ldc/dmd2/statement.c
Alexey Prokhin ce1a41305b Set enclosingScopeExit in glue layer after semantic is done
Otherwise, we may end up with a wrong enclosing statement. It could
happen if a try-finally is rewritten as a try-catch (see NrvoWalker).
In this case, enclosingScopeExit will still point to the old unused
try-finally.
2014-08-24 13:59:18 +04:00

5186 lines
154 KiB
C

/* Compiler implementation of the D programming language
* Copyright (c) 1999-2014 by Digital Mars
* All Rights Reserved
* written by Walter Bright
* http://www.digitalmars.com
* Distributed under the Boost Software License, Version 1.0.
* http://www.boost.org/LICENSE_1_0.txt
* https://github.com/D-Programming-Language/dmd/blob/master/src/statement.c
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "rmem.h"
#include "target.h"
#include "statement.h"
#include "expression.h"
#include "cond.h"
#include "init.h"
#include "staticassert.h"
#include "mtype.h"
#include "scope.h"
#include "declaration.h"
#include "aggregate.h"
#include "id.h"
#include "hdrgen.h"
#include "parse.h"
#include "template.h"
#include "attrib.h"
#include "import.h"
bool walkPostorder(Statement *s, StoppableVisitor *v);
bool isNonAssignmentArrayOp(Expression *e);
Identifier *fixupLabelName(Scope *sc, Identifier *ident)
{
unsigned flags = (sc->flags & SCOPEcontract);
if (flags && flags != SCOPEinvariant &&
!(ident->string[0] == '_' && ident->string[1] == '_'))
{
/* CTFE requires FuncDeclaration::labtab for the interpretation.
* So fixing the label name inside in/out contracts is necessary
* for the uniqueness in labtab.
*/
const char *prefix = flags == SCOPErequire ? "__in_" : "__out_";
OutBuffer buf;
buf.printf("%s%s", prefix, ident->toChars());
const char *name = buf.extractString();
ident = Lexer::idPool(name);
}
return ident;
}
LabelStatement *checkLabeledLoop(Scope *sc, Statement *statement)
{
if (sc->slabel && sc->slabel->statement == statement)
{
return sc->slabel;
}
return NULL;
}
/******************************** Statement ***************************/
Statement::Statement(Loc loc)
: loc(loc)
{
// If this is an in{} contract scope statement (skip for determining
// inlineStatus of a function body for header content)
}
Statement *Statement::syntaxCopy()
{
assert(0);
return NULL;
}
void Statement::print()
{
fprintf(stderr, "%s\n", toChars());
fflush(stderr);
}
char *Statement::toChars()
{
HdrGenState hgs;
OutBuffer buf;
::toCBuffer(this, &buf, &hgs);
return buf.extractString();
}
Statement *Statement::semantic(Scope *sc)
{
return this;
}
Statement *Statement::semanticNoScope(Scope *sc)
{
//printf("Statement::semanticNoScope() %s\n", toChars());
Statement *s = this;
if (!s->isCompoundStatement() && !s->isScopeStatement())
{
s = new CompoundStatement(loc, this); // so scopeCode() gets called
}
s = s->semantic(sc);
return s;
}
// Same as semanticNoScope(), but do create a new scope
Statement *Statement::semanticScope(Scope *sc, Statement *sbreak, Statement *scontinue)
{
Scope *scd = sc->push();
if (sbreak)
scd->sbreak = sbreak;
if (scontinue)
scd->scontinue = scontinue;
Statement *s = semanticNoScope(scd);
scd->pop();
return s;
}
void Statement::error(const char *format, ...)
{
va_list ap;
va_start(ap, format);
::verror(loc, format, ap);
va_end( ap );
}
void Statement::warning(const char *format, ...)
{
va_list ap;
va_start(ap, format);
::vwarning(loc, format, ap);
va_end( ap );
}
void Statement::deprecation(const char *format, ...)
{
va_list ap;
va_start(ap, format);
::vdeprecation(loc, format, ap);
va_end( ap );
}
bool Statement::hasBreak()
{
//printf("Statement::hasBreak()\n");
return false;
}
bool Statement::hasContinue()
{
return false;
}
/* ============================================== */
// true if statement uses exception handling
bool Statement::usesEH()
{
class UsesEH : public StoppableVisitor
{
public:
void visit(Statement *s) {}
void visit(TryCatchStatement *s) { stop = true; }
void visit(TryFinallyStatement *s) { stop = true; }
void visit(OnScopeStatement *s) { stop = true; }
void visit(SynchronizedStatement *s) { stop = true; }
};
UsesEH ueh;
return walkPostorder(this, &ueh);
}
/* ============================================== */
// true if statement 'comes from' somewhere else, like a goto
bool Statement::comeFrom()
{
class ComeFrom : public StoppableVisitor
{
public:
void visit(Statement *s) {}
void visit(CaseStatement *s) { stop = true; }
void visit(DefaultStatement *s) { stop = true; }
void visit(LabelStatement *s) { stop = true; }
void visit(AsmStatement *s) { stop = true; }
};
ComeFrom cf;
return walkPostorder(this, &cf);
}
/* ============================================== */
// Return true if statement has executable code.
bool Statement::hasCode()
{
class HasCode : public StoppableVisitor
{
public:
void visit(Statement *s) { stop = true; }
void visit(ExpStatement *s) { stop = s->exp != NULL; }
void visit(CompoundStatement *s) {}
void visit(ScopeStatement *s) {}
void visit(ImportStatement *s) {}
};
HasCode hc;
return walkPostorder(this, &hc);
}
/* ============================================== */
/* Only valid after semantic analysis
* If 'mustNotThrow' is true, generate an error if it throws
*/
int Statement::blockExit(FuncDeclaration *func, bool mustNotThrow)
{
class BlockExit : public Visitor
{
public:
FuncDeclaration *func;
bool mustNotThrow;
int result;
BlockExit(FuncDeclaration *func, bool mustNotThrow)
: func(func), mustNotThrow(mustNotThrow)
{
result = BEnone;
}
void visit(Statement *s)
{
printf("Statement::blockExit(%p)\n", s);
printf("%s\n", s->toChars());
assert(0);
result = BEany;
}
void visit(ErrorStatement *s)
{
result = BEany;
}
void visit(ExpStatement *s)
{
result = BEfallthru;
if (s->exp)
{
if (s->exp->op == TOKhalt)
{
result = BEhalt;
return;
}
if (s->exp->op == TOKassert)
{
AssertExp *a = (AssertExp *)s->exp;
if (a->e1->isBool(false)) // if it's an assert(0)
{
result = BEhalt;
return;
}
}
if (canThrow(s->exp, func, mustNotThrow))
result |= BEthrow;
}
}
void visit(CompileStatement *s)
{
assert(global.errors);
result = BEfallthru;
}
void visit(CompoundStatement *cs)
{
//printf("CompoundStatement::blockExit(%p) %d\n", cs, cs->statements->dim);
result = BEfallthru;
Statement *slast = NULL;
for (size_t i = 0; i < cs->statements->dim; i++)
{
Statement *s = (*cs->statements)[i];
if (s)
{
//printf("result = x%x\n", result);
//printf("s: %s\n", s->toChars());
if (global.params.warnings && result & BEfallthru && slast)
{
slast = slast->last();
if (slast && (slast->isCaseStatement() || slast->isDefaultStatement()) &&
(s->isCaseStatement() || s->isDefaultStatement()))
{
// Allow if last case/default was empty
CaseStatement *sc = slast->isCaseStatement();
DefaultStatement *sd = slast->isDefaultStatement();
if (sc && (!sc->statement->hasCode() || sc->statement->isCaseStatement() || sc->statement->isErrorStatement()))
;
else if (sd && (!sd->statement->hasCode() || sd->statement->isCaseStatement() || sd->statement->isErrorStatement()))
;
else
{
const char *gototype = s->isCaseStatement() ? "case" : "default";
s->warning("switch case fallthrough - use 'goto %s;' if intended", gototype);
}
}
}
if (!(result & BEfallthru) && !s->comeFrom())
{
if (s->blockExit(func, mustNotThrow) != BEhalt && s->hasCode())
s->warning("statement is not reachable");
}
else
{
result &= ~BEfallthru;
result |= s->blockExit(func, mustNotThrow);
}
slast = s;
}
}
}
void visit(UnrolledLoopStatement *uls)
{
result = BEfallthru;
for (size_t i = 0; i < uls->statements->dim; i++)
{
Statement *s = (*uls->statements)[i];
if (s)
{
int r = s->blockExit(func, mustNotThrow);
result |= r & ~(BEbreak | BEcontinue);
}
}
}
void visit(ScopeStatement *s)
{
//printf("ScopeStatement::blockExit(%p)\n", s->statement);
result = s->statement ? s->statement->blockExit(func, mustNotThrow) : BEfallthru;
}
void visit(WhileStatement *s)
{
assert(global.errors);
result = BEfallthru;
}
void visit(DoStatement *s)
{
if (s->body)
{
result = s->body->blockExit(func, mustNotThrow);
if (result == BEbreak)
{
result = BEfallthru;
return;
}
if (result & BEcontinue)
result |= BEfallthru;
}
else
result = BEfallthru;
if (result & BEfallthru)
{
if (canThrow(s->condition, func, mustNotThrow))
result |= BEthrow;
if (!(result & BEbreak) && s->condition->isBool(true))
result &= ~BEfallthru;
}
result &= ~(BEbreak | BEcontinue);
}
void visit(ForStatement *s)
{
result = BEfallthru;
if (s->init)
{
result = s->init->blockExit(func, mustNotThrow);
if (!(result & BEfallthru))
return;
}
if (s->condition)
{
if (canThrow(s->condition, func, mustNotThrow))
result |= BEthrow;
if (s->condition->isBool(true))
result &= ~BEfallthru;
else if (s->condition->isBool(false))
return;
}
else
result &= ~BEfallthru; // the body must do the exiting
if (s->body)
{
int r = s->body->blockExit(func, mustNotThrow);
if (r & (BEbreak | BEgoto))
result |= BEfallthru;
result |= r & ~(BEfallthru | BEbreak | BEcontinue);
}
if (s->increment && canThrow(s->increment, func, mustNotThrow))
result |= BEthrow;
}
void visit(ForeachStatement *s)
{
result = BEfallthru;
if (canThrow(s->aggr, func, mustNotThrow))
result |= BEthrow;
if (s->body)
result |= s->body->blockExit(func, mustNotThrow) & ~(BEbreak | BEcontinue);
}
void visit(ForeachRangeStatement *s)
{
assert(global.errors);
result = BEfallthru;
}
void visit(IfStatement *s)
{
//printf("IfStatement::blockExit(%p)\n", s);
result = BEnone;
if (canThrow(s->condition, func, mustNotThrow))
result |= BEthrow;
if (s->condition->isBool(true))
{
if (s->ifbody)
result |= s->ifbody->blockExit(func, mustNotThrow);
else
result |= BEfallthru;
}
else if (s->condition->isBool(false))
{
if (s->elsebody)
result |= s->elsebody->blockExit(func, mustNotThrow);
else
result |= BEfallthru;
}
else
{
if (s->ifbody)
result |= s->ifbody->blockExit(func, mustNotThrow);
else
result |= BEfallthru;
if (s->elsebody)
result |= s->elsebody->blockExit(func, mustNotThrow);
else
result |= BEfallthru;
}
//printf("IfStatement::blockExit(%p) = x%x\n", s, result);
}
void visit(ConditionalStatement *s)
{
result = s->ifbody->blockExit(func, mustNotThrow);
if (s->elsebody)
result |= s->elsebody->blockExit(func, mustNotThrow);
}
void visit(PragmaStatement *s)
{
result = BEfallthru;
#if 0 // currently, no code is generated for Pragma's, so it's just fallthru
if (arrayExpressionCanThrow(s->args, func, mustNotThrow))
result |= BEthrow;
if (s->body)
result |= s->body->blockExit(func, mustNotThrow);
#endif
}
void visit(StaticAssertStatement *s)
{
result = BEfallthru;
}
void visit(SwitchStatement *s)
{
result = BEnone;
if (canThrow(s->condition, func, mustNotThrow))
result |= BEthrow;
if (s->body)
{
result |= s->body->blockExit(func, mustNotThrow);
if (result & BEbreak)
{
result |= BEfallthru;
result &= ~BEbreak;
}
}
else
result |= BEfallthru;
}
void visit(CaseStatement *s)
{
result = s->statement->blockExit(func, mustNotThrow);
}
void visit(DefaultStatement *s)
{
result = s->statement->blockExit(func, mustNotThrow);
}
void visit(GotoDefaultStatement *s)
{
result = BEgoto;
}
void visit(GotoCaseStatement *s)
{
result = BEgoto;
}
void visit(SwitchErrorStatement *s)
{
// Switch errors are non-recoverable
result = BEhalt;
}
void visit(ReturnStatement *s)
{
result = BEreturn;
if (s->exp && canThrow(s->exp, func, mustNotThrow))
result |= BEthrow;
}
void visit(BreakStatement *s)
{
//printf("BreakStatement::blockExit(%p) = x%x\n", s, s->ident ? BEgoto : BEbreak);
result = s->ident ? BEgoto : BEbreak;
}
void visit(ContinueStatement *s)
{
result = s->ident ? BEgoto : BEcontinue;
}
void visit(SynchronizedStatement *s)
{
result = s->body ? s->body->blockExit(func, mustNotThrow) : BEfallthru;
}
void visit(WithStatement *s)
{
result = BEnone;
if (canThrow(s->exp, func, mustNotThrow))
result = BEthrow;
if (s->body)
result |= s->body->blockExit(func, mustNotThrow);
else
result |= BEfallthru;
}
void visit(TryCatchStatement *s)
{
assert(s->body);
result = s->body->blockExit(func, false);
int catchresult = 0;
for (size_t i = 0; i < s->catches->dim; i++)
{
Catch *c = (*s->catches)[i];
if (c->type == Type::terror)
continue;
int cresult;
if (c->handler)
cresult = c->handler->blockExit(func, mustNotThrow);
else
cresult = BEfallthru;
/* If we're catching Object, then there is no throwing
*/
Identifier *id = c->type->toBasetype()->isClassHandle()->ident;
if (c->internalCatch && (cresult & BEfallthru))
{
// Bugzilla 11542: leave blockExit flags of the body
cresult &= ~BEfallthru;
}
else if (id == Id::Object || id == Id::Throwable)
{
result &= ~(BEthrow | BEerrthrow);
}
else if (id == Id::Exception)
{
result &= ~BEthrow;
}
catchresult |= cresult;
}
if (mustNotThrow && (result & BEthrow))
{
// now explain why this is nothrow
s->body->blockExit(func, mustNotThrow);
}
result |= catchresult;
}
void visit(TryFinallyStatement *s)
{
result = BEfallthru;
if (s->body)
result = s->body->blockExit(func, false);
// check finally body as well, it may throw (bug #4082)
int finalresult = BEfallthru;
if (s->finalbody)
finalresult = s->finalbody->blockExit(func, false);
// If either body or finalbody halts
if (result == BEhalt)
finalresult = BEnone;
if (finalresult == BEhalt)
result = BEnone;
if (mustNotThrow)
{
// now explain why this is nothrow
if (s->body && (result & BEthrow))
s->body->blockExit(func, mustNotThrow);
if (s->finalbody && (finalresult & BEthrow))
s->finalbody->blockExit(func, mustNotThrow);
}
#if 0
// Bugzilla 13201: Mask to prevent spurious warnings for
// destructor call, exit of synchronized statement, etc.
if (result == BEhalt && finalresult != BEhalt && s->finalbody &&
s->finalbody->hasCode())
{
s->finalbody->warning("statement is not reachable");
}
#endif
if (!(finalresult & BEfallthru))
result &= ~BEfallthru;
result |= finalresult & ~BEfallthru;
}
void visit(OnScopeStatement *s)
{
// At this point, this statement is just an empty placeholder
result = BEfallthru;
}
void visit(ThrowStatement *s)
{
if (s->internalThrow)
{
// Bugzilla 8675: Allow throwing 'Throwable' object even if mustNotThrow.
result = BEfallthru;
return;
}
Type *t = s->exp->type->toBasetype();
ClassDeclaration *cd = t->isClassHandle();
assert(cd);
if (cd == ClassDeclaration::errorException ||
ClassDeclaration::errorException->isBaseOf(cd, NULL))
{
result = BEerrthrow;
return;
}
if (mustNotThrow)
s->error("%s is thrown but not caught", s->exp->type->toChars());
result = BEthrow;
}
void visit(GotoStatement *s)
{
//printf("GotoStatement::blockExit(%p)\n", s);
result = BEgoto;
}
void visit(LabelStatement *s)
{
//printf("LabelStatement::blockExit(%p)\n", s);
result = s->statement ? s->statement->blockExit(func, mustNotThrow) : BEfallthru;
}
void visit(AsmStatement *s)
{
if (mustNotThrow)
s->error("asm statements are assumed to throw", s->toChars());
// Assume the worst
result = BEfallthru | BEthrow | BEreturn | BEgoto | BEhalt;
}
void visit(ImportStatement *s)
{
result = BEfallthru;
}
};
BlockExit be(func, mustNotThrow);
accept(&be);
return be.result;
}
Statement *Statement::last()
{
return this;
}
/****************************************
* If this statement has code that needs to run in a finally clause
* at the end of the current scope, return that code in the form of
* a Statement.
