ldc/gen/modules.cpp
2018-01-06 01:39:18 +01:00

724 lines
27 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- modules.cpp -------------------------------------------------------===//
//
// LDC the LLVM D compiler
//
// This file is distributed under the BSD-style LDC license. See the LICENSE
// file for details.
//
//===----------------------------------------------------------------------===//
#include "module.h"
#include "aggregate.h"
#include "attrib.h"
#include "declaration.h"
#include "enum.h"
#include "id.h"
#include "import.h"
#include "init.h"
#include "mars.h"
#include "module.h"
#include "mtype.h"
#include "scope.h"
#include "statement.h"
#include "target.h"
#include "template.h"
#include "gen/abi.h"
#include "gen/arrays.h"
#include "gen/functions.h"
#include "gen/irstate.h"
#include "gen/llvm.h"
#include "gen/llvmhelpers.h"
#include "gen/logger.h"
#include "gen/mangling.h"
#include "gen/moduleinfo.h"
#include "gen/optimizer.h"
#include "gen/runtime.h"
#include "gen/structs.h"
#include "gen/tollvm.h"
#include "ir/irdsymbol.h"
#include "ir/irfunction.h"
#include "ir/irmodule.h"
#include "ir/irvar.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/LinkAllPasses.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#if _AIX || __sun
#include <alloca.h>
#endif
static llvm::cl::opt<bool, true>
preservePaths("op", llvm::cl::ZeroOrMore,
llvm::cl::desc("Preserve source path for output files"),
llvm::cl::location(global.params.preservePaths));
static llvm::cl::opt<bool, true>
fqnNames("oq", llvm::cl::ZeroOrMore,
llvm::cl::desc("Write object files with fully qualified names"),
llvm::cl::location(global.params.fullyQualifiedObjectFiles));
void Module::checkAndAddOutputFile(File *file) {
static std::map<std::string, Module *> files;
std::string key(file->name->str);
auto i = files.find(key);
if (i != files.end()) {
Module *previousMod = i->second;
::error(Loc(),
"Output file '%s' for module `%s` collides with previous "
"module `%s`. See the -oq option",
key.c_str(), toPrettyChars(), previousMod->toPrettyChars());
fatal();
}
files.emplace(std::move(key), this);
}
void Module::makeObjectFilenameUnique() {
assert(objfile);
const char *ext = FileName::ext(objfile->name->str);
const char *stem = FileName::removeExt(objfile->name->str);
llvm::SmallString<128> unique;
auto EC = llvm::sys::fs::createUniqueFile(
llvm::Twine(stem) + "-%%%%%%%." + ext, unique);
if (!EC) // success
objfile->name->str = mem.xstrdup(unique.c_str());
}
namespace {
/// Ways the druntime module registry system can be implemented.
enum class RegistryStyle {
/// Modules are inserted into a linked list starting at the _Dmodule_ref
/// global.
legacyLinkedList,
/// Module references are emitted into the .minfo section.
sectionMSVC,
/// Module references are emitted into the .minfo section. Global
/// constructors/destructors make sure _d_dso_registry is invoked once per ELF
/// object.
sectionELF,
/// Module references are emitted into the .minfo section. Global
/// constructors/destructors make sure _d_dso_registry is invoked once per
/// shared object. A "TLS anchor" function to identify the TLS range
/// corresponding to this image is also passed to druntime.
sectionDarwin
};
/// Returns the module registry style to use for the current target triple.
RegistryStyle getModuleRegistryStyle() {
const auto t = global.params.targetTriple;
if (t->isWindowsMSVCEnvironment()) {
return RegistryStyle::sectionMSVC;
}
if (t->isMacOSX()) {
return RegistryStyle::sectionDarwin;
}
if (t->isOSLinux() || t->isOSFreeBSD() ||
t->isOSNetBSD() || t->isOSOpenBSD() || t->isOSDragonFly()) {
return RegistryStyle::sectionELF;
}
return RegistryStyle::legacyLinkedList;
}
/// Build ModuleReference and register function, to register the module info in
/// the global linked list.
///
/// Implements getModuleRegistryStyle() == RegistryStyle::legacyLinkedList.
