ldc/gen/toir.cpp
Tomas Lindquist Olsen dbd640a3dc [svn r368] Fixed custom class allocators with arbitrary user arguments. Closes #25
Removed some dead code.
Started on a more generalised approach to call misc. D functions.
2008-07-13 20:49:10 +02:00

2894 lines
86 KiB
C++

// Backend stubs
/* DMDFE backend stubs
* This file contains the implementations of the backend routines.
* For dmdfe these do nothing but print a message saying the module
* has been parsed. Substitute your own behaviors for these routimes.
*/
#include <stdio.h>
#include <math.h>
#include <sstream>
#include <fstream>
#include <iostream>
#include "gen/llvm.h"
#include "attrib.h"
#include "total.h"
#include "init.h"
#include "mtype.h"
#include "template.h"
#include "hdrgen.h"
#include "port.h"
#include "gen/irstate.h"
#include "gen/logger.h"
#include "gen/tollvm.h"
#include "gen/llvmhelpers.h"
#include "gen/runtime.h"
#include "gen/arrays.h"
#include "gen/structs.h"
#include "gen/classes.h"
#include "gen/typeinf.h"
#include "gen/complex.h"
#include "gen/dvalue.h"
#include "gen/aa.h"
#include "gen/functions.h"
#include "gen/todebug.h"
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DeclarationExp::toElem(IRState* p)
{
Logger::print("DeclarationExp::toElem: %s | T=%s\n", toChars(), type->toChars());
LOG_SCOPE;
// variable declaration
if (VarDeclaration* vd = declaration->isVarDeclaration())
{
Logger::println("VarDeclaration");
// static
if (vd->isDataseg())
{
vd->toObjFile(0); // TODO: multiobj
}
else
{
if (global.params.llvmAnnotate)
DtoAnnotation(toChars());
Logger::println("vdtype = %s", vd->type->toChars());
// referenced by nested delegate?
if (vd->nestedref) {
Logger::println("has nestedref set");
assert(vd->ir.irLocal);
vd->ir.irLocal->value = p->func()->decl->ir.irFunc->nestedVar;
assert(vd->ir.irLocal->value);
assert(vd->ir.irLocal->nestedIndex >= 0);
}
// normal stack variable
else {
// allocate storage on the stack
const LLType* lltype = DtoType(vd->type);
llvm::Value* allocainst;
if(gTargetData->getTypeSizeInBits(lltype) == 0)
allocainst = llvm::ConstantPointerNull::get(getPtrToType(lltype));
else
allocainst = new llvm::AllocaInst(lltype, vd->toChars(), p->topallocapoint());
//allocainst->setAlignment(vd->type->alignsize()); // TODO
assert(!vd->ir.irLocal);
vd->ir.irLocal = new IrLocal(vd);
vd->ir.irLocal->value = allocainst;
if (global.params.symdebug)
{
DtoDwarfLocalVariable(allocainst, vd);
}
}
Logger::cout() << "llvm value for decl: " << *vd->ir.irLocal->value << '\n';
DValue* ie = DtoInitializer(vd->init);
}
return new DVarValue(vd, vd->ir.getIrValue(), true);
}
// struct declaration
else if (StructDeclaration* s = declaration->isStructDeclaration())
{
Logger::println("StructDeclaration");
DtoForceConstInitDsymbol(s);
}
// function declaration
else if (FuncDeclaration* f = declaration->isFuncDeclaration())
{
Logger::println("FuncDeclaration");
DtoForceDeclareDsymbol(f);
}
// alias declaration
else if (AliasDeclaration* a = declaration->isAliasDeclaration())
{
Logger::println("AliasDeclaration - no work");
// do nothing
}
// enum
else if (EnumDeclaration* e = declaration->isEnumDeclaration())
{
Logger::println("EnumDeclaration - no work");
// do nothing
}
// class
else if (ClassDeclaration* e = declaration->isClassDeclaration())
{
Logger::println("ClassDeclaration");
DtoForceConstInitDsymbol(e);
}
// typedef
else if (TypedefDeclaration* tdef = declaration->isTypedefDeclaration())
{
Logger::println("TypedefDeclaration");
DtoTypeInfoOf(tdef->type, false);
}
// attribute declaration
else if (AttribDeclaration* a = declaration->isAttribDeclaration())
{
Logger::println("AttribDeclaration");
for (int i=0; i < a->decl->dim; ++i)
{
DtoForceDeclareDsymbol((Dsymbol*)a->decl->data[i]);
}
}
// mixin declaration
else if (TemplateMixin* m = declaration->isTemplateMixin())
{
Logger::println("TemplateMixin");
for (int i=0; i < m->members->dim; ++i)
{
DtoForceDeclareDsymbol((Dsymbol*)m->members->data[i]);
}
}
// unsupported declaration
else
{
error("Unimplemented DeclarationExp type. kind: %s", declaration->kind());
assert(0);
}
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* VarExp::toElem(IRState* p)
{
Logger::print("VarExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(var);
if (VarDeclaration* vd = var->isVarDeclaration())
{
Logger::println("VarDeclaration %s", vd->toChars());
// _arguments
if (vd->ident == Id::_arguments)
{
Logger::println("Id::_arguments");
/*if (!vd->ir.getIrValue())
vd->ir.getIrValue() = p->func()->decl->irFunc->_arguments;
assert(vd->ir.getIrValue());
return new DVarValue(vd, vd->ir.getIrValue(), true);*/
LLValue* v = p->func()->decl->ir.irFunc->_arguments;
assert(v);
return new DVarValue(vd, v, true);
}
// _argptr
else if (vd->ident == Id::_argptr)
{
Logger::println("Id::_argptr");
/*if (!vd->ir.getIrValue())
vd->ir.getIrValue() = p->func()->decl->irFunc->_argptr;
assert(vd->ir.getIrValue());
return new DVarValue(vd, vd->ir.getIrValue(), true);*/
LLValue* v = p->func()->decl->ir.irFunc->_argptr;
assert(v);
return new DVarValue(vd, v, true);
}
// _dollar
else if (vd->ident == Id::dollar)
{
Logger::println("Id::dollar");
assert(!p->arrays.empty());
LLValue* tmp = DtoArrayLen(p->arrays.back());
return new DVarValue(vd, tmp, false);
}
// typeinfo
else if (TypeInfoDeclaration* tid = vd->isTypeInfoDeclaration())
{
Logger::println("TypeInfoDeclaration");
DtoForceDeclareDsymbol(tid);
assert(tid->ir.getIrValue());
const LLType* vartype = DtoType(type);
LLValue* m;
if (tid->ir.getIrValue()->getType() != getPtrToType(vartype))
m = p->ir->CreateBitCast(tid->ir.getIrValue(), vartype, "tmp");
else
m = tid->ir.getIrValue();
return new DVarValue(vd, m, true);
}
// classinfo
else if (ClassInfoDeclaration* cid = vd->isClassInfoDeclaration())
{
Logger::println("ClassInfoDeclaration: %s", cid->cd->toChars());
DtoDeclareClassInfo(cid->cd);
assert(cid->cd->ir.irStruct->classInfo);
return new DVarValue(vd, cid->cd->ir.irStruct->classInfo, true);
}
// nested variable
else if (vd->nestedref) {
Logger::println("nested variable");
return new DVarValue(vd, DtoNestedVariable(vd), true);
}
// function parameter
else if (vd->isParameter()) {
Logger::println("function param");
FuncDeclaration* fd = vd->toParent2()->isFuncDeclaration();
if (fd && fd != p->func()->decl) {
Logger::println("nested parameter");
return new DVarValue(vd, DtoNestedVariable(vd), true);
}
else if (vd->isRef() || vd->isOut() || DtoIsPassedByRef(vd->type) || llvm::isa<llvm::AllocaInst>(vd->ir.getIrValue())) {
return new DVarValue(vd, vd->ir.getIrValue(), true);
}
else if (llvm::isa<llvm::Argument>(vd->ir.getIrValue())) {
return new DImValue(type, vd->ir.getIrValue());
}
else assert(0);
}
else {
// take care of forward references of global variables
if (vd->isDataseg() || (vd->storage_class & STCextern)) {
vd->toObjFile(0); // TODO: multiobj
DtoConstInitGlobal(vd);
}
if (!vd->ir.getIrValue() || DtoType(vd->type)->isAbstract()) {
Logger::println("global variable not resolved :/ %s", vd->toChars());
Logger::cout() << *DtoType(vd->type) << '\n';
assert(0);
}
return new DVarValue(vd, vd->ir.getIrValue(), true);
}
}
else if (FuncDeclaration* fdecl = var->isFuncDeclaration())
{
Logger::println("FuncDeclaration");
if (fdecl->llvmInternal != LLVMva_arg) {// && fdecl->llvmValue == 0)
DtoForceDeclareDsymbol(fdecl);
}
return new DFuncValue(fdecl, fdecl->ir.irFunc->func);
}
else if (SymbolDeclaration* sdecl = var->isSymbolDeclaration())
{
// this seems to be the static initialiser for structs
Type* sdecltype = DtoDType(sdecl->type);
Logger::print("Sym: type=%s\n", sdecltype->toChars());
assert(sdecltype->ty == Tstruct);
TypeStruct* ts = (TypeStruct*)sdecltype;
assert(ts->sym);
DtoForceConstInitDsymbol(ts->sym);
assert(ts->sym->ir.irStruct->init);
return new DVarValue(type, ts->sym->ir.irStruct->init, true);
}
else
{
assert(0 && "Unimplemented VarExp type");
}
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* VarExp::toConstElem(IRState* p)
{
Logger::print("VarExp::toConstElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
if (SymbolDeclaration* sdecl = var->isSymbolDeclaration())
{
// this seems to be the static initialiser for structs
Type* sdecltype = DtoDType(sdecl->type);
Logger::print("Sym: type=%s\n", sdecltype->toChars());
assert(sdecltype->ty == Tstruct);
TypeStruct* ts = (TypeStruct*)sdecltype;
DtoForceConstInitDsymbol(ts->sym);
assert(ts->sym->ir.irStruct->constInit);
return ts->sym->ir.irStruct->constInit;
}
else if (TypeInfoDeclaration* ti = var->isTypeInfoDeclaration())
{
const LLType* vartype = DtoType(type);
LLConstant* m = DtoTypeInfoOf(ti->tinfo, false);
if (m->getType() != getPtrToType(vartype))
m = llvm::ConstantExpr::getBitCast(m, vartype);
return m;
}
assert(0 && "Unsupported const VarExp kind");
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* IntegerExp::toElem(IRState* p)
{
Logger::print("IntegerExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
LLConstant* c = toConstElem(p);