* Output:
* *sentry code executed upon entry to the scope
* *sexception code executed upon exit from the scope via exception
* *sfinally code executed in finally block
*/
Statement *Statement::scopeCode(Scope *sc, Statement **sentry, Statement **sexception, Statement **sfinally)
{
//printf("Statement::scopeCode()\n");
//print();
*sentry = NULL;
*sexception = NULL;
*sfinally = NULL;
return this;
}
/*********************************
* Flatten out the scope by presenting the statement
* as an array of statements.
* Returns NULL if no flattening necessary.
*/
Statements *Statement::flatten(Scope *sc)
{
return NULL;
}
/******************************** ErrorStatement ***************************/
ErrorStatement::ErrorStatement()
: Statement(Loc())
{
assert(global.gaggedErrors || global.errors);
}
Statement *ErrorStatement::syntaxCopy()
{
return this;
}
Statement *ErrorStatement::semantic(Scope *sc)
{
return this;
}
/******************************** PeelStatement ***************************/
PeelStatement::PeelStatement(Statement *s)
: Statement(s->loc)
{
this->s = s;
}
Statement *PeelStatement::semantic(Scope *sc)
{
/* "peel" off this wrapper, and don't run semantic()
* on the result.
*/
return s;
}
/******************************** ExpStatement ***************************/
ExpStatement::ExpStatement(Loc loc, Expression *exp)
: Statement(loc)
{
this->exp = exp;
}
ExpStatement::ExpStatement(Loc loc, Dsymbol *declaration)
: Statement(loc)
{
this->exp = new DeclarationExp(loc, declaration);
}
ExpStatement *ExpStatement::create(Loc loc, Expression *exp)
{
return new ExpStatement(loc, exp);
}
Statement *ExpStatement::syntaxCopy()
{
Expression *e = exp ? exp->syntaxCopy() : NULL;
ExpStatement *es = new ExpStatement(loc, e);
return es;
}
Statement *ExpStatement::semantic(Scope *sc)
{
if (exp)
{
//printf("ExpStatement::semantic() %s\n", exp->toChars());
#if 0 // Doesn't work because of difficulty dealing with things like a.b.c!(args).Foo!(args)
// See if this should be rewritten as a TemplateMixin
if (exp->op == TOKdeclaration)
{ DeclarationExp *de = (DeclarationExp *)exp;
Dsymbol *s = de->declaration;
printf("s: %s %s\n", s->kind(), s->toChars());
VarDeclaration *v = s->isVarDeclaration();
if (v)
{
printf("%s, %d\n", v->type->toChars(), v->type->ty);
}
}
#endif
exp = exp->semantic(sc);
exp = exp->addDtorHook(sc);
exp = resolveProperties(sc, exp);
discardValue(exp);
exp = exp->optimize(0);
exp = checkGC(sc, exp);
if (exp->op == TOKerror)
return new ErrorStatement();
}
return this;
}
Statement *ExpStatement::scopeCode(Scope *sc, Statement **sentry, Statement **sexception, Statement **sfinally)
{
//printf("ExpStatement::scopeCode()\n");
//print();
*sentry = NULL;
*sexception = NULL;
*sfinally = NULL;
if (exp)
{
if (exp->op == TOKdeclaration)
{
DeclarationExp *de = (DeclarationExp *)(exp);
VarDeclaration *v = de->declaration->isVarDeclaration();
if (v && !v->noscope && !v->isDataseg())
{
Expression *e = v->edtor;
if (e)
{
//printf("dtor is: "); e->print();
#if 0
if (v->type->toBasetype()->ty == Tstruct)
{ /* Need a 'gate' to turn on/off destruction,
* in case v gets moved elsewhere.
*/
Identifier *id = Lexer::uniqueId("__runDtor");
ExpInitializer *ie = new ExpInitializer(loc, new IntegerExp(1));
VarDeclaration *rd = new VarDeclaration(loc, Type::tint32, id, ie);
rd->storage_class |= STCtemp;
*sentry = new ExpStatement(loc, rd);
v->rundtor = rd;
/* Rewrite e as:
* rundtor && e
*/
Expression *ve = new VarExp(loc, v->rundtor);
e = new AndAndExp(loc, ve, e);
e->type = Type::tbool;
}
#endif
*sfinally = new DtorExpStatement(loc, e, v);
}
v->noscope = 1; // don't add in dtor again
}
}
}
return this;
}
/******************************** DtorExpStatement ***************************/
DtorExpStatement::DtorExpStatement(Loc loc, Expression *exp, VarDeclaration *v)
: ExpStatement(loc, exp)
{
this->var = v;
}
Statement *DtorExpStatement::syntaxCopy()
{
Expression *e = exp ? exp->syntaxCopy() : NULL;
DtorExpStatement *es = new DtorExpStatement(loc, e, var);
return es;
}
/******************************** CompileStatement ***************************/
CompileStatement::CompileStatement(Loc loc, Expression *exp)
: Statement(loc)
{
this->exp = exp;
}
Statement *CompileStatement::syntaxCopy()
{
Expression *e = exp->syntaxCopy();
CompileStatement *es = new CompileStatement(loc, e);
return es;
}
Statements *CompileStatement::flatten(Scope *sc)
{
//printf("CompileStatement::flatten() %s\n", exp->toChars());
sc = sc->startCTFE();
exp = exp->semantic(sc);
exp = resolveProperties(sc, exp);
sc = sc->endCTFE();
Statements *a = new Statements();
if (exp->op != TOKerror)
{
Expression *e = exp->ctfeInterpret();
StringExp *se = e->toStringExp();
if (!se)
error("argument to mixin must be a string, not (%s) of type %s", exp->toChars(), exp->type->toChars());
else
{
se = se->toUTF8(sc);
Parser p(loc, sc->module, (utf8_t *)se->string, se->len, 0);
p.nextToken();
while (p.token.value != TOKeof)
{
unsigned errors = global.errors;
Statement *s = p.parseStatement(PSsemi | PScurlyscope);
if (!s || global.errors != errors)
goto Lerror;
a->push(s);
}
return a;
}
}
Lerror:
a->push(new ErrorStatement());
return a;
}
Statement *CompileStatement::semantic(Scope *sc)
{
//printf("CompileStatement::semantic() %s\n", exp->toChars());
Statements *a = flatten(sc);
if (!a)
return NULL;
Statement *s = new CompoundStatement(loc, a);
return s->semantic(sc);
}
/******************************** CompoundStatement ***************************/
CompoundStatement::CompoundStatement(Loc loc, Statements *s)
: Statement(loc)
{
statements = s;
}
CompoundStatement::CompoundStatement(Loc loc, Statement *s1, Statement *s2)
: Statement(loc)
{
statements = new Statements();
statements->reserve(2);
statements->push(s1);
statements->push(s2);
}
CompoundStatement::CompoundStatement(Loc loc, Statement *s1)
: Statement(loc)
{
statements = new Statements();
statements->push(s1);
}
CompoundStatement *CompoundStatement::create(Loc loc, Statement *s1, Statement *s2)
{
return new CompoundStatement(loc, s1, s2);
}
Statement *CompoundStatement::syntaxCopy()
{
Statements *a = new Statements();
a->setDim(statements->dim);
for (size_t i = 0; i < statements->dim; i++)
{ Statement *s = (*statements)[i];
if (s)
s = s->syntaxCopy();
(*a)[i] = s;
}
CompoundStatement *cs = new CompoundStatement(loc, a);
return cs;
}
Statement *CompoundStatement::semantic(Scope *sc)
{
//printf("CompoundStatement::semantic(this = %p, sc = %p)\n", this, sc);
#if 0
for (size_t i = 0; i < statements->dim; i++)
{
Statement *s = (*statements)[i];
if (s)
printf("[%d]: %s", i, s->toChars());
}
#endif
for (size_t i = 0; i < statements->dim; )
{
Statement *s = (*statements)[i];
if (s)
{
Statements *flt = s->flatten(sc);
if (flt)
{
statements->remove(i);
statements->insert(i, flt);
continue;
}
s = s->semantic(sc);
(*statements)[i] = s;
if (s)
{
Statement *sentry;
Statement *sexception;
Statement *sfinally;
(*statements)[i] = s->scopeCode(sc, &sentry, &sexception, &sfinally);
if (sentry)
{
sentry = sentry->semantic(sc);
statements->insert(i, sentry);
i++;
}
if (sexception)
sexception = sexception->semantic(sc);
if (sexception)
{
if (i + 1 == statements->dim && !sfinally)
{
}
else
{
/* Rewrite:
* s; s1; s2;
* As:
* s;
* try { s1; s2; }
* catch (Throwable __o)
* { sexception; throw __o; }
*/
Statements *a = new Statements();
for (size_t j = i + 1; j < statements->dim; j++)
{
a->push((*statements)[j]);
}
Statement *body = new CompoundStatement(Loc(), a);
body = new ScopeStatement(Loc(), body);
Identifier *id = Lexer::uniqueId("__o");
Statement *handler = new PeelStatement(sexception);
if (sexception->blockExit(sc->func, false) & BEfallthru)
{
ThrowStatement *ts = new ThrowStatement(Loc(), new IdentifierExp(Loc(), id));
ts->internalThrow = true;
handler = new CompoundStatement(Loc(), handler, ts);
}
Catches *catches = new Catches();
Catch *ctch = new Catch(Loc(), NULL, id, handler);
ctch->internalCatch = true;
catches->push(ctch);
s = new TryCatchStatement(Loc(), body, catches);
if (sfinally)
s = new TryFinallyStatement(Loc(), s, sfinally);
s = s->semantic(sc);
statements->setDim(i + 1);
statements->push(s);
break;
}
}
else if (sfinally)
{
if (0 && i + 1 == statements->dim)
{
statements->push(sfinally);
}
else
{
/* Rewrite:
* s; s1; s2;
* As:
* s; try { s1; s2; } finally { sfinally; }
*/
Statements *a = new Statements();
for (size_t j = i + 1; j < statements->dim; j++)
{
a->push((*statements)[j]);
}
Statement *body = new CompoundStatement(Loc(), a);
s = new TryFinallyStatement(Loc(), body, sfinally);
s = s->semantic(sc);
statements->setDim(i + 1);
statements->push(s);
break;
}
}
}
else
{
/* Remove NULL statements from the list.
*/
statements->remove(i);
continue;
}
}
i++;
}
for (size_t i = 0; i < statements->dim; ++i)
{
Lagain:
Statement *s = (*statements)[i];
if (!s)
continue;
Statement *se = s->isErrorStatement();
if (se)
return se;
/* Bugzilla 11653: 'semantic' may return another CompoundStatement
* (eg. CaseRangeStatement), so flatten it here.
*/
Statements *flt = s->flatten(sc);
if (flt)
{
statements->remove(i);
statements->insert(i, flt);
if (statements->dim <= i)
break;
goto Lagain;
}
}
if (statements->dim == 1
#if IN_LLVM
&& !isAsmBlockStatement()
#endif
)
{
return (*statements)[0];
}
return this;
}
Statements *CompoundStatement::flatten(Scope *sc)
{
return statements;
}
ReturnStatement *CompoundStatement::isReturnStatement()
{
ReturnStatement *rs = NULL;
for (size_t i = 0; i < statements->dim; i++)
{
Statement *s = (*statements)[i];
if (s)
{
rs = s->isReturnStatement();
if (rs)
break;
}
}
return rs;
}
Statement *CompoundStatement::last()
{
Statement *s = NULL;
for (size_t i = statements->dim; i; --i)
{ s = (*statements)[i - 1];
if (s)
{
s = s->last();
if (s)
break;
}
}
return s;
}
/******************************** CompoundDeclarationStatement ***************************/
CompoundDeclarationStatement::CompoundDeclarationStatement(Loc loc, Statements *s)
: CompoundStatement(loc, s)
{
statements = s;
}
Statement *CompoundDeclarationStatement::syntaxCopy()
{
Statements *a = new Statements();
a->setDim(statements->dim);
for (size_t i = 0; i < statements->dim; i++)
{ Statement *s = (*statements)[i];
if (s)
s = s->syntaxCopy();
(*a)[i] = s;
}
CompoundDeclarationStatement *cs = new CompoundDeclarationStatement(loc, a);
return cs;
}
/**************************** UnrolledLoopStatement ***************************/
UnrolledLoopStatement::UnrolledLoopStatement(Loc loc, Statements *s)
: Statement(loc)
{
statements = s;
}
Statement *UnrolledLoopStatement::syntaxCopy()
{
Statements *a = new Statements();
a->setDim(statements->dim);
for (size_t i = 0; i < statements->dim; i++)
{ Statement *s = (*statements)[i];
if (s)
s = s->syntaxCopy();
(*a)[i] = s;
}
UnrolledLoopStatement *cs = new UnrolledLoopStatement(loc, a);
return cs;
}
Statement *UnrolledLoopStatement::semantic(Scope *sc)
{
//printf("UnrolledLoopStatement::semantic(this = %p, sc = %p)\n", this, sc);
Scope *scd = sc->push();
scd->sbreak = this;
scd->scontinue = this;
Statement *serror = NULL;
for (size_t i = 0; i < statements->dim; i++)
{
Statement *s = (*statements)[i];
if (s)
{
//printf("[%d]: %s\n", i, s->toChars());
s = s->semantic(scd);
(*statements)[i] = s;
if (s && !serror)
serror = s->isErrorStatement();
}
}
scd->pop();
return serror ? serror : this;
}
bool UnrolledLoopStatement::hasBreak()
{
return true;
}
bool UnrolledLoopStatement::hasContinue()
{
return true;
}
/******************************** ScopeStatement ***************************/
ScopeStatement::ScopeStatement(Loc loc, Statement *s)
: Statement(loc)
{
this->statement = s;
}
Statement *ScopeStatement::syntaxCopy()
{
Statement *s;
s = statement ? statement->syntaxCopy() : NULL;
s = new ScopeStatement(loc, s);
return s;
}
ReturnStatement *ScopeStatement::isReturnStatement()
{
if (statement)
return statement->isReturnStatement();
return NULL;
}
Statement *ScopeStatement::semantic(Scope *sc)
{ ScopeDsymbol *sym;
//printf("ScopeStatement::semantic(sc = %p)\n", sc);
if (statement)
{
sym = new ScopeDsymbol();
sym->parent = sc->scopesym;
sc = sc->push(sym);
Statements *a = statement->flatten(sc);
if (a)
{
statement = new CompoundStatement(loc, a);
}
statement = statement->semantic(sc);
if (statement)
{
if (statement->isErrorStatement())
{
sc->pop();
return statement;
}
Statement *sentry;
Statement *sexception;
Statement *sfinally;
statement = statement->scopeCode(sc, &sentry, &sexception, &sfinally);
assert(!sentry);
assert(!sexception);
if (sfinally)
{
//printf("adding sfinally\n");
sfinally = sfinally->semantic(sc);
statement = new CompoundStatement(loc, statement, sfinally);
}
}
sc->pop();
}
return this;
}
bool ScopeStatement::hasBreak()
{
//printf("ScopeStatement::hasBreak() %s\n", toChars());
return statement ? statement->hasBreak() : false;
}
bool ScopeStatement::hasContinue()
{
return statement ? statement->hasContinue() : false;
}
/******************************** WhileStatement ***************************/
WhileStatement::WhileStatement(Loc loc, Expression *c, Statement *b)
: Statement(loc)
{
condition = c;
body = b;
}
Statement *WhileStatement::syntaxCopy()
{
WhileStatement *s = new WhileStatement(loc, condition->syntaxCopy(), body ? body->syntaxCopy() : NULL);
return s;
}
Statement *WhileStatement::semantic(Scope *sc)
{
/* Rewrite as a for(;condition;) loop
*/
Statement *s = new ForStatement(loc, NULL, condition, NULL, body);
s = s->semantic(sc);
return s;
}
bool WhileStatement::hasBreak()
{
return true;
}
bool WhileStatement::hasContinue()
{
return true;
}
/******************************** DoStatement ***************************/
DoStatement::DoStatement(Loc loc, Statement *b, Expression *c)
: Statement(loc)
{
body = b;
condition = c;
}
Statement *DoStatement::syntaxCopy()
{
DoStatement *s = new DoStatement(loc, body ? body->syntaxCopy() : NULL, condition->syntaxCopy());
return s;
}
Statement *DoStatement::semantic(Scope *sc)
{
sc->noctor++;
if (body)
body = body->semanticScope(sc, this, this);
sc->noctor--;
condition = condition->semantic(sc);
condition = resolveProperties(sc, condition);
condition = condition->optimize(WANTvalue);
condition = checkGC(sc, condition);
condition = condition->checkToBoolean(sc);
if (condition->op == TOKerror)
return new ErrorStatement();
if (body && body->isErrorStatement())
return body;
return this;
}
bool DoStatement::hasBreak()
{
return true;
}
bool DoStatement::hasContinue()
{
return true;
}
/******************************** ForStatement ***************************/
ForStatement::ForStatement(Loc loc, Statement *init, Expression *condition, Expression *increment, Statement *body)
: Statement(loc)
{
this->init = init;
this->condition = condition;
this->increment = increment;
this->body = body;
