ldc/ddmd/statement.d
Johan Engelen e0d9c58443 [PGO] Add PGO to LDC. Supported for LLVM >= 3.7
Add the commandline options -fprofile-instr-generate[=filename] and -profile-instr-use=filename
-fprofile-instr-generate
-- Add instrumentation on branches, switches, and function entry; uses LLVM's InstrProf pass.
-- Link to profile runtime that writes instrumentation counters to a file.
-fprofile-instr-use
-- Read profile data from a file and apply branch weights to branches and switches, and annotate functions with entrycount in LLVM IR.
-- Functions with low or high entrycount are marked with 'cold' or 'inlinehint'.

The only statement type without PGO yet is "try-finally".

A new pragma, `pragma(LDC_profile_instr, [ true | false ])`, is added to selectively disable/enable instrumentation of functions (granularity = whole functions).

The runtime library ldc-profile-rt is a copy of LLVM compiler-rt lib/profile. It has to be exactly in-sync with the LLVM version, and thus we need a copy for each PGO-supported LLVM (>=3.7).
import ldc.profile for a D interface to ldc-profile-rt (for example to reset execution counts after a program startup phase).

The instrumentation data is mainly passed on to LLVM: function-entry counts and branch counts/probabilities. LDC marks functions as hot when "execution count is 30% of the maximum function execution count", and marks functions as cold if their count is 1% of maximum function execution count.

The source of LLVM's llvm-profdata tool is hereby included in LDCs repository (different source for each LLVM version), and the binary is included in the install bin folder.
The executable is named "ldc-profdata" to avoid clashing with llvm-profdata on the same machine. This is needed because profdata executable has to be in-sync with the LLVM version used to build LDC.

Maintenance burden: for trunk LLVM, we have to keep ldc-profile-rt and llvm-profdata in sync. There is no diff with upstream; but because of active development there are the occasional API changes.
2016-06-20 17:28:22 +02:00

6171 lines
191 KiB
D

// Compiler implementation of the D programming language
// Copyright (c) 1999-2015 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
module ddmd.statement;
import core.stdc.stdarg;
import core.stdc.stdio;
import ddmd.aggregate;
import ddmd.aliasthis;
import ddmd.arrayop;
import ddmd.arraytypes;
import ddmd.attrib;
import ddmd.gluelayer;
import ddmd.canthrow;
import ddmd.clone;
import ddmd.cond;
import ddmd.ctfeexpr;
import ddmd.dcast;
import ddmd.dclass;
import ddmd.declaration;
import ddmd.denum;
import ddmd.dimport;
import ddmd.dinterpret;
import ddmd.dscope;
import ddmd.dsymbol;
import ddmd.dtemplate;
import ddmd.errors;
import ddmd.escape;
import ddmd.expression;
import ddmd.func;
import ddmd.globals;
import ddmd.hdrgen;
import ddmd.id;
import ddmd.identifier;
import ddmd.init;
import ddmd.inline;
import ddmd.intrange;
import ddmd.mtype;
import ddmd.mtype;
import ddmd.nogc;
import ddmd.opover;
import ddmd.parse;
import ddmd.root.outbuffer;
import ddmd.root.rootobject;
import ddmd.sapply;
import ddmd.sideeffect;
import ddmd.staticassert;
import ddmd.target;
import ddmd.tokens;
import ddmd.visitor;
version(IN_LLVM)
{
import gen.dpragma;
}
extern (C++) Identifier fixupLabelName(Scope* sc, Identifier ident)
{
uint flags = (sc.flags & SCOPEcontract);
if (flags && flags != SCOPEinvariant && !(ident.string[0] == '_' && ident.string[1] == '_'))
{
/* CTFE requires FuncDeclaration::labtab for the interpretation.
* So fixing the label name inside in/out contracts is necessary
* for the uniqueness in labtab.
*/
const(char)* prefix = flags == SCOPErequire ? "__in_" : "__out_";
OutBuffer buf;
buf.printf("%s%s", prefix, ident.toChars());
ident = Identifier.idPool(buf.peekSlice());
}
return ident;
}
extern (C++) LabelStatement checkLabeledLoop(Scope* sc, Statement statement)
{
if (sc.slabel && sc.slabel.statement == statement)
{
return sc.slabel;
}
return null;
}
/***********************************************************
* Check an assignment is used as a condition.
* Intended to be use before the `semantic` call on `e`.
* Params:
* e = condition expression which is not yet run semantic analysis.
* Returns:
* `e` or ErrorExp.
*/
Expression checkAssignmentAsCondition(Expression e)
{
auto ec = e;
while (ec.op == TOKcomma)
ec = (cast(CommaExp)ec).e2;
if (ec.op == TOKassign)
{
ec.error("assignment cannot be used as a condition, perhaps == was meant?");
return new ErrorExp();
}
return e;
}
enum BE : int
{
BEnone = 0,
BEfallthru = 1,
BEthrow = 2,
BEreturn = 4,
BEgoto = 8,
BEhalt = 0x10,
BEbreak = 0x20,
BEcontinue = 0x40,
BEerrthrow = 0x80,
BEany = (BEfallthru | BEthrow | BEreturn | BEgoto | BEhalt),
}
alias BEnone = BE.BEnone;
alias BEfallthru = BE.BEfallthru;
alias BEthrow = BE.BEthrow;
alias BEreturn = BE.BEreturn;
alias BEgoto = BE.BEgoto;
alias BEhalt = BE.BEhalt;
alias BEbreak = BE.BEbreak;
alias BEcontinue = BE.BEcontinue;
alias BEerrthrow = BE.BEerrthrow;
alias BEany = BE.BEany;
/***********************************************************
*/
extern (C++) class Statement : RootObject
{
public:
Loc loc;
final extern (D) this(Loc loc)
{
this.loc = loc;
// If this is an in{} contract scope statement (skip for determining
// inlineStatus of a function body for header content)
}
Statement syntaxCopy()
{
assert(0);
}
override final void print()
{
fprintf(stderr, "%s\n", toChars());
fflush(stderr);
}
override final const(char)* toChars()
{
HdrGenState hgs;
OutBuffer buf;
.toCBuffer(this, &buf, &hgs);
return buf.extractString();
}
final void error(const(char)* format, ...)
{
va_list ap;
va_start(ap, format);
.verror(loc, format, ap);
va_end(ap);
}
final void warning(const(char)* format, ...)
{
va_list ap;
va_start(ap, format);
.vwarning(loc, format, ap);
va_end(ap);
}
final void deprecation(const(char)* format, ...)
{
va_list ap;
va_start(ap, format);
.vdeprecation(loc, format, ap);
va_end(ap);
}
Statement semantic(Scope* sc)
{
return this;
}
// Same as semanticNoScope(), but do create a new scope
final Statement semanticScope(Scope* sc, Statement sbreak, Statement scontinue)
{
Scope* scd = sc.push();
if (sbreak)
scd.sbreak = sbreak;
if (scontinue)
scd.scontinue = scontinue;
Statement s = semanticNoScope(scd);
scd.pop();
return s;
}
final Statement semanticNoScope(Scope* sc)
{
//printf("Statement::semanticNoScope() %s\n", toChars());
Statement s = this;
if (!s.isCompoundStatement() && !s.isScopeStatement())
{
s = new CompoundStatement(loc, this); // so scopeCode() gets called
}
s = s.semantic(sc);
return s;
}
Statement getRelatedLabeled()
{
return this;
}
bool hasBreak()
{
//printf("Statement::hasBreak()\n");
return false;
}
bool hasContinue()
{
return false;
}
/* ============================================== */
// true if statement uses exception handling
final bool usesEH()
{
extern (C++) final class UsesEH : StoppableVisitor
{
alias visit = super.visit;
public:
override void visit(Statement s)
{
}
override void visit(TryCatchStatement s)
{
stop = true;
}
override void visit(TryFinallyStatement s)
{
stop = true;
}
override void visit(OnScopeStatement s)
{
stop = true;
}
override void visit(SynchronizedStatement s)
{
stop = true;
}
}
scope UsesEH ueh = new UsesEH();
return walkPostorder(this, ueh);
}
/* ============================================== */
/* Only valid after semantic analysis
* If 'mustNotThrow' is true, generate an error if it throws
*/
final int blockExit(FuncDeclaration func, bool mustNotThrow)
{
extern (C++) final class BlockExit : Visitor
{
alias visit = super.visit;
public:
FuncDeclaration func;
bool mustNotThrow;
int result;
extern (D) this(FuncDeclaration func, bool mustNotThrow)
{
this.func = func;
this.mustNotThrow = mustNotThrow;
result = BEnone;
}
override void visit(Statement s)
{
printf("Statement::blockExit(%p)\n", s);
printf("%s\n", s.toChars());
assert(0);
}
override void visit(ErrorStatement s)
{
result = BEany;
}
override void visit(ExpStatement s)
{
result = BEfallthru;
if (s.exp)
{
if (s.exp.op == TOKhalt)
{
result = BEhalt;
return;
}
if (s.exp.op == TOKassert)
{
AssertExp a = cast(AssertExp)s.exp;
if (a.e1.isBool(false)) // if it's an assert(0)
{
result = BEhalt;
return;
}
}
if (canThrow(s.exp, func, mustNotThrow))
result |= BEthrow;
}
}
override void visit(CompileStatement s)
{
assert(global.errors);
result = BEfallthru;
}
override void visit(CompoundStatement cs)
{
//printf("CompoundStatement::blockExit(%p) %d\n", cs, cs->statements->dim);
result = BEfallthru;
Statement slast = null;
foreach (s; *cs.statements)
{
if (s)
{
//printf("result = x%x\n", result);
//printf("s: %s\n", s->toChars());
if (global.params.warnings && result & BEfallthru && slast)
{
slast = slast.last();
if (slast && (slast.isCaseStatement() || slast.isDefaultStatement()) && (s.isCaseStatement() || s.isDefaultStatement()))
{
// Allow if last case/default was empty
CaseStatement sc = slast.isCaseStatement();
DefaultStatement sd = slast.isDefaultStatement();
if (sc && (!sc.statement.hasCode() || sc.statement.isCaseStatement() || sc.statement.isErrorStatement()))
{
}
else if (sd && (!sd.statement.hasCode() || sd.statement.isCaseStatement() || sd.statement.isErrorStatement()))
{
}
else
{
const(char)* gototype = s.isCaseStatement() ? "case" : "default";
s.warning("switch case fallthrough - use 'goto %s;' if intended", gototype);
}
}
}
if (!(result & BEfallthru) && !s.comeFrom())
{
if (s.blockExit(func, mustNotThrow) != BEhalt && s.hasCode())
s.warning("statement is not reachable");
}
else
{
result &= ~BEfallthru;
result |= s.blockExit(func, mustNotThrow);
}
slast = s;
}
}
}
override void visit(UnrolledLoopStatement uls)
{
result = BEfallthru;
foreach (s; *uls.statements)
{
if (s)
{
int r = s.blockExit(func, mustNotThrow);
result |= r & ~(BEbreak | BEcontinue | BEfallthru);
if ((r & (BEfallthru | BEcontinue | BEbreak)) == 0)
result &= ~BEfallthru;
}
}
}
override void visit(ScopeStatement s)
{
//printf("ScopeStatement::blockExit(%p)\n", s->statement);
result = s.statement ? s.statement.blockExit(func, mustNotThrow) : BEfallthru;
}
override void visit(WhileStatement s)
{
assert(global.errors);
result = BEfallthru;
}
override void visit(DoStatement s)
{
if (s._body)
{
result = s._body.blockExit(func, mustNotThrow);
if (result == BEbreak)
{
result = BEfallthru;
return;
}
if (result & BEcontinue)
result |= BEfallthru;
}
else