LLFunction *build_module_reference_and_ctor(const char *moduleMangle,
LLConstant *moduleinfo) {
// build ctor type
LLFunctionType *fty = LLFunctionType::get(LLType::getVoidTy(gIR->context()),
std::vector<LLType *>(), false);
// build ctor name
std::string fname = "_D";
fname += moduleMangle;
fname += "16__moduleinfoCtorZ";
// build a function that registers the moduleinfo in the global moduleinfo
// linked list
LLFunction *ctor =
LLFunction::Create(fty, LLGlobalValue::InternalLinkage,
getIRMangledFuncName(fname, LINKd), &gIR->module);
// provide the default initializer
LLStructType *modulerefTy = DtoModuleReferenceType();
LLConstant *mrefvalues[] = {
LLConstant::getNullValue(modulerefTy->getContainedType(0)),
llvm::ConstantExpr::getBitCast(moduleinfo,
modulerefTy->getContainedType(1))};
LLConstant *thismrefinit = LLConstantStruct::get(
modulerefTy, llvm::ArrayRef<LLConstant *>(mrefvalues));
// create the ModuleReference node for this module
const auto thismrefIRMangle = getIRMangledModuleRefSymbolName(moduleMangle);
Loc loc;
LLGlobalVariable *thismref = getOrCreateGlobal(
loc, gIR->module, modulerefTy, false, LLGlobalValue::InternalLinkage,
thismrefinit, thismrefIRMangle);
// make sure _Dmodule_ref is declared
const auto mrefIRMangle = getIRMangledVarName("_Dmodule_ref", LINKc);
LLConstant *mref = gIR->module.getNamedGlobal(mrefIRMangle);
LLType *modulerefPtrTy = getPtrToType(modulerefTy);
if (!mref) {
mref = new LLGlobalVariable(gIR->module, modulerefPtrTy, false,
LLGlobalValue::ExternalLinkage, nullptr,
mrefIRMangle);
}
mref = DtoBitCast(mref, getPtrToType(modulerefPtrTy));
// make the function insert this moduleinfo as the beginning of the
// _Dmodule_ref linked list
llvm::BasicBlock *bb =
llvm::BasicBlock::Create(gIR->context(), "moduleinfoCtorEntry", ctor);
IRBuilder<> builder(bb);
// debug info
gIR->DBuilder.EmitModuleCTor(ctor, fname.c_str());
// get current beginning
LLValue *curbeg = builder.CreateLoad(mref, "current");
// put current beginning as the next of this one
LLValue *gep = builder.CreateStructGEP(
modulerefTy, thismref, 0, "next");
builder.CreateStore(curbeg, gep);
// replace beginning
builder.CreateStore(thismref, mref);
// return
builder.CreateRetVoid();
return ctor;
}
/// Builds a void*() function with hidden visibility that returns the address of
/// a dummy TLS global (also with hidden visibility).
///
/// The global is non-zero-initialised and aligned to 16 bytes.
llvm::Function *buildGetTLSAnchor() {
// Create a dummmy TLS global private to this module.
const auto one =
llvm::ConstantInt::get(llvm::Type::getInt8Ty(gIR->context()), 1);
const auto anchor = getOrCreateGlobal(
Loc(), gIR->module, one->getType(), false,
llvm::GlobalValue::LinkOnceODRLinkage, one, "ldc.tls_anchor", true);
anchor->setVisibility(llvm::GlobalValue::HiddenVisibility);
anchor->setAlignment(16);
const auto getAnchor =
llvm::Function::Create(llvm::FunctionType::get(getVoidPtrType(), false),
llvm::GlobalValue::LinkOnceODRLinkage,
"ldc.get_tls_anchor", &gIR->module);
getAnchor->setVisibility(llvm::GlobalValue::HiddenVisibility);
IRBuilder<> builder(llvm::BasicBlock::Create(gIR->context(), "", getAnchor));
builder.CreateRet(anchor);
return getAnchor;
}
/// Builds the ldc.register_dso function, which is called by the global
/// {c, d}tors to invoke _d_dso_registry.
