ldc/ir/irtypeaggr.cpp
Luna 82878ef32c
Improve Objective-C support (#4777)
* WIP: Objective-C support

* Further work on implementation

* ObjC dynamic cast

* Add swift stub class attribute

* Classes, protocols and ivars

* Fix compilation issues

* Fix objc ir codegen

* Add objc linker option

* Add swift stub classref get ir gen

* Minor cleanup

* Fix objc link flag being added on non-darwin platforms

* Refactor objc gen

* remove use of std::nullopt

* Emit protocol tables

* Remove unused variable

* Formatting

* Fix build in release mode. Thanks for nothing, c++.

* Fix consistency

* Fix dynamic casts

* Fix tocall parentfd ref and arm msgsend call

* Make instance variables work

* Implicitly add isa pointer to objc classes.

* Fix protocol referencing & allow pragma mangle

* Fix protocol linkage

* Fix direct call support

* always generate var type for methods

* Fix test 16096a

* Fix extern ivar symbol gen, retain method decls

* Remove arm32 and x86 support

* Check method and ivar info before pushing to member list

* Make ObjcMethod info untyped.

* Make ivar and method gen more robust

* Generate optional protocol symbols

* Use bitcasting instead of creating multiple type defs

* Fix invalid protocol list struct gen

* More codegen robustness

* emit protocol table as const

* Make protocol table anon struct

* Fix callable type, generate protocol_list_t properly.

* Cast vthis to argtype

* Handle protorefs and classrefs properly

* seperate label ref and deref

* Fix method lookup

* Enable objective-c tests

* Enable objc_call_static test

* Scan both classes and protocols for method ref

* Enable objective-c tests on arm as well.

* supress objc linker warning in tests

* Fix class and protocol gen structure

* Fix objc_protocol_sections test

* ObjcMethod only get callee for functions with bodies

* Fix protocol class method gen

* Make ObjcMethod anon again

* Fix missing emit calls

* Fix classref gen

* Implement some of the requested changes

* Enable compilable tests

* Fix property selector gen, ugly hack for final funcs.

* Fix segfault in referencing fd->type

* Refactor implementation

* Fix null references in class and method lookup

* include unordered_map

* Get functionality on-par with prev impl.