result = BEfallthru;
if (result & BEfallthru)
{
if (canThrow(s.condition, func, mustNotThrow))
result |= BEthrow;
if (!(result & BEbreak) && s.condition.isBool(true))
result &= ~BEfallthru;
}
result &= ~(BEbreak | BEcontinue);
}
override void visit(ForStatement s)
{
result = BEfallthru;
if (s._init)
{
result = s._init.blockExit(func, mustNotThrow);
if (!(result & BEfallthru))
return;
}
if (s.condition)
{
if (canThrow(s.condition, func, mustNotThrow))
result |= BEthrow;
if (s.condition.isBool(true))
result &= ~BEfallthru;
else if (s.condition.isBool(false))
return;
}
else
result &= ~BEfallthru; // the body must do the exiting
if (s._body)
{
int r = s._body.blockExit(func, mustNotThrow);
if (r & (BEbreak | BEgoto))
result |= BEfallthru;
result |= r & ~(BEfallthru | BEbreak | BEcontinue);
}
if (s.increment && canThrow(s.increment, func, mustNotThrow))
result |= BEthrow;
}
override void visit(ForeachStatement s)
{
result = BEfallthru;
if (canThrow(s.aggr, func, mustNotThrow))
result |= BEthrow;
if (s._body)
result |= s._body.blockExit(func, mustNotThrow) & ~(BEbreak | BEcontinue);
}
override void visit(ForeachRangeStatement s)
{
assert(global.errors);
result = BEfallthru;
}
override void visit(IfStatement s)
{
//printf("IfStatement::blockExit(%p)\n", s);
result = BEnone;
if (canThrow(s.condition, func, mustNotThrow))
result |= BEthrow;
if (s.condition.isBool(true))
{
if (s.ifbody)
result |= s.ifbody.blockExit(func, mustNotThrow);
else
result |= BEfallthru;
}
else if (s.condition.isBool(false))
{
if (s.elsebody)
result |= s.elsebody.blockExit(func, mustNotThrow);
else
result |= BEfallthru;
}
else
{
if (s.ifbody)
result |= s.ifbody.blockExit(func, mustNotThrow);
else
result |= BEfallthru;
if (s.elsebody)
result |= s.elsebody.blockExit(func, mustNotThrow);
else
result |= BEfallthru;
}
//printf("IfStatement::blockExit(%p) = x%x\n", s, result);
}
override void visit(ConditionalStatement s)
{
result = s.ifbody.blockExit(func, mustNotThrow);
if (s.elsebody)
result |= s.elsebody.blockExit(func, mustNotThrow);
}
override void visit(PragmaStatement s)
{
result = BEfallthru;
}
override void visit(StaticAssertStatement s)
{
result = BEfallthru;
}
override void visit(SwitchStatement s)
{
result = BEnone;
if (canThrow(s.condition, func, mustNotThrow))
result |= BEthrow;
if (s._body)
{
result |= s._body.blockExit(func, mustNotThrow);
if (result & BEbreak)
{
result |= BEfallthru;
result &= ~BEbreak;
}
}
else
result |= BEfallthru;
}
override void visit(CaseStatement s)
{
result = s.statement.blockExit(func, mustNotThrow);
}
override void visit(DefaultStatement s)
{
result = s.statement.blockExit(func, mustNotThrow);
}
override void visit(GotoDefaultStatement s)
{
result = BEgoto;
}
override void visit(GotoCaseStatement s)
{
result = BEgoto;
}
override void visit(SwitchErrorStatement s)
{
// Switch errors are non-recoverable
result = BEhalt;
}
override void visit(ReturnStatement s)
{
result = BEreturn;
if (s.exp && canThrow(s.exp, func, mustNotThrow))
result |= BEthrow;
}
override void visit(BreakStatement s)
{
//printf("BreakStatement::blockExit(%p) = x%x\n", s, s->ident ? BEgoto : BEbreak);
result = s.ident ? BEgoto : BEbreak;
}
override void visit(ContinueStatement s)
{
result = s.ident ? BEgoto : BEcontinue;
}
override void visit(SynchronizedStatement s)
{
result = s._body ? s._body.blockExit(func, mustNotThrow) : BEfallthru;
}
override void visit(WithStatement s)
{
result = BEnone;
if (canThrow(s.exp, func, mustNotThrow))
result = BEthrow;
if (s._body)
result |= s._body.blockExit(func, mustNotThrow);
else
result |= BEfallthru;
}
override void visit(TryCatchStatement s)
{
assert(s._body);
result = s._body.blockExit(func, false);
int catchresult = 0;
foreach (c; *s.catches)
{
if (c.type == Type.terror)
continue;
int cresult;
if (c.handler)
cresult = c.handler.blockExit(func, mustNotThrow);
else
cresult = BEfallthru;
/* If we're catching Object, then there is no throwing
*/
Identifier id = c.type.toBasetype().isClassHandle().ident;
if (c.internalCatch && (cresult & BEfallthru))
{
// Bugzilla 11542: leave blockExit flags of the body
cresult &= ~BEfallthru;
}
else if (id == Id.Object || id == Id.Throwable)
{
result &= ~(BEthrow | BEerrthrow);
}
else if (id == Id.Exception)
{
result &= ~BEthrow;
}
catchresult |= cresult;
}
if (mustNotThrow && (result & BEthrow))
{
// now explain why this is nothrow
s._body.blockExit(func, mustNotThrow);
}
result |= catchresult;
}
override void visit(TryFinallyStatement s)
{
result = BEfallthru;
if (s._body)
result = s._body.blockExit(func, false);
// check finally body as well, it may throw (bug #4082)
int finalresult = BEfallthru;
if (s.finalbody)
finalresult = s.finalbody.blockExit(func, false);
// If either body or finalbody halts
if (result == BEhalt)
finalresult = BEnone;
if (finalresult == BEhalt)
result = BEnone;
if (mustNotThrow)
{
// now explain why this is nothrow
if (s._body && (result & BEthrow))
s._body.blockExit(func, mustNotThrow);
if (s.finalbody && (finalresult & BEthrow))
s.finalbody.blockExit(func, mustNotThrow);
}
version (none)
{
// Bugzilla 13201: Mask to prevent spurious warnings for
// destructor call, exit of synchronized statement, etc.
if (result == BEhalt && finalresult != BEhalt && s.finalbody && s.finalbody.hasCode())
{
s.finalbody.warning("statement is not reachable");
}
}
if (!(finalresult & BEfallthru))
result &= ~BEfallthru;
result |= finalresult & ~BEfallthru;
}
override void visit(OnScopeStatement s)
{
// At this point, this statement is just an empty placeholder
result = BEfallthru;
}
override void visit(ThrowStatement s)
{
if (s.internalThrow)
{
// Bugzilla 8675: Allow throwing 'Throwable' object even if mustNotThrow.
result = BEfallthru;
return;
}
Type t = s.exp.type.toBasetype();
ClassDeclaration cd = t.isClassHandle();
assert(cd);
if (cd == ClassDeclaration.errorException || ClassDeclaration.errorException.isBaseOf(cd, null))
{
result = BEerrthrow;
return;
}
if (mustNotThrow)
s.error("%s is thrown but not caught", s.exp.type.toChars());
result = BEthrow;
}
override void visit(GotoStatement s)
{
//printf("GotoStatement::blockExit(%p)\n", s);
result = BEgoto;
}
override void visit(LabelStatement s)
{
//printf("LabelStatement::blockExit(%p)\n", s);
result = s.statement ? s.statement.blockExit(func, mustNotThrow) : BEfallthru;
if (s.breaks)
result |= BEfallthru;
}
override void visit(CompoundAsmStatement s)
{
if (mustNotThrow && !(s.stc & STCnothrow))
s.deprecation("asm statement is assumed to throw - mark it with 'nothrow' if it does not");
// Assume the worst
result = BEfallthru | BEreturn | BEgoto | BEhalt;
if (!(s.stc & STCnothrow))
result |= BEthrow;
}
override void visit(ImportStatement s)
{
result = BEfallthru;
}
}
scope BlockExit be = new BlockExit(func, mustNotThrow);
accept(be);
return be.result;
}
/* ============================================== */
// true if statement 'comes from' somewhere else, like a goto
final bool comeFrom()
{
extern (C++) final class ComeFrom : StoppableVisitor
{
alias visit = super.visit;
public:
override void visit(Statement s)
{
}
override void visit(CaseStatement s)
{
stop = true;
}
override void visit(DefaultStatement s)
{
stop = true;
}
override void visit(LabelStatement s)
{
stop = true;
}
override void visit(AsmStatement s)
{
stop = true;
}
}
scope ComeFrom cf = new ComeFrom();
return walkPostorder(this, cf);
}
/* ============================================== */
// Return true if statement has executable code.
final bool hasCode()
{
extern (C++) final class HasCode : StoppableVisitor
{
alias visit = super.visit;
public:
override void visit(Statement s)
{
stop = true;
}
override void visit(ExpStatement s)
{
stop = s.exp !is null;
}
override void visit(CompoundStatement s)
{
}
override void visit(ScopeStatement s)
{
}
override void visit(ImportStatement s)
{
}
}
scope HasCode hc = new HasCode();
return walkPostorder(this, hc);
}
/****************************************
* If this statement has code that needs to run in a finally clause
* at the end of the current scope, return that code in the form of
* a Statement.
* Output:
* *sentry code executed upon entry to the scope
* *sexception code executed upon exit from the scope via exception
* *sfinally code executed in finally block
*/
Statement scopeCode(Scope* sc, Statement* sentry, Statement* sexception, Statement* sfinally)
{
//printf("Statement::scopeCode()\n");
//print();
*sentry = null;
*sexception = null;
*sfinally = null;
return this;
}
/*********************************
* Flatten out the scope by presenting the statement
* as an array of statements.
* Returns NULL if no flattening necessary.
*/
Statements* flatten(Scope* sc)
{
return null;
}
Statement last()
{
return this;
}
// Avoid dynamic_cast
ErrorStatement isErrorStatement()
{
return null;
}
ScopeStatement isScopeStatement()
{
return null;
}
ExpStatement isExpStatement()
{
return null;
}
CompoundStatement isCompoundStatement()
{
return null;
}
ReturnStatement isReturnStatement()
{
return null;
}
IfStatement isIfStatement()
{
return null;
}
CaseStatement isCaseStatement()
{
return null;
}
DefaultStatement isDefaultStatement()
{
return null;
}
LabelStatement isLabelStatement()
{
return null;
}
DtorExpStatement isDtorExpStatement()
{
return null;
}
void accept(Visitor v)
{
v.visit(this);
}
version(IN_LLVM)
{
CompoundAsmStatement isCompoundAsmBlockStatement()
{
return null;
}
CompoundAsmStatement endsWithAsm()
{
// does not end with inline asm
return null;
}
}
}
/***********************************************************
* Any Statement that fails semantic() or has a component that is an ErrorExp or
* a TypeError should return an ErrorStatement from semantic().
*/
extern (C++) final class ErrorStatement : Statement
{
public:
extern (D) this()
{
super(Loc());
assert(global.gaggedErrors || global.errors);
}
override Statement syntaxCopy()
{
return this;
}
override Statement semantic(Scope* sc)
{
return this;
}
override ErrorStatement isErrorStatement()
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class PeelStatement : Statement
{
public:
Statement s;
extern (D) this(Statement s)
{
super(s.loc);
this.s = s;
}
override Statement semantic(Scope* sc)
{
/* "peel" off this wrapper, and don't run semantic()
* on the result.
*/
return s;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Convert TemplateMixin members (== Dsymbols) to Statements.