///
/// Pseudocode:
/// void ldc.register_dso(bool isShutdown, void* minfoUsedPointer) {
/// if (dsoInitialized == isShutdown) {
/// dsoInitialized = !isShutdown;
/// auto record = {1, dsoSlot, minfoBeg, minfoEnd[, getTlsAnchor],
/// minfoUsedPointer};
/// _d_dso_registry(cast(CompilerDSOData*)&record);
/// }
/// }
///
/// On Darwin platforms, the record contains an extra pointer to a function
/// which returns the address of a TLS global.
llvm::Function *buildRegisterDSO(RegistryStyle style,
llvm::Value *dsoInitialized,
llvm::Value *dsoSlot, llvm::Value *minfoBeg,
llvm::Value *minfoEnd) {
llvm::Type *argTypes[] = {llvm::Type::getInt1Ty(gIR->context()),
llvm::Type::getInt8PtrTy(gIR->context())};
const auto fnType = llvm::FunctionType::get(
llvm::Type::getVoidTy(gIR->context()), argTypes, false);
const auto fn =
llvm::Function::Create(fnType, llvm::GlobalValue::LinkOnceODRLinkage,
"ldc.register_dso", &gIR->module);
fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
auto argIt = fn->arg_begin();
const auto isShutdown = &*argIt;
isShutdown->setName("isShutdown");
++argIt;
const auto minfoUsedPointer = &*argIt;
minfoUsedPointer->setName("minfoUsedPointer");
// Never inline the functions is only called on startup/shutdown, hence
// it isn't worth the increase in code size.
fn->addFnAttr(llvm::Attribute::NoInline);
const auto dsoRegistry =
getRuntimeFunction(Loc(), gIR->module, "_d_dso_registry");
const auto recordPtrTy = dsoRegistry->getFunctionType()->getContainedType(1);
llvm::Function *getTlsAnchorPtr = nullptr;
if (style == RegistryStyle::sectionDarwin) {
getTlsAnchorPtr = buildGetTLSAnchor();
}
const auto entryBB = llvm::BasicBlock::Create(gIR->context(), "", fn);
const auto initBB = llvm::BasicBlock::Create(gIR->context(), "init", fn);
const auto endBB = llvm::BasicBlock::Create(gIR->context(), "end", fn);
{
IRBuilder<> b(entryBB);
const auto loadedFlag =
b.CreateTrunc(b.CreateLoad(dsoInitialized), b.getInt1Ty());
const auto condEval =
b.CreateICmp(llvm::ICmpInst::ICMP_EQ, loadedFlag, isShutdown);
b.CreateCondBr(condEval, initBB, endBB);
}
{
IRBuilder<> b(initBB);
const auto newFlag = b.CreateXor(isShutdown, b.getTrue());
b.CreateStore(b.CreateZExt(newFlag, b.getInt8Ty()), dsoInitialized);
llvm::Constant *version = DtoConstSize_t(1);
llvm::SmallVector<llvm::Type *, 6> memberTypes;
memberTypes.push_back(version->getType());
memberTypes.push_back(dsoSlot->getType());
memberTypes.push_back(minfoBeg->getType());
memberTypes.push_back(minfoEnd->getType());
if (style == RegistryStyle::sectionDarwin) {
memberTypes.push_back(getTlsAnchorPtr->getType());
}
memberTypes.push_back(minfoUsedPointer->getType());
llvm::StructType *stype =
llvm::StructType::get(gIR->context(), memberTypes, false);
llvm::Value *record = b.CreateAlloca(stype);
unsigned i = 0;
b.CreateStore(version, b.CreateStructGEP(stype, record, i++));
b.CreateStore(dsoSlot, b.CreateStructGEP(stype, record, i++));
b.CreateStore(minfoBeg, b.CreateStructGEP(stype, record, i++));
b.CreateStore(minfoEnd, b.CreateStructGEP(stype, record, i++));
if (style == RegistryStyle::sectionDarwin) {
b.CreateStore(getTlsAnchorPtr, b.CreateStructGEP(stype, record, i++));
}
b.CreateStore(minfoUsedPointer, b.CreateStructGEP(stype, record, i++));
b.CreateCall(dsoRegistry, b.CreateBitCast(record, recordPtrTy));
b.CreateBr(endBB);
}
{
IRBuilder<> b(endBB);
b.CreateRetVoid();
}
return fn;
}
void emitModuleRefToSection(RegistryStyle style, std::string moduleMangle,
llvm::Constant *thisModuleInfo) {
assert(style == RegistryStyle::sectionMSVC ||
style == RegistryStyle::sectionELF ||
style == RegistryStyle::sectionDarwin);
// Only for the first D module to be emitted into this llvm::Module we need to
// create the global ctors/dtors. The magic linker symbols used to get the
// start and end of the .minfo section also only need to be emitted for the
// first D module.