* Fix super context calls

* Move -L-w flag to d_do_test and use IN_LLVM in objc.d/h

* add LDC version tag to -L-w flag

* Update CHANGELOG.md
2024-12-03 04:26:27 +01:00

342 lines
11 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- irtypeaggr.cpp ----------------------------------------------------===//
//
// LDC the LLVM D compiler
//
// This file is distributed under the BSD-style LDC license. See the LICENSE
// file for details.
//
//===----------------------------------------------------------------------===//
#include "ir/irtypeaggr.h"
#include "dmd/aggregate.h"
#include "dmd/errors.h"
#include "dmd/init.h"
#include "gen/irstate.h"
#include "gen/logger.h"
#include "gen/llvmhelpers.h"
#include "llvm/IR/DerivedTypes.h"
using namespace dmd;
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
// FIXME A similar function is in ir/iraggr.cpp and RTTIBuilder::push().
static inline size_t add_zeros(std::vector<llvm::Type *> &defaultTypes,
size_t startOffset, size_t endOffset) {
assert(startOffset <= endOffset);
const size_t paddingSize = endOffset - startOffset;
if (paddingSize) {
llvm::ArrayType *pad = llvm::ArrayType::get(
llvm::Type::getInt8Ty(gIR->context()), paddingSize);
defaultTypes.push_back(pad);
}
return paddingSize ? 1 : 0;
}
AggrTypeBuilder::AggrTypeBuilder(unsigned offset) : m_offset(offset) {
m_defaultTypes.reserve(32);
}
void AggrTypeBuilder::addType(llvm::Type *type, unsigned size) {
const unsigned fieldAlignment = getABITypeAlign(type);
assert(fieldAlignment);
// If the field offset does not have natural alignment, mark the aggregate as
// packed for IR.
if ((m_offset & (fieldAlignment - 1)) != 0) {
m_packed = true;
}
m_defaultTypes.push_back(type);
m_offset += size;
m_fieldIndex++;
m_maxFieldIRAlignment = std::max(m_maxFieldIRAlignment, fieldAlignment);
}
void AggrTypeBuilder::addAggregate(AggregateDeclaration *ad) {
addAggregate(ad, nullptr, Aliases::AddToVarGEPIndices);
}
void AggrTypeBuilder::addAggregate(
AggregateDeclaration *ad, const AggrTypeBuilder::VarInitMap *explicitInits,
AggrTypeBuilder::Aliases aliases) {
const size_t n = ad->fields.length;
if (n == 0)
return;
// Objective-C instance variables are laid out at runtime.
// as such, we should not generate the aggregate body.
if (auto klass = ad->isClassDeclaration()) {
if (klass->classKind == ClassKind::objc) {
this->addType(getOpaquePtrType(), getPointerSize());
return;
}
}
// Unions may lead to overlapping fields, and we need to flatten them for LLVM
// IR. We usually take the first field (in declaration order) of an
// overlapping set, but a literal with an explicit initializer for a dominated
// field might require us to select that field.
struct Data {
VarDeclaration *field;
LLType *llType;
uint64_t size;
};
LLSmallVector<Data, 16> actualFields;
// list of pairs: alias => actual field (same offset, same LL type (not
// checked for bit fields))
LLSmallVector<std::pair<VarDeclaration *, VarDeclaration *>, 16> aliasPairs;
// Bit fields additionally complicate matters. E.g.:
// struct S {
// unsigned char a:7; // byte offset 0, bit offset 0, bit width 7
// _Bool b:1; // byte offset 0, bit offset 7, bit width 1
// _Bool c:1; // byte offset 1, bit offset 0, bit width 1
// unsigned d:22; // byte offset 1, bit offset 1, bit width 22
// _Bool e:1; // byte offset 3, bit offset 7, bit width 1
// };
// => group 1: byte offset 0, size 1 (`a`, with alias `b`)
// group 2: byte offset 1, size 3 (`c`, with alias `d` and extra member `e`
// (with greater byte offset))
// list of pairs: extra bit field member (greater byte offset) => first member
// of bit field group
LLSmallVector<std::pair<BitFieldDeclaration *, BitFieldDeclaration *>, 8>
extraBitFieldMembers;
// Iterate over all fields in declaration order, in 1 or 2 passes.
for (int pass = explicitInits ? 0 : 1; pass < 2; ++pass) {
for (size_t i = 0; i < ad->fields.length; ++i) {
const auto field = ad->fields[i];
bool haveExplicitInit =
explicitInits && explicitInits->find(field) != explicitInits->end();
uint64_t fieldSize = size(field->type);
const bool isBitField = field->isBitFieldDeclaration() != nullptr;
if (isBitField) {
const auto group = BitFieldGroup::startingFrom(
i, ad->fields.length, [ad](size_t i) { return ad->fields[i]; });
if (!haveExplicitInit && explicitInits) {
haveExplicitInit = llvm::any_of(
group.bitFields, [explicitInits](BitFieldDeclaration *bf) {
return explicitInits->find(bf) != explicitInits->end();
});
}
fieldSize = group.sizeInBytes;
// final pass: create unconditional aliases/extra members for the other
// bit fields
if (pass == 1) {
for (size_t j = 1; j < group.bitFields.size(); ++j) {
auto bf = group.bitFields[j];
if (bf->offset == group.byteOffset) {
aliasPairs.push_back({bf, field});
} else {
extraBitFieldMembers.push_back(
{bf, field->isBitFieldDeclaration()});
}
}
}
// skip the other bit fields in this pass
i += group.bitFields.size() - 1;
}
// 1st pass: only for fields with explicit initializer
if (pass == 0 && !haveExplicitInit)
continue;
// final pass: only for fields without explicit initializer
if (pass == 1 && haveExplicitInit)
continue;