this->relatedLabeled = NULL;
}
Statement *ForStatement::syntaxCopy()
{
Statement *i = NULL;
if (init)
i = init->syntaxCopy();
Expression *c = NULL;
if (condition)
c = condition->syntaxCopy();
Expression *inc = NULL;
if (increment)
inc = increment->syntaxCopy();
ForStatement *s = new ForStatement(loc, i, c, inc, body->syntaxCopy());
return s;
}
Statement *ForStatement::semantic(Scope *sc)
{
//printf("ForStatement::semantic %s\n", toChars());
if (init)
{
/* Rewrite:
* for (auto v1 = i1, v2 = i2; condition; increment) { ... }
* to:
* { auto v1 = i1, v2 = i2; for (; condition; increment) { ... } }
* then lowered to:
* auto v1 = i1;
* try {
* auto v2 = i2;
* try {
* for (; condition; increment) { ... }
* } finally { v2.~this(); }
* } finally { v1.~this(); }
*/
Statements *ainit = new Statements();
ainit->push(init), init = NULL;
ainit->push(this);
Statement *s = new CompoundStatement(loc, ainit);
s = new ScopeStatement(loc, s);
s = s->semantic(sc);
if (!s->isErrorStatement())
{
if (LabelStatement *ls = checkLabeledLoop(sc, this))
ls->gotoTarget = this;
relatedLabeled = s;
}
return s;
}
assert(init == NULL);
ScopeDsymbol *sym = new ScopeDsymbol();
sym->parent = sc->scopesym;
sc = sc->push(sym);
sc->noctor++;
if (condition)
{
condition = condition->semantic(sc);
condition = resolveProperties(sc, condition);
condition = condition->optimize(WANTvalue);
condition = checkGC(sc, condition);
condition = condition->checkToBoolean(sc);
}
if (increment)
{
increment = increment->semantic(sc);
increment = resolveProperties(sc, increment);
increment = increment->optimize(0);
increment = checkGC(sc, increment);
}
sc->sbreak = this;
sc->scontinue = this;
if (body)
body = body->semanticNoScope(sc);
sc->noctor--;
sc->pop();
if (condition && condition->op == TOKerror ||
increment && increment->op == TOKerror ||
body && body->isErrorStatement())
return new ErrorStatement();
return this;
}
Statement *ForStatement::scopeCode(Scope *sc, Statement **sentry, Statement **sexception, Statement **sfinally)
{
//printf("ForStatement::scopeCode()\n");
Statement::scopeCode(sc, sentry, sexception, sfinally);
return this;
}
bool ForStatement::hasBreak()
{
//printf("ForStatement::hasBreak()\n");
return true;
}
bool ForStatement::hasContinue()
{
return true;
}
/******************************** ForeachStatement ***************************/
ForeachStatement::ForeachStatement(Loc loc, TOK op, Parameters *arguments,
Expression *aggr, Statement *body)
: Statement(loc)
{
this->op = op;
this->arguments = arguments;
this->aggr = aggr;
this->body = body;
this->key = NULL;
this->value = NULL;
this->func = NULL;
this->cases = NULL;
this->gotos = NULL;
}
Statement *ForeachStatement::syntaxCopy()
{
Parameters *args = Parameter::arraySyntaxCopy(arguments);
Expression *exp = aggr->syntaxCopy();
ForeachStatement *s = new ForeachStatement(loc, op, args, exp,
body ? body->syntaxCopy() : NULL);
return s;
}
Statement *ForeachStatement::semantic(Scope *sc)
{
//printf("ForeachStatement::semantic() %p\n", this);
ScopeDsymbol *sym;
Statement *s = this;
size_t dim = arguments->dim;
TypeAArray *taa = NULL;
Dsymbol *sapply = NULL;
Type *tn = NULL;
Type *tnv = NULL;
func = sc->func;
if (func->fes)
func = func->fes->func;
if (!inferAggregate(this, sc, sapply))
{
error("invalid foreach aggregate %s", aggr->toChars());
Lerror:
return new ErrorStatement();
}
Dsymbol* sapplyOld = sapply; // 'sapply' will be NULL if and after 'inferApplyArgTypes' errors
/* Check for inference errors
*/
if (!inferApplyArgTypes(this, sc, sapply))
{
/**
Try and extract the parameter count of the opApply callback function, e.g.:
int opApply(int delegate(int, float)) => 2 args
*/
bool foundMismatch = false;
size_t foreachParamCount = 0;
if (sapplyOld)
{
if (FuncDeclaration *fd = sapplyOld->isFuncDeclaration())
{
int fvarargs; // ignored (opApply shouldn't take variadics)
Parameters *fparameters = fd->getParameters(&fvarargs);
if (Parameter::dim(fparameters) == 1)
{
// first param should be the callback function
Parameter *fparam = Parameter::getNth(fparameters, 0);
if ((fparam->type->ty == Tpointer || fparam->type->ty == Tdelegate) &&
fparam->type->nextOf()->ty == Tfunction)
{
TypeFunction *tf = (TypeFunction *)fparam->type->nextOf();
foreachParamCount = Parameter::dim(tf->parameters);
foundMismatch = true;
}
}
}
}
//printf("dim = %d, arguments->dim = %d\n", dim, arguments->dim);
if (foundMismatch && dim != foreachParamCount)
{
const char *plural = foreachParamCount > 1 ? "s" : "";
error("cannot infer argument types, expected %d argument%s, not %d",
foreachParamCount, plural, dim);
}
else
error("cannot uniquely infer foreach argument types");
goto Lerror;
}
Type *tab = aggr->type->toBasetype();
if (tab->ty == Ttuple) // don't generate new scope for tuple loops
{
if (dim < 1 || dim > 2)
{
error("only one (value) or two (key,value) arguments for tuple foreach");
goto Lerror;
}
Type *argtype = (*arguments)[dim-1]->type;
if (argtype)
{
argtype = argtype->semantic(loc, sc);
if (argtype->ty == Terror)
goto Lerror;
}
TypeTuple *tuple = (TypeTuple *)tab;
Statements *statements = new Statements();
//printf("aggr: op = %d, %s\n", aggr->op, aggr->toChars());
size_t n;
TupleExp *te = NULL;
if (aggr->op == TOKtuple) // expression tuple
{
te = (TupleExp *)aggr;
n = te->exps->dim;
}
else if (aggr->op == TOKtype) // type tuple
{
n = Parameter::dim(tuple->arguments);
}
else
assert(0);
for (size_t j = 0; j < n; j++)
{
size_t k = (op == TOKforeach) ? j : n - 1 - j;
Expression *e = NULL;
Type *t = NULL;
if (te)
e = (*te->exps)[k];
else
t = Parameter::getNth(tuple->arguments, k)->type;
Parameter *arg = (*arguments)[0];
Statements *st = new Statements();
if (dim == 2)
{
// Declare key
if (arg->storageClass & (STCout | STCref | STClazy))
{
error("no storage class for key %s", arg->ident->toChars());
goto Lerror;
}
arg->type = arg->type->semantic(loc, sc);
TY keyty = arg->type->ty;
if (keyty != Tint32 && keyty != Tuns32)
{
if (global.params.is64bit)
{
if (keyty != Tint64 && keyty != Tuns64)
{
error("foreach: key type must be int or uint, long or ulong, not %s", arg->type->toChars());
goto Lerror;
}
}
else
{
error("foreach: key type must be int or uint, not %s", arg->type->toChars());
goto Lerror;
}
}
Initializer *ie = new ExpInitializer(Loc(), new IntegerExp(k));
VarDeclaration *var = new VarDeclaration(loc, arg->type, arg->ident, ie);
var->storage_class |= STCmanifest;
DeclarationExp *de = new DeclarationExp(loc, var);
st->push(new ExpStatement(loc, de));
arg = (*arguments)[1]; // value
}
// Declare value
if (arg->storageClass & (STCout | STClazy) ||
arg->storageClass & STCref && !te)
{
error("no storage class for value %s", arg->ident->toChars());
goto Lerror;
}
Dsymbol *var;
if (te)
{
Type *tb = e->type->toBasetype();
Dsymbol *ds = NULL;
if ((tb->ty == Tfunction || tb->ty == Tsarray) && e->op == TOKvar)
ds = ((VarExp *)e)->var;
else if (e->op == TOKtemplate)
ds = ((TemplateExp *)e)->td;
else if (e->op == TOKimport)
ds = ((ScopeExp *)e)->sds;
else if (e->op == TOKfunction)
{
FuncExp *fe = (FuncExp *)e;
ds = fe->td ? (Dsymbol *)fe->td : fe->fd;
}
if (ds)
{
var = new AliasDeclaration(loc, arg->ident, ds);
if (arg->storageClass & STCref)
{
error("symbol %s cannot be ref", s->toChars());
goto Lerror;
}
if (argtype)
{
error("cannot specify element type for symbol %s", ds->toChars());
goto Lerror;
}
}
else if (e->op == TOKtype)
{
var = new AliasDeclaration(loc, arg->ident, e->type);
if (argtype)
{
error("cannot specify element type for type %s", e->type->toChars());
goto Lerror;
}
}
else
{
arg->type = e->type;
if (argtype)
arg->type = argtype;
Initializer *ie = new ExpInitializer(Loc(), e);
VarDeclaration *v = new VarDeclaration(loc, arg->type, arg->ident, ie);
if (arg->storageClass & STCref)
v->storage_class |= STCref | STCforeach;
if (e->isConst() || e->op == TOKstring ||
e->op == TOKstructliteral || e->op == TOKarrayliteral)
{
if (v->storage_class & STCref)
{
error("constant value %s cannot be ref", ie->toChars());
goto Lerror;
}
else
v->storage_class |= STCmanifest;
}
var = v;
}
}
else
{
var = new AliasDeclaration(loc, arg->ident, t);
if (argtype)
{
error("cannot specify element type for symbol %s", s->toChars());
goto Lerror;
}
}
DeclarationExp *de = new DeclarationExp(loc, var);
st->push(new ExpStatement(loc, de));
st->push(body->syntaxCopy());
s = new CompoundStatement(loc, st);
s = new ScopeStatement(loc, s);
statements->push(s);
}
s = new UnrolledLoopStatement(loc, statements);
if (LabelStatement *ls = checkLabeledLoop(sc, this))
ls->gotoTarget = s;
if (te && te->e0)
s = new CompoundStatement(loc,
new ExpStatement(te->e0->loc, te->e0), s);
s = s->semantic(sc);
return s;
}
sym = new ScopeDsymbol();
sym->parent = sc->scopesym;
sc = sc->push(sym);
sc->noctor++;
switch (tab->ty)
{
case Tarray:
case Tsarray:
{
if (!checkForArgTypes())
return this;
if (dim < 1 || dim > 2)
{
error("only one or two arguments for array foreach");
goto Lerror2;
}
/* Look for special case of parsing char types out of char type
* array.
*/
tn = tab->nextOf()->toBasetype();
if (tn->ty == Tchar || tn->ty == Twchar || tn->ty == Tdchar)
{
int i = (dim == 1) ? 0 : 1; // index of value
Parameter *arg = (*arguments)[i];
arg->type = arg->type->semantic(loc, sc);
arg->type = arg->type->addStorageClass(arg->storageClass);
tnv = arg->type->toBasetype();
if (tnv->ty != tn->ty &&
(tnv->ty == Tchar || tnv->ty == Twchar || tnv->ty == Tdchar))
{
if (arg->storageClass & STCref)
{
error("foreach: value of UTF conversion cannot be ref");
goto Lerror2;
}
if (dim == 2)
{
arg = (*arguments)[0];
if (arg->storageClass & STCref)
{
error("foreach: key cannot be ref");
goto Lerror2;
}
}
goto Lapply;
}
}
for (size_t i = 0; i < dim; i++)
{
// Declare args
Parameter *arg = (*arguments)[i];
arg->type = arg->type->semantic(loc, sc);
arg->type = arg->type->addStorageClass(arg->storageClass);
VarDeclaration *var;
if (dim == 2 && i == 0)
{
var = new VarDeclaration(loc, arg->type->mutableOf(), Lexer::uniqueId("__key"), NULL);
var->storage_class |= STCtemp | STCforeach;
if (var->storage_class & (STCref | STCout))
var->storage_class |= STCnodtor;
key = var;
if (arg->storageClass & STCref)
{
if (!var->type->immutableOf()->equals(arg->type->immutableOf()) ||
!MODimplicitConv(var->type->mod, arg->type->mod))
{
error("key type mismatch, %s to ref %s",
var->type->toChars(), arg->type->toChars());
goto Lerror2;
}
}
if (tab->ty == Tsarray)
{
TypeSArray *ta = (TypeSArray *)tab;
IntRange dimrange = getIntRange(ta->dim);
if (!IntRange::fromType(var->type).contains(dimrange))
{
error("index type '%s' cannot cover index range 0..%llu", arg->type->toChars(), ta->dim->toInteger());
}
key->range = new IntRange(SignExtendedNumber(0), dimrange.imax);
}
}
else
{
var = new VarDeclaration(loc, arg->type, arg->ident, NULL);
var->storage_class |= STCforeach;
var->storage_class |= arg->storageClass & (STCin | STCout | STCref | STC_TYPECTOR);
if (var->storage_class & (STCref | STCout))
var->storage_class |= STCnodtor;
value = var;
if (var->storage_class & STCref)
{
if (aggr->checkModifiable(sc, 1) == 2)
var->storage_class |= STCctorinit;
Type *t = tab->nextOf();
if (!t->immutableOf()->equals(arg->type->immutableOf()) ||
!MODimplicitConv(t->mod, arg->type->mod))
{
error("argument type mismatch, %s to ref %s",
t->toChars(), arg->type->toChars());
goto Lerror2;
}
}
}
}
/* Convert to a ForStatement
* foreach (key, value; a) body =>
* for (T[] tmp = a[], size_t key; key < tmp.length; ++key)
* { T value = tmp[k]; body }
*
* foreach_reverse (key, value; a) body =>
* for (T[] tmp = a[], size_t key = tmp.length; key--; )
* { T value = tmp[k]; body }
*/
Identifier *id = Lexer::uniqueId("__aggr");
ExpInitializer *ie = new ExpInitializer(loc, new SliceExp(loc, aggr, NULL, NULL));
VarDeclaration *tmp;
if (aggr->op == TOKarrayliteral &&
!((*arguments)[dim - 1]->storageClass & STCref))
{
ArrayLiteralExp *ale = (ArrayLiteralExp *)aggr;
size_t edim = ale->elements ? ale->elements->dim : 0;
aggr->type = tab->nextOf()->sarrayOf(edim);
// for (T[edim] tmp = a, ...)
tmp = new VarDeclaration(loc, aggr->type, id, ie);
}
else
tmp = new VarDeclaration(loc, tab->nextOf()->arrayOf(), id, ie);
tmp->storage_class |= STCtemp;
Expression *tmp_length = new DotIdExp(loc, new VarExp(loc, tmp), Id::length);
if (!key)
{
Identifier *idkey = Lexer::uniqueId("__key");
key = new VarDeclaration(loc, Type::tsize_t, idkey, NULL);
key->storage_class |= STCtemp;
}
if (op == TOKforeach_reverse)
key->init = new ExpInitializer(loc, tmp_length);
else
key->init = new ExpInitializer(loc, new IntegerExp(loc, 0, key->type));
Statements *cs = new Statements();
cs->push(new ExpStatement(loc, tmp));
cs->push(new ExpStatement(loc, key));
Statement *forinit = new CompoundDeclarationStatement(loc, cs);
Expression *cond;
if (op == TOKforeach_reverse)
{
// key--
cond = new PostExp(TOKminusminus, loc, new VarExp(loc, key));
}
else
{
// key < tmp.length
cond = new CmpExp(TOKlt, loc, new VarExp(loc, key), tmp_length);
}
Expression *increment = NULL;
if (op == TOKforeach)
{
// key += 1
increment = new AddAssignExp(loc, new VarExp(loc, key), new IntegerExp(loc, 1, key->type));
}
// T value = tmp[key];
value->init = new ExpInitializer(loc, new IndexExp(loc, new VarExp(loc, tmp), new VarExp(loc, key)));
Statement *ds = new ExpStatement(loc, value);
if (dim == 2)
{
Parameter *arg = (*arguments)[0];
if ((arg->storageClass & STCref) && arg->type->equals(key->type))
{
key->range = NULL;
AliasDeclaration *v = new AliasDeclaration(loc, arg->ident, key);
body = new CompoundStatement(loc, new ExpStatement(loc, v), body);
}
else
{
ExpInitializer *ei = new ExpInitializer(loc, new IdentifierExp(loc, key->ident));
VarDeclaration *v = new VarDeclaration(loc, arg->type, arg->ident, ei);
v->storage_class |= STCforeach | (arg->storageClass & STCref);
body = new CompoundStatement(loc, new ExpStatement(loc, v), body);
if (key->range && !arg->type->isMutable())
{
/* Limit the range of the key to the specified range
*/
v->range = new IntRange(key->range->imin, key->range->imax - SignExtendedNumber(1));
}
}
}
body = new CompoundStatement(loc, ds, body);
s = new ForStatement(loc, forinit, cond, increment, body);
if (LabelStatement *ls = checkLabeledLoop(sc, this))
ls->gotoTarget = s;
s = s->semantic(sc);
break;
}
case Taarray:
if (!checkForArgTypes())
return this;
taa = (TypeAArray *)tab;
if (dim < 1 || dim > 2)
{
error("only one or two arguments for associative array foreach");
goto Lerror2;
}
goto Lapply;
case Tclass:
case Tstruct:
/* Prefer using opApply, if it exists
*/
if (sapply)
goto Lapply;
{
/* Look for range iteration, i.e. the properties
* .empty, .popFront, .popBack, .front and .back
* foreach (e; aggr) { ... }
* translates to:
* for (auto __r = aggr[]; !__r.empty; __r.popFront) {
* auto e = __r.front;
* ...
