
// but this was broken if there *was* no original pointer, ie. a slice of a slice...
|
||
// now all slices have *both* the 'len' and 'ptr' fields set to != null.
|
||
|
||
// value being sliced
|
||
LLValue* elen = 0;
|
||
LLValue* eptr;
|
||
DValue* v = toElem(e->e1);
|
||
|
||
// handle pointer slicing
|
||
Type* etype = e->e1->type->toBasetype();
|
||
if (etype->ty == Tpointer)
|
||
{
|
||
assert(e->lwr);
|
||
eptr = v->getRVal();
|
||
}
|
||
// array slice
|
||
else
|
||
{
|
||
eptr = DtoArrayPtr(v);
|
||
}
|
||
|
||
// has lower bound, pointer needs adjustment
|
||
if (e->lwr)
|
||
{
|
||
// must have upper bound too then
|
||
assert(e->upr);
|
||
|
||
// get bounds (make sure $ works)
|
||
p->arrays.push_back(v);
|
||
DValue* lo = toElem(e->lwr);
|
||
DValue* up = toElem(e->upr);
|
||
p->arrays.pop_back();
|
||
LLValue* vlo = lo->getRVal();
|
||
LLValue* vup = up->getRVal();
|
||
|
||
if (gIR->emitArrayBoundsChecks())
|
||
DtoArrayBoundsCheck(e->loc, v, up, lo);
|
||
|
||
// offset by lower
|
||
eptr = DtoGEP1(eptr, vlo, "lowerbound");
|
||
|
||
// adjust length
|
||
elen = p->ir->CreateSub(vup, vlo);
|
||
}
|
||
// no bounds or full slice -> just convert to slice
|
||
else
|
||
{
|
||
assert(e->e1->type->toBasetype()->ty != Tpointer);
|
||
// if the sliceee is a static array, we use the length of that as DMD seems
|
||
// to give contrary inconsistent sizesin some multidimensional static array cases.
|
||
// (namely default initialization, int[16][16] arr; -> int[256] arr = 0;)
|
||
if (etype->ty == Tsarray)
|
||
{
|
||
TypeSArray* tsa = static_cast<TypeSArray*>(etype);
|
||
elen = DtoConstSize_t(tsa->dim->toUInteger());
|
||
|
||
// in this case, we also need to make sure the pointer is cast to the innermost element type
|
||
eptr = DtoBitCast(eptr, DtoType(tsa->nextOf()->pointerTo()));
|
||
}
|
||
}
|
||
|
||
// The frontend generates a SliceExp of static array type when assigning a
|
||
// fixed-width slice to a static array.
|
||
if (e->type->toBasetype()->ty == Tsarray)
|
||
{
|
||
LLValue *v = DtoBitCast(eptr, DtoType(e->type->pointerTo()));
|
||
result = new DVarValue(e->type, v);
|
||
return;
|
||
}
|
||
|
||
if (!elen) elen = DtoArrayLen(v);
|
||
result = new DSliceValue(e->type, elen, eptr);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(CmpExp *e)
|
||
{
|
||
IF_LOG Logger::print("CmpExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = toElem(e->e1);
|
||
DValue* r = toElem(e->e2);
|
||
|
||
Type* t = e->e1->type->toBasetype();
|
||
|
||
LLValue* eval = 0;
|
||
|
||
if (t->isintegral() || t->ty == Tpointer || t->ty == Tnull)
|
||
{
|
||
llvm::ICmpInst::Predicate icmpPred;
|
||
tokToIcmpPred(e->op, isLLVMUnsigned(t), &icmpPred, &eval);
|
||
|
||
if (!eval)
|
||
{
|
||
LLValue* a = l->getRVal();
|
||
LLValue* b = r->getRVal();
|
||
IF_LOG {
|
||
Logger::cout() << "type 1: " << *a << '\n';
|
||
Logger::cout() << "type 2: " << *b << '\n';
|
||
}
|
||
if (a->getType() != b->getType())
|
||
b = DtoBitCast(b, a->getType());
|
||
eval = p->ir->CreateICmp(icmpPred, a, b);
|
||
}
|
||
}
|
||
else if (t->isfloating())
|
||
{
|
||
llvm::FCmpInst::Predicate cmpop;
|
||
switch(e->op)
|
||
{
|
||
case TOKlt:
|
||
cmpop = llvm::FCmpInst::FCMP_OLT;break;
|
||
case TOKle:
|
||
cmpop = llvm::FCmpInst::FCMP_OLE;break;
|
||
case TOKgt:
|
||
cmpop = llvm::FCmpInst::FCMP_OGT;break;
|
||
case TOKge:
|
||
cmpop = llvm::FCmpInst::FCMP_OGE;break;
|
||
case TOKunord:
|
||
cmpop = llvm::FCmpInst::FCMP_UNO;break;
|
||
case TOKule:
|
||
cmpop = llvm::FCmpInst::FCMP_ULE;break;
|
||
case TOKul:
|
||
cmpop = llvm::FCmpInst::FCMP_ULT;break;
|
||
case TOKuge:
|
||
cmpop = llvm::FCmpInst::FCMP_UGE;break;
|
||
case TOKug:
|
||
cmpop = llvm::FCmpInst::FCMP_UGT;break;
|
||
case TOKue:
|
||
cmpop = llvm::FCmpInst::FCMP_UEQ;break;
|
||
case TOKlg:
|
||
cmpop = llvm::FCmpInst::FCMP_ONE;break;
|
||
case TOKleg:
|
||
cmpop = llvm::FCmpInst::FCMP_ORD;break;
|
||
|
||
default:
|
||
llvm_unreachable("Unsupported floating point comparison operator.");
|
||
}
|
||
eval = p->ir->CreateFCmp(cmpop, l->getRVal(), r->getRVal());
|
||
}
|
||
else if (t->ty == Tsarray || t->ty == Tarray)
|
||
{
|
||
Logger::println("static or dynamic array");
|
||
eval = DtoArrayCompare(e->loc, e->op, l, r);
|
||
}
|
||
else if (t->ty == Taarray)
|
||
{
|
||
eval = LLConstantInt::getFalse(gIR->context());
|
||
}
|
||
else if (t->ty == Tdelegate)
|
||
{
|
||
llvm::ICmpInst::Predicate icmpPred;
|
||
tokToIcmpPred(e->op, isLLVMUnsigned(t), &icmpPred, &eval);
|
||
|
||
if (!eval)
|
||
{
|
||
// First compare the function pointers, then the context ones. This is
|
||
// what DMD does.