return new DConstValue(type, c);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* IntegerExp::toConstElem(IRState* p)
{
Logger::print("IntegerExp::toConstElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
const LLType* t = DtoType(type);
if (isaPointer(t)) {
Logger::println("pointer");
LLConstant* i = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)value,false);
return llvm::ConstantExpr::getIntToPtr(i, t);
}
assert(llvm::isa<LLIntegerType>(t));
LLConstant* c = llvm::ConstantInt::get(t,(uint64_t)value,!type->isunsigned());
assert(c);
Logger::cout() << "value = " << *c << '\n';
return c;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* RealExp::toElem(IRState* p)
{
Logger::print("RealExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
LLConstant* c = toConstElem(p);
return new DConstValue(type, c);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* RealExp::toConstElem(IRState* p)
{
Logger::print("RealExp::toConstElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* t = DtoDType(type);
return DtoConstFP(t, value);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* NullExp::toElem(IRState* p)
{
Logger::print("NullExp::toElem(type=%s): %s\n", type->toChars(),toChars());
LOG_SCOPE;
LLConstant* c = toConstElem(p);
return new DNullValue(type, c);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* NullExp::toConstElem(IRState* p)
{
Logger::print("NullExp::toConstElem(type=%s): %s\n", type->toChars(),toChars());
LOG_SCOPE;
const LLType* t = DtoType(type);
if (type->ty == Tarray) {
assert(isaStruct(t));
return llvm::ConstantAggregateZero::get(t);
}
else {
return llvm::Constant::getNullValue(t);
}
assert(0);
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ComplexExp::toElem(IRState* p)
{
Logger::print("ComplexExp::toElem(): %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
LLConstant* c = toConstElem(p);
if (c->isNullValue()) {
Type* t = DtoDType(type);
if (t->ty == Tcomplex32)
c = DtoConstFP(Type::tfloat32, 0);
else
c = DtoConstFP(Type::tfloat64, 0);
return new DComplexValue(type, c, c);
}
return new DComplexValue(type, c->getOperand(0), c->getOperand(1));
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* ComplexExp::toConstElem(IRState* p)
{
Logger::print("ComplexExp::toConstElem(): %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
return DtoConstComplex(type, value.re, value.im);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* StringExp::toElem(IRState* p)
{
Logger::print("StringExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* dtype = DtoDType(type);
Type* cty = DtoDType(dtype->next);
const LLType* ct = DtoTypeNotVoid(cty);
//printf("ct = %s\n", type->next->toChars());
const LLArrayType* at = LLArrayType::get(ct,len+1);
LLConstant* _init;
if (cty->size() == 1) {
uint8_t* str = (uint8_t*)string;
std::string cont((char*)str, len);
_init = llvm::ConstantArray::get(cont,true);
}
else if (cty->size() == 2) {
uint16_t* str = (uint16_t*)string;
std::vector<LLConstant*> vals;
for(size_t i=0; i<len; ++i) {
vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
}
vals.push_back(llvm::ConstantInt::get(ct, 0, false));
_init = llvm::ConstantArray::get(at,vals);
}
else if (cty->size() == 4) {
uint32_t* str = (uint32_t*)string;
std::vector<LLConstant*> vals;
for(size_t i=0; i<len; ++i) {
vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
}
vals.push_back(llvm::ConstantInt::get(ct, 0, false));
_init = llvm::ConstantArray::get(at,vals);
}
else
assert(0);
llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;//WeakLinkage;
Logger::cout() << "type: " << *at << "\ninit: " << *_init << '\n';
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(at,true,_linkage,_init,".stringliteral",gIR->module);
llvm::ConstantInt* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false);
LLConstant* idxs[2] = { zero, zero };
LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar,idxs,2);
if (dtype->ty == Tarray) {
LLConstant* clen = llvm::ConstantInt::get(DtoSize_t(),len,false);
LLValue* tmpmem = new llvm::AllocaInst(DtoType(dtype),"tempstring",p->topallocapoint());
DtoSetArray(tmpmem, clen, arrptr);
return new DVarValue(type, tmpmem, true);
}
else if (dtype->ty == Tsarray) {
const LLType* dstType = getPtrToType(LLArrayType::get(ct, len));
LLValue* emem = (gvar->getType() == dstType) ? gvar : DtoBitCast(gvar, dstType);
return new DVarValue(type, emem, true);
}
else if (dtype->ty == Tpointer) {
return new DImValue(type, arrptr);
}
assert(0);
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* StringExp::toConstElem(IRState* p)
{
Logger::print("StringExp::toConstElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* t = DtoDType(type);
Type* cty = DtoDType(t->next);
bool nullterm = (t->ty != Tsarray);
size_t endlen = nullterm ? len+1 : len;
const LLType* ct = DtoType(cty);
const LLArrayType* at = LLArrayType::get(ct,endlen);
LLConstant* _init;
if (cty->size() == 1) {
uint8_t* str = (uint8_t*)string;
std::string cont((char*)str, len);
_init = llvm::ConstantArray::get(cont, nullterm);
}
else if (cty->size() == 2) {
uint16_t* str = (uint16_t*)string;
std::vector<LLConstant*> vals;
for(size_t i=0; i<len; ++i) {
vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
}
if (nullterm)
vals.push_back(llvm::ConstantInt::get(ct, 0, false));
_init = llvm::ConstantArray::get(at,vals);
}
else if (cty->size() == 4) {
uint32_t* str = (uint32_t*)string;
std::vector<LLConstant*> vals;
for(size_t i=0; i<len; ++i) {
vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
}
if (nullterm)
vals.push_back(llvm::ConstantInt::get(ct, 0, false));
_init = llvm::ConstantArray::get(at,vals);
}
else
assert(0);
if (t->ty == Tsarray)
{
return _init;
}
llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;//WeakLinkage;
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(_init->getType(),true,_linkage,_init,".stringliteral",gIR->module);
llvm::ConstantInt* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false);
LLConstant* idxs[2] = { zero, zero };
LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar,idxs,2);
if (t->ty == Tpointer) {
return arrptr;
}
else if (t->ty == Tarray) {
LLConstant* clen = llvm::ConstantInt::get(DtoSize_t(),len,false);
return DtoConstSlice(clen, arrptr);
}
assert(0);
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AssignExp::toElem(IRState* p)
{
Logger::print("AssignExp::toElem: %s | %s = %s\n", toChars(), e1->type->toChars(), e2->type ? e2->type->toChars() : 0);
LOG_SCOPE;
if (e1->op == TOKarraylength)
{
Logger::println("performing array.length assignment");
ArrayLengthExp *ale = (ArrayLengthExp *)e1;
DValue* arr = ale->e1->toElem(p);
DVarValue arrval(ale->e1->type, arr->getLVal(), true);
DValue* newlen = e2->toElem(p);
DSliceValue* slice = DtoResizeDynArray(arrval.getType(), &arrval, newlen);
DtoAssign(&arrval, slice);
return newlen;
}
Logger::println("performing normal assignment");
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
DtoAssign(l, r);
if (l->isSlice() || l->isComplex())
return l;
LLValue* v;
if (l->isVar() && l->isVar()->lval)
v = l->getLVal();
else
v = l->getRVal();
return new DVarValue(type, v, true);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AddExp::toElem(IRState* p)
{
Logger::print("AddExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = DtoDType(type);
Type* e1type = DtoDType(e1->type);
Type* e1next = e1type->next ? DtoDType(e1type->next) : NULL;
Type* e2type = DtoDType(e2->type);
if (e1type != e2type) {
if (llvmFieldIndex) {
assert(e1type->ty == Tpointer && e1next && e1next->ty == Tstruct);
Logger::println("add to AddrExp of struct");
assert(r->isConst());
llvm::ConstantInt* cofs = llvm::cast<llvm::ConstantInt>(r->isConst()->c);
TypeStruct* ts = (TypeStruct*)e1next;
DStructIndexVector offsets;
LLValue* v = DtoIndexStruct(l->getRVal(), ts->sym, t->next, cofs->getZExtValue(), offsets);
return new DFieldValue(type, v, true);
}
else if (e1type->ty == Tpointer) {
Logger::println("add to pointer");
if (r->isConst()) {
llvm::ConstantInt* cofs = llvm::cast<llvm::ConstantInt>(r->isConst()->c);
if (cofs->isZero()) {
Logger::println("is zero");
return new DImValue(type, l->getRVal());
}
}
LLValue* v = llvm::GetElementPtrInst::Create(l->getRVal(), r->getRVal(), "tmp", p->scopebb());
return new DImValue(type, v);
}
else if (t->iscomplex()) {
return DtoComplexAdd(type, l, r);
}
assert(0);
}
else if (t->iscomplex()) {
return DtoComplexAdd(type, l, r);
}
else {
return DtoBinAdd(l,r);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AddAssignExp::toElem(IRState* p)
{
Logger::print("AddAssignExp::toElem: %s\n", toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = DtoDType(type);
DValue* res;
if (DtoDType(e1->type)->ty == Tpointer) {
LLValue* gep = llvm::GetElementPtrInst::Create(l->getRVal(),r->getRVal(),"tmp",p->scopebb());
res = new DImValue(type, gep);
}
else if (t->iscomplex()) {
res = DtoComplexAdd(e1->type, l, r);
}
else {
res = DtoBinAdd(l,r);
}
DtoAssign(l, res);
// might need to return l here if used as an lvalue
// but when can this ever happen?