* }
*/
AggregateDeclaration *ad = (tab->ty == Tclass)
? (AggregateDeclaration *)((TypeClass *)tab)->sym
: (AggregateDeclaration *)((TypeStruct *)tab)->sym;
Identifier *idfront;
Identifier *idpopFront;
if (op == TOKforeach)
{
idfront = Id::Ffront;
idpopFront = Id::FpopFront;
}
else
{
idfront = Id::Fback;
idpopFront = Id::FpopBack;
}
Dsymbol *sfront = ad->search(Loc(), idfront);
if (!sfront)
goto Lapply;
/* Generate a temporary __r and initialize it with the aggregate.
*/
Identifier *rid = Identifier::generateId("__r");
VarDeclaration *r = new VarDeclaration(loc, NULL, rid, new ExpInitializer(loc, aggr));
r->storage_class |= STCtemp;
Statement *init = new ExpStatement(loc, r);
// !__r.empty
Expression *e = new VarExp(loc, r);
e = new DotIdExp(loc, e, Id::Fempty);
Expression *condition = new NotExp(loc, e);
// __r.next
e = new VarExp(loc, r);
Expression *increment = new CallExp(loc, new DotIdExp(loc, e, idpopFront));
/* Declaration statement for e:
* auto e = __r.idfront;
*/
e = new VarExp(loc, r);
Expression *einit = new DotIdExp(loc, e, idfront);
Statement *makeargs, *forbody;
if (dim == 1)
{
Parameter *arg = (*arguments)[0];
VarDeclaration *ve = new VarDeclaration(loc, arg->type, arg->ident, new ExpInitializer(loc, einit));
ve->storage_class |= STCforeach;
ve->storage_class |= arg->storageClass & (STCin | STCout | STCref | STC_TYPECTOR);
DeclarationExp *de = new DeclarationExp(loc, ve);
makeargs = new ExpStatement(loc, de);
}
else
{
Identifier *id = Lexer::uniqueId("__front");
ExpInitializer *ei = new ExpInitializer(loc, einit);
VarDeclaration *vd = new VarDeclaration(loc, NULL, id, ei);
vd->storage_class |= STCtemp | STCctfe | STCref | STCforeach;
makeargs = new ExpStatement(loc, new DeclarationExp(loc, vd));
Declaration *d = sfront->isDeclaration();
if (FuncDeclaration *f = d->isFuncDeclaration())
{
if (!f->functionSemantic())
goto Lrangeerr;
}
Expression *ve = new VarExp(loc, vd);
ve->type = d->type;
if (ve->type->toBasetype()->ty == Tfunction)
ve->type = ve->type->toBasetype()->nextOf();
if (!ve->type || ve->type->ty == Terror)
goto Lrangeerr;
// Resolve inout qualifier of front type
ve->type = ve->type->substWildTo(tab->mod);
Expressions *exps = new Expressions();
exps->push(ve);
int pos = 0;
while (exps->dim < dim)
{
pos = expandAliasThisTuples(exps, pos);
if (pos == -1)
break;
}
if (exps->dim != dim)
{
const char *plural = exps->dim > 1 ? "s" : "";
error("cannot infer argument types, expected %d argument%s, not %d",
exps->dim, plural, dim);
goto Lerror2;
}
for (size_t i = 0; i < dim; i++)
{
Parameter *arg = (*arguments)[i];
Expression *exp = (*exps)[i];
#if 0
printf("[%d] arg = %s %s, exp = %s %s\n", i,
arg->type ? arg->type->toChars() : "?", arg->ident->toChars(),
exp->type->toChars(), exp->toChars());
#endif
if (!arg->type)
arg->type = exp->type;
arg->type = arg->type->addStorageClass(arg->storageClass)->semantic(loc, sc);
if (!exp->implicitConvTo(arg->type))
goto Lrangeerr;
VarDeclaration *var = new VarDeclaration(loc, arg->type, arg->ident, new ExpInitializer(loc, exp));
var->storage_class |= STCctfe | STCref | STCforeach;
DeclarationExp *de = new DeclarationExp(loc, var);
makeargs = new CompoundStatement(loc, makeargs, new ExpStatement(loc, de));
}
}
forbody = new CompoundStatement(loc,
makeargs, this->body);
s = new ForStatement(loc, init, condition, increment, forbody);
if (LabelStatement *ls = checkLabeledLoop(sc, this))
ls->gotoTarget = s;
#if 0
printf("init: %s\n", init->toChars());
printf("condition: %s\n", condition->toChars());
printf("increment: %s\n", increment->toChars());
printf("body: %s\n", forbody->toChars());
#endif
s = s->semantic(sc);
break;
Lrangeerr:
error("cannot infer argument types");
goto Lerror2;
}
case Tdelegate:
if (op == TOKforeach_reverse)
warning("cannot use foreach_reverse with a delegate");
Lapply:
{
Expression *ec;
Expression *e;
if (!checkForArgTypes())
{
body = body->semanticNoScope(sc);
return this;
}
TypeFunction *tfld = NULL;
if (sapply)
{
FuncDeclaration *fdapply = sapply->isFuncDeclaration();
if (fdapply)
{
assert(fdapply->type && fdapply->type->ty == Tfunction);
tfld = (TypeFunction *)fdapply->type->semantic(loc, sc);
goto Lget;
}
else if (tab->ty == Tdelegate)
{
tfld = (TypeFunction *)tab->nextOf();
Lget:
//printf("tfld = %s\n", tfld->toChars());
if (tfld->parameters->dim == 1)
{
Parameter *p = Parameter::getNth(tfld->parameters, 0);
if (p->type && p->type->ty == Tdelegate)
{
Type *t = p->type->semantic(loc, sc);
assert(t->ty == Tdelegate);
tfld = (TypeFunction *)t->nextOf();
}
}
}
}
/* Turn body into the function literal:
* int delegate(ref T arg) { body }
*/
Parameters *args = new Parameters();
for (size_t i = 0; i < dim; i++)
{
Parameter *arg = (*arguments)[i];
StorageClass stc = STCref;
Identifier *id;
arg->type = arg->type->semantic(loc, sc);
arg->type = arg->type->addStorageClass(arg->storageClass);
#if IN_LLVM
// Type of parameter may be different; see below
Type *para_type = arg->type;
#endif
if (tfld)
{
Parameter *prm = Parameter::getNth(tfld->parameters, i);
//printf("\tprm = %s%s\n", (prm->storageClass&STCref?"ref ":""), prm->ident->toChars());
stc = prm->storageClass & STCref;
id = arg->ident; // argument copy is not need.
if ((arg->storageClass & STCref) != stc)
{
if (!stc)
{
error("foreach: cannot make %s ref", arg->ident->toChars());
goto Lerror2;
}
goto LcopyArg;
}
}
else if (arg->storageClass & STCref)
{
// default delegate parameters are marked as ref, then
// argument copy is not need.
id = arg->ident;
}
else
{
// Make a copy of the ref argument so it isn't
// a reference.
LcopyArg:
id = Lexer::uniqueId("__applyArg", (int)i);
#if IN_LLVM
// In case of a foreach loop on an array the index passed
// to the delegate is always of type size_t. The type of
// the parameter must be changed to size_t and a cast to
// the type used must be inserted. Otherwise the index is
// always 0 on a big endian architecture. This fixes
// issue #326.
Initializer *ie;
if (dim == 2 && i == 0 && (tab->ty == Tarray || tab->ty == Tsarray))
{
para_type = Type::tsize_t;
ie = new ExpInitializer(Loc(),
new CastExp(Loc(),
new IdentifierExp(Loc(), id), arg->type));
}
else
ie = new ExpInitializer(Loc(), new IdentifierExp(Loc(), id));
#else
Initializer *ie = new ExpInitializer(Loc(), new IdentifierExp(Loc(), id));
#endif
VarDeclaration *v = new VarDeclaration(Loc(), arg->type, arg->ident, ie);
v->storage_class |= STCtemp;
s = new ExpStatement(Loc(), v);
body = new CompoundStatement(loc, s, body);
}
#if IN_LLVM
args->push(new Parameter(stc, para_type, id, NULL));
#else
args->push(new Parameter(stc, arg->type, id, NULL));
#endif
}
tfld = new TypeFunction(args, Type::tint32, 0, LINKd);
cases = new Statements();
gotos = new ScopeStatements();
FuncLiteralDeclaration *fld = new FuncLiteralDeclaration(loc, Loc(), tfld, TOKdelegate, this);
fld->fbody = body;
Expression *flde = new FuncExp(loc, fld);
flde = flde->semantic(sc);
fld->tookAddressOf = 0;
// Resolve any forward referenced goto's
for (size_t i = 0; i < gotos->dim; i++)
{
GotoStatement *gs = (GotoStatement *)(*gotos)[i]->statement;
if (!gs->label->statement)
{
// 'Promote' it to this scope, and replace with a return
cases->push(gs);
s = new ReturnStatement(Loc(), new IntegerExp(cases->dim + 1));
(*gotos)[i]->statement = s;
}
}
if (taa)
{
// Check types
Parameter *arg = (*arguments)[0];
if (dim == 2)
{
if (arg->storageClass & STCref)
{
error("foreach: index cannot be ref");
goto Lerror2;
}
if (!taa->index->implicitConvTo(arg->type))
{
error("foreach: index must be type %s, not %s", taa->index->toChars(), arg->type->toChars());
goto Lerror2;
}
arg = (*arguments)[1];
}
if ((!arg->type->equals(taa->nextOf()) && (arg->storageClass & STCref)) ||
!taa->nextOf()->implicitConvTo(arg->type))
{
error("foreach: value must be type %s, not %s", taa->nextOf()->toChars(), arg->type->toChars());
goto Lerror2;
}
/* Call:
* _aaApply(aggr, keysize, flde)
*/
static const char *name[2] = { "_aaApply", "_aaApply2" };
static FuncDeclaration *fdapply[2] = { NULL, NULL };
static TypeDelegate *fldeTy[2] = { NULL, NULL };
unsigned char i = dim == 2;
if (!fdapply[i]) {
args = new Parameters;
args->push(new Parameter(0, Type::tvoid->pointerTo(), NULL, NULL));
args->push(new Parameter(STCin, Type::tsize_t, NULL, NULL));
Parameters* dgargs = new Parameters;
dgargs->push(new Parameter(0, Type::tvoidptr, NULL, NULL));
if (dim == 2)
dgargs->push(new Parameter(0, Type::tvoidptr, NULL, NULL));
fldeTy[i] = new TypeDelegate(new TypeFunction(dgargs, Type::tint32, 0, LINKd));
args->push(new Parameter(0, fldeTy[i], NULL, NULL));
fdapply[i] = FuncDeclaration::genCfunc(args, Type::tint32, name[i]);
}
ec = new VarExp(Loc(), fdapply[i]);
Expressions *exps = new Expressions();
exps->push(aggr);
size_t keysize = (size_t)taa->index->size();
keysize = (keysize + ((size_t)Target::ptrsize-1)) & ~((size_t)Target::ptrsize-1);
// paint delegate argument to the type runtime expects
if (!fldeTy[i]->equals(flde->type)) {
flde = new CastExp(loc, flde, flde->type);
flde->type = fldeTy[i];
}
exps->push(new IntegerExp(Loc(), keysize, Type::tsize_t));
exps->push(flde);
e = new CallExp(loc, ec, exps);
e->type = Type::tint32; // don't run semantic() on e
}
else if (tab->ty == Tarray || tab->ty == Tsarray)
{
/* Call:
* _aApply(aggr, flde)
*/
static const char fntab[9][3] =
{ "cc","cw","cd",
"wc","cc","wd",
"dc","dw","dd"
};
const size_t BUFFER_LEN = 7+1+2+ sizeof(dim)*3 + 1;
char fdname[BUFFER_LEN];
int flag;
switch (tn->ty)
{
case Tchar: flag = 0; break;
case Twchar: flag = 3; break;
case Tdchar: flag = 6; break;
default: assert(0);
}
switch (tnv->ty)
{
case Tchar: flag += 0; break;
case Twchar: flag += 1; break;
case Tdchar: flag += 2; break;
default: assert(0);
}
const char *r = (op == TOKforeach_reverse) ? "R" : "";
int j = sprintf(fdname, "_aApply%s%.*s%llu", r, 2, fntab[flag], (ulonglong)dim);
assert(j < BUFFER_LEN);
FuncDeclaration *fdapply;
TypeDelegate *dgty;
args = new Parameters;
args->push(new Parameter(STCin, tn->arrayOf(), NULL, NULL));
Parameters* dgargs = new Parameters;
dgargs->push(new Parameter(0, Type::tvoidptr, NULL, NULL));
if (dim == 2)
dgargs->push(new Parameter(0, Type::tvoidptr, NULL, NULL));
dgty = new TypeDelegate(new TypeFunction(dgargs, Type::tint32, 0, LINKd));
args->push(new Parameter(0, dgty, NULL, NULL));
fdapply = FuncDeclaration::genCfunc(args, Type::tint32, fdname);
ec = new VarExp(Loc(), fdapply);
Expressions *exps = new Expressions();
if (tab->ty == Tsarray)
aggr = aggr->castTo(sc, tn->arrayOf());
exps->push(aggr);
// paint delegate argument to the type runtime expects
if (!dgty->equals(flde->type)) {
flde = new CastExp(loc, flde, flde->type);
flde->type = dgty;
}
exps->push(flde);
e = new CallExp(loc, ec, exps);
e->type = Type::tint32; // don't run semantic() on e
}
else if (tab->ty == Tdelegate)
{
/* Call:
* aggr(flde)
*/
Expressions *exps = new Expressions();
exps->push(flde);
if (aggr->op == TOKdelegate &&
((DelegateExp *)aggr)->func->isNested())
{
// See Bugzilla 3560
e = new CallExp(loc, ((DelegateExp *)aggr)->e1, exps);
}
else
e = new CallExp(loc, aggr, exps);
e = e->semantic(sc);
if (e->op == TOKerror)
goto Lerror2;
if (e->type != Type::tint32)
{
error("opApply() function for %s must return an int", tab->toChars());
goto Lerror2;
}
}
else
{
assert(tab->ty == Tstruct || tab->ty == Tclass);
Expressions *exps = new Expressions();
assert(sapply);
/* Call:
* aggr.apply(flde)
*/
ec = new DotIdExp(loc, aggr, sapply->ident);
exps->push(flde);
e = new CallExp(loc, ec, exps);
e = e->semantic(sc);
if (e->op == TOKerror)
goto Lerror2;
if (e->type != Type::tint32)
{
error("opApply() function for %s must return an int", tab->toChars());
goto Lerror2;
}
}
if (!cases->dim)
{
// Easy case, a clean exit from the loop
s = new ExpStatement(loc, e);
}
else
{
// Construct a switch statement around the return value
// of the apply function.