// skip empty fields
if (fieldSize == 0)
continue;
const uint64_t f_begin = field->offset;
const uint64_t f_end = f_begin + fieldSize;
// use an i8 array for bit field groups
const auto llType =
isBitField ? llvm::ArrayType::get(getI8Type(), fieldSize)
: DtoMemType(field->type);
// check for overlap with existing fields (on a byte level, not bits)
bool overlaps = false;
if (isBitField || field->overlapped()) {
for (const auto &existing : actualFields) {
const uint64_t e_begin = existing.field->offset;
const uint64_t e_end = e_begin + existing.size;
if (e_begin < f_end && e_end > f_begin) {
overlaps = true;
if (aliases == Aliases::AddToVarGEPIndices && e_begin == f_begin &&
existing.llType == llType) {
aliasPairs.push_back(std::make_pair(field, existing.field));
}
break;
}
}
}
if (!overlaps)
actualFields.push_back({field, llType, fieldSize});
}
}
// Now we can build a list of LLVM types for the actual LL fields.
// Make sure to zero out any padding and set the GEP indices for the directly
// indexable variables.
// first we sort the list by offset
std::sort(actualFields.begin(), actualFields.end(),
[](const Data &l, const Data &r) {
return l.field->offset < r.field->offset;
});
for (const auto &af : actualFields) {
const auto vd = af.field;
const auto llType = af.llType;
if (vd->offset < m_offset) {
error(vd->loc,
"%s `%s` @ %u overlaps previous field @ %u. This is an ICE, please file an "
"LDC issue.",
vd->kind(), vd->toPrettyChars(), vd->offset, m_offset);
fatal();
}
// Add an explicit field for any padding so we can zero it, as per TDPL
// §7.1.1.
if (m_offset < vd->offset) {
m_fieldIndex += add_zeros(m_defaultTypes, m_offset, vd->offset);
m_offset = vd->offset;
}
// add default type
m_defaultTypes.push_back(llType);
if (!llType->isSized()) {
error(vd->loc,
"unexpected IR type forward declaration for aggregate member of "
"type `%s`. This is an ICE, please file an LDC issue.",
vd->type->toPrettyChars());
fatal();
}
const unsigned fieldAlignment = getABITypeAlign(llType);
const unsigned fieldSize = getTypeAllocSize(llType);
assert(fieldSize <= af.size);
// advance offset to right past this field
if (!m_packed) {
assert(fieldAlignment);
m_packed = ((m_offset & (fieldAlignment - 1)) != 0);
}
m_offset += fieldSize;
// set the field index
m_varGEPIndices[vd] = m_fieldIndex;
// let any aliases reuse this field/GEP index
for (const auto &pair : aliasPairs) {
if (pair.second == vd)
m_varGEPIndices[pair.first] = m_fieldIndex;
}
// store extra bit field members of this group
for (const auto &pair : extraBitFieldMembers) {
if (pair.second == vd)
m_extraBitFieldMembers.push_back(pair);
}
++m_fieldIndex;
m_maxFieldIRAlignment = std::max(m_maxFieldIRAlignment, fieldAlignment);
}
}
void AggrTypeBuilder::alignCurrentOffset(unsigned alignment) {
unsigned aligned = (m_offset + alignment - 1) & ~(alignment - 1);
if (m_offset < aligned) {
m_fieldIndex += add_zeros(m_defaultTypes, m_offset, aligned);
m_offset = aligned;
}
}
void AggrTypeBuilder::addTailPadding(unsigned aggregateSize) {
assert(m_offset <= aggregateSize &&
"IR aggregate type is larger than the corresponding D type");
if (m_offset < aggregateSize)
add_zeros(m_defaultTypes, m_offset, aggregateSize);
// check if the aggregate size makes it packed in IR terms
if (!m_packed && (aggregateSize & (m_maxFieldIRAlignment - 1)))
m_packed = true;
}
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
IrTypeAggr::IrTypeAggr(AggregateDeclaration *ad)
: IrType(ad->type,
LLStructType::create(gIR->context(), ad->toPrettyChars())),
aggr(ad) {}
unsigned IrTypeAggr::getMemberLocation(VarDeclaration *var, bool& isFieldIdx) {
// Note: The interface is a bit more general than what we actually return.
// Specifically, the frontend offset information we use for overlapping
// fields is always based at the object start.
const auto &varGEPIndices = getVarGEPIndices();
auto it = varGEPIndices.find(var);
if (it != varGEPIndices.end()) {
isFieldIdx = true;
return it->second;
} else {
isFieldIdx = false;
return var->offset;
}
}
//////////////////////////////////////////////////////////////////////////////
BitFieldGroup BitFieldGroup::startingFrom(
size_t startFieldIndex, size_t numTotalFields,
std::function<VarDeclaration *(size_t i)> getFieldFn) {
BitFieldGroup group;
for (size_t i = startFieldIndex; i < numTotalFields; ++i) {
auto bf = getFieldFn(i)->isBitFieldDeclaration();
if (!bf)
break;
unsigned bitOffset = bf->bitOffset;
if (i == startFieldIndex) {
group.byteOffset = bf->offset;
} else if (bf->offset >= group.byteOffset + group.sizeInBytes ||
bf->offset < group.byteOffset) { // unions
// starts a new bit field group
break;
} else {
// the byte offset might not match the group's
bitOffset += (bf->offset - group.byteOffset) * 8;
}
const auto sizeInBytes = (bitOffset + bf->fieldWidth + 7) / 8;
group.sizeInBytes = std::max(group.sizeInBytes, sizeInBytes);
group.bitFields.push_back(bf);
}
return group;
}
unsigned BitFieldGroup::getBitOffset(BitFieldDeclaration *member) const {
assert(member->offset >= byteOffset);
return (member->offset - byteOffset) * 8 + member->bitOffset;
}