*/
extern (C++) Statement toStatement(Dsymbol s)
{
extern (C++) final class ToStmt : Visitor
{
alias visit = super.visit;
public:
Statement result;
Statement visitMembers(Loc loc, Dsymbols* a)
{
if (!a)
return null;
auto statements = new Statements();
foreach (s; *a)
{
statements.push(toStatement(s));
}
return new CompoundStatement(loc, statements);
}
override void visit(Dsymbol s)
{
.error(Loc(), "Internal Compiler Error: cannot mixin %s %s\n", s.kind(), s.toChars());
result = new ErrorStatement();
}
override void visit(TemplateMixin tm)
{
auto a = new Statements();
foreach (m; *tm.members)
{
Statement s = toStatement(m);
if (s)
a.push(s);
}
result = new CompoundStatement(tm.loc, a);
}
/* An actual declaration symbol will be converted to DeclarationExp
* with ExpStatement.
*/
Statement declStmt(Dsymbol s)
{
auto de = new DeclarationExp(s.loc, s);
de.type = Type.tvoid; // avoid repeated semantic
return new ExpStatement(s.loc, de);
}
override void visit(VarDeclaration d)
{
result = declStmt(d);
}
override void visit(AggregateDeclaration d)
{
result = declStmt(d);
}
override void visit(FuncDeclaration d)
{
result = declStmt(d);
}
override void visit(EnumDeclaration d)
{
result = declStmt(d);
}
override void visit(AliasDeclaration d)
{
result = declStmt(d);
}
override void visit(TemplateDeclaration d)
{
result = declStmt(d);
}
/* All attributes have been already picked by the semantic analysis of
* 'bottom' declarations (function, struct, class, etc).
* So we don't have to copy them.
*/
override void visit(StorageClassDeclaration d)
{
result = visitMembers(d.loc, d.decl);
}
override void visit(DeprecatedDeclaration d)
{
result = visitMembers(d.loc, d.decl);
}
override void visit(LinkDeclaration d)
{
result = visitMembers(d.loc, d.decl);
}
override void visit(ProtDeclaration d)
{
result = visitMembers(d.loc, d.decl);
}
override void visit(AlignDeclaration d)
{
result = visitMembers(d.loc, d.decl);
}
override void visit(UserAttributeDeclaration d)
{
result = visitMembers(d.loc, d.decl);
}
override void visit(StaticAssert s)
{
}
override void visit(Import s)
{
}
override void visit(PragmaDeclaration d)
{
}
override void visit(ConditionalDeclaration d)
{
result = visitMembers(d.loc, d.include(null, null));
}
override void visit(CompileDeclaration d)
{
result = visitMembers(d.loc, d.include(null, null));
}
}
if (!s)
return null;
scope ToStmt v = new ToStmt();
s.accept(v);
return v.result;
}
/***********************************************************
*/
extern (C++) class ExpStatement : Statement
{
public:
Expression exp;
final extern (D) this(Loc loc, Expression exp)
{
super(loc);
this.exp = exp;
}
final extern (D) this(Loc loc, Dsymbol declaration)
{
super(loc);
this.exp = new DeclarationExp(loc, declaration);
}
final static ExpStatement create(Loc loc, Expression exp)
{
return new ExpStatement(loc, exp);
}
override Statement syntaxCopy()
{
return new ExpStatement(loc, exp ? exp.syntaxCopy() : null);
}
override final Statement semantic(Scope* sc)
{
if (exp)
{
//printf("ExpStatement::semantic() %s\n", exp.toChars());
exp = exp.semantic(sc);
exp = resolveProperties(sc, exp);
exp = exp.addDtorHook(sc);
if (checkNonAssignmentArrayOp(exp))
exp = new ErrorExp();
if (auto f = isFuncAddress(exp))
{
if (f.checkForwardRef(exp.loc))
exp = new ErrorExp();
}
discardValue(exp);
exp = exp.optimize(WANTvalue);
exp = checkGC(sc, exp);
if (exp.op == TOKerror)
return new ErrorStatement();
}
return this;
}
override final Statement scopeCode(Scope* sc, Statement* sentry, Statement* sexception, Statement* sfinally)
{
//printf("ExpStatement::scopeCode()\n");
//print();
*sentry = null;
*sexception = null;
*sfinally = null;
if (exp && exp.op == TOKdeclaration)
{
auto de = cast(DeclarationExp)exp;
auto v = de.declaration.isVarDeclaration();
if (v && !v.isDataseg())
{
if (v.needsScopeDtor())
{
//printf("dtor is: "); v.edtor.print();
*sfinally = new DtorExpStatement(loc, v.edtor, v);
v.noscope = true; // don't add in dtor again
}
}
}
return this;
}
override final Statements* flatten(Scope* sc)
{
/* Bugzilla 14243: expand template mixin in statement scope
* to handle variable destructors.
*/
if (exp && exp.op == TOKdeclaration)
{
Dsymbol d = (cast(DeclarationExp)exp).declaration;
if (TemplateMixin tm = d.isTemplateMixin())
{
Expression e = exp.semantic(sc);
if (e.op == TOKerror || tm.errors)
{
auto a = new Statements();
a.push(new ErrorStatement());
return a;
}
assert(tm.members);
Statement s = toStatement(tm);
version (none)
{
OutBuffer buf;
buf.doindent = 1;
HdrGenState hgs;
hgs.hdrgen = true;
toCBuffer(s, &buf, &hgs);
printf("tm ==> s = %s\n", buf.peekString());
}
auto a = new Statements();
a.push(s);
return a;
}
}
return null;
}
override final ExpStatement isExpStatement()
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class DtorExpStatement : ExpStatement
{
public:
// Wraps an expression that is the destruction of 'var'
VarDeclaration var;
extern (D) this(Loc loc, Expression exp, VarDeclaration v)
{
super(loc, exp);
this.var = v;
}
override Statement syntaxCopy()
{
return new DtorExpStatement(loc, exp ? exp.syntaxCopy() : null, var);
}
override void accept(Visitor v)
{
v.visit(this);
}
override DtorExpStatement isDtorExpStatement()
{
return this;
}
}
/***********************************************************
*/
extern (C++) final class CompileStatement : Statement
{
public:
Expression exp;
extern (D) this(Loc loc, Expression exp)
{
super(loc);
this.exp = exp;
}
override Statement syntaxCopy()
{
return new CompileStatement(loc, exp.syntaxCopy());
}
override Statements* flatten(Scope* sc)
{
//printf("CompileStatement::flatten() %s\n", exp->toChars());
sc = sc.startCTFE();
exp = exp.semantic(sc);
exp = resolveProperties(sc, exp);
sc = sc.endCTFE();
auto a = new Statements();
if (exp.op != TOKerror)
{
Expression e = exp.ctfeInterpret();
StringExp se = e.toStringExp();
if (!se)
error("argument to mixin must be a string, not (%s) of type %s", exp.toChars(), exp.type.toChars());
else
{
se = se.toUTF8(sc);
uint errors = global.errors;
scope Parser p = new Parser(loc, sc._module, se.toStringz(), se.len, 0);
p.nextToken();
while (p.token.value != TOKeof)
{
Statement s = p.parseStatement(PSsemi | PScurlyscope);
if (!s || p.errors)
{
assert(!p.errors || global.errors != errors); // make sure we caught all the cases
goto Lerror;
}
a.push(s);
}
return a;
}
}
Lerror:
a.push(new ErrorStatement());
return a;
}
override Statement semantic(Scope* sc)
{
//printf("CompileStatement::semantic() %s\n", exp->toChars());
Statements* a = flatten(sc);
if (!a)
return null;
Statement s = new CompoundStatement(loc, a);
return s.semantic(sc);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) class CompoundStatement : Statement
{
public:
Statements* statements;
final extern (D) this(Loc loc, Statements* s)
{
super(loc);
statements = s;
}
final extern (D) this(Loc loc, Statement s1)
{
super(loc);
statements = new Statements();
statements.push(s1);
}
final extern (D) this(Loc loc, Statement s1, Statement s2)
{
super(loc);
statements = new Statements();
statements.reserve(2);
statements.push(s1);
statements.push(s2);
}
final static CompoundStatement create(Loc loc, Statement s1, Statement s2)
{
return new CompoundStatement(loc, s1, s2);
}
override Statement syntaxCopy()
{
auto a = new Statements();
a.setDim(statements.dim);
foreach (i, s; *statements)
{
(*a)[i] = s ? s.syntaxCopy() : null;
}
return new CompoundStatement(loc, a);
}
override Statement semantic(Scope* sc)
{
//printf("CompoundStatement::semantic(this = %p, sc = %p)\n", this, sc);
version (none)
{
foreach (i, s; statements)
{
if (s)
printf("[%d]: %s", i, s.toChars());
}
}
for (size_t i = 0; i < statements.dim;)
{
Statement s = (*statements)[i];
if (s)
{
Statements* flt = s.flatten(sc);
if (flt)
{
statements.remove(i);
statements.insert(i, flt);
continue;
}
s = s.semantic(sc);
(*statements)[i] = s;
if (s)
{
Statement sentry;
Statement sexception;
Statement sfinally;
(*statements)[i] = s.scopeCode(sc, &sentry, &sexception, &sfinally);
if (sentry)
{
sentry = sentry.semantic(sc);
statements.insert(i, sentry);
i++;
}
if (sexception)
sexception = sexception.semantic(sc);
if (sexception)
{
if (i + 1 == statements.dim && !sfinally)
{
}
else
{
/* Rewrite:
* s; s1; s2;
* As:
* s;
* try { s1; s2; }
* catch (Throwable __o)
* { sexception; throw __o; }
*/
auto a = new Statements();
foreach (j; i + 1 .. statements.dim)
{
a.push((*statements)[j]);
}
Statement _body = new CompoundStatement(Loc(), a);
_body = new ScopeStatement(Loc(), _body);
Identifier id = Identifier.generateId("__o");
Statement handler = new PeelStatement(sexception);
if (sexception.blockExit(sc.func, false) & BEfallthru)
{
auto ts = new ThrowStatement(Loc(), new IdentifierExp(Loc(), id));
ts.internalThrow = true;
handler = new CompoundStatement(Loc(), handler, ts);
}
auto catches = new Catches();
auto ctch = new Catch(Loc(), null, id, handler);
ctch.internalCatch = true;
catches.push(ctch);
s = new TryCatchStatement(Loc(), _body, catches);
if (sfinally)
s = new TryFinallyStatement(Loc(), s, sfinally);
s = s.semantic(sc);
statements.setDim(i + 1);
statements.push(s);
break;
}
}
else if (sfinally)
{
if (0 && i + 1 == statements.dim)
{
statements.push(sfinally);
}
else
{
/* Rewrite:
* s; s1; s2;
* As:
* s; try { s1; s2; } finally { sfinally; }
*/
auto a = new Statements();
foreach (j; i + 1 .. statements.dim)
{
a.push((*statements)[j]);
}
Statement _body = new CompoundStatement(Loc(), a);
s = new TryFinallyStatement(Loc(), _body, sfinally);
s = s.semantic(sc);
statements.setDim(i + 1);
statements.push(s);
break;
}
}
}
else
{
/* Remove NULL statements from the list.
*/
statements.remove(i);
continue;
}
}
i++;
}
foreach (i; 0 .. statements.dim)
{
Lagain:
Statement s = (*statements)[i];
if (!s)
continue;
Statement se = s.isErrorStatement();
if (se)
return se;
/* Bugzilla 11653: 'semantic' may return another CompoundStatement
* (eg. CaseRangeStatement), so flatten it here.