Statements *a = new Statements();
// default: break; takes care of cases 0 and 1
s = new BreakStatement(Loc(), NULL);
s = new DefaultStatement(Loc(), s);
a->push(s);
// cases 2...
for (size_t i = 0; i < cases->dim; i++)
{
s = (*cases)[i];
s = new CaseStatement(Loc(), new IntegerExp(i + 2), s);
a->push(s);
}
s = new CompoundStatement(loc, a);
s = new SwitchStatement(loc, e, s, false);
}
s = s->semantic(sc);
break;
}
case Terror:
Lerror2:
s = new ErrorStatement();
break;
default:
error("foreach: %s is not an aggregate type", aggr->type->toChars());
goto Lerror2;
}
sc->noctor--;
sc->pop();
return s;
}
bool ForeachStatement::checkForArgTypes()
{
bool result = true;
for (size_t i = 0; i < arguments->dim; i++)
{
Parameter *arg = (*arguments)[i];
if (!arg->type)
{
error("cannot infer type for %s", arg->ident->toChars());
arg->type = Type::terror;
result = false;
}
}
return result;
}
bool ForeachStatement::hasBreak()
{
return true;
}
bool ForeachStatement::hasContinue()
{
return true;
}
/**************************** ForeachRangeStatement ***************************/
ForeachRangeStatement::ForeachRangeStatement(Loc loc, TOK op, Parameter *arg,
Expression *lwr, Expression *upr, Statement *body)
: Statement(loc)
{
this->op = op;
this->arg = arg;
this->lwr = lwr;
this->upr = upr;
this->body = body;
this->key = NULL;
}
Statement *ForeachRangeStatement::syntaxCopy()
{
ForeachRangeStatement *s = new ForeachRangeStatement(loc, op,
arg->syntaxCopy(),
lwr->syntaxCopy(),
upr->syntaxCopy(),
body ? body->syntaxCopy() : NULL);
return s;
}
Statement *ForeachRangeStatement::semantic(Scope *sc)
{
//printf("ForeachRangeStatement::semantic() %p\n", this);
lwr = lwr->semantic(sc);
lwr = resolveProperties(sc, lwr);
lwr = lwr->optimize(WANTvalue);
if (!lwr->type)
{
error("invalid range lower bound %s", lwr->toChars());
Lerror:
return new ErrorStatement();
}
upr = upr->semantic(sc);
upr = resolveProperties(sc, upr);
upr = upr->optimize(WANTvalue);
if (!upr->type)
{
error("invalid range upper bound %s", upr->toChars());
goto Lerror;
}
if (arg->type)
{
arg->type = arg->type->semantic(loc, sc);
arg->type = arg->type->addStorageClass(arg->storageClass);
lwr = lwr->implicitCastTo(sc, arg->type);
if (upr->implicitConvTo(arg->type) || (arg->storageClass & STCref))
{
upr = upr->implicitCastTo(sc, arg->type);
}
else
{
// See if upr-1 fits in arg->type
Expression *limit = new MinExp(loc, upr, new IntegerExp(1));
limit = limit->semantic(sc);
limit = limit->optimize(WANTvalue);
if (!limit->implicitConvTo(arg->type))
{
upr = upr->implicitCastTo(sc, arg->type);
}
}
}
else
{
/* Must infer types from lwr and upr
*/
Type *tlwr = lwr->type->toBasetype();
if (tlwr->ty == Tstruct || tlwr->ty == Tclass)
{
/* Just picking the first really isn't good enough.
*/
arg->type = lwr->type;
}
else if (lwr->type == upr->type)
{
/* Same logic as CondExp ?lwr:upr
*/
arg->type = lwr->type;
}
else
{
AddExp ea(loc, lwr, upr);
if (typeCombine(&ea, sc))
return new ErrorStatement();
arg->type = ea.type;
lwr = ea.e1;
upr = ea.e2;
}
arg->type = arg->type->addStorageClass(arg->storageClass);
}
if (arg->type->ty == Terror ||
lwr->op == TOKerror ||
upr->op == TOKerror)
return new ErrorStatement();
/* Convert to a for loop:
* foreach (key; lwr .. upr) =>
* for (auto key = lwr, auto tmp = upr; key < tmp; ++key)
*
* foreach_reverse (key; lwr .. upr) =>
* for (auto tmp = lwr, auto key = upr; key-- > tmp;)
*/
ExpInitializer *ie = new ExpInitializer(loc, (op == TOKforeach) ? lwr : upr);
key = new VarDeclaration(loc, upr->type->mutableOf(), Lexer::uniqueId("__key"), ie);
key->storage_class |= STCtemp;
SignExtendedNumber lower = getIntRange(lwr).imin;
SignExtendedNumber upper = getIntRange(upr).imax;
if (lower <= upper)
{
key->range = new IntRange(lower, upper);
}
Identifier *id = Lexer::uniqueId("__limit");
ie = new ExpInitializer(loc, (op == TOKforeach) ? upr : lwr);
VarDeclaration *tmp = new VarDeclaration(loc, upr->type, id, ie);
tmp->storage_class |= STCtemp;
Statements *cs = new Statements();
// Keep order of evaluation as lwr, then upr
if (op == TOKforeach)
{
cs->push(new ExpStatement(loc, key));
cs->push(new ExpStatement(loc, tmp));
}
else
{
cs->push(new ExpStatement(loc, tmp));
cs->push(new ExpStatement(loc, key));
}
Statement *forinit = new CompoundDeclarationStatement(loc, cs);
Expression *cond;
if (op == TOKforeach_reverse)
{
cond = new PostExp(TOKminusminus, loc, new VarExp(loc, key));
if (arg->type->isscalar())
{
// key-- > tmp
cond = new CmpExp(TOKgt, loc, cond, new VarExp(loc, tmp));
}
else
{
// key-- != tmp
cond = new EqualExp(TOKnotequal, loc, cond, new VarExp(loc, tmp));
}
}
else
{
if (arg->type->isscalar())
{
// key < tmp
cond = new CmpExp(TOKlt, loc, new VarExp(loc, key), new VarExp(loc, tmp));
}
else
{
// key != tmp
cond = new EqualExp(TOKnotequal, loc, new VarExp(loc, key), new VarExp(loc, tmp));
}
}
Expression *increment = NULL;
if (op == TOKforeach)
// key += 1
//increment = new AddAssignExp(loc, new VarExp(loc, key), new IntegerExp(1));
increment = new PreExp(TOKpreplusplus, loc, new VarExp(loc, key));
if ((arg->storageClass & STCref) && arg->type->equals(key->type))
{
key->range = NULL;
AliasDeclaration *v = new AliasDeclaration(loc, arg->ident, key);
body = new CompoundStatement(loc, new ExpStatement(loc, v), body);
}
else
{
ie = new ExpInitializer(loc, new CastExp(loc, new VarExp(loc, key), arg->type));
VarDeclaration *v = new VarDeclaration(loc, arg->type, arg->ident, ie);
v->storage_class |= STCtemp | STCforeach | (arg->storageClass & STCref);
body = new CompoundStatement(loc, new ExpStatement(loc, v), body);
if (key->range && !arg->type->isMutable())
{
/* Limit the range of the key to the specified range
*/
v->range = new IntRange(key->range->imin, key->range->imax - SignExtendedNumber(1));
}
}
if (arg->storageClass & STCref)
{
if (!key->type->immutableOf()->equals(arg->type->immutableOf()) ||
!MODimplicitConv(key->type->mod, arg->type->mod))
{
error("argument type mismatch, %s to ref %s",
key->type->toChars(), arg->type->toChars());
}
}
ForStatement *s = new ForStatement(loc, forinit, cond, increment, body);
if (LabelStatement *ls = checkLabeledLoop(sc, this))
ls->gotoTarget = s;
return s->semantic(sc);
}
bool ForeachRangeStatement::hasBreak()
{
return true;
}
bool ForeachRangeStatement::hasContinue()
{
return true;
}
/******************************** IfStatement ***************************/
IfStatement::IfStatement(Loc loc, Parameter *arg, Expression *condition, Statement *ifbody, Statement *elsebody)
: Statement(loc)
{
this->arg = arg;
this->condition = condition;
this->ifbody = ifbody;
this->elsebody = elsebody;
this->match = NULL;
}
Statement *IfStatement::syntaxCopy()
{
Statement *i = NULL;
if (ifbody)
i = ifbody->syntaxCopy();
Statement *e = NULL;
if (elsebody)
e = elsebody->syntaxCopy();
Parameter *a = arg ? arg->syntaxCopy() : NULL;
IfStatement *s = new IfStatement(loc, a, condition->syntaxCopy(), i, e);
return s;
}
Statement *IfStatement::semantic(Scope *sc)
{
// Evaluate at runtime
unsigned cs0 = sc->callSuper;
unsigned cs1;
unsigned *fi0 = sc->saveFieldInit();
unsigned *fi1 = NULL;
ScopeDsymbol *sym = new ScopeDsymbol();
sym->parent = sc->scopesym;
Scope *scd = sc->push(sym);
if (arg)
{
/* Declare arg, which we will set to be the
* result of condition.
*/
match = new VarDeclaration(loc, arg->type, arg->ident, new ExpInitializer(loc, condition));
match->parent = sc->func;
match->storage_class |= arg->storageClass;
DeclarationExp *de = new DeclarationExp(loc, match);
VarExp *ve = new VarExp(Loc(), match);
condition = new CommaExp(loc, de, ve);
condition = condition->semantic(scd);
if (match->edtor)
{
Statement *sdtor = new ExpStatement(loc, match->edtor);
sdtor = new OnScopeStatement(loc, TOKon_scope_exit, sdtor);
ifbody = new CompoundStatement(loc, sdtor, ifbody);
match->noscope = 1;
}
}
else
{
condition = condition->semantic(sc);
condition = condition->addDtorHook(sc);
condition = resolveProperties(sc, condition);
}
condition = checkGC(sc, condition);
// Convert to boolean after declaring arg so this works:
// if (S arg = S()) {}
// where S is a struct that defines opCast!bool.
condition = condition->checkToBoolean(sc);
// If we can short-circuit evaluate the if statement, don't do the
// semantic analysis of the skipped code.
// This feature allows a limited form of conditional compilation.
condition = condition->optimize(WANTflags);
ifbody = ifbody->semanticNoScope(scd);
scd->pop();
cs1 = sc->callSuper;
fi1 = sc->fieldinit;
sc->callSuper = cs0;
sc->fieldinit = fi0;
if (elsebody)
elsebody = elsebody->semanticScope(sc, NULL, NULL);
sc->mergeCallSuper(loc, cs1);
sc->mergeFieldInit(loc, fi1);
if (condition->op == TOKerror ||
(ifbody && ifbody->isErrorStatement()) ||
(elsebody && elsebody->isErrorStatement()))
{
return new ErrorStatement();
}
return this;
}
/******************************** ConditionalStatement ***************************/
ConditionalStatement::ConditionalStatement(Loc loc, Condition *condition, Statement *ifbody, Statement *elsebody)
: Statement(loc)
{
this->condition = condition;
this->ifbody = ifbody;
this->elsebody = elsebody;
}
Statement *ConditionalStatement::syntaxCopy()
{
Statement *e = NULL;
if (elsebody)
e = elsebody->syntaxCopy();
ConditionalStatement *s = new ConditionalStatement(loc,
condition->syntaxCopy(), ifbody->syntaxCopy(), e);
return s;
}
Statement *ConditionalStatement::semantic(Scope *sc)
{
//printf("ConditionalStatement::semantic()\n");
// If we can short-circuit evaluate the if statement, don't do the
// semantic analysis of the skipped code.
// This feature allows a limited form of conditional compilation.
if (condition->include(sc, NULL))
{
DebugCondition *dc = condition->isDebugCondition();
if (dc)
{
sc = sc->push();
sc->flags |= SCOPEdebug;
ifbody = ifbody->semantic(sc);
sc->pop();
}
else
ifbody = ifbody->semantic(sc);
return ifbody;
}
else
{
if (elsebody)
elsebody = elsebody->semantic(sc);
return elsebody;
}
}
Statements *ConditionalStatement::flatten(Scope *sc)
{
Statement *s;
//printf("ConditionalStatement::flatten()\n");
if (condition->include(sc, NULL))
{
DebugCondition *dc = condition->isDebugCondition();
if (dc)
s = new DebugStatement(loc, ifbody);
else
s = ifbody;
}
else
s = elsebody;
Statements *a = new Statements();
a->push(s);
return a;
}
/******************************** PragmaStatement ***************************/
PragmaStatement::PragmaStatement(Loc loc, Identifier *ident, Expressions *args, Statement *body)
: Statement(loc)
{
this->ident = ident;
this->args = args;
this->body = body;
}
Statement *PragmaStatement::syntaxCopy()
{
Statement *b = NULL;
if (body)
b = body->syntaxCopy();
PragmaStatement *s = new PragmaStatement(loc,
ident, Expression::arraySyntaxCopy(args), b);
return s;
}
Statement *PragmaStatement::semantic(Scope *sc)
{ // Should be merged with PragmaDeclaration
//printf("PragmaStatement::semantic() %s\n", toChars());
//printf("body = %p\n", body);
if (ident == Id::msg)
{
if (args)
{
for (size_t i = 0; i < args->dim; i++)
{
Expression *e = (*args)[i];
sc = sc->startCTFE();
e = e->semantic(sc);
e = resolveProperties(sc, e);
sc = sc->endCTFE();
// pragma(msg) is allowed to contain types as well as expressions
e = ctfeInterpretForPragmaMsg(e);
if (e->op == TOKerror)
{ errorSupplemental(loc, "while evaluating pragma(msg, %s)", (*args)[i]->toChars());
goto Lerror;
}
StringExp *se = e->toStringExp();
if (se)
{
se = se->toUTF8(sc);
fprintf(stderr, "%.*s", (int)se->len, (char *)se->string);
}
else
fprintf(stderr, "%s", e->toChars());
}
fprintf(stderr, "\n");
}
}
else if (ident == Id::lib)
{
#if 1
/* Should this be allowed?
*/
error("pragma(lib) not allowed as statement");
#else
if (!args || args->dim != 1)
error("string expected for library name");
else
{
Expression *e = (*args)[0];
sc = sc->startCTFE();
e = e->semantic(sc);
e = resolveProperties(sc, e);
sc = sc->endCTFE();
e = e->ctfeInterpret();
(*args)[0] = e;
StringExp *se = e->toStringExp();
if (!se)
error("string expected for library name, not '%s'", e->toChars());
else if (global.params.verbose)
{
char *name = (char *)mem.malloc(se->len + 1);
memcpy(name, se->string, se->len);
name[se->len] = 0;
fprintf(global.stdmsg, "library %s\n", name);
mem.free(name);
}
}
#endif
}
#if IN_LLVM
// FIXME Move to pragma.cpp
else if (ident == Id::LDC_allow_inline)
{
sc->func->allowInlining = true;
}
else if (ident == Id::LDC_never_inline)
{
sc->func->neverInline = true;
}
#endif
else if (ident == Id::startaddress)
{
if (!args || args->dim != 1)
error("function name expected for start address");
else
{
Expression *e = (*args)[0];
sc = sc->startCTFE();
e = e->semantic(sc);
e = resolveProperties(sc, e);
sc = sc->endCTFE();
e = e->ctfeInterpret();
(*args)[0] = e;
Dsymbol *sa = getDsymbol(e);
if (!sa || !sa->isFuncDeclaration())
error("function name expected for start address, not '%s'", e->toChars());
if (body)
{
body = body->semantic(sc);
}
return this;
}
}
else
error("unrecognized pragma(%s)", ident->toChars());
Lerror:
if (body)
{
body = body->semantic(sc);
}
return body;
}
/******************************** StaticAssertStatement ***************************/
StaticAssertStatement::StaticAssertStatement(StaticAssert *sa)
: Statement(sa->loc)
{
this->sa = sa;
}
Statement *StaticAssertStatement::syntaxCopy()
{
StaticAssertStatement *s = new StaticAssertStatement((StaticAssert *)sa->syntaxCopy(NULL));
return s;
}
Statement *StaticAssertStatement::semantic(Scope *sc)
{
sa->semantic2(sc);
return NULL;
}
/******************************** SwitchStatement ***************************/
SwitchStatement::SwitchStatement(Loc loc, Expression *c, Statement *b, bool isFinal)
: Statement(loc)
{
this->condition = c;
this->body = b;
this->isFinal = isFinal;
sdefault = NULL;
tf = NULL;
#if IN_LLVM
enclosingScopeExit = NULL;
#endif
cases = NULL;
hasNoDefault = 0;
hasVars = 0;
}
Statement *SwitchStatement::syntaxCopy()
{
//printf("SwitchStatement::syntaxCopy(%p)\n", this);
SwitchStatement *s = new SwitchStatement(loc,
condition->syntaxCopy(), body->syntaxCopy(), isFinal);
return s;
}
Statement *SwitchStatement::semantic(Scope *sc)
{
//printf("SwitchStatement::semantic(%p)\n", this);
tf = sc->tf;
if (cases)
return this; // already run
condition = condition->semantic(sc);
condition = resolveProperties(sc, condition);
TypeEnum *te = NULL;
// preserve enum type for final switches
if (condition->type->ty == Tenum)
te = (TypeEnum *)condition->type;
if (condition->type->isString())
{
// If it's not an array, cast it to one
if (condition->type->ty != Tarray)
{
condition = condition->implicitCastTo(sc, condition->type->nextOf()->arrayOf());
}
condition->type = condition->type->constOf();
}
else
{
condition = integralPromotions(condition, sc);
if (condition->op != TOKerror && !condition->type->isintegral())
error("'%s' must be of integral or string type, it is a %s", condition->toChars(), condition->type->toChars());
}
condition = condition->optimize(WANTvalue);
condition = checkGC(sc, condition);
sc = sc->push();
sc->sbreak = this;
sc->sw = this;
cases = new CaseStatements();
sc->noctor++; // BUG: should use Scope::mergeCallSuper() for each case instead
body = body->semantic(sc);
sc->noctor--;
// Resolve any goto case's with exp
for (size_t i = 0; i < gotoCases.dim; i++)
{
GotoCaseStatement *gcs = gotoCases[i];
if (!gcs->exp)
{
gcs->error("no case statement following goto case;");
break;
}
for (Scope *scx = sc; scx; scx = scx->enclosing)
{
if (!scx->sw)
continue;
for (size_t j = 0; j < scx->sw->cases->dim; j++)
{
CaseStatement *cs = (*scx->sw->cases)[j];
if (cs->exp->equals(gcs->exp))
{
gcs->cs = cs;
goto Lfoundcase;
}
}
}
gcs->error("case %s not found", gcs->exp->toChars());
Lfoundcase:
;
}
bool needswitcherror = false;
if (isFinal)
{ Type *t = condition->type;
while (t && t->ty == Ttypedef)
{ // Don't use toBasetype() because that will skip past enums
t = ((TypeTypedef *)t)->sym->basetype;
}
Dsymbol *ds;
EnumDeclaration *ed = NULL;
if (t && ((ds = t->toDsymbol(sc)) != NULL))
ed = ds->isEnumDeclaration(); // typedef'ed enum
if (!ed && te && ((ds = te->toDsymbol(sc)) != NULL))
ed = ds->isEnumDeclaration();
if (ed)
{
size_t dim = ed->members->dim;
for (size_t i = 0; i < dim; i++)
{
EnumMember *em = (*ed->members)[i]->isEnumMember();
if (em)
{
for (size_t j = 0; j < cases->dim; j++)
{
CaseStatement *cs = (*cases)[j];
if (cs->exp->equals(em->value) ||
(!cs->exp->type->isString() && !em->value->type->isString() &&
cs->exp->toInteger() == em->value->toInteger()))
goto L1;
}
error("enum member %s not represented in final switch", em->toChars());
}
L1:
;
}
}
else
needswitcherror = true;
}
if (!sc->sw->sdefault && (!isFinal || needswitcherror || global.params.useAssert))
{ hasNoDefault = 1;
if (!isFinal && !body->isErrorStatement())
deprecation("switch statement without a default is deprecated; use 'final switch' or add 'default: assert(0);' or add 'default: break;'");
// Generate runtime error if the default is hit
Statements *a = new Statements();
CompoundStatement *cs;
Statement *s;
if (global.params.useSwitchError)
s = new SwitchErrorStatement(loc);
else
{ Expression *e = new HaltExp(loc);
s = new ExpStatement(loc, e);
}
a->reserve(2);
sc->sw->sdefault = new DefaultStatement(loc, s);
a->push(body);
if (body->blockExit(sc->func, false) & BEfallthru)
a->push(new BreakStatement(Loc(), NULL));
a->push(sc->sw->sdefault);
cs = new CompoundStatement(loc, a);
body = cs;
}
sc->pop();
return this;
}
bool SwitchStatement::hasBreak()
{
return true;
}
/******************************** CaseStatement ***************************/
CaseStatement::CaseStatement(Loc loc, Expression *exp, Statement *s)
: Statement(loc)
{
this->exp = exp;
this->statement = s;
index = 0;
cblock = NULL;
#if IN_LLVM
bodyBB = NULL;
llvmIdx = NULL;
enclosingScopeExit = NULL;
#endif
}
Statement *CaseStatement::syntaxCopy()
{
CaseStatement *s = new CaseStatement(loc, exp->syntaxCopy(), statement->syntaxCopy());
return s;
}
Statement *CaseStatement::semantic(Scope *sc)
{
SwitchStatement *sw = sc->sw;
//printf("CaseStatement::semantic() %s\n", toChars());
sc = sc->startCTFE();
exp = exp->semantic(sc);
exp = resolveProperties(sc, exp);
sc = sc->endCTFE();
if (sw)
{
exp = exp->implicitCastTo(sc, sw->condition->type);
exp = exp->optimize(WANTvalue);
/* This is where variables are allowed as case expressions.