|
||
llvm::Value* lhs = l->getRVal();
|
||
llvm::Value* rhs = r->getRVal();
|
||
|
||
llvm::BasicBlock* oldend = p->scopeend();
|
||
llvm::BasicBlock* fptreq = llvm::BasicBlock::Create(
|
||
gIR->context(), "fptreq", gIR->topfunc(), oldend);
|
||
llvm::BasicBlock* fptrneq = llvm::BasicBlock::Create(
|
||
gIR->context(), "fptrneq", gIR->topfunc(), oldend);
|
||
llvm::BasicBlock* dgcmpend = llvm::BasicBlock::Create(
|
||
gIR->context(), "dgcmpend", gIR->topfunc(), oldend);
|
||
|
||
llvm::Value* lfptr = p->ir->CreateExtractValue(lhs, 1, ".lfptr");
|
||
llvm::Value* rfptr = p->ir->CreateExtractValue(rhs, 1, ".rfptr");
|
||
|
||
llvm::Value* fptreqcmp = p->ir->CreateICmp(llvm::ICmpInst::ICMP_EQ,
|
||
lfptr, rfptr, ".fptreqcmp");
|
||
llvm::BranchInst::Create(fptreq, fptrneq, fptreqcmp, p->scopebb());
|
||
|
||
p->scope() = IRScope(fptreq, fptrneq);
|
||
llvm::Value* lctx = p->ir->CreateExtractValue(lhs, 0, ".lctx");
|
||
llvm::Value* rctx = p->ir->CreateExtractValue(rhs, 0, ".rctx");
|
||
llvm::Value* ctxcmp = p->ir->CreateICmp(icmpPred, lctx, rctx, ".ctxcmp");
|
||
llvm::BranchInst::Create(dgcmpend,p->scopebb());
|
||
|
||
p->scope() = IRScope(fptrneq, dgcmpend);
|
||
llvm::Value* fptrcmp = p->ir->CreateICmp(icmpPred, lfptr, rfptr, ".fptrcmp");
|
||
llvm::BranchInst::Create(dgcmpend,p->scopebb());
|
||
|
||
p->scope() = IRScope(dgcmpend, oldend);
|
||
llvm::PHINode* phi = p->ir->CreatePHI(ctxcmp->getType(), 2, ".dgcmp");
|
||
phi->addIncoming(ctxcmp, fptreq);
|
||
phi->addIncoming(fptrcmp, fptrneq);
|
||
eval = phi;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
llvm_unreachable("Unsupported CmpExp type");
|
||
}
|
||
|
||
result = new DImValue(e->type, eval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(EqualExp *e)
|
||
{
|
||
IF_LOG Logger::print("EqualExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = toElem(e->e1);
|
||
DValue* r = toElem(e->e2);
|
||
LLValue* lv = l->getRVal();
|
||
LLValue* rv = r->getRVal();
|
||
|
||
Type* t = e->e1->type->toBasetype();
|
||
|
||
LLValue* eval = 0;
|
||
|
||
// the Tclass catches interface comparisons, regular
|
||
// class equality should be rewritten as a.opEquals(b) by this time
|
||
if (t->isintegral() || t->ty == Tpointer || t->ty == Tclass || t->ty == Tnull)
|
||
{
|
||
Logger::println("integral or pointer or interface");
|
||
llvm::ICmpInst::Predicate cmpop;
|
||
switch(e->op)
|
||
{
|
||
case TOKequal:
|
||
cmpop = llvm::ICmpInst::ICMP_EQ;
|
||
break;
|
||
case TOKnotequal:
|
||
cmpop = llvm::ICmpInst::ICMP_NE;
|
||
break;
|
||
default:
|
||
llvm_unreachable("Unsupported integral type equality comparison.");
|
||
}
|
||
if (rv->getType() != lv->getType()) {
|
||
rv = DtoBitCast(rv, lv->getType());
|
||
}
|
||
IF_LOG {
|
||
Logger::cout() << "lv: " << *lv << '\n';
|
||
Logger::cout() << "rv: " << *rv << '\n';
|
||
}
|
||
eval = p->ir->CreateICmp(cmpop, lv, rv);
|
||
}
|
||
else if (t->isfloating()) // includes iscomplex
|
||
{
|
||
eval = DtoBinNumericEquals(e->loc, l, r, e->op);
|
||
}
|
||
else if (t->ty == Tsarray || t->ty == Tarray)
|
||
{
|
||
Logger::println("static or dynamic array");
|
||
eval = DtoArrayEquals(e->loc, e->op, l, r);
|
||
}
|
||
else if (t->ty == Taarray)
|
||
{
|
||
Logger::println("associative array");
|
||
eval = DtoAAEquals(e->loc, e->op, l, r);
|
||
}
|
||
else if (t->ty == Tdelegate)
|
||
{
|
||
Logger::println("delegate");
|
||
eval = DtoDelegateEquals(e->op, l->getRVal(), r->getRVal());
|
||
}
|
||
else if (t->ty == Tstruct)
|
||
{
|
||
Logger::println("struct");
|
||
// when this is reached it means there is no opEquals overload.
|
||
eval = DtoStructEquals(e->op, l, r);
|
||
}
|
||
else
|
||
{
|
||
llvm_unreachable("Unsupported EqualExp type.");
|
||
}
|
||
|
||
result = new DImValue(e->type, eval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(PostExp *e)
|
||
{
|
||
IF_LOG Logger::print("PostExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = toElem(e->e1);
|
||
toElem(e->e2);
|
||
|
||
LLValue* val = l->getRVal();
|
||
LLValue* post = 0;
|
||
|
||
Type* e1type = e->e1->type->toBasetype();
|
||
Type* e2type = e->e2->type->toBasetype();
|
||
|
||
if (e1type->isintegral())
|
||
{
|
||
assert(e2type->isintegral());
|
||
LLValue* one = LLConstantInt::get(val->getType(), 1, !e2type->isunsigned());
|
||
if (e->op == TOKplusplus) {
|
||
post = llvm::BinaryOperator::CreateAdd(val, one, "", p->scopebb());
|
||
}
|
||
else if (e->op == TOKminusminus) {
|
||
post = llvm::BinaryOperator::CreateSub(val, one, "", p->scopebb());
|
||
}
|
||
}
|
||
else if (e1type->ty == Tpointer)
|
||
{
|
||
assert(e->e2->op == TOKint64);
|
||
LLConstant* minusone = LLConstantInt::get(DtoSize_t(), static_cast<uint64_t>(-1), true);
|
||
LLConstant* plusone = LLConstantInt::get(DtoSize_t(), static_cast<uint64_t>(1), false);
|
||
LLConstant* whichone = (e->op == TOKplusplus) ? plusone : minusone;
|
||
post = llvm::GetElementPtrInst::Create(val, whichone, "", p->scopebb());
|
||
}
|
||
else if (e1type->isfloating())
|
||
{
|
||
assert(e2type->isfloating());
|
||
LLValue* one = DtoConstFP(e1type, ldouble(1.0));
|
||
if (e->op == TOKplusplus) {
|
||
post = llvm::BinaryOperator::CreateFAdd(val,one, "", p->scopebb());
|
||
}
|
||
else if (e->op == TOKminusminus) {
|
||
post = llvm::BinaryOperator::CreateFSub(val,one, "", p->scopebb());
|
||
}
|
||
}
|
||
else
|
||
assert(post);
|
||
|
||
DtoStore(post, l->getLVal());
|
||
result = new DImValue(e->type, val);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(NewExp *e)
|
||
{
|
||
IF_LOG Logger::print("NewExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
assert(e->newtype);
|
||
Type* ntype = e->newtype->toBasetype();
|
||
|
||
// new class
|
||
if (ntype->ty == Tclass) {
|
||
Logger::println("new class");
|
||
result = DtoNewClass(e->loc, static_cast<TypeClass*>(ntype), e);
|
||
}
|
||
// new dynamic array
|
||
else if (ntype->ty == Tarray)
|
||
{
|
||
IF_LOG Logger::println("new dynamic array: %s", e->newtype->toChars());
|
||
// get dim
|
||
assert(e->arguments);
|
||
assert(e->arguments->dim >= 1);
|
||
if (e->arguments->dim == 1)
|
||
{
|
||
DValue* sz = toElem((*e->arguments)[0]);
|
||
// allocate & init
|
||
result = DtoNewDynArray(e->loc, e->newtype, sz, true);
|
||
}
|
||
else
|
||
{
|
||
size_t ndims = e->arguments->dim;
|
||
std::vector<DValue*> dims;
|
||
dims.reserve(ndims);
|
||
for (size_t i=0; i<ndims; ++i)
|
||
dims.push_back(toElem((*e->arguments)[i]));
|
||
result = DtoNewMulDimDynArray(e->loc, e->newtype, &dims[0], ndims, true);
|
||
}
|
||
}
|
||
// new static array
|
||
else if (ntype->ty == Tsarray)
|
||
{
|
||
llvm_unreachable("Static array new should decay to dynamic array.");
|
||
}
|
||
// new struct
|
||
else if (ntype->ty == Tstruct)
|
||
{
|
||
IF_LOG Logger::println("new struct on heap: %s\n", e->newtype->toChars());
|
||
// allocate
|
||
LLValue* mem = 0;
|
||
if (e->allocator)
|
||
{
|
||
// custom allocator
|
||
DtoResolveFunction(e->allocator);
|
||
DFuncValue dfn(e->allocator, getIrFunc(e->allocator)->func);
|
||
DValue* res = DtoCallFunction(e->loc, NULL, &dfn, e->newargs);
|
||
mem = DtoBitCast(res->getRVal(), DtoType(ntype->pointerTo()), ".newstruct_custom");
|
||
}
|
||
else
|
||
{
|
||
// default allocator
|
||
mem = DtoNew(e->loc, e->newtype);
|
||
}
|
||
|
||
TypeStruct* ts = static_cast<TypeStruct*>(ntype);
|
||
|
||
if (!e->member && e->arguments)
|
||
{
|
||
IF_LOG Logger::println("Constructing using literal");
|
||
write_struct_literal(e->loc, mem, ts->sym, e->arguments);
|
||
}
|
||
else
|
||
{
|
||
// init
|
||
if (ts->isZeroInit(ts->sym->loc)) {
|
||
DtoAggrZeroInit(mem);
|
||
}
|
||
else {
|
||
assert(ts->sym);
|
||
DtoResolveStruct(ts->sym, e->loc);
|
||
DtoAggrCopy(mem, getIrAggr(ts->sym)->getInitSymbol());
|
||
}
|
||
|
||
// set nested context
|
||
if (ts->sym->isNested() && ts->sym->vthis)
|
||
DtoResolveNestedContext(e->loc, ts->sym, mem);
|
||
|
||
// call constructor
|
||
if (e->member)
|
||
{
|
||
IF_LOG Logger::println("Calling constructor");
|
||
assert(e->arguments != NULL);
|
||
DtoResolveFunction(e->member);
|
||
DFuncValue dfn(e->member, getIrFunc(e->member)->func, mem);
|
||
DtoCallFunction(e->loc, ts, &dfn, e->arguments);
|
||
}
|
||
}
|
||
|
||
result = new DImValue(e->type, mem);
|
||
}
|
||
// new basic type
|
||
else
|
||
{
|
||
IF_LOG Logger::println("basic type on heap: %s\n", e->newtype->toChars());
|
||
|
||
// allocate
|
||
LLValue* mem = DtoNew(e->loc, e->newtype);
|
||
DVarValue tmpvar(e->newtype, mem);
|
||
|
||
Expression* exp = 0;
|
||
if (!e->arguments || e->arguments->dim == 0)
|
||
{
|
||
IF_LOG Logger::println("default initializer\n");
|
||
// static arrays never appear here, so using the defaultInit is ok!