return res;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* MinExp::toElem(IRState* p)
{
Logger::print("MinExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = DtoDType(type);
Type* t1 = DtoDType(e1->type);
Type* t2 = DtoDType(e2->type);
if (t1->ty == Tpointer && t2->ty == Tpointer) {
LLValue* lv = l->getRVal();
LLValue* rv = r->getRVal();
Logger::cout() << "lv: " << *lv << " rv: " << *rv << '\n';
lv = p->ir->CreatePtrToInt(lv, DtoSize_t(), "tmp");
rv = p->ir->CreatePtrToInt(rv, DtoSize_t(), "tmp");
LLValue* diff = p->ir->CreateSub(lv,rv,"tmp");
if (diff->getType() != DtoType(type))
diff = p->ir->CreateIntToPtr(diff, DtoType(type), "tmp");
return new DImValue(type, diff);
}
else if (t1->ty == Tpointer) {
LLValue* idx = p->ir->CreateNeg(r->getRVal(), "tmp");
LLValue* v = llvm::GetElementPtrInst::Create(l->getRVal(), idx, "tmp", p->scopebb());
return new DImValue(type, v);
}
else if (t->iscomplex()) {
return DtoComplexSub(type, l, r);
}
else {
return DtoBinSub(l,r);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* MinAssignExp::toElem(IRState* p)
{
Logger::print("MinAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = DtoDType(type);
DValue* res;
if (DtoDType(e1->type)->ty == Tpointer) {
Logger::println("ptr");
LLValue* tmp = r->getRVal();
LLValue* zero = llvm::ConstantInt::get(tmp->getType(),0,false);
tmp = llvm::BinaryOperator::createSub(zero,tmp,"tmp",p->scopebb());
tmp = llvm::GetElementPtrInst::Create(l->getRVal(),tmp,"tmp",p->scopebb());
res = new DImValue(type, tmp);
}
else if (t->iscomplex()) {
Logger::println("complex");
res = DtoComplexSub(type, l, r);
}
else {
Logger::println("basic");
res = DtoBinSub(l,r);
}
DtoAssign(l, res);
return l;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* MulExp::toElem(IRState* p)
{
Logger::print("MulExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
if (type->iscomplex()) {
return DtoComplexMul(type, l, r);
}
return DtoBinMul(l,r);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* MulAssignExp::toElem(IRState* p)
{
Logger::print("MulAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
DValue* res;
if (type->iscomplex()) {
res = DtoComplexMul(type, l, r);
}
else {
res = DtoBinMul(l,r);
}
DtoAssign(l, res);
return l;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DivExp::toElem(IRState* p)
{
Logger::print("DivExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
if (type->iscomplex()) {
return DtoComplexDiv(type, l, r);
}
return DtoBinDiv(l, r);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DivAssignExp::toElem(IRState* p)
{
Logger::print("DivAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
DValue* res;
if (type->iscomplex()) {
res = DtoComplexDiv(type, l, r);
}
else {
res = DtoBinDiv(l,r);
}
DtoAssign(l, res);
return l;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ModExp::toElem(IRState* p)
{
Logger::print("ModExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
return DtoBinRem(l, r);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ModAssignExp::toElem(IRState* p)
{
Logger::print("ModAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
DValue* res = DtoBinRem(l, r);
DtoAssign(l, res);
return l;
}
//////////////////////////////////////////////////////////////////////////////////////////
// TODO: the method below could really use a cleanup/splitup
DValue* CallExp::toElem(IRState* p)
{
Logger::print("CallExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* fn = e1->toElem(p);
TypeFunction* tf = 0;
Type* e1type = DtoDType(e1->type);
bool delegateCall = false;
LINK dlink = LINKd;
// hidden struct return parameter handling
bool retinptr = false;
// regular functions
if (e1type->ty == Tfunction) {
tf = (TypeFunction*)e1type;
if (tf->llvmRetInPtr) {
retinptr = true;
}
dlink = tf->linkage;
}
// delegates
else if (e1type->ty == Tdelegate) {
Logger::println("delegateTy = %s\n", e1type->toChars());
assert(e1type->next->ty == Tfunction);
tf = (TypeFunction*)e1type->next;
if (tf->llvmRetInPtr) {
retinptr = true;
}
dlink = tf->linkage;
delegateCall = true;
}
// invalid
else {
assert(tf);
}
// handling of special intrinsics
bool va_magic = false;
bool va_intrinsic = false;
DFuncValue* dfv = fn->isFunc();
if (dfv && dfv->func) {
FuncDeclaration* fndecl = dfv->func;
// vararg intrinsic
if (fndecl->llvmInternal == LLVMva_intrinsic) {
va_magic = true;
va_intrinsic = true;
}
// va_start instruction
else if (fndecl->llvmInternal == LLVMva_start) {
va_magic = true;
}
// va_arg instruction
else if (fndecl->llvmInternal == LLVMva_arg) {
//Argument* fnarg = Argument::getNth(tf->parameters, 0);
Expression* exp = (Expression*)arguments->data[0];
DValue* expelem = exp->toElem(p);
Type* t = DtoDType(type);
const LLType* llt = DtoType(type);
if (DtoIsPassedByRef(t))
llt = getPtrToType(llt);
// TODO
// issue a warning for broken va_arg instruction.
if (strcmp(global.params.llvmArch, "x86") != 0) {
warning("%s: va_arg for C variadic functions is probably broken for anything but x86", loc.toChars());
}
// done
return new DImValue(type, p->ir->CreateVAArg(expelem->getLVal(),llt,"tmp"));
}
// alloca
else if (fndecl->llvmInternal == LLVMalloca) {
//Argument* fnarg = Argument::getNth(tf->parameters, 0);
Expression* exp = (Expression*)arguments->data[0];
DValue* expv = exp->toElem(p);
if (expv->getType()->toBasetype()->ty != Tint32)
expv = DtoCast(expv, Type::tint32);
LLValue* alloc = new llvm::AllocaInst(LLType::Int8Ty, expv->getRVal(), "alloca", p->scopebb());
// done
return new DImValue(type, alloc);
}
}
// args
size_t n = arguments->dim;
DFuncValue* dfn = fn->isFunc();
if (dfn && dfn->func && dfn->func->llvmInternal == LLVMva_start)
n = 1;
if (delegateCall || (dfn && dfn->vthis)) n++;
if (retinptr) n++;
if (tf->linkage == LINKd && tf->varargs == 1) n+=2;
if (dfn && dfn->func && dfn->func->isNested()) n++;
LLValue* funcval = fn->getRVal();
assert(funcval != 0);
std::vector<LLValue*> llargs(n, 0);
const LLFunctionType* llfnty = 0;
// TODO: review the stuff below, using the llvm type to choose seem like a bad idea. the D type should be used.
//
// normal function call
if (llvm::isa<LLFunctionType>(funcval->getType())) {
llfnty = llvm::cast<LLFunctionType>(funcval->getType());
}
// pointer to something
else if (isaPointer(funcval->getType())) {
// pointer to function pointer - I think this not really supposed to happen, but does :/
// seems like sometimes we get a func* other times a func**
if (isaPointer(funcval->getType()->getContainedType(0))) {
funcval = DtoLoad(funcval);
}
// function pointer
if (llvm::isa<LLFunctionType>(funcval->getType()->getContainedType(0))) {
//Logger::cout() << "function pointer type:\n" << *funcval << '\n';
llfnty = llvm::cast<LLFunctionType>(funcval->getType()->getContainedType(0));
}
// struct pointer - delegate
else if (isaStruct(funcval->getType()->getContainedType(0))) {
funcval = DtoGEPi(funcval,0,1);
funcval = DtoLoad(funcval);
const LLType* ty = funcval->getType()->getContainedType(0);
llfnty = llvm::cast<LLFunctionType>(ty);
}
// unknown
else {
Logger::cout() << "what kind of pointer are we calling? : " << *funcval->getType() << '\n';
}
}
else {
Logger::cout() << "what are we calling? : " << *funcval << '\n';
}
assert(llfnty);
//Logger::cout() << "Function LLVM type: " << *llfnty << '\n';
// argument handling
LLFunctionType::param_iterator argiter = llfnty->param_begin();
int j = 0;
// attrs
llvm::PAListPtr palist;
// hidden struct return arguments
// TODO: use sret param attr
if (retinptr) {
llargs[j] = new llvm::AllocaInst(argiter->get()->getContainedType(0),"rettmp",p->topallocapoint());
if (dfn && dfn->func && dfn->func->runTimeHack) {
const LLType* rettype = getPtrToType(DtoType(type));
if (llargs[j]->getType() != llfnty->getParamType(j)) {
Logger::println("llvmRunTimeHack==true - force casting return value param");
Logger::cout() << "casting: " << *llargs[j] << " to type: " << *llfnty->getParamType(j) << '\n';
llargs[j] = DtoBitCast(llargs[j], llfnty->getParamType(j));
}
}
++j;
++argiter;
}
// this arguments
if (dfn && dfn->vthis) {
Logger::cout() << "This Call" << '\n';// func val:" << *funcval << '\n';
if (dfn->vthis->getType() != argiter->get()) {