*/
if (exp->op == TOKvar)
{ VarExp *ve = (VarExp *)exp;
VarDeclaration *v = ve->var->isVarDeclaration();
Type *t = exp->type->toBasetype();
if (v && (t->isintegral() || t->ty == Tclass))
{ /* Flag that we need to do special code generation
* for this, i.e. generate a sequence of if-then-else
*/
sw->hasVars = 1;
if (sw->isFinal)
error("case variables not allowed in final switch statements");
goto L1;
}
}
else
exp = exp->ctfeInterpret();
if (StringExp *se = exp->toStringExp())
exp = se;
else if (exp->op != TOKint64 && exp->op != TOKerror)
{
error("case must be a string or an integral constant, not %s", exp->toChars());
exp = new ErrorExp();
}
L1:
for (size_t i = 0; i < sw->cases->dim; i++)
{
CaseStatement *cs = (*sw->cases)[i];
//printf("comparing '%s' with '%s'\n", exp->toChars(), cs->exp->toChars());
if (cs->exp->equals(exp))
{ error("duplicate case %s in switch statement", exp->toChars());
break;
}
}
sw->cases->push(this);
// Resolve any goto case's with no exp to this case statement
for (size_t i = 0; i < sw->gotoCases.dim; i++)
{
GotoCaseStatement *gcs = sw->gotoCases[i];
if (!gcs->exp)
{
gcs->cs = this;
sw->gotoCases.remove(i); // remove from array
}
}
if (sc->sw->tf != sc->tf)
error("switch and case are in different finally blocks");
}
else
error("case not in switch statement");
statement = statement->semantic(sc);
return this;
}
int CaseStatement::compare(RootObject *obj)
{
// Sort cases so we can do an efficient lookup
CaseStatement *cs2 = (CaseStatement *)(obj);
return exp->compare(cs2->exp);
}
/******************************** CaseRangeStatement ***************************/
CaseRangeStatement::CaseRangeStatement(Loc loc, Expression *first,
Expression *last, Statement *s)
: Statement(loc)
{
this->first = first;
this->last = last;
this->statement = s;
}
Statement *CaseRangeStatement::syntaxCopy()
{
CaseRangeStatement *s = new CaseRangeStatement(loc,
first->syntaxCopy(), last->syntaxCopy(), statement->syntaxCopy());
return s;
}
Statement *CaseRangeStatement::semantic(Scope *sc)
{ SwitchStatement *sw = sc->sw;
if (sw == NULL)
{
error("case range not in switch statement");
return NULL;
}
//printf("CaseRangeStatement::semantic() %s\n", toChars());
if (sw->isFinal)
error("case ranges not allowed in final switch");
sc = sc->startCTFE();
first = first->semantic(sc);
first = resolveProperties(sc, first);
sc = sc->endCTFE();
first = first->implicitCastTo(sc, sw->condition->type);
first = first->ctfeInterpret();
sc = sc->startCTFE();
last = last->semantic(sc);
last = resolveProperties(sc, last);
sc = sc->endCTFE();
last = last->implicitCastTo(sc, sw->condition->type);
last = last->ctfeInterpret();
if (first->op == TOKerror || last->op == TOKerror)
return statement ? statement->semantic(sc) : NULL;
uinteger_t fval = first->toInteger();
uinteger_t lval = last->toInteger();
if ( (first->type->isunsigned() && fval > lval) ||
(!first->type->isunsigned() && (sinteger_t)fval > (sinteger_t)lval))
{
error("first case %s is greater than last case %s",
first->toChars(), last->toChars());
lval = fval;
}
if (lval - fval > 256)
{ error("had %llu cases which is more than 256 cases in case range", lval - fval);
lval = fval + 256;
}
/* This works by replacing the CaseRange with an array of Case's.
*
* case a: .. case b: s;
* =>
* case a:
* [...]
* case b:
* s;
*/
Statements *statements = new Statements();
for (uinteger_t i = fval; i != lval + 1; i++)
{
Statement *s = statement;
if (i != lval) // if not last case
s = new ExpStatement(loc, (Expression *)NULL);
Expression *e = new IntegerExp(loc, i, first->type);
Statement *cs = new CaseStatement(loc, e, s);
statements->push(cs);
}
Statement *s = new CompoundStatement(loc, statements);
s = s->semantic(sc);
return s;
}
/******************************** DefaultStatement ***************************/
DefaultStatement::DefaultStatement(Loc loc, Statement *s)
: Statement(loc)
{
this->statement = s;
#ifdef IN_GCC
cblock = NULL;
#elif IN_LLVM
bodyBB = NULL;
enclosingScopeExit = NULL;
#endif
}
Statement *DefaultStatement::syntaxCopy()
{
DefaultStatement *s = new DefaultStatement(loc, statement->syntaxCopy());
return s;
}
Statement *DefaultStatement::semantic(Scope *sc)
{
//printf("DefaultStatement::semantic()\n");
if (sc->sw)
{
if (sc->sw->sdefault)
{
error("switch statement already has a default");
}
sc->sw->sdefault = this;
if (sc->sw->tf != sc->tf)
error("switch and default are in different finally blocks");
if (sc->sw->isFinal)
error("default statement not allowed in final switch statement");
}
else
error("default not in switch statement");
statement = statement->semantic(sc);
return this;
}
/******************************** GotoDefaultStatement ***************************/
GotoDefaultStatement::GotoDefaultStatement(Loc loc)
: Statement(loc)
{
sw = NULL;
}
Statement *GotoDefaultStatement::syntaxCopy()
{
GotoDefaultStatement *s = new GotoDefaultStatement(loc);
return s;
}
Statement *GotoDefaultStatement::semantic(Scope *sc)
{
sw = sc->sw;
if (!sw)
error("goto default not in switch statement");
return this;
}
/******************************** GotoCaseStatement ***************************/
GotoCaseStatement::GotoCaseStatement(Loc loc, Expression *exp)
: Statement(loc)
{
cs = NULL;
this->exp = exp;
#if IN_LLVM
sw = NULL;
#endif
}
Statement *GotoCaseStatement::syntaxCopy()
{
Expression *e = exp ? exp->syntaxCopy() : NULL;
GotoCaseStatement *s = new GotoCaseStatement(loc, e);
return s;
}
Statement *GotoCaseStatement::semantic(Scope *sc)
{
if (exp)
exp = exp->semantic(sc);
if (!sc->sw)
error("goto case not in switch statement");
else
{
#if IN_LLVM
sw = sc->sw;
#endif
sc->sw->gotoCases.push(this);
if (exp)
{
exp = exp->implicitCastTo(sc, sc->sw->condition->type);
exp = exp->optimize(WANTvalue);
}
}
return this;
}
/******************************** SwitchErrorStatement ***************************/
SwitchErrorStatement::SwitchErrorStatement(Loc loc)
: Statement(loc)
{
}
/******************************** ReturnStatement ***************************/
ReturnStatement::ReturnStatement(Loc loc, Expression *exp)
: Statement(loc)
{
this->exp = exp;
this->implicit0 = 0;
}
Statement *ReturnStatement::syntaxCopy()
{
Expression *e = NULL;
if (exp)
e = exp->syntaxCopy();
ReturnStatement *s = new ReturnStatement(loc, e);
return s;
}
Statement *ReturnStatement::semantic(Scope *sc)
{
//printf("ReturnStatement::semantic() %s\n", toChars());
FuncDeclaration *fd = sc->parent->isFuncDeclaration();
Scope *scx = sc;
Expression *eorg = NULL;
if (fd->fes)
fd = fd->fes->func; // fd is now function enclosing foreach
TypeFunction *tf = (TypeFunction *)fd->type;
assert(tf->ty == Tfunction);
Type *tret = tf->next;
if (fd->tintro)
/* We'll be implicitly casting the return expression to tintro
*/
tret = fd->tintro->nextOf();
Type *tbret = NULL;
if (tret)
tbret = tret->toBasetype();
// main() returns 0, even if it returns void
if (!exp && (!tbret || tbret->ty == Tvoid) && fd->isMain())
{
implicit0 = 1;
exp = new IntegerExp(0);
}
if (sc->flags & SCOPEcontract)
error("return statements cannot be in contracts");
if (sc->os && sc->os->tok != TOKon_scope_failure)
error("return statements cannot be in %s bodies", Token::toChars(sc->os->tok));
if (sc->tf)
error("return statements cannot be in finally bodies");
if (fd->isCtorDeclaration())
{
// Constructors implicitly do:
// return this;
if (exp && exp->op != TOKthis)
error("cannot return expression from constructor");
exp = new ThisExp(Loc());
exp->type = tret;
}
if (!exp)
fd->nrvo_can = 0;
if (exp)
{
fd->hasReturnExp |= 1;
FuncLiteralDeclaration *fld = fd->isFuncLiteralDeclaration();
if (tret)
exp = inferType(exp, tbret);
else if (fld && fld->treq)
exp = inferType(exp, fld->treq->nextOf()->nextOf());
exp = exp->semantic(sc);
exp = resolveProperties(sc, exp);
if (exp->type && exp->type->ty != Tvoid ||
exp->op == TOKfunction || exp->op == TOKtype || exp->op == TOKtemplate)
{
if (!exp->rvalue()) // don't make error for void expression
exp = new ErrorExp();
}
if (isNonAssignmentArrayOp(exp))
{
exp->error("array operation %s without assignment not implemented", exp->toChars());
exp = new ErrorExp();
}
if (exp->op == TOKcall)
exp = valueNoDtor(exp);
// deduce 'auto ref'
if (tf->isref && (fd->storage_class & STCauto))
{
/* Determine "refness" of function return:
* if it's an lvalue, return by ref, else return by value
*/
if (exp->isLvalue())
{
/* Return by ref
* (but first ensure it doesn't fail the "check for
* escaping reference" test)
*/
unsigned errors = global.startGagging();
exp->checkEscapeRef();
if (global.endGagging(errors))
tf->isref = false; // return by value
}
else
tf->isref = false; // return by value
fd->storage_class &= ~STCauto;
}
if (!tf->isref)
exp = exp->optimize(WANTvalue);
// handle NRVO
if (fd->nrvo_can && exp->op == TOKvar)
{
VarExp *ve = (VarExp *)exp;
VarDeclaration *v = ve->var->isVarDeclaration();
if (tf->isref)
{
// Function returns a reference
fd->nrvo_can = 0;
}
else if (!v || v->isOut() || v->isRef())
fd->nrvo_can = 0;
else if (fd->nrvo_var == NULL)
{
if (!v->isDataseg() && !v->isParameter() && v->toParent2() == fd)
{
//printf("Setting nrvo to %s\n", v->toChars());
fd->nrvo_var = v;
}
else
fd->nrvo_can = 0;
}
else if (fd->nrvo_var != v)
fd->nrvo_can = 0;
}
else
fd->nrvo_can = 0;
// infer return type
if (fd->inferRetType)
{
Type *tfret = tf->nextOf();
if (tfret)
{
if (tfret != Type::terror)
{
if (!exp->type->equals(tfret))
{
int m1 = exp->type->implicitConvTo(tfret);
int m2 = tfret->implicitConvTo(exp->type);
//printf("exp->type = %s m2<-->m1 tret %s\n", exp->type->toChars(), tfret->toChars());
//printf("m1 = %d, m2 = %d\n", m1, m2);
if (m1 && m2)
#if IN_LLVM
exp = exp->implicitCastTo(sc, tret);
#else
;
#endif
else if (!m1 && m2)
tf->next = exp->type;
else if (m1 && !m2)
;
else if (exp->op != TOKerror)
error("mismatched function return type inference of %s and %s",
exp->type->toChars(), tfret->toChars());
}
}
/* The "refness" is determined by the first return statement,
* not all of them. This means:
* return 3; return x; // ok, x can be a value
* return x; return 3; // error, 3 is not an lvalue
*/
}
else
tf->next = exp->type;
if (!fd->tintro)
{
tret = tf->next;
tbret = tret->toBasetype();
}
}
if (tbret->ty != Tvoid)
{
if (!exp->type->implicitConvTo(tret) &&
fd->parametersIntersect(exp->type))
{
if (exp->type->immutableOf()->implicitConvTo(tret))
exp = exp->castTo(sc, exp->type->immutableOf());
else if (exp->type->wildOf()->implicitConvTo(tret))
exp = exp->castTo(sc, exp->type->wildOf());
}
if (fd->tintro)
exp = exp->implicitCastTo(sc, tf->next);
// eorg isn't casted to tret (== fd->tintro->nextOf())
if (fd->returnLabel)
eorg = exp->copy();
exp = exp->implicitCastTo(sc, tret);
if (!tf->isref)
exp = exp->optimize(WANTvalue);
}
}
else if (fd->inferRetType)
{
if (tf->next)
{
if (tf->next->ty != Tvoid)
error("mismatched function return type inference of void and %s",
tf->next->toChars());
}
tf->next = Type::tvoid;
tret = Type::tvoid;
tbret = tret;
}
else if (tbret->ty != Tvoid) // if non-void return
error("return expression expected");
if (sc->fes)
{
Statement *s;
if (exp && !implicit0)
{
exp = exp->implicitCastTo(sc, tret);
}
if (!exp || exp->op == TOKint64 || exp->op == TOKfloat64 ||
exp->op == TOKimaginary80 || exp->op == TOKcomplex80 ||
exp->op == TOKthis || exp->op == TOKsuper || exp->op == TOKnull ||
exp->op == TOKstring)
{
sc->fes->cases->push(this);
// Construct: return cases->dim+1;
s = new ReturnStatement(Loc(), new IntegerExp(sc->fes->cases->dim + 1));
}
else if (tf->next->toBasetype() == Type::tvoid)
{
s = new ReturnStatement(Loc(), NULL);
sc->fes->cases->push(s);
// Construct: { exp; return cases->dim + 1; }
Statement *s1 = new ExpStatement(loc, exp);
Statement *s2 = new ReturnStatement(Loc(), new IntegerExp(sc->fes->cases->dim + 1));
s = new CompoundStatement(loc, s1, s2);
}
else
{
// Construct: return vresult;
if (!fd->vresult)
{
// Declare vresult
Scope *sco = fd->scout ? fd->scout : scx;
if (!fd->outId)
fd->outId = Id::result;
VarDeclaration *v = new VarDeclaration(loc, tret, fd->outId, NULL);
if (fd->outId == Id::result)
v->storage_class |= STCtemp;
v->noscope = 1;
v->storage_class |= STCresult;
if (tf->isref)
v->storage_class |= STCref | STCforeach;
v->semantic(sco);
if (!sco->insert(v))
assert(0);
v->parent = fd;
fd->vresult = v;
}
s = new ReturnStatement(Loc(), new VarExp(Loc(), fd->vresult));
sc->fes->cases->push(s);
// Construct: { vresult = exp; return cases->dim + 1; }
if (tf->isref)
exp = new ConstructExp(loc, new VarExp(Loc(), fd->vresult), exp);
else
exp = new BlitExp(loc, new VarExp(Loc(), fd->vresult), exp);
exp = exp->semantic(sc);
Statement *s1 = new ExpStatement(loc, exp);
Statement *s2 = new ReturnStatement(Loc(), new IntegerExp(sc->fes->cases->dim + 1));
s = new CompoundStatement(loc, s1, s2);
}
return s;
}
if (exp)
{
exp = checkGC(sc, exp);
if (tf->isref && !fd->isCtorDeclaration())
{
// Function returns a reference
exp = exp->toLvalue(sc, exp);
exp->checkEscapeRef();
}
else
{
//exp->print();
exp->checkEscape();
}
if (fd->returnLabel && tbret->ty != Tvoid)
{
fd->buildResultVar();
VarExp *v = new VarExp(Loc(), fd->vresult);
assert(eorg);
if (tf->isref)
exp = new ConstructExp(loc, v, eorg);
else
exp = new BlitExp(loc, v, eorg);
exp = exp->semantic(sc);
}
}
// If any branches have called a ctor, but this branch hasn't, it's an error
if (sc->callSuper & CSXany_ctor &&
!(sc->callSuper & (CSXthis_ctor | CSXsuper_ctor)))
error("return without calling constructor");
sc->callSuper |= CSXreturn;
if (sc->fieldinit)
{
AggregateDeclaration *ad = fd->isAggregateMember2();
assert(ad);
size_t dim = sc->fieldinit_dim;
for (size_t i = 0; i < dim; i++)
{
VarDeclaration *v = ad->fields[i];
bool mustInit = (v->storage_class & STCnodefaultctor ||
v->type->needsNested());
if (mustInit && !(sc->fieldinit[i] & CSXthis_ctor))
error("an earlier return statement skips field %s initialization", v->toChars());
sc->fieldinit[i] |= CSXreturn;
}
}
// See if all returns are instead to be replaced with a goto returnLabel;
if (fd->returnLabel)
{
GotoStatement *gs = new GotoStatement(loc, Id::returnLabel);
gs->label = fd->returnLabel;
if (exp)
{
/* Replace: return exp;
* with: exp; goto returnLabel;
*/
Statement *s = new ExpStatement(Loc(), exp);
return new CompoundStatement(loc, s, gs);
}
return gs;
}
if (exp && tbret->ty == Tvoid && !implicit0)
{
if (exp->type->ty != Tvoid)
{
error("cannot return non-void from void function");
}
/* Replace:
* return exp;
* with:
* cast(void)exp; return;
*/
Expression *ce = new CastExp(loc, exp, Type::tvoid);
Statement *s = new ExpStatement(loc, ce);
s = s->semantic(sc);
exp = NULL;
return new CompoundStatement(loc, s, this);
}
return this;
}
/******************************** BreakStatement ***************************/
BreakStatement::BreakStatement(Loc loc, Identifier *ident)
: Statement(loc)
{
this->ident = ident;
}
Statement *BreakStatement::syntaxCopy()
{
BreakStatement *s = new BreakStatement(loc, ident);
return s;
}
Statement *BreakStatement::semantic(Scope *sc)
{
//printf("BreakStatement::semantic()\n");
// If:
// break Identifier;
if (ident)
{
ident = fixupLabelName(sc, ident);
FuncDeclaration *thisfunc = sc->func;
for (Scope *scx = sc; scx; scx = scx->enclosing)
{
if (scx->func != thisfunc) // if in enclosing function
{
if (sc->fes) // if this is the body of a foreach
{
/* Post this statement to the fes, and replace
* it with a return value that caller will put into
* a switch. Caller will figure out where the break
* label actually is.