|
||
exp = e->newtype->defaultInit(e->loc);
|
||
}
|
||
else
|
||
{
|
||
IF_LOG Logger::println("uniform constructor\n");
|
||
assert(e->arguments->dim == 1);
|
||
exp = (*e->arguments)[0];
|
||
}
|
||
|
||
DValue* iv = toElem(exp);
|
||
DtoAssign(e->loc, &tmpvar, iv);
|
||
|
||
// return as pointer-to
|
||
result = new DImValue(e->type, mem);
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(DeleteExp *e)
|
||
{
|
||
IF_LOG Logger::print("DeleteExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* dval = toElem(e->e1);
|
||
Type* et = e->e1->type->toBasetype();
|
||
|
||
// simple pointer
|
||
if (et->ty == Tpointer)
|
||
{
|
||
DtoDeleteMemory(e->loc, dval->isLVal() ? dval->getLVal() : makeLValue(e->loc, dval));
|
||
}
|
||
// class
|
||
else if (et->ty == Tclass)
|
||
{
|
||
bool onstack = false;
|
||
TypeClass* tc = static_cast<TypeClass*>(et);
|
||
if (tc->sym->isInterfaceDeclaration())
|
||
{
|
||
LLValue *val = dval->getLVal();
|
||
DtoDeleteInterface(e->loc, val);
|
||
onstack = true;
|
||
}
|
||
else if (DVarValue* vv = dval->isVar()) {
|
||
if (vv->var && vv->var->onstack) {
|
||
DtoFinalizeClass(e->loc, dval->getRVal());
|
||
onstack = true;
|
||
}
|
||
}
|
||
if (!onstack) {
|
||
LLValue* rval = dval->getRVal();
|
||
DtoDeleteClass(e->loc, rval);
|
||
}
|
||
if (dval->isVar()) {
|
||
LLValue* lval = dval->getLVal();
|
||
DtoStore(LLConstant::getNullValue(lval->getType()->getContainedType(0)), lval);
|
||
}
|
||
}
|
||
// dyn array
|
||
else if (et->ty == Tarray)
|
||
{
|
||
DtoDeleteArray(e->loc, dval);
|
||
if (dval->isLVal())
|
||
DtoSetArrayToNull(dval->getLVal());
|
||
}
|
||
// unknown/invalid
|
||
else
|
||
{
|
||
llvm_unreachable("Unsupported DeleteExp target.");
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(ArrayLengthExp *e)
|
||
{
|
||
IF_LOG Logger::print("ArrayLengthExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* u = toElem(e->e1);
|
||
result = new DImValue(e->type, DtoArrayLen(u));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(AssertExp *e)
|
||
{
|
||
IF_LOG Logger::print("AssertExp::toElem: %s\n", e->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (!global.params.useAssert)
|
||
return;
|
||
|
||
// condition
|
||
DValue* cond;
|
||
Type* condty;
|
||
|
||
// special case for dmd generated assert(this); when not in -release mode
|
||
if (e->e1->op == TOKthis && static_cast<ThisExp*>(e->e1)->var == NULL)
|
||
{
|
||
LLValue* thisarg = p->func()->thisArg;
|
||
assert(thisarg && "null thisarg, but we're in assert(this) exp;");
|
||
LLValue* thisptr = DtoLoad(thisarg);
|
||
condty = e->e1->type->toBasetype();
|
||
cond = new DImValue(condty, thisptr);
|
||
}
|
||
else
|
||
{
|
||
cond = toElem(e->e1);
|
||
condty = e->e1->type->toBasetype();
|
||
}
|
||
|
||
// create basic blocks
|
||
llvm::BasicBlock* oldend = p->scopeend();
|
||
llvm::BasicBlock* assertbb = llvm::BasicBlock::Create(gIR->context(), "assert", p->topfunc(), oldend);
|
||
llvm::BasicBlock* endbb = llvm::BasicBlock::Create(gIR->context(), "noassert", p->topfunc(), oldend);
|
||
|
||
// test condition
|
||
LLValue* condval = DtoCast(e->loc, cond, Type::tbool)->getRVal();
|
||
|
||
// branch
|
||
llvm::BranchInst::Create(endbb, assertbb, condval, p->scopebb());
|
||
|
||
// call assert runtime functions
|
||
p->scope() = IRScope(assertbb, endbb);
|
||
|
||
/* DMD Bugzilla 8360: If the condition is evalated to true,
|
||
* msg is not evaluated at all. So should use toElemDtor()
|
||
* instead of toElem().
|
||
*/
|
||
DtoAssert(p->func()->decl->getModule(), e->loc, e->msg ? toElemDtor(e->msg) : NULL);
|
||
|
||
// rewrite the scope
|
||
p->scope() = IRScope(endbb, oldend);
|
||
|
||
FuncDeclaration* invdecl;
|
||
// class invariants
|
||
if(
|
||
global.params.useInvariants &&
|
||
condty->ty == Tclass &&
|
||
!(static_cast<TypeClass*>(condty)->sym->isInterfaceDeclaration()))
|
||
{
|
||
Logger::println("calling class invariant");
|
||
llvm::Function* fn = LLVM_D_GetRuntimeFunction(e->loc, gIR->module,
|
||
gABI->mangleForLLVM("_D9invariant12_d_invariantFC6ObjectZv", LINKd).c_str());
|
||
LLValue* arg = DtoBitCast(cond->getRVal(), fn->getFunctionType()->getParamType(0));
|
||
gIR->CreateCallOrInvoke(fn, arg);
|
||
}
|
||
// struct invariants
|
||
else if(
|
||
global.params.useInvariants &&
|
||
condty->ty == Tpointer && condty->nextOf()->ty == Tstruct &&
|
||
(invdecl = static_cast<TypeStruct*>(condty->nextOf())->sym->inv) != NULL)
|
||
{
|
||
Logger::print("calling struct invariant");
|
||
DtoResolveFunction(invdecl);
|
||
DFuncValue invfunc(invdecl, getIrFunc(invdecl)->func, cond->getRVal());
|
||
DtoCallFunction(e->loc, NULL, &invfunc, NULL);
|
||
}
|
||
|
||
// DMD allows syntax like this:
|
||
// f() == 0 || assert(false)
|
||
result = new DImValue(e->type, DtoConstBool(false));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(NotExp *e)
|
||
{
|
||
IF_LOG Logger::print("NotExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* u = toElem(e->e1);
|
||
|
||
LLValue* b = DtoCast(e->loc, u, Type::tbool)->getRVal();
|
||
|
||
LLConstant* zero = DtoConstBool(false);
|
||
b = p->ir->CreateICmpEQ(b,zero);
|
||
|
||
result = new DImValue(e->type, b);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(AndAndExp *e)
|
||
{
|
||
IF_LOG Logger::print("AndAndExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* u = toElem(e->e1);
|
||
|
||
llvm::BasicBlock* oldend = p->scopeend();
|
||
llvm::BasicBlock* andand = llvm::BasicBlock::Create(gIR->context(), "andand", gIR->topfunc(), oldend);
|
||
llvm::BasicBlock* andandend = llvm::BasicBlock::Create(gIR->context(), "andandend", gIR->topfunc(), oldend);
|
||
|
||
LLValue* ubool = DtoCast(e->loc, u, Type::tbool)->getRVal();
|
||
|
||
llvm::BasicBlock* oldblock = p->scopebb();
|
||
llvm::BranchInst::Create(andand, andandend, ubool, p->scopebb());
|
||
|
||
p->scope() = IRScope(andand, andandend);
|
||
DValue* v = toElemDtor(e->e2);
|
||
|
||
LLValue* vbool = 0;
|
||
if (!v->isFunc() && v->getType() != Type::tvoid)
|
||
{
|
||
vbool = DtoCast(e->loc, v, Type::tbool)->getRVal();
|
||
}
|
||
|
||
llvm::BasicBlock* newblock = p->scopebb();
|
||
llvm::BranchInst::Create(andandend,p->scopebb());
|
||
p->scope() = IRScope(andandend, oldend);
|
||
|
||
LLValue* resval = 0;
|
||
if (ubool == vbool || !vbool) {
|
||
// No need to create a PHI node.