//Logger::cout() << "value: " << *dfn->vthis << " totype: " << *argiter->get() << '\n';
llargs[j] = DtoBitCast(dfn->vthis, argiter->get());
}
else {
llargs[j] = dfn->vthis;
}
++j;
++argiter;
}
// delegate context arguments
else if (delegateCall) {
Logger::println("Delegate Call");
LLValue* contextptr = DtoGEPi(fn->getRVal(),0,0);
llargs[j] = DtoLoad(contextptr);
++j;
++argiter;
}
// nested call
else if (dfn && dfn->func && dfn->func->isNested()) {
Logger::println("Nested Call");
LLValue* contextptr = DtoNestedContext(dfn->func->toParent2()->isFuncDeclaration());
if (!contextptr)
contextptr = llvm::ConstantPointerNull::get(getPtrToType(LLType::Int8Ty));
llargs[j] = DtoBitCast(contextptr, getPtrToType(LLType::Int8Ty));
++j;
++argiter;
}
// va arg function special argument passing
if (va_magic)
{
size_t n = va_intrinsic ? arguments->dim : 1;
for (int i=0; i<n; i++,j++)
{
Argument* fnarg = Argument::getNth(tf->parameters, i);
Expression* exp = (Expression*)arguments->data[i];
DValue* expelem = exp->toElem(p);
llargs[j] = DtoBitCast(expelem->getLVal(), getPtrToType(LLType::Int8Ty));
}
}
// d variadic function
else if (tf->linkage == LINKd && tf->varargs == 1)
{
Logger::println("doing d-style variadic arguments");
size_t nimplicit = j;
std::vector<const LLType*> vtypes;
// number of non variadic args
int begin = tf->parameters->dim;
Logger::println("num non vararg params = %d", begin);
// build struct with argument types
for (int i=begin; i<arguments->dim; i++)
{
Argument* argu = Argument::getNth(tf->parameters, i);
Expression* argexp = (Expression*)arguments->data[i];
vtypes.push_back(DtoType(argexp->type));
size_t sz = getABITypeSize(vtypes.back());
if (sz < PTRSIZE)
vtypes.back() = DtoSize_t();
}
const LLStructType* vtype = LLStructType::get(vtypes);
Logger::cout() << "d-variadic argument struct type:\n" << *vtype << '\n';
LLValue* mem = new llvm::AllocaInst(vtype,"_argptr_storage",p->topallocapoint());
// store arguments in the struct
for (int i=begin,k=0; i<arguments->dim; i++,k++)
{
Expression* argexp = (Expression*)arguments->data[i];
if (global.params.llvmAnnotate)
DtoAnnotation(argexp->toChars());
LLValue* argdst = DtoGEPi(mem,0,k);
argdst = DtoBitCast(argdst, getPtrToType(DtoType(argexp->type)));
DtoVariadicArgument(argexp, argdst);
}
// build type info array
assert(Type::typeinfo->ir.irStruct->constInit);
const LLType* typeinfotype = DtoType(Type::typeinfo->type);
const LLArrayType* typeinfoarraytype = LLArrayType::get(typeinfotype,vtype->getNumElements());
llvm::GlobalVariable* typeinfomem =
new llvm::GlobalVariable(typeinfoarraytype, true, llvm::GlobalValue::InternalLinkage, NULL, "._arguments.storage", gIR->module);
Logger::cout() << "_arguments storage: " << *typeinfomem << '\n';
std::vector<LLConstant*> vtypeinfos;
for (int i=begin,k=0; i<arguments->dim; i++,k++)
{
Expression* argexp = (Expression*)arguments->data[i];
vtypeinfos.push_back(DtoTypeInfoOf(argexp->type));
}
// apply initializer
LLConstant* tiinits = llvm::ConstantArray::get(typeinfoarraytype, vtypeinfos);
typeinfomem->setInitializer(tiinits);
// put data in d-array
std::vector<LLConstant*> pinits;
pinits.push_back(DtoConstSize_t(vtype->getNumElements()));
pinits.push_back(llvm::ConstantExpr::getBitCast(typeinfomem, getPtrToType(typeinfotype)));
const LLType* tiarrty = llfnty->getParamType(j)->getContainedType(0);
tiinits = llvm::ConstantStruct::get(pinits);
LLValue* typeinfoarrayparam = new llvm::GlobalVariable(tiarrty,
true, llvm::GlobalValue::InternalLinkage, tiinits, "._arguments.array", gIR->module);
// specify arguments
llargs[j] = typeinfoarrayparam;;
j++;
llargs[j] = p->ir->CreateBitCast(mem, getPtrToType(LLType::Int8Ty), "tmp");
j++;
// pass non variadic args
for (int i=0; i<begin; i++)
{
Argument* fnarg = Argument::getNth(tf->parameters, i);
DValue* argval = DtoArgument(fnarg, (Expression*)arguments->data[i]);
llargs[j] = argval->getRVal();
if (fnarg->llvmByVal)
palist = palist.addAttr(j, llvm::ParamAttr::ByVal);
j++;
}
// make sure arg vector has the right size
llargs.resize(nimplicit+begin+2);
}
// normal function call
else
{
Logger::println("doing normal arguments");
for (int i=0; i<arguments->dim; i++,j++) {
Argument* fnarg = Argument::getNth(tf->parameters, i);
if (global.params.llvmAnnotate)
DtoAnnotation(((Expression*)arguments->data[i])->toChars());
DValue* argval = DtoArgument(fnarg, (Expression*)arguments->data[i]);
llargs[j] = argval->getRVal();
if (fnarg && llargs[j]->getType() != llfnty->getParamType(j)) {
llargs[j] = DtoBitCast(llargs[j], llfnty->getParamType(j));
}
if (fnarg && fnarg->llvmByVal)
palist = palist.addAttr(j+1, llvm::ParamAttr::ByVal);
// this hack is necessary :/
// thing is DMD doesn't create correct signatures for the DMD generated calls to the runtime.
// only the return type is right, no arguments (parameters==NULL) ...
if (dfn && dfn->func && dfn->func->runTimeHack) {
llvm::Function* fn = dfn->func->ir.irFunc->func;
assert(fn);
if (fn->getParamAttrs().paramHasAttr(j+1, llvm::ParamAttr::ByVal))
palist = palist.addAttr(j+1, llvm::ParamAttr::ByVal);
if (llfnty->getParamType(j) != NULL) {
if (llargs[j]->getType() != llfnty->getParamType(j)) {
Logger::println("llvmRunTimeHack==true - force casting argument");
Logger::cout() << "casting: " << *llargs[j] << " to type: " << *llfnty->getParamType(j) << '\n';
llargs[j] = DtoBitCast(llargs[j], llfnty->getParamType(j));
}
}
}
}
}
#if 0
Logger::println("%d params passed", n);
for (int i=0; i<llargs.size(); ++i) {
assert(llargs[i]);
Logger::cout() << "arg["<<i<<"] = " << *llargs[i] << '\n';
}
#endif
// void returns cannot not be named
const char* varname = "";
if (llfnty->getReturnType() != LLType::VoidTy)
varname = "tmp";
//Logger::cout() << "Calling: " << *funcval << '\n';
// call the function
CallOrInvoke* call = gIR->CreateCallOrInvoke(funcval, llargs.begin(), llargs.end(), varname);
LLValue* retllval = (retinptr) ? llargs[0] : call->get();
if (retinptr && dfn && dfn->func && dfn->func->runTimeHack) {
const LLType* rettype = getPtrToType(DtoType(type));
if (retllval->getType() != rettype) {
Logger::println("llvmRunTimeHack==true - force casting return value");
Logger::cout() << "from: " << *retllval->getType() << " to: " << *rettype << '\n';
retllval = DtoBitCast(retllval, rettype);
}
}
// set calling convention
if (dfn && dfn->func) {
int li = dfn->func->llvmInternal;
if (li != LLVMintrinsic && li != LLVMva_start && li != LLVMva_intrinsic) {
call->setCallingConv(DtoCallingConv(dlink));
}
}
else {
call->setCallingConv(DtoCallingConv(dlink));
}
// param attrs
call->setParamAttrs(palist);
return new DImValue(type, retllval, false);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CastExp::toElem(IRState* p)
{
Logger::print("CastExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
DValue* v = DtoCast(u, to);
if (v->isSlice()) {
// only valid as rvalue!
return v;
}
else if(u->isLVal())
return new DLRValue(e1->type, u->getLVal(), to, v->getRVal());
else
return v;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* SymOffExp::toElem(IRState* p)
{
Logger::print("SymOffExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(0 && "SymOffExp::toElem should no longer be called :/");
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AddrExp::toElem(IRState* p)
{
Logger::println("AddrExp::toElem: %s | %s", toChars(), type->toChars());
LOG_SCOPE;
DValue* v = e1->toElem(p);
if (v->isField()) {
Logger::println("is field");
return v;
}
else if (DFuncValue* fv = v->isFunc()) {
Logger::println("is func");
//Logger::println("FuncDeclaration");
FuncDeclaration* fd = fv->func;
assert(fd);
DtoForceDeclareDsymbol(fd);
return new DFuncValue(fd, fd->ir.irFunc->func);
}
else if (DImValue* im = v->isIm()) {
Logger::println("is immediate");
return v;
}
Logger::println("is nothing special");
return new DFieldValue(type, v->getLVal(), false);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* PtrExp::toElem(IRState* p)
{
Logger::println("PtrExp::toElem: %s | %s", toChars(), type->toChars());
LOG_SCOPE;
DValue* a = e1->toElem(p);
// this should be deterministic but right now lvalue casts don't propagate lvalueness !?!