* Case numbers start with 2, not 0, as 0 is continue
* and 1 is break.
*/
sc->fes->cases->push(this);
Statement *s = new ReturnStatement(Loc(), new IntegerExp(sc->fes->cases->dim + 1));
return s;
}
break; // can't break to it
}
LabelStatement *ls = scx->slabel;
if (ls && ls->ident == ident)
{
Statement *s = ls->statement;
if (!s || !s->hasBreak())
error("label '%s' has no break", ident->toChars());
else if (ls->tf != sc->tf)
error("cannot break out of finally block");
else
#if IN_LLVM
{
this->target = ls;
#endif
return this;
#if IN_LLVM
}
#endif
return new ErrorStatement();
}
}
error("enclosing label '%s' for break not found", ident->toChars());
return new ErrorStatement();
}
else if (!sc->sbreak)
{
if (sc->os && sc->os->tok != TOKon_scope_failure)
{
error("break is not inside %s bodies", Token::toChars(sc->os->tok));
}
else if (sc->fes)
{
// Replace break; with return 1;
Statement *s = new ReturnStatement(Loc(), new IntegerExp(1));
return s;
}
else
error("break is not inside a loop or switch");
return new ErrorStatement();
}
return this;
}
/******************************** ContinueStatement ***************************/
ContinueStatement::ContinueStatement(Loc loc, Identifier *ident)
: Statement(loc)
{
this->ident = ident;
}
Statement *ContinueStatement::syntaxCopy()
{
ContinueStatement *s = new ContinueStatement(loc, ident);
return s;
}
Statement *ContinueStatement::semantic(Scope *sc)
{
//printf("ContinueStatement::semantic() %p\n", this);
if (ident)
{
ident = fixupLabelName(sc, ident);
Scope *scx;
FuncDeclaration *thisfunc = sc->func;
for (scx = sc; scx; scx = scx->enclosing)
{
LabelStatement *ls;
if (scx->func != thisfunc) // if in enclosing function
{
if (sc->fes) // if this is the body of a foreach
{
for (; scx; scx = scx->enclosing)
{
ls = scx->slabel;
if (ls && ls->ident == ident && ls->statement == sc->fes)
{
// Replace continue ident; with return 0;
return new ReturnStatement(Loc(), new IntegerExp(0));
}
}
/* Post this statement to the fes, and replace
* it with a return value that caller will put into
* a switch. Caller will figure out where the break
* label actually is.
* Case numbers start with 2, not 0, as 0 is continue
* and 1 is break.
*/
sc->fes->cases->push(this);
Statement *s = new ReturnStatement(Loc(), new IntegerExp(sc->fes->cases->dim + 1));
return s;
}
break; // can't continue to it
}
ls = scx->slabel;
if (ls && ls->ident == ident)
{
Statement *s = ls->statement;
if (!s || !s->hasContinue())
error("label '%s' has no continue", ident->toChars());
else if (ls->tf != sc->tf)
error("cannot continue out of finally block");
else
#if IN_LLVM
{
this->target = ls;
#endif
return this;
#if IN_LLVM
}
#endif
return new ErrorStatement();
}
}
error("enclosing label '%s' for continue not found", ident->toChars());
return new ErrorStatement();
}
else if (!sc->scontinue)
{
if (sc->os && sc->os->tok != TOKon_scope_failure)
{
error("continue is not inside %s bodies", Token::toChars(sc->os->tok));
}
else if (sc->fes)
{
// Replace continue; with return 0;
Statement *s = new ReturnStatement(Loc(), new IntegerExp(0));
return s;
}
else
error("continue is not inside a loop");
return new ErrorStatement();
}
return this;
}
/******************************** SynchronizedStatement ***************************/
SynchronizedStatement::SynchronizedStatement(Loc loc, Expression *exp, Statement *body)
: Statement(loc)
{
this->exp = exp;
this->body = body;
}
Statement *SynchronizedStatement::syntaxCopy()
{
Expression *e = exp ? exp->syntaxCopy() : NULL;
SynchronizedStatement *s = new SynchronizedStatement(loc, e, body ? body->syntaxCopy() : NULL);
return s;
}
Statement *SynchronizedStatement::semantic(Scope *sc)
{
if (exp)
{
exp = exp->semantic(sc);
exp = resolveProperties(sc, exp);
// exp = exp->optimize(0); //?
exp = checkGC(sc, exp);
if (exp->op == TOKerror)
goto Lbody;
ClassDeclaration *cd = exp->type->isClassHandle();
if (!cd)
{
error("can only synchronize on class objects, not '%s'", exp->type->toChars());
return new ErrorStatement();
}
else if (cd->isInterfaceDeclaration())
{ /* Cast the interface to an object, as the object has the monitor,
* not the interface.
*/
if (!ClassDeclaration::object)
{
error("missing or corrupt object.d");
fatal();
}
Type *t = ClassDeclaration::object->type;
t = t->semantic(Loc(), sc)->toBasetype();
assert(t->ty == Tclass);
exp = new CastExp(loc, exp, t);
exp = exp->semantic(sc);
}
#if 1
/* Rewrite as:
* auto tmp = exp;
* _d_monitorenter(tmp);
* try { body } finally { _d_monitorexit(tmp); }
*/
Identifier *id = Lexer::uniqueId("__sync");
ExpInitializer *ie = new ExpInitializer(loc, exp);
VarDeclaration *tmp = new VarDeclaration(loc, exp->type, id, ie);
tmp->storage_class |= STCtemp;
Statements *cs = new Statements();
cs->push(new ExpStatement(loc, tmp));
Parameters* args = new Parameters;
args->push(new Parameter(0, ClassDeclaration::object->type, NULL, NULL));
FuncDeclaration *fdenter = FuncDeclaration::genCfunc(args, Type::tvoid, Id::monitorenter);
Expression *e = new CallExp(loc, new VarExp(loc, fdenter), new VarExp(loc, tmp));
e->type = Type::tvoid; // do not run semantic on e
cs->push(new ExpStatement(loc, e));
FuncDeclaration *fdexit = FuncDeclaration::genCfunc(args, Type::tvoid, Id::monitorexit);
e = new CallExp(loc, new VarExp(loc, fdexit), new VarExp(loc, tmp));
e->type = Type::tvoid; // do not run semantic on e
Statement *s = new ExpStatement(loc, e);
s = new TryFinallyStatement(loc, body, s);
cs->push(s);
s = new CompoundStatement(loc, cs);
return s->semantic(sc);
#endif
}
else
{
/* Generate our own critical section, then rewrite as:
* __gshared byte[CriticalSection.sizeof] critsec;
* _d_criticalenter(critsec.ptr);
* try { body } finally { _d_criticalexit(critsec.ptr); }
*/
Identifier *id = Lexer::uniqueId("__critsec");
Type *t = new TypeSArray(Type::tint8, new IntegerExp(Target::ptrsize + Target::critsecsize()));
VarDeclaration *tmp = new VarDeclaration(loc, t, id, NULL);
tmp->storage_class |= STCtemp | STCgshared | STCstatic;
Statements *cs = new Statements();
cs->push(new ExpStatement(loc, tmp));
/* This is just a dummy variable for "goto skips declaration" error.
* Backend optimizer could remove this unused variable.
*/
VarDeclaration *v = new VarDeclaration(loc, Type::tvoidptr, Lexer::uniqueId("__sync"), NULL);
v->semantic(sc);
cs->push(new ExpStatement(loc, v));
Parameters* args = new Parameters;
args->push(new Parameter(0, t->pointerTo(), NULL, NULL));
FuncDeclaration *fdenter = FuncDeclaration::genCfunc(args, Type::tvoid, Id::criticalenter);
Expression *e = new DotIdExp(loc, new VarExp(loc, tmp), Id::ptr);
e = e->semantic(sc);
e = new CallExp(loc, new VarExp(loc, fdenter), e);
e->type = Type::tvoid; // do not run semantic on e
cs->push(new ExpStatement(loc, e));
FuncDeclaration *fdexit = FuncDeclaration::genCfunc(args, Type::tvoid, Id::criticalexit);
e = new DotIdExp(loc, new VarExp(loc, tmp), Id::ptr);
e = e->semantic(sc);
e = new CallExp(loc, new VarExp(loc, fdexit), e);
e->type = Type::tvoid; // do not run semantic on e
Statement *s = new ExpStatement(loc, e);
s = new TryFinallyStatement(loc, body, s);
cs->push(s);
s = new CompoundStatement(loc, cs);
return s->semantic(sc);
}
Lbody:
if (body)
body = body->semantic(sc);
if (body && body->isErrorStatement())
return body;
return this;
}
bool SynchronizedStatement::hasBreak()
{
return false; //true;
}
bool SynchronizedStatement::hasContinue()
{
return false; //true;
}
/******************************** WithStatement ***************************/
WithStatement::WithStatement(Loc loc, Expression *exp, Statement *body)
: Statement(loc)
{
this->exp = exp;
this->body = body;
wthis = NULL;
}
Statement *WithStatement::syntaxCopy()
{
WithStatement *s = new WithStatement(loc, exp->syntaxCopy(), body ? body->syntaxCopy() : NULL);
return s;
}
Statement *WithStatement::semantic(Scope *sc)
{ ScopeDsymbol *sym;
Initializer *init;
//printf("WithStatement::semantic()\n");
exp = exp->semantic(sc);
exp = resolveProperties(sc, exp);
// exp = exp_>optimize(0); //?
exp = checkGC(sc, exp);
if (exp->op == TOKerror)
return new ErrorStatement();
if (exp->op == TOKimport)
{
sym = new WithScopeSymbol(this);
sym->parent = sc->scopesym;
}
else if (exp->op == TOKtype)
{
Dsymbol *s = ((TypeExp *)exp)->type->toDsymbol(sc);
if (!s || !s->isScopeDsymbol())
{
error("with type %s has no members", exp->toChars());
return new ErrorStatement();
}
sym = new WithScopeSymbol(this);
sym->parent = sc->scopesym;
}
else
{
Type *t = exp->type->toBasetype();
Expression *olde = exp;
if (t->ty == Tpointer)
{
exp = new PtrExp(loc, exp);
exp = exp->semantic(sc);
t = exp->type->toBasetype();
}
assert(t);
t = t->toBasetype();
if (t->isClassHandle())
{
init = new ExpInitializer(loc, exp);
wthis = new VarDeclaration(loc, exp->type, Id::withSym, init);
wthis->semantic(sc);
sym = new WithScopeSymbol(this);
sym->parent = sc->scopesym;
}
else if (t->ty == Tstruct)
{
if (!exp->isLvalue())
{
init = new ExpInitializer(loc, exp);
wthis = new VarDeclaration(loc, exp->type, Lexer::uniqueId("__withtmp"), init);
wthis->storage_class |= STCtemp;
exp = new CommaExp(loc, new DeclarationExp(loc, wthis), new VarExp(loc, wthis));
exp = exp->semantic(sc);
}
Expression *e = exp->addressOf();
init = new ExpInitializer(loc, e);
wthis = new VarDeclaration(loc, e->type, Id::withSym, init);
wthis->semantic(sc);
sym = new WithScopeSymbol(this);
// Need to set the scope to make use of resolveAliasThis
sym->setScope(sc);
sym->parent = sc->scopesym;
}
else
{
error("with expressions must be aggregate types or pointers to them, not '%s'", olde->type->toChars());
return new ErrorStatement();
}
}
if (body)
{
sym->scope = sc;
sc = sc->push(sym);
sc->insert(sym);
body = body->semantic(sc);
sc->pop();
if (body && body->isErrorStatement())
return body;
}
return this;
}
/******************************** TryCatchStatement ***************************/
TryCatchStatement::TryCatchStatement(Loc loc, Statement *body, Catches *catches)
: Statement(loc)
{
this->body = body;
this->catches = catches;
}
Statement *TryCatchStatement::syntaxCopy()
{
Catches *a = new Catches();
a->setDim(catches->dim);
for (size_t i = 0; i < a->dim; i++)
{
Catch *c = (*catches)[i];
c = c->syntaxCopy();
(*a)[i] = c;
}
TryCatchStatement *s = new TryCatchStatement(loc, body->syntaxCopy(), a);
return s;
}
Statement *TryCatchStatement::semantic(Scope *sc)
{
body = body->semanticScope(sc, NULL, NULL);
assert(body);
/* Even if body is empty, still do semantic analysis on catches
*/
bool catchErrors = false;
for (size_t i = 0; i < catches->dim; i++)
{ Catch *c = (*catches)[i];
c->semantic(sc);
if (c->type->ty == Terror)
{ catchErrors = true;
continue;
}
// Determine if current catch 'hides' any previous catches
for (size_t j = 0; j < i; j++)
{ Catch *cj = (*catches)[j];
char *si = c->loc.toChars();
char *sj = cj->loc.toChars();
if (c->type->toBasetype()->implicitConvTo(cj->type->toBasetype()))
{
error("catch at %s hides catch at %s", sj, si);
catchErrors = true;
}
}
}
if (catchErrors)
return new ErrorStatement();
if (body->isErrorStatement())
return body;
/* If the try body never throws, we can eliminate any catches
* of recoverable exceptions.