|
||
resval = ubool;
|
||
} else {
|
||
llvm::PHINode* phi = p->ir->CreatePHI(LLType::getInt1Ty(gIR->context()), 2, "andandval");
|
||
// If we jumped over evaluation of the right-hand side,
|
||
// the result is false. Otherwise it's the value of the right-hand side.
|
||
phi->addIncoming(LLConstantInt::getFalse(gIR->context()), oldblock);
|
||
phi->addIncoming(vbool, newblock);
|
||
resval = phi;
|
||
}
|
||
|
||
result = new DImValue(e->type, resval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(OrOrExp *e)
|
||
{
|
||
IF_LOG Logger::print("OrOrExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* u = toElem(e->e1);
|
||
|
||
llvm::BasicBlock* oldend = p->scopeend();
|
||
llvm::BasicBlock* oror = llvm::BasicBlock::Create(gIR->context(), "oror", gIR->topfunc(), oldend);
|
||
llvm::BasicBlock* ororend = llvm::BasicBlock::Create(gIR->context(), "ororend", gIR->topfunc(), oldend);
|
||
|
||
LLValue* ubool = DtoCast(e->loc, u, Type::tbool)->getRVal();
|
||
|
||
llvm::BasicBlock* oldblock = p->scopebb();
|
||
llvm::BranchInst::Create(ororend,oror,ubool,p->scopebb());
|
||
|
||
p->scope() = IRScope(oror, ororend);
|
||
DValue* v = toElemDtor(e->e2);
|
||
|
||
LLValue* vbool = 0;
|
||
if (v && !v->isFunc() && v->getType() != Type::tvoid)
|
||
{
|
||
vbool = DtoCast(e->loc, v, Type::tbool)->getRVal();
|
||
}
|
||
|
||
llvm::BasicBlock* newblock = p->scopebb();
|
||
llvm::BranchInst::Create(ororend,p->scopebb());
|
||
p->scope() = IRScope(ororend, oldend);
|
||
|
||
LLValue* resval = 0;
|
||
if (ubool == vbool || !vbool) {
|
||
// No need to create a PHI node.
|
||
resval = ubool;
|
||
} else {
|
||
llvm::PHINode* phi = p->ir->CreatePHI(LLType::getInt1Ty(gIR->context()), 2, "ororval");
|
||
// If we jumped over evaluation of the right-hand side,
|
||
// the result is true. Otherwise, it's the value of the right-hand side.
|
||
phi->addIncoming(LLConstantInt::getTrue(gIR->context()), oldblock);
|
||
phi->addIncoming(vbool, newblock);
|
||
resval = phi;
|
||
}
|
||
|
||
result = new DImValue(e->type, resval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
#define BinBitExp(X,Y) \
|
||
void visit(X##Exp *e) \
|
||
{ \
|
||
IF_LOG Logger::print("%sExp::toElem: %s @ %s\n", #X, e->toChars(), e->type->toChars()); \
|
||
LOG_SCOPE; \
|
||
DValue* u = toElem(e->e1); \
|
||
DValue* v = toElem(e->e2); \
|
||
errorOnIllegalArrayOp(e, e->e1, e->e2); \
|
||
v = DtoCast(e->loc, v, e->e1->type); \
|
||
LLValue* x = llvm::BinaryOperator::Create(llvm::Instruction::Y, u->getRVal(), v->getRVal(), "", p->scopebb()); \
|
||
result = new DImValue(e->type, x); \
|
||
}
|
||
|
||
BinBitExp(And,And)
|
||
BinBitExp(Or,Or)
|
||
BinBitExp(Xor,Xor)
|
||
BinBitExp(Shl,Shl)
|
||
BinBitExp(Ushr,LShr)
|
||
|
||
void visit(ShrExp *e)
|
||
{
|
||
IF_LOG Logger::print("ShrExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
DValue* u = toElem(e->e1);
|
||
DValue* v = toElem(e->e2);
|
||
v = DtoCast(e->loc, v, e->e1->type);
|
||
LLValue* x;
|
||
if (isLLVMUnsigned(e->e1->type))
|
||
x = p->ir->CreateLShr(u->getRVal(), v->getRVal());
|
||
else
|
||
x = p->ir->CreateAShr(u->getRVal(), v->getRVal());
|
||
result = new DImValue(e->type, x);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(HaltExp *e)
|
||
{
|
||
IF_LOG Logger::print("HaltExp::toElem: %s\n", e->toChars());
|
||
LOG_SCOPE;
|
||
|
||
p->ir->CreateCall(GET_INTRINSIC_DECL(trap), "");
|
||
p->ir->CreateUnreachable();
|
||
|
||
// this terminated the basicblock, start a new one
|
||
// this is sensible, since someone might goto behind the assert
|
||
// and prevents compiler errors if a terminator follows the assert
|
||
llvm::BasicBlock* oldend = gIR->scopeend();
|
||
llvm::BasicBlock* bb = llvm::BasicBlock::Create(gIR->context(), "afterhalt", p->topfunc(), oldend);
|
||
p->scope() = IRScope(bb,oldend);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(DelegateExp *e)
|
||
{
|
||
IF_LOG Logger::print("DelegateExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if(e->func->isStatic())
|
||
e->error("can't take delegate of static function %s, it does not require a context ptr", e->func->toChars());
|
||
|
||
LLPointerType* int8ptrty = getPtrToType(LLType::getInt8Ty(gIR->context()));
|
||
|
||
assert(e->type->toBasetype()->ty == Tdelegate);
|
||
LLType* dgty = DtoType(e->type);
|
||
|
||
DValue* u = toElem(e->e1);
|
||
LLValue* uval;
|
||
if (DFuncValue* f = u->isFunc()) {
|
||
assert(f->func);
|
||
LLValue* contextptr = DtoNestedContext(e->loc, f->func);
|
||
uval = DtoBitCast(contextptr, getVoidPtrType());
|
||
}
|
||
else {
|
||
DValue* src = u;
|
||
if (ClassDeclaration* cd = u->getType()->isClassHandle())
|
||
{
|
||
Logger::println("context type is class handle");
|
||
if (cd->isInterfaceDeclaration())
|
||
{
|
||
Logger::println("context type is interface");
|
||
src = DtoCastInterfaceToObject(e->loc, u, ClassDeclaration::object->type);
|
||
}
|
||
}
|
||
uval = src->getRVal();
|
||
}
|
||
|
||
IF_LOG Logger::cout() << "context = " << *uval << '\n';
|
||
|
||
LLValue* castcontext = DtoBitCast(uval, int8ptrty);
|
||
|
||
IF_LOG Logger::println("func: '%s'", e->func->toPrettyChars());
|
||
|
||
LLValue* castfptr;
|
||
|
||
if (e->e1->op != TOKsuper && e->e1->op != TOKdottype && e->func->isVirtual() && !e->func->isFinalFunc())
|
||
castfptr = DtoVirtualFunctionPointer(u, e->func, e->toChars());
|
||
else if (e->func->isAbstract())
|
||
llvm_unreachable("Delegate to abstract method not implemented.");
|
||
else if (e->func->toParent()->isInterfaceDeclaration())
|
||
llvm_unreachable("Delegate to interface method not implemented.");
|
||
else
|
||
{
|
||
DtoResolveFunction(e->func);
|
||
|
||
// We need to actually codegen the function here, as literals are not
|
||
// added to the module member list.