LLValue* lv = a->getRVal();
LLValue* v = lv;
if (DtoCanLoad(v))
v = DtoLoad(v);
return new DLRValue(type, lv, type, v);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DotVarExp::toElem(IRState* p)
{
Logger::print("DotVarExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
Type* t = DtoDType(type);
Type* e1type = DtoDType(e1->type);
//Logger::println("e1type=%s", e1type->toChars());
//Logger::cout() << *DtoType(e1type) << '\n';
if (VarDeclaration* vd = var->isVarDeclaration()) {
LLValue* arrptr;
if (e1type->ty == Tpointer) {
assert(e1type->next->ty == Tstruct);
TypeStruct* ts = (TypeStruct*)e1type->next;
Logger::println("Struct member offset:%d", vd->offset);
LLValue* src = l->getRVal();
DStructIndexVector vdoffsets;
arrptr = DtoIndexStruct(src, ts->sym, vd->type, vd->offset, vdoffsets);
}
else if (e1type->ty == Tclass) {
TypeClass* tc = (TypeClass*)e1type;
Logger::println("Class member offset: %d", vd->offset);
LLValue* src = l->getRVal();
DStructIndexVector vdoffsets;
arrptr = DtoIndexClass(src, tc->sym, vd->type, vd->offset, vdoffsets);
}
else
assert(0);
//Logger::cout() << "mem: " << *arrptr << '\n';
return new DVarValue(vd, arrptr, true);
}
else if (FuncDeclaration* fdecl = var->isFuncDeclaration())
{
DtoResolveDsymbol(fdecl);
LLValue* funcval;
LLValue* vthis2 = 0;
if (e1type->ty == Tclass) {
TypeClass* tc = (TypeClass*)e1type;
if (tc->sym->isInterfaceDeclaration()) {
vthis2 = DtoCastInterfaceToObject(l, NULL)->getRVal();
}
}
LLValue* vthis = l->getRVal();
if (!vthis2) vthis2 = vthis;
//unsigned cc = (unsigned)-1;
// super call
if (e1->op == TOKsuper) {
DtoForceDeclareDsymbol(fdecl);
funcval = fdecl->ir.irFunc->func;
assert(funcval);
}
// normal virtual call
else if (fdecl->isAbstract() || (!fdecl->isFinal() && fdecl->isVirtual())) {
assert(fdecl->vtblIndex > 0);
assert(e1type->ty == Tclass);
LLValue* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false);
LLValue* vtblidx = llvm::ConstantInt::get(LLType::Int32Ty, (size_t)fdecl->vtblIndex, false);
//Logger::cout() << "vthis: " << *vthis << '\n';
funcval = DtoGEP(vthis, zero, zero);
funcval = DtoLoad(funcval);
funcval = DtoGEP(funcval, zero, vtblidx, toChars());
funcval = DtoLoad(funcval);
#if OPAQUE_VTBLS
funcval = DtoBitCast(funcval, getPtrToType(DtoType(fdecl->type)));
Logger::cout() << "funcval casted: " << *funcval << '\n';
#endif
}
// static call
else {
DtoForceDeclareDsymbol(fdecl);
funcval = fdecl->ir.irFunc->func;
assert(funcval);
//assert(funcval->getType() == DtoType(fdecl->type));
}
return new DFuncValue(fdecl, funcval, vthis2);
}
else {
printf("unsupported dotvarexp: %s\n", var->toChars());
}
assert(0);
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ThisExp::toElem(IRState* p)
{
Logger::print("ThisExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
// this seems to happen for dmd generated assert statements like:
// assert(this, "null this");
if (!var)
{
LLValue* v = p->func()->thisVar;
assert(v);
return new DImValue(type, v);
}
// regular this expr
else if (VarDeclaration* vd = var->isVarDeclaration()) {
LLValue* v;
v = p->func()->decl->ir.irFunc->thisVar;
if (llvm::isa<llvm::AllocaInst>(v))
v = DtoLoad(v);
const LLType* t = DtoType(type);
if (v->getType() != t)
v = DtoBitCast(v, t);
return new DThisValue(vd, v);
}
// anything we're not yet handling ?
assert(0);
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* IndexExp::toElem(IRState* p)
{
Logger::print("IndexExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
Type* e1type = DtoDType(e1->type);
p->arrays.push_back(l); // if $ is used it must be an array so this is fine.
DValue* r = e2->toElem(p);
p->arrays.pop_back();
LLValue* zero = DtoConstUint(0);
LLValue* one = DtoConstUint(1);
LLValue* arrptr = 0;
if (e1type->ty == Tpointer) {
arrptr = DtoGEP1(l->getRVal(),r->getRVal());
}
else if (e1type->ty == Tsarray) {
arrptr = DtoGEP(l->getRVal(), zero, r->getRVal());
}
else if (e1type->ty == Tarray) {
arrptr = DtoArrayPtr(l);
arrptr = DtoGEP1(arrptr,r->getRVal());
}
else if (e1type->ty == Taarray) {
return DtoAAIndex(type, l, r);
}
else {
Logger::println("invalid index exp! e1type: %s", e1type->toChars());
assert(0);
}
return new DVarValue(type, arrptr, true);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* SliceExp::toElem(IRState* p)
{
Logger::print("SliceExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
// this is the new slicing code, it's different in that a full slice will no longer retain the original pointer.
// but this was broken if there *was* no original pointer, ie. a slice of a slice...
// now all slices have *both* the 'len' and 'ptr' fields set to != null.
// value being sliced
LLValue* elen;
LLValue* eptr;
DValue* e = e1->toElem(p);
// handle pointer slicing
Type* etype = e1->type->toBasetype();
if (etype->ty == Tpointer)
{
assert(lwr);
eptr = e->getRVal();
}
// array slice
else
{
eptr = DtoArrayPtr(e);
}
// has lower bound, pointer needs adjustment
if (lwr)
{
// must have upper bound too then
assert(upr);
// get bounds (make sure $ works)
p->arrays.push_back(e);
DValue* lo = lwr->toElem(p);
DValue* up = upr->toElem(p);
p->arrays.pop_back();
LLValue* vlo = lo->getRVal();
LLValue* vup = up->getRVal();
// offset by lower
eptr = DtoGEP1(eptr, vlo);
// adjust length
elen = p->ir->CreateSub(vup, vlo, "tmp");
}
// no bounds or full slice -> just convert to slice
else
{
assert(e1->type->toBasetype()->ty != Tpointer);
// if the sliceee is a static array, we use the length of that as DMD seems
// to give contrary inconsistent sizesin some multidimensional static array cases.
// (namely default initialization, int[16][16] arr; -> int[256] arr = 0;)
if (etype->ty == Tsarray)
{
TypeSArray* tsa = (TypeSArray*)etype;
elen = DtoConstSize_t(tsa->dim->toUInteger());
}
// for normal code the actual array length is what we want!
else
{
elen = DtoArrayLen(e);
}
}
return new DSliceValue(type, elen, eptr);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CmpExp::toElem(IRState* p)
{
Logger::print("CmpExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = DtoDType(e1->type);
Type* e2t = DtoDType(e2->type);
assert(DtoType(t) == DtoType(e2t));
LLValue* eval = 0;
if (t->isintegral() || t->ty == Tpointer)
{
llvm::ICmpInst::Predicate cmpop;
bool skip = false;
switch(op)
{
case TOKlt:
case TOKul:
cmpop = t->isunsigned() ? llvm::ICmpInst::ICMP_ULT : llvm::ICmpInst::ICMP_SLT;
break;
case TOKle:
case TOKule:
cmpop = t->isunsigned() ? llvm::ICmpInst::ICMP_ULE : llvm::ICmpInst::ICMP_SLE;
break;
case TOKgt:
case TOKug:
cmpop = t->isunsigned() ? llvm::ICmpInst::ICMP_UGT : llvm::ICmpInst::ICMP_SGT;
break;
case TOKge:
case TOKuge:
cmpop = t->isunsigned() ? llvm::ICmpInst::ICMP_UGE : llvm::ICmpInst::ICMP_SGE;
break;
case TOKue:
cmpop = llvm::ICmpInst::ICMP_EQ;
break;
case TOKlg:
cmpop = llvm::ICmpInst::ICMP_NE;
break;
case TOKleg:
skip = true;
eval = llvm::ConstantInt::getTrue();
break;
case TOKunord:
skip = true;
eval = llvm::ConstantInt::getFalse();
break;
default:
assert(0);
}
if (!skip)
{
LLValue* a = l->getRVal();
LLValue* b = r->getRVal();
Logger::cout() << "type 1: " << *a << '\n';
Logger::cout() << "type 2: " << *b << '\n';
eval = new llvm::ICmpInst(cmpop, a, b, "tmp", p->scopebb());
}
}
else if (t->isfloating())
{
llvm::FCmpInst::Predicate cmpop;
switch(op)
{
case TOKlt:
cmpop = llvm::FCmpInst::FCMP_OLT;break;
case TOKle:
cmpop = llvm::FCmpInst::FCMP_OLE;break;
case TOKgt:
cmpop = llvm::FCmpInst::FCMP_OGT;break;
case TOKge:
cmpop = llvm::FCmpInst::FCMP_OGE;break;
case TOKunord:
cmpop = llvm::FCmpInst::FCMP_UNO;break;
case TOKule:
cmpop = llvm::FCmpInst::FCMP_ULE;break;
case TOKul:
cmpop = llvm::FCmpInst::FCMP_ULT;break;
case TOKuge:
cmpop = llvm::FCmpInst::FCMP_UGE;break;
case TOKug:
cmpop = llvm::FCmpInst::FCMP_UGT;break;
case TOKue:
cmpop = llvm::FCmpInst::FCMP_UEQ;break;
case TOKlg:
cmpop = llvm::FCmpInst::FCMP_ONE;break;
case TOKleg:
cmpop = llvm::FCmpInst::FCMP_ORD;break;
default:
assert(0);
}
eval = new llvm::FCmpInst(cmpop, l->getRVal(), r->getRVal(), "tmp", p->scopebb());
}
else if (t->ty == Tsarray || t->ty == Tarray)
{
Logger::println("static or dynamic array");
eval = DtoArrayCompare(op,l,r);
}
else
{
assert(0 && "Unsupported CmpExp type");
}
return new DImValue(type, eval);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* EqualExp::toElem(IRState* p)
{
Logger::print("EqualExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = DtoDType(e1->type);
Type* e2t = DtoDType(e2->type);
//assert(t == e2t);
LLValue* eval = 0;
if (t->isintegral() || t->ty == Tpointer)
{
Logger::println("integral or pointer");
llvm::ICmpInst::Predicate cmpop;
switch(op)
{
case TOKequal:
cmpop = llvm::ICmpInst::ICMP_EQ;
break;
case TOKnotequal:
cmpop = llvm::ICmpInst::ICMP_NE;
break;
default:
assert(0);
}
LLValue* lv = l->getRVal();
LLValue* rv = r->getRVal();
if (rv->getType() != lv->getType()) {
rv = DtoBitCast(rv, lv->getType());
}
eval = new llvm::ICmpInst(cmpop, lv, rv, "tmp", p->scopebb());
}
else if (t->iscomplex())
{
Logger::println("complex");
eval = DtoComplexEquals(op, l, r);
}
else if (t->isfloating())
{
Logger::println("floating");
llvm::FCmpInst::Predicate cmpop;
switch(op)
{
case TOKequal:
cmpop = llvm::FCmpInst::FCMP_OEQ;
break;
case TOKnotequal:
cmpop = llvm::FCmpInst::FCMP_UNE;
break;
default:
assert(0);
}
eval = new llvm::FCmpInst(cmpop, l->getRVal(), r->getRVal(), "tmp", p->scopebb());
}
else if (t->ty == Tsarray || t->ty == Tarray)
{
Logger::println("static or dynamic array");
eval = DtoArrayEquals(op,l,r);
}
else if (t->ty == Tdelegate)
{
Logger::println("delegate");
eval = DtoDelegateEquals(op,l->getRVal(),r->getRVal());
}
else if (t->ty == Tstruct)
{
Logger::println("struct");
// when this is reached it means there is no opEquals overload.