*/
Statements* flt = s.flatten(sc);
if (flt)
{
statements.remove(i);
statements.insert(i, flt);
if (statements.dim <= i)
break;
goto Lagain;
}
}
//IN_LLVM replaced: if (statements.dim == 1)
if (statements.dim == 1 && !isCompoundAsmBlockStatement())
{
return (*statements)[0];
}
return this;
}
override Statements* flatten(Scope* sc)
{
return statements;
}
override final ReturnStatement isReturnStatement()
{
ReturnStatement rs = null;
foreach (s; *statements)
{
if (s)
{
rs = s.isReturnStatement();
if (rs)
break;
}
}
return rs;
}
override final Statement last()
{
Statement s = null;
for (size_t i = statements.dim; i; --i)
{
s = (*statements)[i - 1];
if (s)
{
s = s.last();
if (s)
break;
}
}
return s;
}
// IN_LLVM removed: final
override CompoundStatement isCompoundStatement()
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
version(IN_LLVM)
{
override CompoundAsmStatement endsWithAsm()
{
// make the last inner statement decide
if (statements && statements.dim) {
size_t last = statements.dim - 1;
Statement s = (*statements)[last];
if (s) {
return s.endsWithAsm();
}
}
return null;
}
}
}
/***********************************************************
*/
extern (C++) final class CompoundDeclarationStatement : CompoundStatement
{
public:
extern (D) this(Loc loc, Statements* s)
{
super(loc, s);
statements = s;
}
override Statement syntaxCopy()
{
auto a = new Statements();
a.setDim(statements.dim);
foreach (i, s; *statements)
{
(*a)[i] = s ? s.syntaxCopy() : null;
}
return new CompoundDeclarationStatement(loc, a);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The purpose of this is so that continue will go to the next
* of the statements, and break will go to the end of the statements.
*/
extern (C++) final class UnrolledLoopStatement : Statement
{
public:
Statements* statements;
extern (D) this(Loc loc, Statements* s)
{
super(loc);
statements = s;
}
override Statement syntaxCopy()
{
auto a = new Statements();
a.setDim(statements.dim);
foreach (i, s; *statements)
{
(*a)[i] = s ? s.syntaxCopy() : null;
}
return new UnrolledLoopStatement(loc, a);
}
override Statement semantic(Scope* sc)
{
//printf("UnrolledLoopStatement::semantic(this = %p, sc = %p)\n", this, sc);
Scope* scd = sc.push();
scd.sbreak = this;
scd.scontinue = this;
Statement serror = null;
foreach (i, ref s; *statements)
{
if (s)
{
//printf("[%d]: %s\n", i, s->toChars());
s = s.semantic(scd);
if (s && !serror)
serror = s.isErrorStatement();
}
}
scd.pop();
return serror ? serror : this;
}
override bool hasBreak()
{
return true;
}
override bool hasContinue()
{
return true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class ScopeStatement : Statement
{
public:
Statement statement;
extern (D) this(Loc loc, Statement s)
{
super(loc);
this.statement = s;
}
override Statement syntaxCopy()
{
return new ScopeStatement(loc, statement ? statement.syntaxCopy() : null);
}
override ScopeStatement isScopeStatement()
{
return this;
}
override ReturnStatement isReturnStatement()
{
if (statement)
return statement.isReturnStatement();
return null;
}
override Statement semantic(Scope* sc)
{
ScopeDsymbol sym;
//printf("ScopeStatement::semantic(sc = %p)\n", sc);
if (statement)
{
sym = new ScopeDsymbol();
sym.parent = sc.scopesym;
sc = sc.push(sym);
Statements* a = statement.flatten(sc);
if (a)
{
statement = new CompoundStatement(loc, a);
}
statement = statement.semantic(sc);
if (statement)
{
if (statement.isErrorStatement())
{
sc.pop();
return statement;
}
Statement sentry;
Statement sexception;
Statement sfinally;
statement = statement.scopeCode(sc, &sentry, &sexception, &sfinally);
assert(!sentry);
assert(!sexception);
if (sfinally)
{
//printf("adding sfinally\n");
sfinally = sfinally.semantic(sc);
statement = new CompoundStatement(loc, statement, sfinally);
}
}
sc.pop();
}
return this;
}
override bool hasBreak()
{
//printf("ScopeStatement::hasBreak() %s\n", toChars());
return statement ? statement.hasBreak() : false;
}
override bool hasContinue()
{
return statement ? statement.hasContinue() : false;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class WhileStatement : Statement
{
public:
Expression condition;
Statement _body;
Loc endloc; // location of closing curly bracket
extern (D) this(Loc loc, Expression c, Statement b, Loc endloc)
{
super(loc);
condition = c;
_body = b;
this.endloc = endloc;
}
override Statement syntaxCopy()
{
return new WhileStatement(loc,
condition.syntaxCopy(),
_body ? _body.syntaxCopy() : null,
endloc);
}
override Statement semantic(Scope* sc)
{
/* Rewrite as a for(;condition;) loop
*/
Statement s = new ForStatement(loc, null, condition, null, _body, endloc);
s = s.semantic(sc);
return s;
}
override bool hasBreak()
{
return true;
}
override bool hasContinue()
{
return true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class DoStatement : Statement
{
public:
Statement _body;
Expression condition;
extern (D) this(Loc loc, Statement b, Expression c)
{
super(loc);
_body = b;
condition = c;
}
override Statement syntaxCopy()
{
return new DoStatement(loc,
_body ? _body.syntaxCopy() : null,
condition.syntaxCopy());
}
override Statement semantic(Scope* sc)
{
sc.noctor++;
if (_body)
_body = _body.semanticScope(sc, this, this);
sc.noctor--;
// check in syntax level
condition = checkAssignmentAsCondition(condition);
condition = condition.semantic(sc);
condition = resolveProperties(sc, condition);
if (checkNonAssignmentArrayOp(condition))
condition = new ErrorExp();
condition = condition.optimize(WANTvalue);
condition = checkGC(sc, condition);
condition = condition.toBoolean(sc);
if (condition.op == TOKerror)
return new ErrorStatement();
if (_body && _body.isErrorStatement())
return _body;
return this;
}
override bool hasBreak()
{
return true;
}
override bool hasContinue()
{
return true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class ForStatement : Statement
{
public:
Statement _init;
Expression condition;
Expression increment;
Statement _body;
Loc endloc; // location of closing curly bracket
// When wrapped in try/finally clauses, this points to the outermost one,
// which may have an associated label. Internal break/continue statements
// treat that label as referring to this loop.
Statement relatedLabeled;
extern (D) this(Loc loc, Statement _init, Expression condition, Expression increment, Statement _body, Loc endloc)
{
super(loc);
this._init = _init;
this.condition = condition;
this.increment = increment;
this._body = _body;
this.endloc = endloc;
}
override Statement syntaxCopy()
{
return new ForStatement(loc,
_init ? _init.syntaxCopy() : null,
condition ? condition.syntaxCopy() : null,
increment ? increment.syntaxCopy() : null,
_body.syntaxCopy(),
endloc);
}
override Statement semantic(Scope* sc)
{
//printf("ForStatement::semantic %s\n", toChars());
if (_init)
{
/* Rewrite:
* for (auto v1 = i1, v2 = i2; condition; increment) { ... }
* to:
* { auto v1 = i1, v2 = i2; for (; condition; increment) { ... } }
* then lowered to:
* auto v1 = i1;
* try {
* auto v2 = i2;
* try {
* for (; condition; increment) { ... }
* } finally { v2.~this(); }
* } finally { v1.~this(); }
*/
auto ainit = new Statements();
ainit.push(_init), _init = null;
ainit.push(this);
Statement s = new CompoundStatement(loc, ainit);
s = new ScopeStatement(loc, s);
s = s.semantic(sc);
if (!s.isErrorStatement())
{
if (LabelStatement ls = checkLabeledLoop(sc, this))
ls.gotoTarget = this;
relatedLabeled = s;
}
return s;
}
assert(_init is null);
auto sym = new ScopeDsymbol();
sym.parent = sc.scopesym;
sc = sc.push(sym);
sc.noctor++;
if (condition)
{
// check in syntax level
condition = checkAssignmentAsCondition(condition);
condition = condition.semantic(sc);
condition = resolveProperties(sc, condition);
if (checkNonAssignmentArrayOp(condition))
condition = new ErrorExp();
condition = condition.optimize(WANTvalue);
condition = checkGC(sc, condition);
condition = condition.toBoolean(sc);
}
if (increment)
{
increment = increment.semantic(sc);
increment = resolveProperties(sc, increment);
if (checkNonAssignmentArrayOp(increment))
increment = new ErrorExp();
increment = increment.optimize(WANTvalue);
increment = checkGC(sc, increment);
}
sc.sbreak = this;
sc.scontinue = this;
if (_body)
_body = _body.semanticNoScope(sc);
sc.noctor--;
sc.pop();
if (condition && condition.op == TOKerror ||
increment && increment.op == TOKerror ||
_body && _body.isErrorStatement())
{
return new ErrorStatement();
}
return this;
}
override Statement scopeCode(Scope* sc, Statement* sentry, Statement* sexception, Statement* sfinally)
{
//printf("ForStatement::scopeCode()\n");
Statement.scopeCode(sc, sentry, sexception, sfinally);
return this;
}
override Statement getRelatedLabeled()
{
return relatedLabeled ? relatedLabeled : this;
}
override bool hasBreak()
{
//printf("ForStatement::hasBreak()\n");
return true;
}
override bool hasContinue()
{
return true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class ForeachStatement : Statement
{
public:
TOK op; // TOKforeach or TOKforeach_reverse
Parameters* parameters; // array of Parameter*'s
Expression aggr;
Statement _body;
Loc endloc; // location of closing curly bracket
VarDeclaration key;
VarDeclaration value;
FuncDeclaration func; // function we're lexically in
Statements* cases; // put breaks, continues, gotos and returns here
ScopeStatements* gotos; // forward referenced goto's go here
extern (D) this(Loc loc, TOK op, Parameters* parameters, Expression aggr, Statement _body, Loc endloc)
{
super(loc);
this.op = op;
this.parameters = parameters;
this.aggr = aggr;
this._body = _body;
this.endloc = endloc;
}
override Statement syntaxCopy()
{
return new ForeachStatement(loc, op,
Parameter.arraySyntaxCopy(parameters),
aggr.syntaxCopy(),
_body ? _body.syntaxCopy() : null,
endloc);
}
override Statement semantic(Scope* sc)
{
//printf("ForeachStatement::semantic() %p\n", this);
ScopeDsymbol sym;
Statement s = this;
size_t dim = parameters.dim;
TypeAArray taa = null;
Dsymbol sapply = null;
Type tn = null;
Type tnv = null;
func = sc.func;
if (func.fes)
func = func.fes.func;
VarDeclaration vinit = null;
aggr = aggr.semantic(sc);
aggr = resolveProperties(sc, aggr);
aggr = aggr.optimize(WANTvalue);
if (aggr.op == TOKerror)
return new ErrorStatement();
Expression oaggr = aggr;
if (aggr.type && aggr.type.toBasetype().ty == Tstruct &&
aggr.op != TOKtype && !aggr.isLvalue())
{
// Bugzilla 14653: Extend the life of rvalue aggregate till the end of foreach.