|
||
if (e->func->semanticRun == PASSsemantic3done)
|
||
{
|
||
Dsymbol *owner = e->func->toParent();
|
||
while (!owner->isTemplateInstance() && owner->toParent())
|
||
owner = owner->toParent();
|
||
if (owner->isTemplateInstance() || owner == p->dmodule)
|
||
{
|
||
Declaration_codegen(e->func, p);
|
||
}
|
||
}
|
||
|
||
castfptr = getIrFunc(e->func)->func;
|
||
}
|
||
|
||
castfptr = DtoBitCast(castfptr, dgty->getContainedType(1));
|
||
|
||
result = new DImValue(e->type, DtoAggrPair(DtoType(e->type), castcontext, castfptr, ".dg"));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(IdentityExp *e)
|
||
{
|
||
IF_LOG Logger::print("IdentityExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = toElem(e->e1);
|
||
DValue* r = toElem(e->e2);
|
||
LLValue* lv = l->getRVal();
|
||
LLValue* rv = r->getRVal();
|
||
|
||
Type* t1 = e->e1->type->toBasetype();
|
||
|
||
// handle dynarray specially
|
||
if (t1->ty == Tarray) {
|
||
result = new DImValue(e->type, DtoDynArrayIs(e->op, l, r));
|
||
return;
|
||
}
|
||
// also structs
|
||
else if (t1->ty == Tstruct) {
|
||
result = new DImValue(e->type, DtoStructEquals(e->op, l, r));
|
||
return;
|
||
}
|
||
|
||
// FIXME this stuff isn't pretty
|
||
LLValue* eval = 0;
|
||
|
||
if (t1->ty == Tdelegate) {
|
||
if (r->isNull()) {
|
||
rv = NULL;
|
||
}
|
||
else {
|
||
assert(lv->getType() == rv->getType());
|
||
}
|
||
eval = DtoDelegateEquals(e->op,lv,rv);
|
||
}
|
||
else if (t1->isfloating()) // includes iscomplex
|
||
{
|
||
eval = DtoBinNumericEquals(e->loc, l, r, e->op);
|
||
}
|
||
else if (t1->ty == Tpointer || t1->ty == Tclass)
|
||
{
|
||
if (lv->getType() != rv->getType()) {
|
||
if (r->isNull())
|
||
rv = llvm::ConstantPointerNull::get(isaPointer(lv->getType()));
|
||
else
|
||
rv = DtoBitCast(rv, lv->getType());
|
||
}
|
||
eval = (e->op == TOKidentity)
|
||
? p->ir->CreateICmpEQ(lv, rv)
|
||
: p->ir->CreateICmpNE(lv, rv);
|
||
}
|
||
else {
|
||
assert(lv->getType() == rv->getType());
|
||
eval = (e->op == TOKidentity)
|
||
? p->ir->CreateICmpEQ(lv, rv)
|
||
: p->ir->CreateICmpNE(lv, rv);
|
||
}
|
||
result = new DImValue(e->type, eval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(CommaExp *e)
|
||
{
|
||
IF_LOG Logger::print("CommaExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (e->cachedLvalue)
|
||
{
|
||
LLValue* V = e->cachedLvalue;
|
||
result = new DVarValue(e->type, V);
|
||
return;
|
||
}
|
||
|
||
toElem(e->e1);
|
||
result = toElem(e->e2);
|
||
|
||
// Actually, we can get qualifier mismatches in the 2.064 frontend:
|
||
// assert(e2->type == type);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(CondExp *e)
|
||
{
|
||
IF_LOG Logger::print("CondExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
Type* dtype = e->type->toBasetype();
|
||
LLValue *retPtr = 0;
|
||
if (dtype->ty != Tvoid) {
|
||
// allocate a temporary for pointer to the final result.
|
||
retPtr = DtoAlloca(dtype->pointerTo(), "condtmp");
|
||
}
|
||
|
||
llvm::BasicBlock* oldend = p->scopeend();
|
||
llvm::BasicBlock* condtrue = llvm::BasicBlock::Create(gIR->context(), "condtrue", gIR->topfunc(), oldend);
|
||
llvm::BasicBlock* condfalse = llvm::BasicBlock::Create(gIR->context(), "condfalse", gIR->topfunc(), oldend);
|
||
llvm::BasicBlock* condend = llvm::BasicBlock::Create(gIR->context(), "condend", gIR->topfunc(), oldend);
|
||
|
||
DValue* c = toElem(e->econd);
|
||
LLValue* cond_val = DtoCast(e->loc, c, Type::tbool)->getRVal();
|
||
llvm::BranchInst::Create(condtrue,condfalse,cond_val,p->scopebb());
|
||
|
||
p->scope() = IRScope(condtrue, condfalse);
|
||
DValue* u = toElemDtor(e->e1);
|
||
if (dtype->ty != Tvoid)
|
||
DtoStore(makeLValue(e->loc, u), retPtr);
|
||
llvm::BranchInst::Create(condend, p->scopebb());
|
||
|
||
p->scope() = IRScope(condfalse, condend);
|
||
DValue* v = toElemDtor(e->e2);
|
||
if (dtype->ty != Tvoid)
|
||
DtoStore(makeLValue(e->loc, v), retPtr);
|
||
llvm::BranchInst::Create(condend, p->scopebb());
|
||
|
||
p->scope() = IRScope(condend, oldend);
|
||
if (dtype->ty != Tvoid)
|
||
result = new DVarValue(e->type, DtoLoad(retPtr));
|
||
else
|
||
result = new DConstValue(e->type, getNullValue(voidToI8(DtoType(dtype))));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(ComExp *e)
|
||
{
|
||
IF_LOG Logger::print("ComExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* u = toElem(e->e1);
|
||
|
||
LLValue* value = u->getRVal();
|
||
LLValue* minusone = LLConstantInt::get(value->getType(), static_cast<uint64_t>(-1), true);
|
||
value = llvm::BinaryOperator::Create(llvm::Instruction::Xor, value, minusone, "", p->scopebb());
|
||
|
||
result = new DImValue(e->type, value);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(NegExp *e)
|
||
{
|
||
IF_LOG Logger::print("NegExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = toElem(e->e1);
|
||
|
||
if (e->type->iscomplex()) {
|
||
result = DtoComplexNeg(e->loc, e->type, l);
|
||
return;
|
||
}
|
||
|
||
LLValue* val = l->getRVal();
|
||
|
||
if (e->type->isintegral())
|
||
val = p->ir->CreateNeg(val,"negval");
|
||
else
|
||
val = p->ir->CreateFNeg(val,"negval");
|
||
|
||
result = new DImValue(e->type, val);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(CatExp *e)
|
||
{
|
||
IF_LOG Logger::print("CatExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
result = DtoCatArrays(e->loc, e->type, e->e1, e->e2);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(CatAssignExp *e)
|
||
{
|
||
IF_LOG Logger::print("CatAssignExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
result = toElem(e->e1);
|
||
|
||
Type* e1type = e->e1->type->toBasetype();
|
||
assert(e1type->ty == Tarray);
|
||
Type* elemtype = e1type->nextOf()->toBasetype();
|
||
Type* e2type = e->e2->type->toBasetype();
|
||
|
||
if (e1type->ty == Tarray && e2type->ty == Tdchar &&
|
||
(elemtype->ty == Tchar || elemtype->ty == Twchar))
|
||
{
|
||
if (elemtype->ty == Tchar)
|
||
// append dchar to char[]
|
||
DtoAppendDCharToString(e->loc, result, e->e2);
|
||
else /*if (elemtype->ty == Twchar)*/
|
||
// append dchar to wchar[]
|
||
DtoAppendDCharToUnicodeString(e->loc, result, e->e2);
|
||
}
|
||
else if (e1type->equals(e2type)) {
|
||
// apeend array
|
||
DSliceValue* slice = DtoCatAssignArray(e->loc, result, e->e2);
|
||
DtoAssign(e->loc, result, slice);
|
||
}
|
||
else {
|
||
// append element
|
||
DtoCatAssignElement(e->loc, e1type, result, e->e2);
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(FuncExp *e)
|
||
{
|
||
IF_LOG Logger::print("FuncExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
FuncLiteralDeclaration *fd = e->fd;
|
||
assert(fd);
|
||
|
||
if (fd->tok == TOKreserved && e->type->ty == Tpointer)
|
||
{
|
||
// This is a lambda that was inferred to be a function literal instead
|
||
// of a delegate, so set tok here in order to get correct types/mangling.
|
||
// Horrible hack, but DMD does the same thing.
|
||
fd->tok = TOKfunction;
|
||
fd->vthis = NULL;
|
||
}
|
||
|
||
if (fd->isNested()) Logger::println("nested");
|
||
Logger::println("kind = %s", fd->kind());
|
||
|
||
// We need to actually codegen the function here, as literals are not added
|
||
// to the module member list.