eval = DtoStructEquals(op,l,r);
}
else
{
assert(0 && "Unsupported EqualExp type");
}
return new DImValue(type, eval);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* PostExp::toElem(IRState* p)
{
Logger::print("PostExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
LLValue* val = l->getRVal();
LLValue* post = 0;
Type* e1type = DtoDType(e1->type);
Type* e2type = DtoDType(e2->type);
if (e1type->isintegral())
{
assert(e2type->isintegral());
LLValue* one = llvm::ConstantInt::get(val->getType(), 1, !e2type->isunsigned());
if (op == TOKplusplus) {
post = llvm::BinaryOperator::createAdd(val,one,"tmp",p->scopebb());
}
else if (op == TOKminusminus) {
post = llvm::BinaryOperator::createSub(val,one,"tmp",p->scopebb());
}
}
else if (e1type->ty == Tpointer)
{
assert(e2type->isintegral());
LLConstant* minusone = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)-1,true);
LLConstant* plusone = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)1,false);
LLConstant* whichone = (op == TOKplusplus) ? plusone : minusone;
post = llvm::GetElementPtrInst::Create(val, whichone, "tmp", p->scopebb());
}
else if (e1type->isfloating())
{
assert(e2type->isfloating());
LLValue* one = DtoConstFP(e1type, 1.0);
if (op == TOKplusplus) {
post = llvm::BinaryOperator::createAdd(val,one,"tmp",p->scopebb());
}
else if (op == TOKminusminus) {
post = llvm::BinaryOperator::createSub(val,one,"tmp",p->scopebb());
}
}
else
assert(post);
DtoStore(post,l->getLVal());
return new DImValue(type,val,true);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* NewExp::toElem(IRState* p)
{
Logger::print("NewExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(newtype);
Type* ntype = DtoDType(newtype);
// new class
if (ntype->ty == Tclass) {
Logger::println("new class");
return DtoNewClass((TypeClass*)ntype, this);
}
// new dynamic array
else if (ntype->ty == Tarray)
{
Logger::println("new dynamic array: %s", newtype->toChars());
// get dim
assert(arguments);
assert(arguments->dim >= 1);
if (arguments->dim == 1)
{
DValue* sz = ((Expression*)arguments->data[0])->toElem(p);
// allocate & init
return DtoNewDynArray(newtype, sz, true);
}
else
{
size_t ndims = arguments->dim;
std::vector<DValue*> dims(ndims);
for (size_t i=0; i<ndims; ++i)
dims[i] = ((Expression*)arguments->data[i])->toElem(p);
return DtoNewMulDimDynArray(newtype, &dims[0], ndims, true);
}
}
// new static array
else if (ntype->ty == Tsarray)
{
assert(0);
}
// new struct
else if (ntype->ty == Tstruct)
{
Logger::println("new struct on heap: %s\n", newtype->toChars());
// allocate
LLValue* mem = DtoNew(newtype);
// init
TypeStruct* ts = (TypeStruct*)ntype;
if (ts->isZeroInit()) {
DtoAggrZeroInit(mem);
}
else {
assert(ts->sym);
DtoAggrCopy(mem,ts->sym->ir.irStruct->init);
}
return new DImValue(type, mem, false);
}
// new basic type
else
{
// allocate
LLValue* mem = DtoNew(newtype);
DVarValue tmpvar(newtype, mem, true);
// default initialize
Expression* exp = newtype->defaultInit(loc);
DValue* iv = exp->toElem(gIR);
DtoAssign(&tmpvar, iv);
// return as pointer-to
return new DImValue(type, mem, false);
}
assert(0);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DeleteExp::toElem(IRState* p)
{
Logger::print("DeleteExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* dval = e1->toElem(p);
Type* et = DtoDType(e1->type);
// simple pointer
if (et->ty == Tpointer)
{
LLValue* rval = dval->getRVal();
DtoDeleteMemory(rval);
if (dval->isVar() && dval->isVar()->lval)
DtoStore(llvm::Constant::getNullValue(rval->getType()), dval->getLVal());
}
// class
else if (et->ty == Tclass)
{
bool onstack = false;
TypeClass* tc = (TypeClass*)et;
if (tc->sym->isInterfaceDeclaration())
{
DtoDeleteInterface(dval->getRVal());
onstack = true;
}
else if (DVarValue* vv = dval->isVar()) {
if (vv->var && vv->var->onstack) {
if (tc->sym->dtors.dim > 0)
DtoFinalizeClass(dval->getRVal());
onstack = true;
}
}
if (!onstack) {
LLValue* rval = dval->getRVal();
DtoDeleteClass(rval);
}
if (!dval->isThis() && dval->isVar() && dval->isVar()->lval) {
LLValue* lval = dval->getLVal();
DtoStore(llvm::Constant::getNullValue(lval->getType()->getContainedType(0)), lval);
}
}
// dyn array
else if (et->ty == Tarray)
{
DtoDeleteArray(dval);
if (!dval->isSlice())
DtoSetArrayToNull(dval->getRVal());
}
// unknown/invalid
else
{
assert(0 && "invalid delete");
}
// no value to return
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ArrayLengthExp::toElem(IRState* p)
{
Logger::print("ArrayLengthExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
return new DImValue(type, DtoArrayLen(u));
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AssertExp::toElem(IRState* p)
{
Logger::print("AssertExp::toElem: %s\n", toChars());
LOG_SCOPE;
// condition
DValue* cond = e1->toElem(p);
// create basic blocks
llvm::BasicBlock* oldend = p->scopeend();
llvm::BasicBlock* assertbb = llvm::BasicBlock::Create("assert", p->topfunc(), oldend);
llvm::BasicBlock* endbb = llvm::BasicBlock::Create("noassert", p->topfunc(), oldend);
// test condition
LLValue* condval = cond->getRVal();
condval = DtoBoolean(condval);
// branch
llvm::BranchInst::Create(endbb, assertbb, condval, p->scopebb());
// call assert runtime functions
p->scope() = IRScope(assertbb,endbb);
DtoAssert(&loc, msg ? msg->toElem(p) : NULL);
// assert inserts unreachable terminator
// if (!gIR->scopereturned())
// llvm::BranchInst::Create(endbb, p->scopebb());
// rewrite the scope
p->scope() = IRScope(endbb,oldend);
// no meaningful return value
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* NotExp::toElem(IRState* p)
{
Logger::print("NotExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
LLValue* b = DtoBoolean(u->getRVal());
LLConstant* zero = llvm::ConstantInt::get(LLType::Int1Ty, 0, true);
b = p->ir->CreateICmpEQ(b,zero);
return new DImValue(type, b);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AndAndExp::toElem(IRState* p)
{
Logger::print("AndAndExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
// allocate a temporary for the final result. failed to come up with a better way :/
LLValue* resval = 0;
llvm::BasicBlock* entryblock = &p->topfunc()->front();
resval = new llvm::AllocaInst(LLType::Int1Ty,"andandtmp",p->topallocapoint());
DValue* u = e1->toElem(p);
llvm::BasicBlock* oldend = p->scopeend();
llvm::BasicBlock* andand = llvm::BasicBlock::Create("andand", gIR->topfunc(), oldend);
llvm::BasicBlock* andandend = llvm::BasicBlock::Create("andandend", gIR->topfunc(), oldend);
LLValue* ubool = DtoBoolean(u->getRVal());
DtoStore(ubool,resval);
llvm::BranchInst::Create(andand,andandend,ubool,p->scopebb());
p->scope() = IRScope(andand, andandend);
DValue* v = e2->toElem(p);
LLValue* vbool = DtoBoolean(v->getRVal());
LLValue* uandvbool = llvm::BinaryOperator::create(llvm::BinaryOperator::And, ubool, vbool,"tmp",p->scopebb());
DtoStore(uandvbool,resval);
llvm::BranchInst::Create(andandend,p->scopebb());
p->scope() = IRScope(andandend, oldend);
resval = DtoLoad(resval);
return new DImValue(type, resval);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* OrOrExp::toElem(IRState* p)
{
Logger::print("OrOrExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
// allocate a temporary for the final result. failed to come up with a better way :/
LLValue* resval = 0;
llvm::BasicBlock* entryblock = &p->topfunc()->front();
resval = new llvm::AllocaInst(LLType::Int1Ty,"orortmp",p->topallocapoint());
DValue* u = e1->toElem(p);
llvm::BasicBlock* oldend = p->scopeend();
llvm::BasicBlock* oror = llvm::BasicBlock::Create("oror", gIR->topfunc(), oldend);
llvm::BasicBlock* ororend = llvm::BasicBlock::Create("ororend", gIR->topfunc(), oldend);
LLValue* ubool = DtoBoolean(u->getRVal());
DtoStore(ubool,resval);
llvm::BranchInst::Create(ororend,oror,ubool,p->scopebb());
p->scope() = IRScope(oror, ororend);
DValue* v = e2->toElem(p);
LLValue* vbool = DtoBoolean(v->getRVal());
DtoStore(vbool,resval);
llvm::BranchInst::Create(ororend,p->scopebb());
p->scope() = IRScope(ororend, oldend);
resval = new llvm::LoadInst(resval,"tmp",p->scopebb());
return new DImValue(type, resval);
}
//////////////////////////////////////////////////////////////////////////////////////////
#define BinBitExp(X,Y) \
DValue* X##Exp::toElem(IRState* p) \
{ \
Logger::print("%sExp::toElem: %s | %s\n", #X, toChars(), type->toChars()); \
LOG_SCOPE; \
DValue* u = e1->toElem(p); \
DValue* v = e2->toElem(p); \
LLValue* x = llvm::BinaryOperator::create(llvm::Instruction::Y, u->getRVal(), v->getRVal(), "tmp", p->scopebb()); \
return new DImValue(type, x); \
} \
\
DValue* X##AssignExp::toElem(IRState* p) \
{ \
Logger::print("%sAssignExp::toElem: %s | %s\n", #X, toChars(), type->toChars()); \
LOG_SCOPE; \
DValue* u = e1->toElem(p); \
DValue* v = e2->toElem(p); \
LLValue* uval = u->getRVal(); \
LLValue* vval = v->getRVal(); \
LLValue* tmp = llvm::BinaryOperator::create(llvm::Instruction::Y, uval, vval, "tmp", p->scopebb()); \
DtoStore(DtoPointedType(u->getLVal(), tmp), u->getLVal()); \
return u; \
}
BinBitExp(And,And);
BinBitExp(Or,Or);
BinBitExp(Xor,Xor);
BinBitExp(Shl,Shl);
//BinBitExp(Shr,AShr);
BinBitExp(Ushr,LShr);
DValue* ShrExp::toElem(IRState* p)
{