// For all subsequent ones, we just need to emit an additional reference into
// the .minfo section (even with --gc-sections, the section is already kept
// alive by the first module's reference being used in the ctor/dtor
// functions).
const bool isFirst = !gIR->module.getGlobalVariable("ldc.dso_slot");
llvm::Type *const moduleInfoPtrTy = DtoPtrToType(Module::moduleinfo->type);
const auto sectionName =
style == RegistryStyle::sectionMSVC
? ".minfo"
: style == RegistryStyle::sectionDarwin ? "__DATA,.minfo" : "__minfo";
const auto thismrefIRMangle =
getIRMangledModuleRefSymbolName(moduleMangle.c_str());
auto thismref = new llvm::GlobalVariable(
gIR->module, moduleInfoPtrTy,
false, // FIXME: mRelocModel != llvm::Reloc::PIC_
llvm::GlobalValue::LinkOnceODRLinkage,
DtoBitCast(thisModuleInfo, moduleInfoPtrTy), thismrefIRMangle);
thismref->setSection(sectionName);
gIR->usedArray.push_back(thismref);
// Android doesn't need register_dso and friends- see rt.sections_android-
// so bail out here.
if (!isFirst || style == RegistryStyle::sectionMSVC ||
global.params.targetTriple->getEnvironment() == llvm::Triple::Android) {
// Nothing left to do.
return;
}
// Use magic linker symbol names to obtain the begin and end of the .minfo
// section.
const auto magicBeginSymbolName = (style == RegistryStyle::sectionDarwin)
? "\1section$start$__DATA$.minfo"
: "__start___minfo";
const auto magicEndSymbolName = (style == RegistryStyle::sectionDarwin)
? "\1section$end$__DATA$.minfo"
: "__stop___minfo";
auto minfoBeg = new llvm::GlobalVariable(gIR->module, moduleInfoPtrTy, false,
llvm::GlobalValue::ExternalLinkage,
nullptr, magicBeginSymbolName);
auto minfoEnd = new llvm::GlobalVariable(gIR->module, moduleInfoPtrTy, false,
llvm::GlobalValue::ExternalLinkage,
nullptr, magicEndSymbolName);
minfoBeg->setVisibility(llvm::GlobalValue::HiddenVisibility);
minfoEnd->setVisibility(llvm::GlobalValue::HiddenVisibility);
// Build the ctor to invoke _d_dso_registry.
// This is the DSO slot for use by the druntime implementation.
auto dsoSlot =
new llvm::GlobalVariable(gIR->module, getVoidPtrType(), false,
llvm::GlobalValue::LinkOnceODRLinkage,
getNullPtr(getVoidPtrType()), "ldc.dso_slot");
dsoSlot->setVisibility(llvm::GlobalValue::HiddenVisibility);
// Okay, so the theory is easy: We want to have one global constructor and
// destructor per object (i.e. executable/shared library) that calls
// _d_dso_registry with the respective DSO record. However, there are a
// couple of issues that make this harder than necessary:
//
// 1) The natural way to implement the "one-per-image" part would be to
// emit a weak reference to a weak function into a .ctors.<somename>
// section (llvm.global_ctors doesn't support the necessary
// functionality, so we'd use our knowledge of the linker script to work
// around that). But as of LLVM 3.4, emitting a symbol both as weak and
// into a custom section is not supported by the MC layer. Thus, we have
// to use a normal ctor/dtor and manually ensure that we only perform
// the call once. This is done by introducing ldc.dso_initialized.