vinit = new VarDeclaration(loc, aggr.type, Identifier.generateId("__aggr"), new ExpInitializer(loc, aggr));
vinit.storage_class |= STCtemp;
vinit.semantic(sc);
aggr = new VarExp(aggr.loc, vinit);
}
if (!inferAggregate(this, sc, sapply))
{
const(char)* msg = "";
if (aggr.type && isAggregate(aggr.type))
{
msg = ", define opApply(), range primitives, or use .tupleof";
}
error("invalid foreach aggregate %s%s", oaggr.toChars(), msg);
return new ErrorStatement();
}
Dsymbol sapplyOld = sapply; // 'sapply' will be NULL if and after 'inferApplyArgTypes' errors
/* Check for inference errors
*/
if (!inferApplyArgTypes(this, sc, sapply))
{
/**
Try and extract the parameter count of the opApply callback function, e.g.:
int opApply(int delegate(int, float)) => 2 args
*/
bool foundMismatch = false;
size_t foreachParamCount = 0;
if (sapplyOld)
{
if (FuncDeclaration fd = sapplyOld.isFuncDeclaration())
{
int fvarargs; // ignored (opApply shouldn't take variadics)
Parameters* fparameters = fd.getParameters(&fvarargs);
if (Parameter.dim(fparameters) == 1)
{
// first param should be the callback function
Parameter fparam = Parameter.getNth(fparameters, 0);
if ((fparam.type.ty == Tpointer ||
fparam.type.ty == Tdelegate) &&
fparam.type.nextOf().ty == Tfunction)
{
TypeFunction tf = cast(TypeFunction)fparam.type.nextOf();
foreachParamCount = Parameter.dim(tf.parameters);
foundMismatch = true;
}
}
}
}
//printf("dim = %d, parameters->dim = %d\n", dim, parameters->dim);
if (foundMismatch && dim != foreachParamCount)
{
const(char)* plural = foreachParamCount > 1 ? "s" : "";
error("cannot infer argument types, expected %d argument%s, not %d",
foreachParamCount, plural, dim);
}
else
error("cannot uniquely infer foreach argument types");
return new ErrorStatement();
}
Type tab = aggr.type.toBasetype();
if (tab.ty == Ttuple) // don't generate new scope for tuple loops
{
if (dim < 1 || dim > 2)
{
error("only one (value) or two (key,value) arguments for tuple foreach");
return new ErrorStatement();
}
Type paramtype = (*parameters)[dim - 1].type;
if (paramtype)
{
paramtype = paramtype.semantic(loc, sc);
if (paramtype.ty == Terror)
return new ErrorStatement();
}
TypeTuple tuple = cast(TypeTuple)tab;
auto statements = new Statements();
//printf("aggr: op = %d, %s\n", aggr->op, aggr->toChars());
size_t n;
TupleExp te = null;
if (aggr.op == TOKtuple) // expression tuple
{
te = cast(TupleExp)aggr;
n = te.exps.dim;
}
else if (aggr.op == TOKtype) // type tuple
{
n = Parameter.dim(tuple.arguments);
}
else
assert(0);
foreach (j; 0 .. n)
{
size_t k = (op == TOKforeach) ? j : n - 1 - j;
Expression e = null;
Type t = null;
if (te)
e = (*te.exps)[k];
else
t = Parameter.getNth(tuple.arguments, k).type;
Parameter p = (*parameters)[0];
auto st = new Statements();
if (dim == 2)
{
// Declare key
if (p.storageClass & (STCout | STCref | STClazy))
{
error("no storage class for key %s", p.ident.toChars());
return new ErrorStatement();
}
p.type = p.type.semantic(loc, sc);
TY keyty = p.type.ty;
if (keyty != Tint32 && keyty != Tuns32)
{
if (global.params.isLP64)
{
if (keyty != Tint64 && keyty != Tuns64)
{
error("foreach: key type must be int or uint, long or ulong, not %s", p.type.toChars());
return new ErrorStatement();
}
}
else
{
error("foreach: key type must be int or uint, not %s", p.type.toChars());
return new ErrorStatement();
}
}
Initializer ie = new ExpInitializer(Loc(), new IntegerExp(k));
auto var = new VarDeclaration(loc, p.type, p.ident, ie);
var.storage_class |= STCmanifest;
st.push(new ExpStatement(loc, var));
p = (*parameters)[1]; // value
}
// Declare value
if (p.storageClass & (STCout | STClazy) ||
p.storageClass & STCref && !te)
{
error("no storage class for value %s", p.ident.toChars());
return new ErrorStatement();
}
Dsymbol var;
if (te)
{
Type tb = e.type.toBasetype();
Dsymbol ds = null;
if ((tb.ty == Tfunction || tb.ty == Tsarray) && e.op == TOKvar)
ds = (cast(VarExp)e).var;
else if (e.op == TOKtemplate)
ds = (cast(TemplateExp)e).td;
else if (e.op == TOKscope)
ds = (cast(ScopeExp)e).sds;
else if (e.op == TOKfunction)
{
auto fe = cast(FuncExp)e;
ds = fe.td ? cast(Dsymbol)fe.td : fe.fd;
}
if (ds)
{
var = new AliasDeclaration(loc, p.ident, ds);
if (p.storageClass & STCref)
{
error("symbol %s cannot be ref", s.toChars());
return new ErrorStatement();
}
if (paramtype)
{
error("cannot specify element type for symbol %s", ds.toChars());
return new ErrorStatement();
}
}
else if (e.op == TOKtype)
{
var = new AliasDeclaration(loc, p.ident, e.type);
if (paramtype)
{
error("cannot specify element type for type %s", e.type.toChars());
return new ErrorStatement();
}
}
else
{
p.type = e.type;
if (paramtype)
p.type = paramtype;
Initializer ie = new ExpInitializer(Loc(), e);
auto v = new VarDeclaration(loc, p.type, p.ident, ie);
if (p.storageClass & STCref)
v.storage_class |= STCref | STCforeach;
if (e.isConst() ||
e.op == TOKstring ||
e.op == TOKstructliteral ||
e.op == TOKarrayliteral)
{
if (v.storage_class & STCref)
{
error("constant value %s cannot be ref", ie.toChars());
return new ErrorStatement();
}
else
v.storage_class |= STCmanifest;
}
var = v;
}
}
else
{
var = new AliasDeclaration(loc, p.ident, t);
if (paramtype)
{
error("cannot specify element type for symbol %s", s.toChars());
return new ErrorStatement();
}
}
st.push(new ExpStatement(loc, var));
st.push(_body.syntaxCopy());
s = new CompoundStatement(loc, st);
s = new ScopeStatement(loc, s);
statements.push(s);
}
s = new UnrolledLoopStatement(loc, statements);
if (LabelStatement ls = checkLabeledLoop(sc, this))
ls.gotoTarget = s;
if (te && te.e0)
s = new CompoundStatement(loc, new ExpStatement(te.e0.loc, te.e0), s);
if (vinit)
s = new CompoundStatement(loc, new ExpStatement(loc, vinit), s);
s = s.semantic(sc);
return s;
}
sym = new ScopeDsymbol();
sym.parent = sc.scopesym;
auto sc2 = sc.push(sym);
sc2.noctor++;
switch (tab.ty)
{
case Tarray:
case Tsarray:
{
if (checkForArgTypes())
return this;
if (dim < 1 || dim > 2)
{
error("only one or two arguments for array foreach");
goto Lerror2;
}
/* Look for special case of parsing char types out of char type
* array.
*/
tn = tab.nextOf().toBasetype();
if (tn.ty == Tchar || tn.ty == Twchar || tn.ty == Tdchar)
{
int i = (dim == 1) ? 0 : 1; // index of value
Parameter p = (*parameters)[i];
p.type = p.type.semantic(loc, sc2);
p.type = p.type.addStorageClass(p.storageClass);
tnv = p.type.toBasetype();
if (tnv.ty != tn.ty &&
(tnv.ty == Tchar || tnv.ty == Twchar || tnv.ty == Tdchar))
{
if (p.storageClass & STCref)
{
error("foreach: value of UTF conversion cannot be ref");
goto Lerror2;
}
if (dim == 2)
{
p = (*parameters)[0];
if (p.storageClass & STCref)
{
error("foreach: key cannot be ref");
goto Lerror2;
}
}
goto Lapply;
}
}
foreach (i; 0 .. dim)
{
// Declare parameterss
Parameter p = (*parameters)[i];
p.type = p.type.semantic(loc, sc2);
p.type = p.type.addStorageClass(p.storageClass);
VarDeclaration var;
if (dim == 2 && i == 0)
{
var = new VarDeclaration(loc, p.type.mutableOf(), Identifier.generateId("__key"), null);
var.storage_class |= STCtemp | STCforeach;
if (var.storage_class & (STCref | STCout))
var.storage_class |= STCnodtor;
key = var;
if (p.storageClass & STCref)
{
if (var.type.constConv(p.type) <= MATCHnomatch)
{
error("key type mismatch, %s to ref %s",
var.type.toChars(), p.type.toChars());
goto Lerror2;
}
}
if (tab.ty == Tsarray)
{
TypeSArray ta = cast(TypeSArray)tab;
IntRange dimrange = getIntRange(ta.dim);
if (!IntRange.fromType(var.type).contains(dimrange))
{
error("index type '%s' cannot cover index range 0..%llu",
p.type.toChars(), ta.dim.toInteger());
goto Lerror2;
}
key.range = new IntRange(SignExtendedNumber(0), dimrange.imax);
}
}
else
{
var = new VarDeclaration(loc, p.type, p.ident, null);
var.storage_class |= STCforeach;
var.storage_class |= p.storageClass & (STCin | STCout | STCref | STC_TYPECTOR);
if (var.storage_class & (STCref | STCout))
var.storage_class |= STCnodtor;
value = var;
if (var.storage_class & STCref)
{
if (aggr.checkModifiable(sc2, 1) == 2)
var.storage_class |= STCctorinit;
Type t = tab.nextOf();
if (t.constConv(p.type) <= MATCHnomatch)
{
error("argument type mismatch, %s to ref %s",
t.toChars(), p.type.toChars());
goto Lerror2;
}
}
}
}
/* Convert to a ForStatement
* foreach (key, value; a) body =>
* for (T[] tmp = a[], size_t key; key < tmp.length; ++key)
* { T value = tmp[k]; body }
*
* foreach_reverse (key, value; a) body =>
* for (T[] tmp = a[], size_t key = tmp.length; key--; )
* { T value = tmp[k]; body }
*/
Identifier id = Identifier.generateId("__r");
auto ie = new ExpInitializer(loc, new SliceExp(loc, aggr, null, null));
VarDeclaration tmp;
if (aggr.op == TOKarrayliteral &&
!((*parameters)[dim - 1].storageClass & STCref))
{
auto ale = cast(ArrayLiteralExp)aggr;
size_t edim = ale.elements ? ale.elements.dim : 0;
aggr.type = tab.nextOf().sarrayOf(edim);
// for (T[edim] tmp = a, ...)
tmp = new VarDeclaration(loc, aggr.type, id, ie);
}
else
tmp = new VarDeclaration(loc, tab.nextOf().arrayOf(), id, ie);
tmp.storage_class |= STCtemp;
Expression tmp_length = new DotIdExp(loc, new VarExp(loc, tmp), Id.length);
if (!key)
{
Identifier idkey = Identifier.generateId("__key");
key = new VarDeclaration(loc, Type.tsize_t, idkey, null);
key.storage_class |= STCtemp;
}
if (op == TOKforeach_reverse)
key._init = new ExpInitializer(loc, tmp_length);
else
key._init = new ExpInitializer(loc, new IntegerExp(loc, 0, key.type));
auto cs = new Statements();
if (vinit)
cs.push(new ExpStatement(loc, vinit));
cs.push(new ExpStatement(loc, tmp));
cs.push(new ExpStatement(loc, key));
Statement forinit = new CompoundDeclarationStatement(loc, cs);
Expression cond;
if (op == TOKforeach_reverse)
{
// key--
cond = new PostExp(TOKminusminus, loc, new VarExp(loc, key));
}
else
{
// key < tmp.length
cond = new CmpExp(TOKlt, loc, new VarExp(loc, key), tmp_length);
}
Expression increment = null;
if (op == TOKforeach)
{
// key += 1
increment = new AddAssignExp(loc, new VarExp(loc, key), new IntegerExp(loc, 1, key.type));
}
// T value = tmp[key];
IndexExp indexExp = new IndexExp(loc, new VarExp(loc, tmp), new VarExp(loc, key));
indexExp.indexIsInBounds = true; // disabling bounds checking in foreach statements.
value._init = new ExpInitializer(loc, indexExp);
Statement ds = new ExpStatement(loc, value);
if (dim == 2)
{
Parameter p = (*parameters)[0];
if ((p.storageClass & STCref) && p.type.equals(key.type))
{
key.range = null;
auto v = new AliasDeclaration(loc, p.ident, key);
_body = new CompoundStatement(loc, new ExpStatement(loc, v), _body);
}
else
{
auto ei = new ExpInitializer(loc, new IdentifierExp(loc, key.ident));
auto v = new VarDeclaration(loc, p.type, p.ident, ei);
v.storage_class |= STCforeach | (p.storageClass & STCref);
_body = new CompoundStatement(loc, new ExpStatement(loc, v), _body);
if (key.range && !p.type.isMutable())
{
/* Limit the range of the key to the specified range
*/
v.range = new IntRange(key.range.imin, key.range.imax - SignExtendedNumber(1));
}
}
}
_body = new CompoundStatement(loc, ds, _body);
s = new ForStatement(loc, forinit, cond, increment, _body, endloc);
if (auto ls = checkLabeledLoop(sc, this)) // Bugzilla 15450: don't use sc2
ls.gotoTarget = s;
s = s.semantic(sc2);
break;
}
case Taarray:
if (op == TOKforeach_reverse)
warning("cannot use foreach_reverse with an associative array");
if (checkForArgTypes())
return this;
taa = cast(TypeAArray)tab;
if (dim < 1 || dim > 2)
{
error("only one or two arguments for associative array foreach");
goto Lerror2;
}
goto Lapply;
case Tclass:
case Tstruct:
/* Prefer using opApply, if it exists
*/
if (sapply)
goto Lapply;
{
/* Look for range iteration, i.e. the properties
* .empty, .popFront, .popBack, .front and .back
* foreach (e; aggr) { ... }
* translates to:
* for (auto __r = aggr[]; !__r.empty; __r.popFront()) {
* auto e = __r.front;
* ...
