mirror of
https://github.com/ldc-developers/ldc.git
synced 2025-05-06 02:45:25 +03:00

The part needing most attention was ddmd.root.ctfloat, ddmd.target (incl. gen/target.cpp) and ddmd.builtin. The front-end is now prepared for elaborate compile-time floating-point types to allow for proper cross- compilation. This version still uses the host's `real` type for compile-time reals, except for MSVC hosts, which still use 64-bit doubles (when compiled with DMD host compiler too). Some other changes: * semantic*() of Statements extracted from statement.d to statementsem.d * mangle() -> mangleToBuffer() * Identifier::string -> toChars() * Token::float80value => floatvalue * Dsymbol::isAggregateMember() => isMember() * BoolExp is no more * ddmd.root.ctfloat: LDC-specific CTFE builtins
242 lines
6.8 KiB
C++
242 lines
6.8 KiB
C++
//===-- target.cpp -------------------------------------------------------===//
|
||
//
|
||
// LDC – the LLVM D compiler
|
||
//
|
||
// This file is distributed under the BSD-style LDC license. See the LICENSE
|
||
// file for details.
|
||
//
|
||
// Implements some parts of the front-end Target class (ddmd/target.{d,h}).
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "ldcbindings.h"
|
||
#include "target.h"
|
||
#include "gen/abi.h"
|
||
#include "gen/irstate.h"
|
||
#include "gen/llvmhelpers.h"
|
||
#include "mars.h"
|
||
#include "mtype.h"
|
||
#include <assert.h>
|
||
|
||
#if !defined(_MSC_VER)
|
||
#include <pthread.h>
|
||
#endif
|
||
|
||
using llvm::APFloat;
|
||
|
||
// target-real values
|
||
real_t real_max;
|
||
real_t real_min_normal;
|
||
real_t real_epsilon;
|
||
|
||
// Target::RealProperties functions
|
||
real_t Target::RealProperties::nan() { return host_nan(); }
|
||
real_t Target::RealProperties::snan() { return host_snan(); }
|
||
real_t Target::RealProperties::infinity() { return host_infinity(); }
|
||
real_t Target::RealProperties::max() { return real_max; }
|
||
real_t Target::RealProperties::min_normal() { return real_min_normal; }
|
||
real_t Target::RealProperties::epsilon() { return real_epsilon; }
|
||
|
||
void Target::_init() {
|
||
ptrsize = gDataLayout->getPointerSize(ADDRESS_SPACE);
|
||
|
||
llvm::Type *const real = DtoType(Type::basic[Tfloat80]);
|
||
realsize = gDataLayout->getTypeAllocSize(real);
|
||
realpad = realsize - gDataLayout->getTypeStoreSize(real);
|
||
realalignsize = gDataLayout->getABITypeAlignment(real);
|
||
realislongdouble = false;
|
||
|
||
// according to DMD, only for MSVC++:
|
||
reverseCppOverloads = global.params.targetTriple->isWindowsMSVCEnvironment();
|
||
|
||
// LDC_FIXME: Set once we support it.
|
||
cppExceptions = false;
|
||
|
||
c_longsize = global.params.is64bit ? 8 : 4;
|
||
c_long_doublesize = realsize;
|
||
classinfosize = 0; // unused
|
||
|
||
const auto pTargetRealSemantics = &real->getFltSemantics();
|
||
if (pTargetRealSemantics == &APFloat::x87DoubleExtended) {
|
||
real_max = CTFloat::parse("0x1.fffffffffffffffep+16383");
|
||
real_min_normal = CTFloat::parse("0x1p-16382");
|
||
real_epsilon = CTFloat::parse("0x1p-63");
|
||
RealProperties::dig = 18;
|
||
RealProperties::mant_dig = 64;
|
||
RealProperties::max_exp = 16384;
|
||
RealProperties::min_exp = -16381;
|
||
RealProperties::max_10_exp = 4932;
|
||
RealProperties::min_10_exp = -4932;
|
||
} else if (pTargetRealSemantics == &APFloat::IEEEdouble ||
|
||
pTargetRealSemantics == &APFloat::PPCDoubleDouble) {
|
||
real_max = CTFloat::parse("0x1.fffffffffffffp+1023");
|
||
real_min_normal = CTFloat::parse("0x1p-1022");
|
||
real_epsilon = CTFloat::parse("0x1p-52");
|
||
RealProperties::dig = 15;
|
||
RealProperties::mant_dig = 53;
|
||
RealProperties::max_exp = 1024;
|
||
RealProperties::min_exp = -1021;
|
||
RealProperties::max_10_exp = 308;
|
||
RealProperties::min_10_exp = -307;
|
||
} else {
|
||
real_max = RealProperties::host_max();
|
||
real_min_normal = RealProperties::host_min_normal();
|
||
real_epsilon = RealProperties::host_epsilon();
|
||
// the rest is already initialized with the corresponding real_t values
|
||
}
|
||
}
|
||
|
||
/******************************
|
||
* Return memory alignment size of type.