//
// 2) To make sure the .minfo section isn't removed by the linker when
// using --gc-sections, we need to keep a reference to it around in
// _every_ object file (as --gc-sections works per object file). The
// natural place for this is the ctor, where we just load a reference
// on the stack after the DSO record (to ensure LLVM doesn't optimize
// it out). However, this way, we need to have at least one ctor
// instance per object file be pulled into the final executable. We
// do this here by making the module mangle string part of its name,
// even thoguht this is slightly wasteful on -singleobj builds.
//
// It might be a better idea to simply use a custom linker script (using
// INSERT AFTER… so as to still keep the default one) to avoid all these
// problems. This would mean that it is no longer safe to link D objects
// directly using e.g. "g++ dcode.o cppcode.o", though.
auto dsoInitialized = new llvm::GlobalVariable(
gIR->module, llvm::Type::getInt8Ty(gIR->context()), false,
llvm::GlobalValue::LinkOnceODRLinkage,
llvm::ConstantInt::get(llvm::Type::getInt8Ty(gIR->context()), 0),
"ldc.dso_initialized");
dsoInitialized->setVisibility(llvm::GlobalValue::HiddenVisibility);
// There is no reason for this cast to void*, other than that removing it
// seems to trigger a bug in the llvm::Linker (at least on LLVM 3.4)
// causing it to not merge the %object.ModuleInfo types properly. This
// manifests itself in a type mismatch assertion being triggered on the
// minfoUsedPointer store in the ctor as soon as the optimizer runs.
llvm::Value *minfoRefPtr = DtoBitCast(thismref, getVoidPtrType());
const auto registerDSO =
buildRegisterDSO(style, dsoInitialized, dsoSlot, minfoBeg, minfoEnd);
std::string ctorName = "ldc.dso_ctor.";
ctorName += moduleMangle;
const auto dsoCtor = llvm::Function::Create(
llvm::FunctionType::get(llvm::Type::getVoidTy(gIR->context()), false),
llvm::GlobalValue::LinkOnceODRLinkage, ctorName, &gIR->module);
dsoCtor->setVisibility(llvm::GlobalValue::HiddenVisibility);
{
const auto bb = llvm::BasicBlock::Create(gIR->context(), "", dsoCtor);
IRBuilder<> b{bb};
LLValue *params[] = {b.getFalse(), minfoRefPtr};
b.CreateCall(registerDSO, params);
b.CreateRetVoid();
}
llvm::appendToGlobalCtors(gIR->module, dsoCtor, 65535);
std::string dtorName = "ldc.dso_dtor.";
dtorName += moduleMangle;
const auto dsoDtor = llvm::Function::Create(
llvm::FunctionType::get(llvm::Type::getVoidTy(gIR->context()), false),
llvm::GlobalValue::LinkOnceODRLinkage, dtorName, &gIR->module);
dsoDtor->setVisibility(llvm::GlobalValue::HiddenVisibility);
{
const auto bb = llvm::BasicBlock::Create(gIR->context(), "", dsoDtor);
IRBuilder<> b{bb};
LLValue *params[] = {b.getTrue(), minfoRefPtr};
b.CreateCall(registerDSO, params);
b.CreateRetVoid();
}
llvm::appendToGlobalDtors(gIR->module, dsoDtor, 65535);
}
// Add module-private variables and functions for coverage analysis.
void addCoverageAnalysis(Module *m) {
IF_LOG {
Logger::println("Adding coverage analysis for module %s (%d lines)",
m->srcfile->toChars(), m->numlines);
Logger::indent();
}
// size_t[# source lines / # bits in sizeTy] _d_cover_valid
LLValue *d_cover_valid_slice = nullptr;
{
unsigned Dsizet_bits = gDataLayout->getTypeSizeInBits(DtoSize_t());
size_t array_size = (m->numlines + (Dsizet_bits - 1)) / Dsizet_bits; // ceil
// Work around a bug in the interface of druntime's _d_cover_register2
// https://issues.dlang.org/show_bug.cgi?id=14417
// For safety, make the array large enough such that the slice passed to
// _d_cover_register2 is completely valid.