* }
*/
auto ad = (tab.ty == Tclass) ?
cast(AggregateDeclaration)(cast(TypeClass)tab).sym :
cast(AggregateDeclaration)(cast(TypeStruct)tab).sym;
Identifier idfront;
Identifier idpopFront;
if (op == TOKforeach)
{
idfront = Id.Ffront;
idpopFront = Id.FpopFront;
}
else
{
idfront = Id.Fback;
idpopFront = Id.FpopBack;
}
auto sfront = ad.search(Loc(), idfront);
if (!sfront)
goto Lapply;
/* Generate a temporary __r and initialize it with the aggregate.
*/
VarDeclaration r;
Statement _init;
if (vinit && aggr.op == TOKvar && (cast(VarExp)aggr).var == vinit)
{
r = vinit;
_init = new ExpStatement(loc, vinit);
}
else
{
auto rid = Identifier.generateId("__r");
r = new VarDeclaration(loc, null, rid, new ExpInitializer(loc, aggr));
r.storage_class |= STCtemp;
_init = new ExpStatement(loc, r);
if (vinit)
_init = new CompoundStatement(loc, new ExpStatement(loc, vinit), _init);
}
// !__r.empty
Expression e = new VarExp(loc, r);
e = new DotIdExp(loc, e, Id.Fempty);
Expression condition = new NotExp(loc, e);
// __r.idpopFront()
e = new VarExp(loc, r);
Expression increment = new CallExp(loc, new DotIdExp(loc, e, idpopFront));
/* Declaration statement for e:
* auto e = __r.idfront;
*/
e = new VarExp(loc, r);
Expression einit = new DotIdExp(loc, e, idfront);
Statement makeargs, forbody;
if (dim == 1)
{
auto p = (*parameters)[0];
auto ve = new VarDeclaration(loc, p.type, p.ident, new ExpInitializer(loc, einit));
ve.storage_class |= STCforeach;
ve.storage_class |= p.storageClass & (STCin | STCout | STCref | STC_TYPECTOR);
makeargs = new ExpStatement(loc, ve);
}
else
{
auto id = Identifier.generateId("__front");
auto ei = new ExpInitializer(loc, einit);
auto vd = new VarDeclaration(loc, null, id, ei);
vd.storage_class |= STCtemp | STCctfe | STCref | STCforeach;
makeargs = new ExpStatement(loc, vd);
Type tfront;
if (auto fd = sfront.isFuncDeclaration())
{
if (!fd.functionSemantic())
goto Lrangeerr;
tfront = fd.type;
}
else if (auto td = sfront.isTemplateDeclaration())
{
Expressions a;
if (auto f = resolveFuncCall(loc, sc, td, null, tab, &a, 1))
tfront = f.type;
}
else if (auto d = sfront.isDeclaration())
{
tfront = d.type;
}
if (!tfront || tfront.ty == Terror)
goto Lrangeerr;
if (tfront.toBasetype().ty == Tfunction)
tfront = tfront.toBasetype().nextOf();
if (tfront.ty == Tvoid)
{
error("%s.front is void and has no value", oaggr.toChars());
goto Lerror2;
}
// Resolve inout qualifier of front type
tfront = tfront.substWildTo(tab.mod);
Expression ve = new VarExp(loc, vd);
ve.type = tfront;
auto exps = new Expressions();
exps.push(ve);
int pos = 0;
while (exps.dim < dim)
{
pos = expandAliasThisTuples(exps, pos);
if (pos == -1)
break;
}
if (exps.dim != dim)
{
const(char)* plural = exps.dim > 1 ? "s" : "";
error("cannot infer argument types, expected %d argument%s, not %d",
exps.dim, plural, dim);
goto Lerror2;
}
foreach (i; 0 .. dim)
{
auto p = (*parameters)[i];
auto exp = (*exps)[i];
version (none)
{
printf("[%d] p = %s %s, exp = %s %s\n", i,
p.type ? p.type.toChars() : "?", p.ident.toChars(),
exp.type.toChars(), exp.toChars());
}
if (!p.type)
p.type = exp.type;
p.type = p.type.addStorageClass(p.storageClass).semantic(loc, sc2);
if (!exp.implicitConvTo(p.type))
goto Lrangeerr;
auto var = new VarDeclaration(loc, p.type, p.ident, new ExpInitializer(loc, exp));
var.storage_class |= STCctfe | STCref | STCforeach;
makeargs = new CompoundStatement(loc, makeargs, new ExpStatement(loc, var));
}
}
forbody = new CompoundStatement(loc, makeargs, this._body);
s = new ForStatement(loc, _init, condition, increment, forbody, endloc);
if (auto ls = checkLabeledLoop(sc, this))
ls.gotoTarget = s;
version (none)
{
printf("init: %s\n", _init.toChars());
printf("condition: %s\n", condition.toChars());
printf("increment: %s\n", increment.toChars());
printf("body: %s\n", forbody.toChars());
}
s = s.semantic(sc2);
break;
Lrangeerr:
error("cannot infer argument types");
goto Lerror2;
}
case Tdelegate:
if (op == TOKforeach_reverse)
deprecation("cannot use foreach_reverse with a delegate");
Lapply:
{
if (checkForArgTypes())
{
_body = _body.semanticNoScope(sc2);
return this;
}
TypeFunction tfld = null;
if (sapply)
{
FuncDeclaration fdapply = sapply.isFuncDeclaration();
if (fdapply)
{
assert(fdapply.type && fdapply.type.ty == Tfunction);
tfld = cast(TypeFunction)fdapply.type.semantic(loc, sc2);
goto Lget;
}
else if (tab.ty == Tdelegate)
{
tfld = cast(TypeFunction)tab.nextOf();
Lget:
//printf("tfld = %s\n", tfld->toChars());
if (tfld.parameters.dim == 1)
{
Parameter p = Parameter.getNth(tfld.parameters, 0);
if (p.type && p.type.ty == Tdelegate)
{
auto t = p.type.semantic(loc, sc2);
assert(t.ty == Tdelegate);
tfld = cast(TypeFunction)t.nextOf();
}
}
}
}
/* Turn body into the function literal:
* int delegate(ref T param) { body }
*/
auto params = new Parameters();
foreach (i; 0 .. dim)
{
Parameter p = (*parameters)[i];
StorageClass stc = STCref;
Identifier id;
p.type = p.type.semantic(loc, sc2);
p.type = p.type.addStorageClass(p.storageClass);
version(IN_LLVM)
{
// Type of parameter may be different; see below
auto para_type = p.type;
}
if (tfld)
{
Parameter prm = Parameter.getNth(tfld.parameters, i);
//printf("\tprm = %s%s\n", (prm->storageClass&STCref?"ref ":""), prm->ident->toChars());
stc = prm.storageClass & STCref;
id = p.ident; // argument copy is not need.
if ((p.storageClass & STCref) != stc)
{
if (!stc)
{
error("foreach: cannot make %s ref", p.ident.toChars());
goto Lerror2;
}
goto LcopyArg;
}
}
else if (p.storageClass & STCref)
{
// default delegate parameters are marked as ref, then
// argument copy is not need.
id = p.ident;
}
else
{
// Make a copy of the ref argument so it isn't
// a reference.
LcopyArg:
id = Identifier.generateId("__applyArg", cast(int)i);
version(IN_LLVM)
{
// In case of a foreach loop on an array the index passed
// to the delegate is always of type size_t. The type of
// the parameter must be changed to size_t and a cast to
// the type used must be inserted. Otherwise the index is
// always 0 on a big endian architecture. This fixes
// issue #326.
Initializer ie;
if (dim == 2 && i == 0 && (tab.ty == Tarray || tab.ty == Tsarray))
{
para_type = Type.tsize_t;
ie = new ExpInitializer(Loc(),
new CastExp(Loc(),
new IdentifierExp(Loc(), id), p.type));
}
else
{
ie = new ExpInitializer(Loc(), new IdentifierExp(Loc(), id));
}
}
else
{
Initializer ie = new ExpInitializer(Loc(), new IdentifierExp(Loc(), id));
}
auto v = new VarDeclaration(Loc(), p.type, p.ident, ie);
v.storage_class |= STCtemp;
s = new ExpStatement(Loc(), v);
_body = new CompoundStatement(loc, s, _body);
}
version(IN_LLVM)
params.push(new Parameter(stc, para_type, id, null));
else
params.push(new Parameter(stc, p.type, id, null));
}
// Bugzilla 13840: Throwable nested function inside nothrow function is acceptable.