|
||
Declaration_codegen(fd, p);
|
||
if (!isIrFuncCreated(fd))
|
||
{
|
||
// See DtoDefineFunction for reasons why codegen was suppressed.
|
||
// Instead just declare the function.
|
||
DtoDeclareFunction(fd);
|
||
assert(!fd->isNested());
|
||
}
|
||
assert(getIrFunc(fd)->func);
|
||
|
||
if (fd->isNested()) {
|
||
LLType* dgty = DtoType(e->type);
|
||
|
||
LLValue* cval;
|
||
IrFunction* irfn = p->func();
|
||
if (irfn->nestedVar
|
||
// We cannot use a frame allocated in one function
|
||
// for a delegate created in another function
|
||
// (that happens with anonymous functions)
|
||
&& fd->toParent2() == irfn->decl
|
||
)
|
||
cval = irfn->nestedVar;
|
||
else if (irfn->nestArg)
|
||
cval = DtoLoad(irfn->nestArg);
|
||
// TODO: should we enable that for D1 as well?
|
||
else if (irfn->thisArg)
|
||
{
|
||
AggregateDeclaration* ad = irfn->decl->isMember2();
|
||
if (!ad || !ad->vthis) {
|
||
cval = getNullPtr(getVoidPtrType());
|
||
} else {
|
||
cval = ad->isClassDeclaration() ? DtoLoad(irfn->thisArg) : irfn->thisArg;
|
||
cval = DtoLoad(DtoGEPi(cval, 0, getFieldGEPIndex(ad, ad->vthis), ".vthis"));
|
||
}
|
||
}
|
||
else
|
||
cval = getNullPtr(getVoidPtrType());
|
||
cval = DtoBitCast(cval, dgty->getContainedType(0));
|
||
|
||
LLValue* castfptr = DtoBitCast(getIrFunc(fd)->func, dgty->getContainedType(1));
|
||
|
||
result = new DImValue(e->type, DtoAggrPair(cval, castfptr, ".func"));
|
||
|
||
} else {
|
||
result = new DFuncValue(e->type, fd, getIrFunc(fd)->func);
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(ArrayLiteralExp *e)
|
||
{
|
||
IF_LOG Logger::print("ArrayLiteralExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// D types
|
||
Type* arrayType = e->type->toBasetype();
|
||
Type* elemType = arrayType->nextOf()->toBasetype();
|
||
|
||
// is dynamic ?
|
||
bool const dyn = (arrayType->ty == Tarray);
|
||
// length
|
||
size_t const len = e->elements->dim;
|
||
|
||
// llvm target type
|
||
LLType* llType = DtoType(arrayType);
|
||
IF_LOG Logger::cout() << (dyn?"dynamic":"static") << " array literal with length " << len << " of D type: '" << arrayType->toChars() << "' has llvm type: '" << *llType << "'\n";
|
||
|
||
// llvm storage type
|
||
LLType* llElemType = i1ToI8(voidToI8(DtoType(elemType)));
|
||
LLType* llStoType = LLArrayType::get(llElemType, len);
|
||
IF_LOG Logger::cout() << "llvm storage type: '" << *llStoType << "'\n";
|
||
|
||
// don't allocate storage for zero length dynamic array literals
|
||
if (dyn && len == 0)
|
||
{
|
||
// dmd seems to just make them null...
|
||
result = new DSliceValue(e->type, DtoConstSize_t(0), getNullPtr(getPtrToType(llElemType)));
|
||
}
|
||
else if (dyn)
|
||
{
|
||
if (arrayType->isImmutable() && isConstLiteral(e))
|
||
{
|
||
llvm::Constant* init = arrayLiteralToConst(p, e);
|
||
llvm::GlobalVariable* global = new llvm::GlobalVariable(
|
||
*gIR->module,
|
||
init->getType(),
|
||
true,
|
||
llvm::GlobalValue::InternalLinkage,
|
||
init,
|
||
".immutablearray"
|
||
);
|
||
result = new DSliceValue(arrayType, DtoConstSize_t(e->elements->dim),
|
||
DtoBitCast(global, getPtrToType(llElemType)));
|
||
}
|
||
else
|
||
{
|
||
DSliceValue* dynSlice = DtoNewDynArray(e->loc, arrayType,
|
||
new DConstValue(Type::tsize_t, DtoConstSize_t(len)), false);
|
||
initializeArrayLiteral(p, e, DtoBitCast(dynSlice->ptr, getPtrToType(llStoType)));
|
||
result = dynSlice;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
llvm::Value* storage = DtoRawAlloca(llStoType, 0, "arrayliteral");
|
||
initializeArrayLiteral(p, e, storage);
|
||
result = new DImValue(e->type, storage);
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(StructLiteralExp *e)
|
||
{
|
||
IF_LOG Logger::print("StructLiteralExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (e->sinit)
|
||
{
|
||
// Copied from VarExp::toElem, need to clean this mess up.
|
||
Type* sdecltype = e->sinit->type->toBasetype();
|
||
IF_LOG Logger::print("Sym: type = %s\n", sdecltype->toChars());
|
||
assert(sdecltype->ty == Tstruct);
|
||
TypeStruct* ts = static_cast<TypeStruct*>(sdecltype);
|
||
assert(ts->sym);
|
||
DtoResolveStruct(ts->sym);
|
||
|
||
LLValue* initsym = getIrAggr(ts->sym)->getInitSymbol();
|
||
initsym = DtoBitCast(initsym, DtoType(ts->pointerTo()));
|
||
result = new DVarValue(e->type, initsym);
|
||
return;
|
||
}
|
||
|
||
if (e->inProgressMemory)
|
||
{
|
||
result = new DVarValue(e->type, e->inProgressMemory);
|
||
return;
|
||
}
|
||
|
||
// make sure the struct is fully resolved
|
||
DtoResolveStruct(e->sd);
|
||
|
||
// alloca a stack slot
|
||
e->inProgressMemory = DtoRawAlloca(DtoType(e->type), 0, ".structliteral");
|
||
|
||
// fill the allocated struct literal
|
||
write_struct_literal(e->loc, e->inProgressMemory, e->sd, e->elements);
|
||
|
||
// return as a var
|
||
result = new DVarValue(e->type, e->inProgressMemory);
|
||
e->inProgressMemory = 0;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(ClassReferenceExp *e)
|
||
{
|
||
IF_LOG Logger::print("ClassReferenceExp::toElem: %s @ %s\n",
|
||
e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
result = new DImValue(e->type, toConstElem(e, p));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(InExp *e)
|
||
{
|
||
IF_LOG Logger::print("InExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* key = toElem(e->e1);
|
||
DValue* aa = toElem(e->e2);
|
||
|
||
result = DtoAAIn(e->loc, e->type, aa, key);
|
||
}
|
||
|
||
void visit(RemoveExp *e)
|
||
{
|
||
IF_LOG Logger::print("RemoveExp::toElem: %s\n", e->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* aa = toElem(e->e1);
|
||
DValue* key = toElem(e->e2);
|
||
|
||
result = DtoAARemove(e->loc, aa, key);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
/// Constructs an array initializer constant with the given constants as its
|
||
/// elements. If the element types differ (unions, …), an anonymous struct
|
||
/// literal is emitted (as for array constant initializers).
|
||
llvm::Constant* arrayConst(std::vector<llvm::Constant*>& vals, Type* nominalElemType)
|
||
{
|
||
if (vals.size() == 0)
|
||
{
|
||
llvm::ArrayType* type = llvm::ArrayType::get(DtoType(nominalElemType), 0);
|
||
return llvm::ConstantArray::get(type, vals);
|
||
}
|
||
|
||
llvm::Type* elementType = NULL;
|
||
bool differentTypes = false;
|
||
for (std::vector<llvm::Constant*>::iterator i = vals.begin(), end = vals.end();
|
||
i != end; ++i)
|
||
{
|
||
if (!elementType)
|
||
elementType = (*i)->getType();
|
||
else
|
||
differentTypes |= (elementType != (*i)->getType());
|
||
}
|
||
|
||
if (differentTypes)
|
||
return llvm::ConstantStruct::getAnon(vals, true);
|
||
|
||
llvm::ArrayType *t = llvm::ArrayType::get(elementType, vals.size());
|
||
return llvm::ConstantArray::get(t, vals);
|
||
}
|
||
|
||
void visit(AssocArrayLiteralExp *e)
|
||
{
|
||
IF_LOG Logger::print("AssocArrayLiteralExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
assert(e->keys);
|
||
assert(e->values);
|
||
assert(e->keys->dim == e->values->dim);
|
||
|
||
Type* basetype = e->type->toBasetype();
|
||
Type* aatype = basetype;
|
||
Type* vtype = aatype->nextOf();
|
||
|
||
if (!e->keys->dim)
|
||
goto LruntimeInit;
|
||
|
||
if (aatype->ty != Taarray) {
|
||
// It's the AssociativeArray type.