array_size = m->numlines;
IF_LOG Logger::println(
"Build private variable: size_t[%llu] _d_cover_valid",
static_cast<unsigned long long>(array_size));
llvm::ArrayType *type = llvm::ArrayType::get(DtoSize_t(), array_size);
llvm::ConstantAggregateZero *zeroinitializer =
llvm::ConstantAggregateZero::get(type);
m->d_cover_valid = new llvm::GlobalVariable(
gIR->module, type, true, LLGlobalValue::InternalLinkage,
zeroinitializer, "_d_cover_valid");
LLConstant *idxs[] = {DtoConstUint(0), DtoConstUint(0)};
d_cover_valid_slice =
DtoConstSlice(DtoConstSize_t(type->getArrayNumElements()),
llvm::ConstantExpr::getGetElementPtr(
type, m->d_cover_valid, idxs, true));
// Assert that initializer array elements have enough bits
assert(sizeof(m->d_cover_valid_init[0]) * 8 >=
gDataLayout->getTypeSizeInBits(DtoSize_t()));
m->d_cover_valid_init.setDim(array_size);
m->d_cover_valid_init.zero();
}
// uint[# source lines] _d_cover_data
LLValue *d_cover_data_slice = nullptr;
{
IF_LOG Logger::println("Build private variable: uint[%d] _d_cover_data",
m->numlines);
LLArrayType *type =
LLArrayType::get(LLType::getInt32Ty(gIR->context()), m->numlines);
llvm::ConstantAggregateZero *zeroinitializer =
llvm::ConstantAggregateZero::get(type);
m->d_cover_data = new llvm::GlobalVariable(
gIR->module, type, false, LLGlobalValue::InternalLinkage,
zeroinitializer, "_d_cover_data");
LLConstant *idxs[] = {DtoConstUint(0), DtoConstUint(0)};
d_cover_data_slice =
DtoConstSlice(DtoConstSize_t(type->getArrayNumElements()),
llvm::ConstantExpr::getGetElementPtr(
type, m->d_cover_data, idxs, true));
}
// Create "static constructor" that calls _d_cover_register2(string filename,
// size_t[] valid, uint[] data, ubyte minPercent)
// Build ctor name
LLFunction *ctor = nullptr;
OutBuffer mangleBuf;
mangleBuf.writestring("_D");
mangleToBuffer(m, &mangleBuf);
mangleBuf.writestring("12_coverageanalysisCtor1FZv");
const char *ctorname = mangleBuf.peekString();
{
IF_LOG Logger::println("Build Coverage Analysis constructor: %s", ctorname);
LLFunctionType *ctorTy =
LLFunctionType::get(LLType::getVoidTy(gIR->context()), {}, false);
ctor =
LLFunction::Create(ctorTy, LLGlobalValue::InternalLinkage,
getIRMangledFuncName(ctorname, LINKd), &gIR->module);
ctor->setCallingConv(gABI->callingConv(LINKd));
// Set function attributes. See functions.cpp:DtoDefineFunction()
if (global.params.targetTriple->getArch() == llvm::Triple::x86_64) {
ctor->addFnAttr(LLAttribute::UWTable);
}
llvm::BasicBlock *bb = llvm::BasicBlock::Create(gIR->context(), "", ctor);
IRBuilder<> builder(bb);
// Set up call to _d_cover_register2
llvm::Function *fn =
getRuntimeFunction(Loc(), gIR->module, "_d_cover_register2");
LLValue *args[] = {DtoConstString(m->srcfile->name->toChars()),
d_cover_valid_slice, d_cover_data_slice,
DtoConstUbyte(global.params.covPercent)};
// Check if argument types are correct
for (unsigned i = 0; i < 4; ++i) {
assert(args[i]->getType() == fn->getFunctionType()->getParamType(i));
}
builder.CreateCall(fn, args);
builder.CreateRetVoid();
}
// Add the ctor to the module's order-independent ctors list.