StorageClass stc = mergeFuncAttrs(STCsafe | STCpure | STCnogc, func);
tfld = new TypeFunction(params, Type.tint32, 0, LINKd, stc);
cases = new Statements();
gotos = new ScopeStatements();
auto fld = new FuncLiteralDeclaration(loc, Loc(), tfld, TOKdelegate, this);
fld.fbody = _body;
Expression flde = new FuncExp(loc, fld);
flde = flde.semantic(sc2);
fld.tookAddressOf = 0;
// Resolve any forward referenced goto's
foreach (i; 0 .. gotos.dim)
{
GotoStatement gs = cast(GotoStatement)(*gotos)[i].statement;
if (!gs.label.statement)
{
// 'Promote' it to this scope, and replace with a return
cases.push(gs);
s = new ReturnStatement(Loc(), new IntegerExp(cases.dim + 1));
(*gotos)[i].statement = s;
}
}
Expression e = null;
Expression ec;
if (vinit)
{
e = new DeclarationExp(loc, vinit);
e = e.semantic(sc2);
if (e.op == TOKerror)
goto Lerror2;
}
if (taa)
{
// Check types
Parameter p = (*parameters)[0];
bool isRef = (p.storageClass & STCref) != 0;
Type ta = p.type;
if (dim == 2)
{
Type ti = (isRef ? taa.index.addMod(MODconst) : taa.index);
if (isRef ? !ti.constConv(ta) : !ti.implicitConvTo(ta))
{
error("foreach: index must be type %s, not %s",
ti.toChars(), ta.toChars());
goto Lerror2;
}
p = (*parameters)[1];
isRef = (p.storageClass & STCref) != 0;
ta = p.type;
}
Type taav = taa.nextOf();
if (isRef ? !taav.constConv(ta) : !taav.implicitConvTo(ta))
{
error("foreach: value must be type %s, not %s",
taav.toChars(), ta.toChars());
goto Lerror2;
}
/* Call:
* extern(C) int _aaApply(void*, in size_t, int delegate(void*))
* _aaApply(aggr, keysize, flde)
*
* extern(C) int _aaApply2(void*, in size_t, int delegate(void*, void*))
* _aaApply2(aggr, keysize, flde)
*/
static __gshared const(char)** name = ["_aaApply", "_aaApply2"];
static __gshared FuncDeclaration* fdapply = [null, null];
static __gshared TypeDelegate* fldeTy = [null, null];
ubyte i = (dim == 2 ? 1 : 0);
if (!fdapply[i])
{
params = new Parameters();
params.push(new Parameter(0, Type.tvoid.pointerTo(), null, null));
params.push(new Parameter(STCin, Type.tsize_t, null, null));
auto dgparams = new Parameters();
dgparams.push(new Parameter(0, Type.tvoidptr, null, null));
if (dim == 2)
dgparams.push(new Parameter(0, Type.tvoidptr, null, null));
fldeTy[i] = new TypeDelegate(new TypeFunction(dgparams, Type.tint32, 0, LINKd));
params.push(new Parameter(0, fldeTy[i], null, null));
fdapply[i] = FuncDeclaration.genCfunc(params, Type.tint32, name[i]);
}
auto exps = new Expressions();
exps.push(aggr);
size_t keysize = cast(size_t)taa.index.size();
keysize = (keysize + (cast(size_t)Target.ptrsize - 1)) & ~(cast(size_t)Target.ptrsize - 1);
// paint delegate argument to the type runtime expects
if (!fldeTy[i].equals(flde.type))
{
flde = new CastExp(loc, flde, flde.type);
flde.type = fldeTy[i];
}
exps.push(new IntegerExp(Loc(), keysize, Type.tsize_t));
exps.push(flde);
ec = new VarExp(Loc(), fdapply[i], false);
ec = new CallExp(loc, ec, exps);
ec.type = Type.tint32; // don't run semantic() on ec
}
else if (tab.ty == Tarray || tab.ty == Tsarray)
{
/* Call:
* _aApply(aggr, flde)
*/
static __gshared const(char)** fntab =
[
"cc", "cw", "cd",
"wc", "cc", "wd",
"dc", "dw", "dd"
];
const(size_t) BUFFER_LEN = 7 + 1 + 2 + dim.sizeof * 3 + 1;
char[BUFFER_LEN] fdname;
int flag;
switch (tn.ty)
{
case Tchar: flag = 0; break;
case Twchar: flag = 3; break;
case Tdchar: flag = 6; break;
default:
assert(0);
}
switch (tnv.ty)
{
case Tchar: flag += 0; break;
case Twchar: flag += 1; break;
case Tdchar: flag += 2; break;
default:
assert(0);
}
const(char)* r = (op == TOKforeach_reverse) ? "R" : "";
int j = sprintf(fdname.ptr, "_aApply%s%.*s%llu", r, 2, fntab[flag], cast(ulong)dim);
assert(j < BUFFER_LEN);
FuncDeclaration fdapply;
TypeDelegate dgty;
params = new Parameters();
params.push(new Parameter(STCin, tn.arrayOf(), null, null));
auto dgparams = new Parameters();
dgparams.push(new Parameter(0, Type.tvoidptr, null, null));
if (dim == 2)
dgparams.push(new Parameter(0, Type.tvoidptr, null, null));
dgty = new TypeDelegate(new TypeFunction(dgparams, Type.tint32, 0, LINKd));
params.push(new Parameter(0, dgty, null, null));
fdapply = FuncDeclaration.genCfunc(params, Type.tint32, fdname.ptr);
if (tab.ty == Tsarray)
aggr = aggr.castTo(sc2, tn.arrayOf());
// paint delegate argument to the type runtime expects
if (!dgty.equals(flde.type))
{
flde = new CastExp(loc, flde, flde.type);
flde.type = dgty;
}
ec = new VarExp(Loc(), fdapply, false);
ec = new CallExp(loc, ec, aggr, flde);
ec.type = Type.tint32; // don't run semantic() on ec
}
else if (tab.ty == Tdelegate)
{
/* Call:
* aggr(flde)
*/
if (aggr.op == TOKdelegate && (cast(DelegateExp)aggr).func.isNested())
{
// See Bugzilla 3560
aggr = (cast(DelegateExp)aggr).e1;
}
ec = new CallExp(loc, aggr, flde);
ec = ec.semantic(sc2);
if (ec.op == TOKerror)
goto Lerror2;
if (ec.type != Type.tint32)
{
error("opApply() function for %s must return an int", tab.toChars());
goto Lerror2;
}
}
else
{
assert(tab.ty == Tstruct || tab.ty == Tclass);
assert(sapply);
/* Call:
* aggr.apply(flde)
*/
ec = new DotIdExp(loc, aggr, sapply.ident);
ec = new CallExp(loc, ec, flde);
ec = ec.semantic(sc2);
if (ec.op == TOKerror)
goto Lerror2;
if (ec.type != Type.tint32)
{
error("opApply() function for %s must return an int", tab.toChars());
goto Lerror2;
}
}
e = Expression.combine(e, ec);
if (!cases.dim)
{
// Easy case, a clean exit from the loop
e = new CastExp(loc, e, Type.tvoid); // Bugzilla 13899
s = new ExpStatement(loc, e);
}
else
{
// Construct a switch statement around the return value
// of the apply function.
auto a = new Statements();
// default: break; takes care of cases 0 and 1
s = new BreakStatement(Loc(), null);
s = new DefaultStatement(Loc(), s);
a.push(s);
// cases 2...
foreach (i, c; *cases)
{
s = new CaseStatement(Loc(), new IntegerExp(i + 2), c);
a.push(s);
}
s = new CompoundStatement(loc, a);
s = new SwitchStatement(loc, e, s, false);
}
s = s.semantic(sc2);
break;
}
case Terror:
Lerror2:
s = new ErrorStatement();
break;
default:
error("foreach: %s is not an aggregate type", aggr.type.toChars());
goto Lerror2;
}
sc2.noctor--;
sc2.pop();
return s;
}
bool checkForArgTypes()
{
bool result = false;
foreach (p; *parameters)
{
if (!p.type)
{
error("cannot infer type for %s", p.ident.toChars());
p.type = Type.terror;
result = true;
}
}
return result;
}
override bool hasBreak()
{
return true;
}
override bool hasContinue()
{
return true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class ForeachRangeStatement : Statement
{
public:
TOK op; // TOKforeach or TOKforeach_reverse
Parameter prm; // loop index variable
Expression lwr;
Expression upr;
Statement _body;
Loc endloc; // location of closing curly bracket
VarDeclaration key;
extern (D) this(Loc loc, TOK op, Parameter prm, Expression lwr, Expression upr, Statement _body, Loc endloc)
{
super(loc);
this.op = op;
this.prm = prm;
this.lwr = lwr;
this.upr = upr;
this._body = _body;
this.endloc = endloc;
}
override Statement syntaxCopy()
{
return new ForeachRangeStatement(loc, op, prm.syntaxCopy(), lwr.syntaxCopy(), upr.syntaxCopy(), _body ? _body.syntaxCopy() : null, endloc);
}
override Statement semantic(Scope* sc)
{
//printf("ForeachRangeStatement::semantic() %p\n", this);
lwr = lwr.semantic(sc);
lwr = resolveProperties(sc, lwr);
lwr = lwr.optimize(WANTvalue);
if (!lwr.type)
{
error("invalid range lower bound %s", lwr.toChars());
Lerror:
return new ErrorStatement();
}
upr = upr.semantic(sc);
upr = resolveProperties(sc, upr);
upr = upr.optimize(WANTvalue);
if (!upr.type)
{
error("invalid range upper bound %s", upr.toChars());
goto Lerror;
}
if (prm.type)
{
prm.type = prm.type.semantic(loc, sc);
prm.type = prm.type.addStorageClass(prm.storageClass);
lwr = lwr.implicitCastTo(sc, prm.type);
if (upr.implicitConvTo(prm.type) || (prm.storageClass & STCref))
{
upr = upr.implicitCastTo(sc, prm.type);
}
else
{
// See if upr-1 fits in prm->type
Expression limit = new MinExp(loc, upr, new IntegerExp(1));
limit = limit.semantic(sc);
limit = limit.optimize(WANTvalue);
if (!limit.implicitConvTo(prm.type))
{
upr = upr.implicitCastTo(sc, prm.type);
}
}
}
else
{
/* Must infer types from lwr and upr
*/
Type tlwr = lwr.type.toBasetype();
if (tlwr.ty == Tstruct || tlwr.ty == Tclass)
{
/* Just picking the first really isn't good enough.
*/
prm.type = lwr.type;
}
else if (lwr.type == upr.type)
{
/* Same logic as CondExp ?lwr:upr
*/
prm.type = lwr.type;
}
else
{
scope AddExp ea = new AddExp(loc, lwr, upr);
if (typeCombine(ea, sc))
return new ErrorStatement();
prm.type = ea.type;
lwr = ea.e1;
upr = ea.e2;
}
prm.type = prm.type.addStorageClass(prm.storageClass);
}
if (prm.type.ty == Terror || lwr.op == TOKerror || upr.op == TOKerror)
{
return new ErrorStatement();
}
/* Convert to a for loop:
* foreach (key; lwr .. upr) =>
* for (auto key = lwr, auto tmp = upr; key < tmp; ++key)
*
* foreach_reverse (key; lwr .. upr) =>
* for (auto tmp = lwr, auto key = upr; key-- > tmp;)
*/
auto ie = new ExpInitializer(loc, (op == TOKforeach) ? lwr : upr);
key = new VarDeclaration(loc, upr.type.mutableOf(), Identifier.generateId("__key"), ie);
key.storage_class |= STCtemp;
SignExtendedNumber lower = getIntRange(lwr).imin;
SignExtendedNumber upper = getIntRange(upr).imax;
if (lower <= upper)
{
key.range = new IntRange(lower, upper);
}
Identifier id = Identifier.generateId("__limit");
ie = new ExpInitializer(loc, (op == TOKforeach) ? upr : lwr);
auto tmp = new VarDeclaration(loc, upr.type, id, ie);
tmp.storage_class |= STCtemp;
auto cs = new Statements();
// Keep order of evaluation as lwr, then upr
if (op == TOKforeach)
{
cs.push(new ExpStatement(loc, key));
cs.push(new ExpStatement(loc, tmp));
}
else
{
cs.push(new ExpStatement(loc, tmp));
cs.push(new ExpStatement(loc, key));
}
Statement forinit = new CompoundDeclarationStatement(loc, cs);
Expression cond;
if (op == TOKforeach_reverse)
{
cond = new PostExp(TOKminusminus, loc, new VarExp(loc, key));
if (prm.type.isscalar())
{
// key-- > tmp
cond = new CmpExp(TOKgt, loc, cond, new VarExp(loc, tmp));
}
else
{
// key-- != tmp
cond = new EqualExp(TOKnotequal, loc, cond, new VarExp(loc, tmp));
}
}
else
{
if (prm.type.isscalar())
{
// key < tmp
cond = new CmpExp(TOKlt, loc, new VarExp(loc, key), new VarExp(loc, tmp));
}
else
{
// key != tmp
cond = new EqualExp(TOKnotequal, loc, new VarExp(loc, key), new VarExp(loc, tmp));
}
}
Expression increment = null;
if (op == TOKforeach)
{
// key += 1
//increment = new AddAssignExp(loc, new VarExp(loc, key), new IntegerExp(1));
increment = new PreExp(TOKpreplusplus, loc, new VarExp(loc, key));
}
if ((prm.storageClass & STCref) && prm.type.equals(key.type))
{
key.range = null;
auto v = new AliasDeclaration(loc, prm.ident, key);
_body = new CompoundStatement(loc, new ExpStatement(loc, v), _body);
}
else
{
ie = new ExpInitializer(loc, new CastExp(loc, new VarExp(loc, key), prm.type));
auto v = new VarDeclaration(loc, prm.type, prm.ident, ie);
v.storage_class |= STCtemp | STCforeach | (prm.storageClass & STCref);
_body = new CompoundStatement(loc, new ExpStatement(loc, v), _body);
if (key.range && !prm.type.isMutable())
{
/* Limit the range of the key to the specified range
*/
v.range = new IntRange(key.range.imin, key.range.imax - SignExtendedNumber(1));
}
}
if (prm.storageClass & STCref)
{
if (key.type.constConv(prm.type) <= MATCHnomatch)
{
error("prmument type mismatch, %s to ref %s", key.type.toChars(), prm.type.toChars());
goto Lerror;
}
}
auto s = new ForStatement(loc, forinit, cond, increment, _body, endloc);
if (LabelStatement ls = checkLabeledLoop(sc, this))
ls.gotoTarget = s;
return s.semantic(sc);
}
override bool hasBreak()
{
return true;
}
override bool hasContinue()
{
return true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class IfStatement : Statement
{
public:
Parameter prm;
Expression condition;
Statement ifbody;
Statement elsebody;
VarDeclaration match; // for MatchExpression results
extern (D) this(Loc loc, Parameter prm, Expression condition, Statement ifbody, Statement elsebody)
{
super(loc);
this.prm = prm;
this.condition = condition;
this.ifbody = ifbody;
this.elsebody = elsebody;
}
override Statement syntaxCopy()
{
return new IfStatement(loc,
prm ? prm.syntaxCopy() : null,
condition.syntaxCopy(),
ifbody ? ifbody.syntaxCopy() : null,
elsebody ? elsebody.syntaxCopy() : null);
}
override Statement semantic(Scope* sc)
{
// Evaluate at runtime
uint cs0 = sc.callSuper;
uint cs1;
uint* fi0 = sc.saveFieldInit();
uint* fi1 = null;
// check in syntax level
condition = checkAssignmentAsCondition(condition);
auto sym = new ScopeDsymbol();
sym.parent = sc.scopesym;
Scope* scd = sc.push(sym);
if (prm)
{
/* Declare prm, which we will set to be the
* result of condition.