Logger::print("ShrExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
DValue* v = e2->toElem(p);
LLValue* x;
if (e1->type->isunsigned())
x = p->ir->CreateLShr(u->getRVal(), v->getRVal(), "tmp");
else
x = p->ir->CreateAShr(u->getRVal(), v->getRVal(), "tmp");
return new DImValue(type, x);
}
DValue* ShrAssignExp::toElem(IRState* p)
{
Logger::print("ShrAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
DValue* v = e2->toElem(p);
LLValue* uval = u->getRVal();
LLValue* vval = v->getRVal();
LLValue* tmp;
if (e1->type->isunsigned())
tmp = p->ir->CreateLShr(uval, vval, "tmp");
else
tmp = p->ir->CreateAShr(uval, vval, "tmp");
DtoStore(DtoPointedType(u->getLVal(), tmp), u->getLVal());
return u;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* HaltExp::toElem(IRState* p)
{
Logger::print("HaltExp::toElem: %s\n", toChars());
LOG_SCOPE;
#if 1
DtoAssert(&loc, NULL);
#else
// call the new (?) trap intrinsic
p->ir->CreateCall(GET_INTRINSIC_DECL(trap),"");
new llvm::UnreachableInst(p->scopebb());
#endif
// this terminated the basicblock, start a new one
// this is sensible, since someone might goto behind the assert
// and prevents compiler errors if a terminator follows the assert
llvm::BasicBlock* oldend = gIR->scopeend();
llvm::BasicBlock* bb = llvm::BasicBlock::Create("afterhalt", p->topfunc(), oldend);
p->scope() = IRScope(bb,oldend);
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DelegateExp::toElem(IRState* p)
{
Logger::print("DelegateExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
const LLPointerType* int8ptrty = getPtrToType(LLType::Int8Ty);
LLValue* lval = new llvm::AllocaInst(DtoType(type), "tmpdelegate", p->topallocapoint());
DValue* u = e1->toElem(p);
LLValue* uval;
if (DFuncValue* f = u->isFunc()) {
assert(f->func);
LLValue* contextptr = DtoNestedContext(f->func->toParent2()->isFuncDeclaration());
if (!contextptr)
uval = LLConstant::getNullValue(getVoidPtrType());
else
uval = DtoBitCast(contextptr, getVoidPtrType());
}
else {
DValue* src = u;
if (ClassDeclaration* cd = u->getType()->isClassHandle())
{
Logger::println("context type is class handle");
if (cd->isInterfaceDeclaration())
{
Logger::println("context type is interface");
src = DtoCastInterfaceToObject(u, ClassDeclaration::object->type);
}
}
uval = src->getRVal();
}
Logger::cout() << "context = " << *uval << '\n';
LLValue* context = DtoGEPi(lval,0,0);
LLValue* castcontext = DtoBitCast(uval, int8ptrty);
DtoStore(castcontext, context);
LLValue* fptr = DtoGEPi(lval,0,1);
Logger::println("func: '%s'", func->toPrettyChars());
LLValue* castfptr;
if (func->isVirtual())
castfptr = DtoVirtualFunctionPointer(u, func);
else if (func->isAbstract())
assert(0 && "TODO delegate to abstract method");
else if (func->toParent()->isInterfaceDeclaration())
assert(0 && "TODO delegate to interface method");
else
{
DtoForceDeclareDsymbol(func);
castfptr = func->ir.irFunc->func;
}
castfptr = DtoBitCast(castfptr, fptr->getType()->getContainedType(0));
DtoStore(castfptr, fptr);
return new DImValue(type, lval);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* IdentityExp::toElem(IRState* p)
{
Logger::print("IdentityExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
DValue* v = e2->toElem(p);
Type* t1 = e1->type->toBasetype();
// handle dynarray specially
if (t1->ty == Tarray)
return new DImValue(type, DtoDynArrayIs(op,u,v));
// also structs
else if (t1->ty == Tstruct)
return new DImValue(type, DtoStructEquals(op,u,v));
// FIXME this stuff isn't pretty
LLValue* l = u->getRVal();
LLValue* r = v->getRVal();
LLValue* eval = 0;
if (t1->ty == Tdelegate) {
if (v->isNull()) {
r = NULL;
}
else {
assert(l->getType() == r->getType());
}
eval = DtoDelegateEquals(op,l,r);
}
else if (t1->isfloating())
{
llvm::FCmpInst::Predicate pred = (op == TOKidentity) ? llvm::FCmpInst::FCMP_OEQ : llvm::FCmpInst::FCMP_ONE;
eval = new llvm::FCmpInst(pred, l, r, "tmp", p->scopebb());
}
else if (t1->ty == Tpointer)
{
if (l->getType() != r->getType()) {
if (v->isNull())
r = llvm::ConstantPointerNull::get(isaPointer(l->getType()));
else
r = DtoBitCast(r, l->getType());
}
llvm::ICmpInst::Predicate pred = (op == TOKidentity) ? llvm::ICmpInst::ICMP_EQ : llvm::ICmpInst::ICMP_NE;
eval = new llvm::ICmpInst(pred, l, r, "tmp", p->scopebb());
}
else {
llvm::ICmpInst::Predicate pred = (op == TOKidentity) ? llvm::ICmpInst::ICMP_EQ : llvm::ICmpInst::ICMP_NE;
//Logger::cout() << "l = " << *l << " r = " << *r << '\n';
eval = new llvm::ICmpInst(pred, l, r, "tmp", p->scopebb());
}
return new DImValue(type, eval);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CommaExp::toElem(IRState* p)
{
Logger::print("CommaExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
DValue* v = e2->toElem(p);
assert(e2->type == type);
return v;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CondExp::toElem(IRState* p)
{
Logger::print("CondExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* dtype = DtoDType(type);
const LLType* resty = DtoType(dtype);
// allocate a temporary for the final result. failed to come up with a better way :/
llvm::BasicBlock* entryblock = &p->topfunc()->front();
LLValue* resval = new llvm::AllocaInst(resty,"condtmp",p->topallocapoint());
DVarValue* dvv = new DVarValue(type, resval, true);
llvm::BasicBlock* oldend = p->scopeend();
llvm::BasicBlock* condtrue = llvm::BasicBlock::Create("condtrue", gIR->topfunc(), oldend);
llvm::BasicBlock* condfalse = llvm::BasicBlock::Create("condfalse", gIR->topfunc(), oldend);
llvm::BasicBlock* condend = llvm::BasicBlock::Create("condend", gIR->topfunc(), oldend);
DValue* c = econd->toElem(p);
LLValue* cond_val = DtoBoolean(c->getRVal());
llvm::BranchInst::Create(condtrue,condfalse,cond_val,p->scopebb());
p->scope() = IRScope(condtrue, condfalse);
DValue* u = e1->toElem(p);
DtoAssign(dvv, u);
llvm::BranchInst::Create(condend,p->scopebb());
p->scope() = IRScope(condfalse, condend);
DValue* v = e2->toElem(p);
DtoAssign(dvv, v);
llvm::BranchInst::Create(condend,p->scopebb());
p->scope() = IRScope(condend, oldend);
return dvv;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ComExp::toElem(IRState* p)
{
Logger::print("ComExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
LLValue* value = u->getRVal();
LLValue* minusone = llvm::ConstantInt::get(value->getType(), -1, true);
value = llvm::BinaryOperator::create(llvm::Instruction::Xor, value, minusone, "tmp", p->scopebb());
return new DImValue(type, value);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* NegExp::toElem(IRState* p)
{
Logger::print("NegExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
if (type->iscomplex()) {
return DtoComplexNeg(type, l);
}
LLValue* val = l->getRVal();
Type* t = DtoDType(type);
LLValue* zero = 0;
if (t->isintegral())
zero = llvm::ConstantInt::get(val->getType(), 0, true);
else if (t->isfloating()) {
zero = DtoConstFP(type, 0.0);
}
else
assert(0);
val = llvm::BinaryOperator::createSub(zero,val,"tmp",p->scopebb());
return new DImValue(type, val);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CatExp::toElem(IRState* p)
{
Logger::print("CatExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* t = DtoDType(type);
bool arrNarr = DtoDType(e1->type) == DtoDType(e2->type);
// array ~ array
if (arrNarr)
{
return DtoCatArrays(type, e1, e2);
}
// array ~ element
// element ~ array
else
{
return DtoCatArrayElement(type, e1, e2);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CatAssignExp::toElem(IRState* p)
{
Logger::print("CatAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
Type* e1type = DtoDType(e1->type);
Type* elemtype = DtoDType(e1type->next);
Type* e2type = DtoDType(e2->type);
if (e2type == elemtype) {
DSliceValue* slice = DtoCatAssignElement(l,e2);
DtoAssign(l, slice);
}
else if (e1type == e2type) {
DSliceValue* slice = DtoCatAssignArray(l,e2);
DtoAssign(l, slice);
}
else
assert(0 && "only one element at a time right now");
return l;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* FuncExp::toElem(IRState* p)
{
Logger::print("FuncExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(fd);
if (fd->isNested()) Logger::println("nested");
Logger::println("kind = %s\n", fd->kind());
DtoForceDefineDsymbol(fd);
const LLType* dgty = DtoType(type);
LLValue* lval = new llvm::AllocaInst(dgty,"dgstorage",p->topallocapoint());
LLValue* context = DtoGEPi(lval,0,0);
const LLPointerType* pty = isaPointer(context->getType()->getContainedType(0));
LLValue* llvmNested = p->func()->decl->ir.irFunc->nestedVar;
if (llvmNested == NULL) {
LLValue* nullcontext = llvm::ConstantPointerNull::get(pty);
DtoStore(nullcontext, context);
}
else {
LLValue* nestedcontext = DtoBitCast(llvmNested, pty);
DtoStore(nestedcontext, context);
}
LLValue* fptr = DtoGEPi(lval,0,1,"tmp",p->scopebb());
assert(fd->ir.irFunc->func);
LLValue* castfptr = DtoBitCast(fd->ir.irFunc->func, fptr->getType()->getContainedType(0));
DtoStore(castfptr, fptr);
return new DVarValue(type, lval, true);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ArrayLiteralExp::toElem(IRState* p)
{
Logger::print("ArrayLiteralExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
// D types
Type* arrayType = type->toBasetype();
Type* elemType = arrayType->nextOf()->toBasetype();
// is dynamic ?