|
||
// Turn it back into a TypeAArray
|
||
vtype = e->values->tdata()[0]->type;
|
||
aatype = new TypeAArray(vtype, e->keys->tdata()[0]->type);
|
||
aatype = aatype->semantic(e->loc, NULL);
|
||
}
|
||
|
||
{
|
||
std::vector<LLConstant*> keysInits, valuesInits;
|
||
keysInits.reserve(e->keys->dim);
|
||
valuesInits.reserve(e->keys->dim);
|
||
for (size_t i = 0, n = e->keys->dim; i < n; ++i)
|
||
{
|
||
Expression* ekey = e->keys->tdata()[i];
|
||
Expression* eval = e->values->tdata()[i];
|
||
IF_LOG Logger::println("(%zu) aa[%s] = %s", i, ekey->toChars(), eval->toChars());
|
||
unsigned errors = global.startGagging();
|
||
LLConstant *ekeyConst = toConstElem(ekey, p);
|
||
LLConstant *evalConst = toConstElem(eval, p);
|
||
if (global.endGagging(errors))
|
||
goto LruntimeInit;
|
||
assert(ekeyConst && evalConst);
|
||
keysInits.push_back(ekeyConst);
|
||
valuesInits.push_back(evalConst);
|
||
}
|
||
|
||
assert(aatype->ty == Taarray);
|
||
Type* indexType = static_cast<TypeAArray*>(aatype)->index;
|
||
assert(indexType && vtype);
|
||
|
||
llvm::Function* func = LLVM_D_GetRuntimeFunction(e->loc, gIR->module, "_d_assocarrayliteralTX");
|
||
LLFunctionType* funcTy = func->getFunctionType();
|
||
LLValue* aaTypeInfo = DtoBitCast(DtoTypeInfoOf(stripModifiers(aatype)),
|
||
DtoType(Type::typeinfoassociativearray->type));
|
||
|
||
LLConstant* idxs[2] = { DtoConstUint(0), DtoConstUint(0) };
|
||
|
||
LLConstant* initval = arrayConst(keysInits, indexType);
|
||
LLConstant* globalstore = new LLGlobalVariable(*gIR->module, initval->getType(),
|
||
false, LLGlobalValue::InternalLinkage, initval, ".aaKeysStorage");
|
||
LLConstant* slice = llvm::ConstantExpr::getGetElementPtr(globalstore, idxs, true);
|
||
slice = DtoConstSlice(DtoConstSize_t(e->keys->dim), slice);
|
||
LLValue* keysArray = DtoAggrPaint(slice, funcTy->getParamType(1));
|
||
|
||
initval = arrayConst(valuesInits, vtype);
|
||
globalstore = new LLGlobalVariable(*gIR->module, initval->getType(),
|
||
false, LLGlobalValue::InternalLinkage, initval, ".aaValuesStorage");
|
||
slice = llvm::ConstantExpr::getGetElementPtr(globalstore, idxs, true);
|
||
slice = DtoConstSlice(DtoConstSize_t(e->keys->dim), slice);
|
||
LLValue* valuesArray = DtoAggrPaint(slice, funcTy->getParamType(2));
|
||
|
||
LLValue* aa = gIR->CreateCallOrInvoke3(func, aaTypeInfo, keysArray, valuesArray, "aa").getInstruction();
|
||
if (basetype->ty != Taarray) {
|
||
LLValue *tmp = DtoAlloca(e->type, "aaliteral");
|
||
DtoStore(aa, DtoGEPi(tmp, 0, 0));
|
||
result = new DVarValue(e->type, tmp);
|
||
} else {
|
||
result = new DImValue(e->type, aa);
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
LruntimeInit:
|
||
|
||
// it should be possible to avoid the temporary in some cases
|
||
LLValue* tmp = DtoAlloca(e->type, "aaliteral");
|
||
result = new DVarValue(e->type, tmp);
|
||
DtoStore(LLConstant::getNullValue(DtoType(e->type)), tmp);
|
||
|
||
const size_t n = e->keys->dim;
|
||
for (size_t i = 0; i<n; ++i)
|
||
{
|
||
Expression* ekey = (*e->keys)[i];
|
||
Expression* eval = (*e->values)[i];
|
||
|
||
IF_LOG Logger::println("(%zu) aa[%s] = %s", i, ekey->toChars(), eval->toChars());
|
||
|
||
// index
|
||
DValue* key = toElem(ekey);
|
||
DValue* mem = DtoAAIndex(e->loc, vtype, result, key, true);
|
||
|
||
// store
|
||
DValue* val = toElem(eval);
|
||
DtoAssign(e->loc, mem, val);
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* toGEP(UnaExp *exp, unsigned index)
|
||
{
|
||
// (&a.foo).funcptr is a case where toElem(e1) is genuinely not an l-value.
|
||
LLValue* val = makeLValue(exp->loc, toElem(exp->e1));
|
||
LLValue* v = DtoGEPi(val, 0, index);
|
||
return new DVarValue(exp->type, DtoBitCast(v, getPtrToType(DtoType(exp->type))));
|
||
}
|
||
|
||
void visit(DelegatePtrExp *e)
|
||
{
|
||
IF_LOG Logger::print("DelegatePtrExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
result = toGEP(e, 0);
|
||
}
|
||
|
||
void visit(DelegateFuncptrExp *e)
|
||
{
|
||
IF_LOG Logger::print("DelegateFuncptrExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
result = toGEP(e, 1);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(BoolExp *e)
|
||
{
|
||
IF_LOG Logger::print("BoolExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
result = new DImValue(e->type, DtoCast(e->loc, toElem(e->e1), Type::tbool)->getRVal());
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(DotTypeExp *e)
|
||
{
|
||
IF_LOG Logger::print("DotTypeExp::toElem: %s @ %s\n", e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
assert(e->sym->getType());
|
||
result = toElem(e->e1);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(TypeExp *e)
|
||
{
|
||
e->error("type %s is not an expression", e->toChars());
|
||
//TODO: Improve error handling. DMD just returns some value here and hopes
|
||
// some more sensible error messages will be triggered.
|
||
fatal();
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(TupleExp *e)
|
||
{
|
||
IF_LOG Logger::print("TupleExp::toElem() %s\n", e->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// If there are any side effects, evaluate them first.
|
||
if (e->e0) toElem(e->e0);
|
||
|
||
std::vector<LLType*> types;
|
||
types.reserve(e->exps->dim);
|
||
for (size_t i = 0; i < e->exps->dim; i++)
|
||
{
|
||
types.push_back(i1ToI8(voidToI8(DtoType((*e->exps)[i]->type))));
|
||
}
|
||
LLValue *val = DtoRawAlloca(LLStructType::get(gIR->context(), types),0, "tuple");
|
||
for (size_t i = 0; i < e->exps->dim; i++)
|
||
{
|
||
Expression *el = (*e->exps)[i];
|
||
DValue* ep = toElem(el);
|
||
LLValue *gep = DtoGEPi(val,0,i);
|
||
if (DtoIsPassedByRef(el->type))
|
||
DtoStore(DtoLoad(ep->getRVal()), gep);
|
||
else if (el->type->ty != Tvoid)
|
||
DtoStoreZextI8(ep->getRVal(), gep);
|
||
else
|
||
DtoStore(LLConstantInt::get(LLType::getInt8Ty(p->context()), 0, false), gep);
|
||
}
|
||
result = new DImValue(e->type, val);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(VectorExp *e)
|
||
{
|
||
IF_LOG Logger::print("VectorExp::toElem() %s\n", e->toChars());
|
||
LOG_SCOPE;
|
||
|
||
TypeVector *type = static_cast<TypeVector*>(e->to->toBasetype());
|
||
assert(e->type->ty == Tvector);
|
||
|
||
LLValue *vector = DtoAlloca(e->to);
|
||
|
||
// Array literals are assigned element-wise, other expressions are cast and
|
||
// splat across the vector elements. This is what DMD does.