|
||
*/
|
||
unsigned Target::alignsize(Type *type) {
|
||
assert(type->isTypeBasic());
|
||
if (type->ty == Tvoid) {
|
||
return 1;
|
||
}
|
||
return gDataLayout->getABITypeAlignment(DtoType(type));
|
||
}
|
||
|
||
/******************************
|
||
* Return field alignment size of type.
|
||
*/
|
||
unsigned Target::fieldalign(Type *type) { return DtoAlignment(type); }
|
||
|
||
/******************************
|
||
* Return size of alias Mutex in druntime/src/rt/monitor_.d, or, more precisely,
|
||
* the size of the native critical section as 2nd field in struct
|
||
* D_CRITICAL_SECTION (after a pointer). D_CRITICAL_SECTION is pointer-size
|
||
* aligned, so the returned field size is a multiple of pointer-size.
|
||
*/
|
||
unsigned Target::critsecsize() {
|
||
const bool is64bit = global.params.is64bit;
|
||
|
||
// Windows: sizeof(CRITICAL_SECTION)
|
||
if (global.params.isWindows)
|
||
return is64bit ? 40 : 24;
|
||
|
||
// POSIX: sizeof(pthread_mutex_t)
|
||
// based on druntime/src/core/sys/posix/sys/types.d
|
||
const auto &triple = *global.params.targetTriple;
|
||
const auto arch = triple.getArch();
|
||
switch (triple.getOS()) {
|
||
case llvm::Triple::Linux:
|
||
if (triple.getEnvironment() == llvm::Triple::Android)
|
||
return Target::ptrsize; // 32-bit integer rounded up to pointer size
|
||
if (arch == llvm::Triple::aarch64 || arch == llvm::Triple::aarch64_be)
|
||
return 48;
|
||
return is64bit ? 40 : 24;
|
||
|
||
case llvm::Triple::MacOSX:
|
||
return is64bit ? 64 : 44;
|
||
|
||
case llvm::Triple::FreeBSD:
|
||
case llvm::Triple::NetBSD:
|
||
case llvm::Triple::OpenBSD:
|
||
case llvm::Triple::DragonFly:
|
||
return Target::ptrsize;
|
||
|
||
case llvm::Triple::Solaris:
|
||
return 24;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
#ifndef _MSC_VER
|
||
unsigned hostSize = sizeof(pthread_mutex_t);
|
||
warning(Loc(), "Assuming critical section size = %u bytes", hostSize);
|
||
return hostSize;
|
||
#else
|
||
error(Loc(), "Unknown critical section size");
|
||
fatal();
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
Type *Target::va_listType() { return gABI->vaListType(); }
|
||
|
||
/******************************
|
||
* Check if the given type is supported for this target
|
||
* 0: supported
|
||
* 1: not supported
|
||
* 2: wrong size
|
||
* 3: wrong base type
|
||
*/
|
||
int Target::checkVectorType(int sz, Type *type) {
|
||
// FIXME: Is it possible to query the LLVM target about supported vectors?
|
||
return 0;
|
||
}
|
||
|
||
/******************************
|
||
* Encode the given expression, which is assumed to be an rvalue literal
|
||
* as another type for use in CTFE.
|
||
* This corresponds roughly to the idiom *(Type *)&e.
|
||
*/
|
||
Expression *Target::paintAsType(Expression *e, Type *type) {
|
||
union {
|
||
d_int32 int32value;
|
||
d_int64 int64value;
|
||
float float32value;
|
||
double float64value;
|
||
} u;
|
||
|
||
assert(e->type->size() == type->size());
|
||
|
||
switch (e->type->ty) {
|
||
case Tint32:
|
||
case Tuns32:
|
||
u.int32value = static_cast<d_int32>(e->toInteger());
|
||
break;
|
||
|
||
case Tint64:
|
||
case Tuns64:
|
||
u.int64value = static_cast<d_int64>(e->toInteger());
|
||
break;
|
||
|
||
case Tfloat32:
|
||
u.float32value = e->toReal();
|
||
break;
|
||
|
||
case Tfloat64:
|
||
u.float64value = e->toReal();
|
||
break;
|
||
|
||
default:
|
||
assert(0);
|
||
}
|
||
|
||
switch (type->ty) {
|
||
case Tint32:
|
||
case Tuns32:
|
||
return createIntegerExp(e->loc, u.int32value, type);
|
||
|
||
case Tint64:
|
||
case Tuns64:
|
||
return createIntegerExp(e->loc, u.int64value, type);
|
||
|
||
case Tfloat32:
|
||
return createRealExp(e->loc, u.float32value, type);
|
||
|
||
case Tfloat64:
|
||
return createRealExp(e->loc, u.float64value, type);
|
||
|
||
default:
|
||
assert(0);
|
||
}
|
||
|
||
return nullptr; // avoid warning
|
||
}
|
||
|
||
/******************************
|
||
* For the given module, perform any post parsing analysis.
|
||
* Certain compiler backends (ie: GDC) have special placeholder
|
||
* modules whose source are empty, but code gets injected
|
||
* immediately after loading.
|
||
*/
|
||
void Target::loadModule(Module *m) {}
|
||
|
||
/******************************
|
||
*
|
||
*/
|
||
void Target::prefixName(OutBuffer *buf, LINK linkage) {}
|