{
IF_LOG Logger::println("Set %s as module's static constructor for coverage",
ctorname);
getIrModule(m)->coverageCtor = ctor;
}
IF_LOG Logger::undent();
}
// Initialize _d_cover_valid for coverage analysis
void addCoverageAnalysisInitializer(Module *m) {
IF_LOG Logger::println("Adding coverage analysis _d_cover_valid initializer");
size_t array_size = m->d_cover_valid_init.size();
llvm::ArrayType *type = llvm::ArrayType::get(DtoSize_t(), array_size);
std::vector<LLConstant *> arrayInits(array_size);
for (size_t i = 0; i < array_size; i++) {
arrayInits[i] = DtoConstSize_t(m->d_cover_valid_init[i]);
}
m->d_cover_valid->setInitializer(llvm::ConstantArray::get(type, arrayInits));
}
// Load InstrProf data from file and store in it IrState
// TODO: This is probably not the right place, we should load it once for all
// modules?
void loadInstrProfileData(IRState *irs) {
// Only load from datafileInstrProf if we are not generating instrumented
// code.
if (!global.params.genInstrProf && global.params.datafileInstrProf) {
IF_LOG Logger::println("Read profile data from %s",
global.params.datafileInstrProf);
auto readerOrErr =
llvm::IndexedInstrProfReader::create(global.params.datafileInstrProf);
#if LDC_LLVM_VER >= 309
if (auto E = readerOrErr.takeError()) {
handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
irs->dmodule->error("Could not read profile file '%s': %s",
global.params.datafileInstrProf,
EI.message().c_str());
});
fatal();
}
#else
std::error_code EC = readerOrErr.getError();
if (EC) {
irs->dmodule->error("Could not read profile file '%s': %s",
global.params.datafileInstrProf,
EC.message().c_str());
fatal();
}
#endif
irs->PGOReader = std::move(readerOrErr.get());
#if LDC_LLVM_VER >= 309
if (!irs->module.getProfileSummary()) {
// Don't reset the summary. There is only one profile data file per LDC
// invocation so the summary must be the same as the one that is already
// set.
irs->module.setProfileSummary(
irs->PGOReader->getSummary().getMD(irs->context()));
}
#elif LDC_LLVM_VER == 308
auto maxCount = irs->PGOReader->getMaximumFunctionCount();
if (!irs->module.getMaximumFunctionCount()) {
// Don't reset the max function count. There is only one profile data file
// per LDC invocation so the information must be the same as the one that
// is already set.
irs->module.setMaximumFunctionCount(maxCount);
}
#endif
}
}
void registerModuleInfo(Module *m) {
const auto moduleInfoSym = genModuleInfo(m);
const auto style = getModuleRegistryStyle();
OutBuffer mangleBuf;
mangleToBuffer(m, &mangleBuf);
const char *mangle = mangleBuf.peekString();
if (style == RegistryStyle::legacyLinkedList) {
const auto miCtor = build_module_reference_and_ctor(mangle, moduleInfoSym);
AppendFunctionToLLVMGlobalCtorsDtors(miCtor, 65535, true);
} else {
emitModuleRefToSection(style, mangle, moduleInfoSym);
}
}
}
void codegenModule(IRState *irs, Module *m) {
assert(!irs->dmodule &&
"irs->module not null, codegen already in progress?!");
irs->dmodule = m;
assert(!gIR && "gIR not null, codegen already in progress?!");
gIR = irs;
initRuntime();
// Skip pseudo-modules for coverage analysis
std::string name = m->toChars();
const bool isPseudoModule = (name == "__entrypoint") || (name == "__main");
if (global.params.cov && !isPseudoModule) {
addCoverageAnalysis(m);
}
if (!isPseudoModule) {
loadInstrProfileData(gIR);
}
// process module members
// NOTE: m->members may grow during codegen
for (unsigned k = 0; k < m->members->dim; k++) {
Dsymbol *dsym = (*m->members)[k];
assert(dsym);
Declaration_codegen(dsym);
}
if (global.errors) {
fatal();
}
// Skip emission of all the additional module metadata if requested by the
// user or the betterC switch is on.
if (global.params.useModuleInfo && !m->noModuleInfo) {
// generate ModuleInfo
registerModuleInfo(m);
}
if (m->d_cover_valid) {
addCoverageAnalysisInitializer(m);
}
gIR = nullptr;
irs->dmodule = nullptr;
}