bool dyn = (arrayType->ty == Tarray);
// length
size_t len = elements->dim;
// store into slice?
bool sliceInPlace = false;
// llvm target type
const LLType* llType = DtoType(arrayType);
Logger::cout() << (dyn?"dynamic":"static") << " array literal with length " << len << " of D type: '" << arrayType->toChars() << "' has llvm type: '" << *llType << "'\n";
// llvm storage type
const LLType* llStoType = LLArrayType::get(DtoType(elemType), len);
Logger::cout() << "llvm storage type: '" << *llStoType << "'\n";
// dst pointer
LLValue* dstMem = 0;
dstMem = new llvm::AllocaInst(llStoType, "arrayliteral", p->topallocapoint());
// store elements
for (size_t i=0; i<len; ++i)
{
Expression* expr = (Expression*)elements->data[i];
LLValue* elemAddr = DtoGEPi(dstMem,0,i,"tmp",p->scopebb());
// emulate assignment
DVarValue* vv = new DVarValue(expr->type, elemAddr, true);
DValue* e = expr->toElem(p);
DImValue* im = e->isIm();
if (!im || !im->inPlace()) {
DtoAssign(vv, e);
}
}
// return storage directly ?
if (!dyn || (dyn && sliceInPlace))
return new DImValue(type, dstMem, false);
// wrap in a slice
return new DSliceValue(type, DtoConstSize_t(len), DtoGEPi(dstMem,0,0,"tmp"));
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* ArrayLiteralExp::toConstElem(IRState* p)
{
Logger::print("ArrayLiteralExp::toConstElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
const LLType* t = DtoType(type);
Logger::cout() << "array literal has llvm type: " << *t << '\n';
assert(isaArray(t));
const LLArrayType* arrtype = isaArray(t);
assert(arrtype->getNumElements() == elements->dim);
std::vector<LLConstant*> vals(elements->dim, NULL);
for (unsigned i=0; i<elements->dim; ++i)
{
Expression* expr = (Expression*)elements->data[i];
vals[i] = expr->toConstElem(p);
}
return llvm::ConstantArray::get(arrtype, vals);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* StructLiteralExp::toElem(IRState* p)
{
Logger::print("StructLiteralExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
const LLType* llt = DtoType(type);
LLValue* mem = 0;
LLValue* sptr = new llvm::AllocaInst(llt,"tmpstructliteral",p->topallocapoint());
// num elements in literal
unsigned n = elements->dim;
// unions might have different types for each literal
if (sd->ir.irStruct->hasUnions) {
// build the type of the literal
std::vector<const LLType*> tys;
for (unsigned i=0; i<n; ++i) {
Expression* vx = (Expression*)elements->data[i];
if (!vx) continue;
tys.push_back(DtoType(vx->type));
}
const LLStructType* t = LLStructType::get(tys);
if (t != llt) {
if (getABITypeSize(t) != getABITypeSize(llt)) {
Logger::cout() << "got size " << getABITypeSize(t) << ", expected " << getABITypeSize(llt) << '\n';
assert(0 && "type size mismatch");
}
sptr = DtoBitCast(sptr, getPtrToType(t));
Logger::cout() << "sptr type is now: " << *t << '\n';
}
}
// build
unsigned j = 0;
for (unsigned i=0; i<n; ++i)
{
Expression* vx = (Expression*)elements->data[i];
if (!vx) continue;
Logger::cout() << "getting index " << j << " of " << *sptr << '\n';
LLValue* arrptr = DtoGEPi(sptr,0,j);
DValue* darrptr = new DVarValue(vx->type, arrptr, true);
DValue* ve = vx->toElem(p);
if (!ve->inPlace())
DtoAssign(darrptr, ve);
j++;
}
return new DImValue(type, sptr);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* StructLiteralExp::toConstElem(IRState* p)
{
Logger::print("StructLiteralExp::toConstElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
unsigned n = elements->dim;
std::vector<LLConstant*> vals(n, NULL);
for (unsigned i=0; i<n; ++i)
{
Expression* vx = (Expression*)elements->data[i];
vals[i] = vx->toConstElem(p);
}
assert(DtoDType(type)->ty == Tstruct);
const LLType* t = DtoType(type);
const LLStructType* st = isaStruct(t);
return llvm::ConstantStruct::get(st,vals);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* InExp::toElem(IRState* p)
{
Logger::print("InExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* key = e1->toElem(p);
DValue* aa = e2->toElem(p);
return DtoAAIn(type, aa, key);
}
DValue* RemoveExp::toElem(IRState* p)
{
Logger::print("RemoveExp::toElem: %s\n", toChars());
LOG_SCOPE;
DValue* aa = e1->toElem(p);
DValue* key = e2->toElem(p);
DtoAARemove(aa, key);
return NULL; // does not produce anything useful
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AssocArrayLiteralExp::toElem(IRState* p)
{
Logger::print("AssocArrayLiteralExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(keys);
assert(values);
assert(keys->dim == values->dim);
Type* aatype = DtoDType(type);
Type* vtype = aatype->next;
const LLType* aalltype = DtoType(type);
// it should be possible to avoid the temporary in some cases
LLValue* tmp = new llvm::AllocaInst(aalltype,"aaliteral",p->topallocapoint());
DValue* aa = new DVarValue(type, tmp, true);
DtoStore(LLConstant::getNullValue(aalltype), tmp);
const size_t n = keys->dim;
for (size_t i=0; i<n; ++i)
{
Expression* ekey = (Expression*)keys->data[i];
Expression* eval = (Expression*)values->data[i];
Logger::println("(%u) aa[%s] = %s", i, ekey->toChars(), eval->toChars());
// index
DValue* key = ekey->toElem(p);
DValue* mem = DtoAAIndex(vtype, aa, key);
// store
DValue* val = eval->toElem(p);
DtoAssign(mem, val);
}
return aa;
}
//////////////////////////////////////////////////////////////////////////////////////////
#define STUB(x) DValue *x::toElem(IRState * p) {error("Exp type "#x" not implemented: %s", toChars()); fatal(); return 0; }
STUB(Expression);
STUB(DotTypeExp);
STUB(TypeDotIdExp);
STUB(ScopeExp);
STUB(TypeExp);
STUB(BoolExp);
STUB(TupleExp);
#define CONSTSTUB(x) LLConstant* x::toConstElem(IRState * p) {error("const Exp type "#x" not implemented: '%s' type: '%s'", toChars(), type->toChars()); fatal(); return NULL; }
CONSTSTUB(Expression);
CONSTSTUB(AssocArrayLiteralExp);
unsigned Type::totym() { return 0; }
type * Type::toCtype()
{
assert(0);
return 0;
}
type * Type::toCParamtype()
{
assert(0);
return 0;
}
Symbol * Type::toSymbol()
{
assert(0);
return 0;
}
type *
TypeTypedef::toCtype()
{
assert(0);
return 0;
}
type *
TypeTypedef::toCParamtype()
{
assert(0);
return 0;
}
void
TypedefDeclaration::toDebug()
{
assert(0);
}
type *
TypeEnum::toCtype()
{
assert(0);
return 0;
}
type *
TypeStruct::toCtype()
{
assert(0);
return 0;
}
void
StructDeclaration::toDebug()
{
assert(0);
}
Symbol * TypeClass::toSymbol()
{
assert(0);
return 0;
}
unsigned TypeFunction::totym()
{
assert(0);
return 0;
}
type * TypeFunction::toCtype()
{
assert(0);
return 0;
}
type * TypeSArray::toCtype()
{
assert(0);
return 0;
}
type *TypeSArray::toCParamtype()
{
assert(0);
return 0;
}
type * TypeDArray::toCtype()
{
assert(0);
return 0;
}
type * TypeAArray::toCtype()
{
assert(0);
return 0;
}
type * TypePointer::toCtype()
{
assert(0);
return 0;
}
type * TypeDelegate::toCtype()
{
assert(0);
return 0;
}
type * TypeClass::toCtype()
{
assert(0);
return 0;
}
void ClassDeclaration::toDebug()
{
assert(0);
}
//////////////////////////////////////////////////////////////////////////////
void
EnumDeclaration::toDebug()
{
assert(0);
}
int Dsymbol::cvMember(unsigned char*)
{
assert(0);
return 0;
}
int EnumDeclaration::cvMember(unsigned char*)
{
assert(0);
return 0;
}
int FuncDeclaration::cvMember(unsigned char*)
{
assert(0);
return 0;
}
int VarDeclaration::cvMember(unsigned char*)
{
assert(0);
return 0;
}
int TypedefDeclaration::cvMember(unsigned char*)
{
assert(0);
return 0;
}
void obj_includelib(char*)
{
// FIXME: we want to support pragma(lib)
}
void backend_init()
{
// now lazily loaded
//LLVM_D_InitRuntime();
}
void backend_term()
{
LLVM_D_FreeRuntime();
}