*/
if (!(body->blockExit(sc->func, false) & BEthrow) && ClassDeclaration::exception)
{
for (size_t i = 0; i < catches->dim; i++)
{ Catch *c = (*catches)[i];
/* If catch exception type is derived from Exception
*/
if (c->type->toBasetype()->implicitConvTo(ClassDeclaration::exception->type) &&
(!c->handler || !c->handler->comeFrom()))
{ // Remove c from the array of catches
catches->remove(i);
--i;
}
}
}
if (catches->dim == 0)
return body->hasCode() ? body : NULL;
return this;
}
bool TryCatchStatement::hasBreak()
{
return false;
}
/******************************** Catch ***************************/
Catch::Catch(Loc loc, Type *t, Identifier *id, Statement *handler)
{
//printf("Catch(%s, loc = %s)\n", id->toChars(), loc.toChars());
this->loc = loc;
this->type = t;
this->ident = id;
this->handler = handler;
var = NULL;
internalCatch = false;
}
Catch *Catch::syntaxCopy()
{
Catch *c = new Catch(loc,
(type ? type->syntaxCopy() : NULL),
ident,
(handler ? handler->syntaxCopy() : NULL));
c->internalCatch = internalCatch;
return c;
}
void Catch::semantic(Scope *sc)
{
//printf("Catch::semantic(%s)\n", ident->toChars());
#ifndef IN_GCC
if (sc->os && sc->os->tok != TOKon_scope_failure)
{
// If enclosing is scope(success) or scope(exit), this will be placed in finally block.
error(loc, "cannot put catch statement inside %s", Token::toChars(sc->os->tok));
}
if (sc->tf)
{
/* This is because the _d_local_unwind() gets the stack munged
* up on this. The workaround is to place any try-catches into
* a separate function, and call that.
* To fix, have the compiler automatically convert the finally
* body into a nested function.
*/
error(loc, "cannot put catch statement inside finally block");
}
#endif
ScopeDsymbol *sym = new ScopeDsymbol();
sym->parent = sc->scopesym;
sc = sc->push(sym);
if (!type)
{
// reference .object.Throwable
TypeIdentifier *tid = new TypeIdentifier(Loc(), Id::empty);
tid->addIdent(Id::object);
tid->addIdent(Id::Throwable);
type = tid;
}
type = type->semantic(loc, sc);
ClassDeclaration *cd = type->toBasetype()->isClassHandle();
if (!cd || ((cd != ClassDeclaration::throwable) && !ClassDeclaration::throwable->isBaseOf(cd, NULL)))
{
if (type != Type::terror)
{
error(loc, "can only catch class objects derived from Throwable, not '%s'", type->toChars());
type = Type::terror;
}
}
else if (sc->func &&
!sc->intypeof &&
!internalCatch &&
cd != ClassDeclaration::exception &&
!ClassDeclaration::exception->isBaseOf(cd, NULL) &&
sc->func->setUnsafe())
{
error(loc, "can only catch class objects derived from Exception in @safe code, not '%s'", type->toChars());
type = Type::terror;
}
else if (ident)
{
var = new VarDeclaration(loc, type, ident, NULL);
var->semantic(sc);
sc->insert(var);
}
handler = handler->semantic(sc);
sc->pop();
}
/****************************** TryFinallyStatement ***************************/
TryFinallyStatement::TryFinallyStatement(Loc loc, Statement *body, Statement *finalbody)
: Statement(loc)
{
this->body = body;
this->finalbody = finalbody;
}
TryFinallyStatement *TryFinallyStatement::create(Loc loc, Statement *body, Statement *finalbody)
{
return new TryFinallyStatement(loc, body, finalbody);
}
Statement *TryFinallyStatement::syntaxCopy()
{
TryFinallyStatement *s = new TryFinallyStatement(loc,
body->syntaxCopy(), finalbody->syntaxCopy());
return s;
}
Statement *TryFinallyStatement::semantic(Scope *sc)
{
//printf("TryFinallyStatement::semantic()\n");
body = body->semantic(sc);
sc = sc->push();
sc->tf = this;
sc->sbreak = NULL;
sc->scontinue = NULL; // no break or continue out of finally block
finalbody = finalbody->semanticNoScope(sc);
sc->pop();
if (!body)
return finalbody;
if (!finalbody)
return body;
if (body->blockExit(sc->func, false) == BEfallthru)
{
Statement *s = new CompoundStatement(loc, body, finalbody);
return s;
}
return this;
}
bool TryFinallyStatement::hasBreak()
{
return false; //true;
}
bool TryFinallyStatement::hasContinue()
{
return false; //true;
}
/****************************** OnScopeStatement ***************************/
OnScopeStatement::OnScopeStatement(Loc loc, TOK tok, Statement *statement)
: Statement(loc)
{
this->tok = tok;
this->statement = statement;
}
Statement *OnScopeStatement::syntaxCopy()
{
OnScopeStatement *s = new OnScopeStatement(loc,
tok, statement->syntaxCopy());
return s;
}
Statement *OnScopeStatement::semantic(Scope *sc)
{
#ifndef IN_GCC
if (tok != TOKon_scope_exit)
{
// scope(success) and scope(failure) are rewritten to try-catch(-finally) statement,
// so the generated catch block cannot be placed in finally block.
// See also Catch::semantic.
if (sc->os && sc->os->tok != TOKon_scope_failure)
{
// If enclosing is scope(success) or scope(exit), this will be placed in finally block.
error("cannot put %s statement inside %s", Token::toChars(tok), Token::toChars(sc->os->tok));
return new ErrorStatement();
}
if (sc->tf)
{
error("cannot put %s statement inside finally block", Token::toChars(tok));
return new ErrorStatement();
}
}
#endif
sc = sc->push();
sc->tf = NULL;
sc->os = this;
if (tok != TOKon_scope_failure)
{
// Jump out from scope(failure) block is allowed.
sc->sbreak = NULL;
sc->scontinue = NULL;
}
statement = statement->semanticNoScope(sc);
sc->pop();
if (!statement || statement->isErrorStatement())
return statement;
return this;
}
Statement *OnScopeStatement::scopeCode(Scope *sc, Statement **sentry, Statement **sexception, Statement **sfinally)
{
//printf("OnScopeStatement::scopeCode()\n");
//print();
*sentry = NULL;
*sexception = NULL;
*sfinally = NULL;
Statement *s = new PeelStatement(statement);
switch (tok)
{
case TOKon_scope_exit:
*sfinally = s;
break;
case TOKon_scope_failure:
*sexception = s;
break;
case TOKon_scope_success:
{
/* Create:
* sentry: bool x = false;
* sexception: x = true;
* sfinally: if (!x) statement;
*/
Identifier *id = Lexer::uniqueId("__os");
ExpInitializer *ie = new ExpInitializer(loc, new IntegerExp(Loc(), 0, Type::tbool));
VarDeclaration *v = new VarDeclaration(loc, Type::tbool, id, ie);
v->storage_class |= STCtemp;
*sentry = new ExpStatement(loc, v);
Expression *e = new IntegerExp(Loc(), 1, Type::tbool);
e = new AssignExp(Loc(), new VarExp(Loc(), v), e);
*sexception = new ExpStatement(Loc(), e);
e = new VarExp(Loc(), v);
e = new NotExp(Loc(), e);
*sfinally = new IfStatement(Loc(), NULL, e, s, NULL);
break;
}
default:
assert(0);
}
return NULL;
}
/******************************** ThrowStatement ***************************/
ThrowStatement::ThrowStatement(Loc loc, Expression *exp)
: Statement(loc)
{
this->exp = exp;
this->internalThrow = false;
}
Statement *ThrowStatement::syntaxCopy()
{
ThrowStatement *s = new ThrowStatement(loc, exp->syntaxCopy());
s->internalThrow = internalThrow;
return s;
}
Statement *ThrowStatement::semantic(Scope *sc)
{
//printf("ThrowStatement::semantic()\n");
FuncDeclaration *fd = sc->parent->isFuncDeclaration();
fd->hasReturnExp |= 2;
exp = exp->semantic(sc);
exp = resolveProperties(sc, exp);
exp = checkGC(sc, exp);
if (exp->op == TOKerror)
return new ErrorStatement();
ClassDeclaration *cd = exp->type->toBasetype()->isClassHandle();
if (!cd || ((cd != ClassDeclaration::throwable) && !ClassDeclaration::throwable->isBaseOf(cd, NULL)))
{
error("can only throw class objects derived from Throwable, not type %s", exp->type->toChars());
return new ErrorStatement();
}
return this;
}
/******************************** DebugStatement **************************/
DebugStatement::DebugStatement(Loc loc, Statement *statement)
: Statement(loc)
{
this->statement = statement;
}
Statement *DebugStatement::syntaxCopy()
{
DebugStatement *s = new DebugStatement(loc,
statement ? statement->syntaxCopy() : NULL);
return s;
}
Statement *DebugStatement::semantic(Scope *sc)
{
if (statement)
{
sc = sc->push();
sc->flags |= SCOPEdebug;
statement = statement->semantic(sc);
sc->pop();
}
return statement;
}
Statements *DebugStatement::flatten(Scope *sc)
{
Statements *a = statement ? statement->flatten(sc) : NULL;
if (a)
{
for (size_t i = 0; i < a->dim; i++)
{ Statement *s = (*a)[i];
s = new DebugStatement(loc, s);
(*a)[i] = s;
}
}
return a;
}
/******************************** GotoStatement ***************************/
GotoStatement::GotoStatement(Loc loc, Identifier *ident)
: Statement(loc)
{
this->ident = ident;
this->label = NULL;
this->tf = NULL;
this->os = NULL;
#if IN_LLVM
this->enclosingScopeExit = NULL;
#endif
this->lastVar = NULL;
this->fd = NULL;
}
Statement *GotoStatement::syntaxCopy()
{
GotoStatement *s = new GotoStatement(loc, ident);
return s;
}
Statement *GotoStatement::semantic(Scope *sc)
{
FuncDeclaration *fd = sc->func;
//printf("GotoStatement::semantic()\n");
ident = fixupLabelName(sc, ident);
this->lastVar = sc->lastVar;
this->fd = sc->func;
tf = sc->tf;
os = sc->os;
label = fd->searchLabel(ident);
if (!label->statement && sc->fes)
{
/* Either the goto label is forward referenced or it
* is in the function that the enclosing foreach is in.
* Can't know yet, so wrap the goto in a scope statement
* so we can patch it later, and add it to a 'look at this later'
* list.
*/
ScopeStatement *ss = new ScopeStatement(loc, this);
sc->fes->gotos->push(ss); // 'look at this later' list
return ss;
}
// Add to fwdref list to check later
if (!label->statement)
{
if (!fd->gotos)
fd->gotos = new GotoStatements();
fd->gotos->push(this);
}
else if (checkLabel())
return new ErrorStatement();
return this;
}
bool GotoStatement::checkLabel()
{
if (!label->statement)
{
error("label '%s' is undefined", label->toChars());
return true;
}
if (label->statement->os != os)
{
if (os && os->tok == TOKon_scope_failure && !label->statement->os)
{
// Jump out from scope(failure) block is allowed.
}
else
{
if (label->statement->os)
error("cannot goto in to %s block", Token::toChars(label->statement->os->tok));
else
error("cannot goto out of %s block", Token::toChars(os->tok));
return true;
}
}
#if !IN_LLVM
if (label->statement->tf != tf)
#else
if (label->statement && label->statement->tf != tf)
#endif
{
error("cannot goto in or out of finally block");
return true;
}
VarDeclaration *vd = label->statement->lastVar;
if (!vd || vd->isDataseg() || (vd->storage_class & STCmanifest))
return false;
VarDeclaration *last = lastVar;
while (last && last != vd)
last = last->lastVar;
if (last == vd)
{
// All good, the label's scope has no variables
}
else if (vd->ident == Id::withSym)
{
error("goto skips declaration of with temporary at %s", vd->loc.toChars());
return true;
}
else
{
error("goto skips declaration of variable %s at %s", vd->toPrettyChars(), vd->loc.toChars());
return true;
}
return false;
}
/******************************** LabelStatement ***************************/
LabelStatement::LabelStatement(Loc loc, Identifier *ident, Statement *statement)
: Statement(loc)
{
this->ident = ident;
this->statement = statement;
this->tf = NULL;
this->os = NULL;
#if IN_LLVM
this->enclosingScopeExit = NULL;
#endif
this->gotoTarget = NULL;
this->lastVar = NULL;
this->lblock = NULL;
this->fwdrefs = NULL;
}
Statement *LabelStatement::syntaxCopy()
{
LabelStatement *s = new LabelStatement(loc, ident, statement ? statement->syntaxCopy() : NULL);
return s;
}
Statement *LabelStatement::semantic(Scope *sc)
{
FuncDeclaration *fd = sc->parent->isFuncDeclaration();
this->lastVar = sc->lastVar;
//printf("LabelStatement::semantic()\n");
ident = fixupLabelName(sc, ident);
LabelDsymbol *ls = fd->searchLabel(ident);
if (ls->statement)
{
error("Label '%s' already defined", ls->toChars());
return new ErrorStatement();
}
else
ls->statement = this;
tf = sc->tf;
os = sc->os;
sc = sc->push();
sc->scopesym = sc->enclosing->scopesym;
sc->callSuper |= CSXlabel;
if (sc->fieldinit)
{
size_t dim = sc->fieldinit_dim;
for (size_t i = 0; i < dim; i++)
sc->fieldinit[i] |= CSXlabel;
}
sc->slabel = this;
if (statement)
statement = statement->semantic(sc);
sc->pop();
#if IN_LLVM
// LDC put in labmap
fd->labmap[ident->toChars()] = this;
#endif
return this;
}
Statement *LabelStatement::scopeCode(Scope *sc, Statement **sentry, Statement **sexit, Statement **sfinally)
{
//printf("LabelStatement::scopeCode()\n");
if (statement)
statement = statement->scopeCode(sc, sentry, sexit, sfinally);
else
{
*sentry = NULL;
*sexit = NULL;
*sfinally = NULL;
}
return this;
}
Statements *LabelStatement::flatten(Scope *sc)
{
Statements *a = NULL;
if (statement)
{
a = statement->flatten(sc);
if (a)
{
if (!a->dim)
{
a->push(new ExpStatement(loc, (Expression *)NULL));
}
// reuse 'this' LabelStatement
this->statement = (*a)[0];
(*a)[0] = this;
}
}
return a;
}
/******************************** LabelDsymbol ***************************/
LabelDsymbol::LabelDsymbol(Identifier *ident)
: Dsymbol(ident)
{
statement = NULL;
}
LabelDsymbol *LabelDsymbol::create(Identifier *ident)
{
return new LabelDsymbol(ident);
}
LabelDsymbol *LabelDsymbol::isLabel() // is this a LabelDsymbol()?
{
return this;
}
#if !IN_LLVM
/************************ AsmStatement ***************************************/
AsmStatement::AsmStatement(Loc loc, Token *tokens)
: Statement(loc)
{
this->tokens = tokens;
asmcode = NULL;
asmalign = 0;
refparam = false;
naked = false;
regs = 0;
}
Statement *AsmStatement::syntaxCopy()
{
return new AsmStatement(loc, tokens);
}
#endif
/************************ ImportStatement ***************************************/
ImportStatement::ImportStatement(Loc loc, Dsymbols *imports)
: Statement(loc)
{
this->imports = imports;
}
Statement *ImportStatement::syntaxCopy()
{
Dsymbols *m = new Dsymbols();
m->setDim(imports->dim);
for (size_t i = 0; i < imports->dim; i++)
{
Dsymbol *s = (*imports)[i];
(*m)[i] = s->syntaxCopy(NULL);
}
return new ImportStatement(loc, m);
}
Statement *ImportStatement::semantic(Scope *sc)
{
for (size_t i = 0; i < imports->dim; i++)
{
Import *s = (*imports)[i]->isImport();
assert(!s->aliasdecls.dim);
for (size_t j = 0; j < s->names.dim; j++)
{
Identifier *name = s->names[j];
Identifier *alias = s->aliases[j];
if (!alias)
alias = name;
TypeIdentifier *tname = new TypeIdentifier(s->loc, name);
AliasDeclaration *ad = new AliasDeclaration(s->loc, alias, tname);
ad->import = s;
s->aliasdecls.push(ad);
}
s->semantic(sc);
s->semantic2(sc);
sc->insert(s);
for (size_t j = 0; j < s->aliasdecls.dim; j++)
{
sc->insert(s->aliasdecls[j]);
}
}
return this;
}