|
||
if (e->e1->op == TOKarrayliteral) {
|
||
Logger::println("array literal expression");
|
||
ArrayLiteralExp *lit = static_cast<ArrayLiteralExp*>(e->e1);
|
||
assert(lit->elements->dim == e->dim && "Array literal vector initializer "
|
||
"length mismatch, should have been handled in frontend.");
|
||
for (unsigned int i = 0; i < e->dim; ++i) {
|
||
DValue *val = toElem((*lit->elements)[i]);
|
||
LLValue *llval = DtoCast(e->loc, val, type->elementType())->getRVal();
|
||
DtoStore(llval, DtoGEPi(vector, 0, i));
|
||
}
|
||
} else {
|
||
Logger::println("normal (splat) expression");
|
||
DValue *val = toElem(e->e1);
|
||
LLValue* llval = DtoCast(e->loc, val, type->elementType())->getRVal();
|
||
for (unsigned int i = 0; i < e->dim; ++i) {
|
||
DtoStore(llval, DtoGEPi(vector, 0, i));
|
||
}
|
||
}
|
||
|
||
result = new DVarValue(e->to, vector);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(PowExp *e)
|
||
{
|
||
IF_LOG Logger::print("PowExp::toElem() %s\n", e->toChars());
|
||
LOG_SCOPE;
|
||
|
||
e->error("must import std.math to use ^^ operator");
|
||
result = new DNullValue(e->type, llvm::UndefValue::get(DtoType(e->type)));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
#define STUB(x) void visit(x * e) { e->error("Exp type "#x" not implemented: %s", e->toChars()); fatal(); }
|
||
STUB(Expression)
|
||
STUB(ScopeExp)
|
||
STUB(SymbolExp)
|
||
STUB(PowAssignExp)
|
||
};
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue *toElem(Expression *e)
|
||
{
|
||
ToElemVisitor v(gIR);
|
||
e->accept(&v);
|
||
return v.getResult();
|
||
}
|
||
|
||
// Search for temporaries for which the destructor must be called.
|
||
// was in toElemDtor but that triggered bug 978911 in VS
|
||
class SearchVarsWithDestructors : public Visitor
|
||
{
|
||
public:
|
||
std::vector<Expression*> edtors;
|
||
|
||
// Import all functions from class Visitor
|
||
using Visitor::visit;
|
||
|
||
void applyTo(Expression *e)
|
||
{
|
||
if (e)
|
||
e->accept(this);
|
||
}
|
||
|
||
void applyTo(Expressions *e)
|
||
{
|
||
if (!e)
|
||
return;
|
||
for (size_t i = 0; i < e->dim; i++)
|
||
applyTo((*e)[i]);
|
||
}
|
||
|
||
virtual void visit(Expression* e)
|
||
{
|
||
}
|
||
|
||
virtual void visit(NewExp *e)
|
||
{
|
||
applyTo(e->thisexp);
|
||
applyTo(e->newargs);
|
||
applyTo(e->arguments);
|
||
}
|
||
|
||
virtual void visit(NewAnonClassExp *e)
|
||
{
|
||
applyTo(e->thisexp);
|
||
applyTo(e->newargs);
|
||
applyTo(e->arguments);
|
||
}
|
||
|
||
virtual void visit(UnaExp *e)
|
||
{
|
||
applyTo(e->e1);
|
||
}
|
||
|
||
virtual void visit(BinExp *e)
|
||
{
|
||
applyTo(e->e1);
|
||
applyTo(e->e2);
|
||
}
|
||
|
||
virtual void visit(CallExp *e)
|
||
{
|
||
applyTo(e->e1);
|
||
applyTo(e->arguments);
|
||
}
|
||
|
||
virtual void visit(ArrayExp *e)
|
||
{
|
||
applyTo(e->e1);
|
||
applyTo(e->arguments);
|
||
}
|
||
|
||
virtual void visit(SliceExp *e)
|
||
{
|
||
applyTo(e->e1);
|
||
applyTo(e->lwr);
|
||
applyTo(e->upr);
|
||
}
|
||
|
||
virtual void visit(ArrayLiteralExp *e)
|
||
{
|
||
applyTo(e->elements);
|
||
}
|
||
|
||
virtual void visit(AssocArrayLiteralExp *e)
|
||
{
|
||
applyTo(e->keys);
|
||
applyTo(e->values);
|
||
}
|
||
|
||
virtual void visit(StructLiteralExp *e)
|
||
{
|
||
if (e->stageflags & stageApply) return;
|
||
int old = e->stageflags;
|
||
e->stageflags |= stageApply;
|
||
applyTo(e->elements);
|
||
e->stageflags = old;
|
||
}
|
||
|
||
virtual void visit(TupleExp *e)
|
||
{
|
||
applyTo(e->e0);
|
||
applyTo(e->exps);
|
||
}
|
||
|
||
virtual void visit(AndAndExp *e)
|
||
{
|
||
applyTo(e->e1);
|
||
// Don't visit the expression, because later ToElemVisitor will
|
||
// call toElemDtor on it. Otherwise, there will be multiple
|
||
// destructor calls on any temporary created by the expression.
|
||
// See issue #795.
|
||
//applyTo(e->e2);
|
||
}
|
||
|
||
virtual void visit(OrOrExp *e)
|
||
{
|
||
applyTo(e->e1);
|
||
// same as above
|
||
//applyTo(e->e2);
|
||
}
|
||
|
||
virtual void visit(CondExp *e)
|
||
{
|
||
applyTo(e->econd);
|
||
// same as above
|
||
//applyTo(e->e1);
|
||
//applyTo(e->e2);
|
||
}
|
||
|
||
virtual void visit(AssertExp *e)
|
||
{
|
||
applyTo(e->e1);
|
||
// same as above
|
||
// applyTo(e->msg);
|
||
}
|
||
|
||
virtual void visit(DeclarationExp* e)
|
||
{
|
||
VarDeclaration* vd = e->declaration->isVarDeclaration();
|
||
if (!vd)
|
||
return;
|
||
|
||
while (vd->aliassym) {
|
||
vd = vd->aliassym->isVarDeclaration();
|
||
if (!vd)
|
||
return;
|
||
}
|
||
|
||
if (vd->init) {
|
||
if (ExpInitializer* ex = vd->init->isExpInitializer())
|
||
applyTo(ex->exp);
|
||
}
|
||
|
||
if (!vd->isDataseg() && vd->edtor && !vd->noscope)
|
||
edtors.push_back(vd->edtor);
|
||
}
|
||
};
|
||
|
||
// Evaluate Expression, then call destructors on any temporaries in it.
|
||
DValue *toElemDtor(Expression *e)
|
||
{
|
||
IF_LOG Logger::println("Expression::toElemDtor(): %s", e->toChars());
|
||
LOG_SCOPE
|
||
|
||
class CallDestructors : public IRLandingPadCatchFinallyInfo
|
||
{
|
||
public:
|
||
CallDestructors(const std::vector<Expression*> &edtors_)
|
||
: edtors(edtors_)
|
||
{}
|
||
|
||
const std::vector<Expression*> &edtors;
|
||
|
||
void toIR(LLValue* /*eh_ptr*/ = NULL)
|
||
{
|
||
std::vector<Expression*>::const_reverse_iterator itr, end = edtors.rend();
|
||
for (itr = edtors.rbegin(); itr != end; ++itr)
|
||
toElem(*itr);
|
||
}
|
||
};
|
||
|
||
// find destructors that must be called
|
||
SearchVarsWithDestructors visitor;
|
||
visitor.applyTo(e);
|
||
|
||
if (!visitor.edtors.empty()) {
|
||
if (e->op == TOKcall || e->op == TOKassert) {
|
||
// create finally block that calls destructors on temporaries
|
||
CallDestructors *callDestructors = new CallDestructors(visitor.edtors);
|
||
|
||
// create landing pad
|
||
llvm::BasicBlock *oldend = gIR->scopeend();
|
||
llvm::BasicBlock *landingpadbb = llvm::BasicBlock::Create(gIR->context(), "landingpad", gIR->topfunc(), oldend);
|
||
|
||
// set up the landing pad
|
||
IRLandingPad &pad = gIR->func()->gen->landingPadInfo;
|
||
pad.addFinally(callDestructors);
|
||
pad.push(landingpadbb);
|
||
|
||
// evaluate the expression
|
||
DValue *val = toElem(e);
|
||
|
||
// build the landing pad
|
||
llvm::BasicBlock *oldbb = gIR->scopebb();
|
||
pad.pop();
|
||
|
||
gIR->scope() = IRScope(oldbb, oldend);
|
||
|
||
callDestructors->toIR();
|
||
delete callDestructors;
|
||
return val;
|
||
} else {
|
||
DValue *val = toElem(e);
|
||
CallDestructors(visitor.edtors).toIR();
|
||
return val;
|
||
}
|
||
}
|
||
|
||
return toElem(e);
|
||
}
|