*/
auto ei = new ExpInitializer(loc, condition);
match = new VarDeclaration(loc, prm.type, prm.ident, ei);
match.parent = scd.func;
match.storage_class |= prm.storageClass;
match.semantic(scd);
auto de = new DeclarationExp(loc, match);
auto ve = new VarExp(loc, match);
condition = new CommaExp(loc, de, ve);
condition = condition.semantic(scd);
if (match.edtor)
{
Statement sdtor = new DtorExpStatement(loc, match.edtor, match);
sdtor = new OnScopeStatement(loc, TOKon_scope_exit, sdtor);
ifbody = new CompoundStatement(loc, sdtor, ifbody);
match.noscope = true;
}
}
else
{
condition = condition.semantic(scd);
condition = resolveProperties(scd, condition);
condition = condition.addDtorHook(scd);
}
if (checkNonAssignmentArrayOp(condition))
condition = new ErrorExp();
condition = checkGC(scd, condition);
// Convert to boolean after declaring prm so this works:
// if (S prm = S()) {}
// where S is a struct that defines opCast!bool.
condition = condition.toBoolean(scd);
// If we can short-circuit evaluate the if statement, don't do the
// semantic analysis of the skipped code.
// This feature allows a limited form of conditional compilation.
condition = condition.optimize(WANTvalue);
ifbody = ifbody.semanticNoScope(scd);
scd.pop();
cs1 = sc.callSuper;
fi1 = sc.fieldinit;
sc.callSuper = cs0;
sc.fieldinit = fi0;
if (elsebody)
elsebody = elsebody.semanticScope(sc, null, null);
sc.mergeCallSuper(loc, cs1);
sc.mergeFieldInit(loc, fi1);
if (condition.op == TOKerror ||
(ifbody && ifbody.isErrorStatement()) ||
(elsebody && elsebody.isErrorStatement()))
{
return new ErrorStatement();
}
return this;
}
override IfStatement isIfStatement()
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class ConditionalStatement : Statement
{
public:
Condition condition;
Statement ifbody;
Statement elsebody;
extern (D) this(Loc loc, Condition condition, Statement ifbody, Statement elsebody)
{
super(loc);
this.condition = condition;
this.ifbody = ifbody;
this.elsebody = elsebody;
}
override Statement syntaxCopy()
{
return new ConditionalStatement(loc, condition.syntaxCopy(), ifbody.syntaxCopy(), elsebody ? elsebody.syntaxCopy() : null);
}
override Statement semantic(Scope* sc)
{
//printf("ConditionalStatement::semantic()\n");
// If we can short-circuit evaluate the if statement, don't do the
// semantic analysis of the skipped code.
// This feature allows a limited form of conditional compilation.
if (condition.include(sc, null))
{
DebugCondition dc = condition.isDebugCondition();
if (dc)
{
sc = sc.push();
sc.flags |= SCOPEdebug;
ifbody = ifbody.semantic(sc);
sc.pop();
}
else
ifbody = ifbody.semantic(sc);
return ifbody;
}
else
{
if (elsebody)
elsebody = elsebody.semantic(sc);
return elsebody;
}
}
override Statements* flatten(Scope* sc)
{
Statement s;
//printf("ConditionalStatement::flatten()\n");
if (condition.include(sc, null))
{
DebugCondition dc = condition.isDebugCondition();
if (dc)
s = new DebugStatement(loc, ifbody);
else
s = ifbody;
}
else
s = elsebody;
auto a = new Statements();
a.push(s);
return a;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class PragmaStatement : Statement
{
public:
Identifier ident;
Expressions* args; // array of Expression's
Statement _body;
extern (D) this(Loc loc, Identifier ident, Expressions* args, Statement _body)
{
super(loc);
this.ident = ident;
this.args = args;
this._body = _body;
}
override Statement syntaxCopy()
{
return new PragmaStatement(loc, ident, Expression.arraySyntaxCopy(args), _body ? _body.syntaxCopy() : null);
}
override Statement semantic(Scope* sc)
{
// Should be merged with PragmaDeclaration
//printf("PragmaStatement::semantic() %s\n", toChars());
//printf("body = %p\n", body);
if (ident == Id.msg)
{
if (args)
{
foreach (arg; *args)
{
sc = sc.startCTFE();
auto e = arg.semantic(sc);
e = resolveProperties(sc, e);
sc = sc.endCTFE();
// pragma(msg) is allowed to contain types as well as expressions
e = ctfeInterpretForPragmaMsg(e);
if (e.op == TOKerror)
{
errorSupplemental(loc, "while evaluating pragma(msg, %s)", arg.toChars());
goto Lerror;
}
StringExp se = e.toStringExp();
if (se)
{
se = se.toUTF8(sc);
fprintf(stderr, "%.*s", cast(int)se.len, se.string);
}
else
fprintf(stderr, "%s", e.toChars());
}
fprintf(stderr, "\n");
}
}
else if (ident == Id.lib)
{
version (all)
{
/* Should this be allowed?
*/
error("pragma(lib) not allowed as statement");
goto Lerror;
}
else
{
if (!args || args.dim != 1)
{
error("string expected for library name");
goto Lerror;
}
else
{
Expression e = (*args)[0];
sc = sc.startCTFE();
e = e.semantic(sc);
e = resolveProperties(sc, e);
sc = sc.endCTFE();
e = e.ctfeInterpret();
(*args)[0] = e;
StringExp se = e.toStringExp();
if (!se)
{
error("string expected for library name, not '%s'", e.toChars());
goto Lerror;
}
else if (global.params.verbose)
{
fprintf(global.stdmsg, "library %.*s\n", cast(int)se.len, se.string);
}
}
}
}
// IN_LLVM. FIXME Move to pragma.cpp
else if (ident == Id.LDC_allow_inline)
{
sc.func.allowInlining = true;
}
// IN_LLVM. FIXME Move to pragma.cpp
else if (ident == Id.LDC_never_inline)
{
sc.func.neverInline = true;
}
// IN_LLVM. FIXME Move to pragma.cpp
else if (ident == Id.LDC_profile_instr)
{
bool emitInstr = true;
if (!args || args.dim != 1 || !DtoCheckProfileInstrPragma((*args)[0], emitInstr))
{
error("pragma(LDC_profile_instr, true or false) expected");
goto Lerror;
}
else
{
FuncDeclaration fd = sc.func;
if (fd is null)
{
error("pragma(LDC_profile_instr, ...) is not inside a function");
goto Lerror;
}
fd.emitInstrumentation = emitInstr;
}
}
else if (ident == Id.startaddress)
{
if (!args || args.dim != 1)
error("function name expected for start address");
else
{
Expression e = (*args)[0];
sc = sc.startCTFE();
e = e.semantic(sc);
e = resolveProperties(sc, e);
sc = sc.endCTFE();
e = e.ctfeInterpret();
(*args)[0] = e;
Dsymbol sa = getDsymbol(e);
if (!sa || !sa.isFuncDeclaration())
{
error("function name expected for start address, not '%s'", e.toChars());
goto Lerror;
}
if (_body)
{
_body = _body.semantic(sc);
if (_body.isErrorStatement())
return _body;
}
return this;
}
}
else if (ident == Id.Pinline)
{
PINLINE inlining = PINLINEdefault;
if (!args || args.dim == 0)
inlining = PINLINEdefault;
else if (!args || args.dim != 1)
{
error("boolean expression expected for pragma(inline)");
goto Lerror;
}
else
{
Expression e = (*args)[0];
if (e.op != TOKint64 || !e.type.equals(Type.tbool))
{
error("pragma(inline, true or false) expected, not %s", e.toChars());
goto Lerror;
}
if (e.isBool(true))
inlining = PINLINEalways;
else if (e.isBool(false))
inlining = PINLINEnever;
FuncDeclaration fd = sc.func;
if (!fd)
{
error("pragma(inline) is not inside a function");
goto Lerror;
}
fd.inlining = inlining;
}
}
else
{
error("unrecognized pragma(%s)", ident.toChars());
goto Lerror;
}
if (_body)
{
_body = _body.semantic(sc);
}
return _body;
Lerror:
return new ErrorStatement();
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class StaticAssertStatement : Statement
{
public:
StaticAssert sa;
extern (D) this(StaticAssert sa)
{
super(sa.loc);
this.sa = sa;
}
override Statement syntaxCopy()
{
return new StaticAssertStatement(cast(StaticAssert)sa.syntaxCopy(null));
}
override Statement semantic(Scope* sc)
{
sa.semantic2(sc);
return null;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class SwitchStatement : Statement
{
public:
Expression condition;
Statement _body;
bool isFinal;
DefaultStatement sdefault;
TryFinallyStatement tf;
GotoCaseStatements gotoCases; // array of unresolved GotoCaseStatement's
CaseStatements* cases; // array of CaseStatement's
int hasNoDefault; // !=0 if no default statement
int hasVars; // !=0 if has variable case values
version(IN_LLVM)
{
bool hasGotoDefault; // true iff there is a `goto default` statement for this switch
}
extern (D) this(Loc loc, Expression c, Statement b, bool isFinal)
{
super(loc);
this.condition = c;
this._body = b;
this.isFinal = isFinal;
}
override Statement syntaxCopy()
{
return new SwitchStatement(loc, condition.syntaxCopy(), _body.syntaxCopy(), isFinal);
}
override Statement semantic(Scope* sc)
{
//printf("SwitchStatement::semantic(%p)\n", this);
tf = sc.tf;
if (cases)
return this; // already run
bool conditionError = false;
condition = condition.semantic(sc);
condition = resolveProperties(sc, condition);
Type att = null;
TypeEnum te = null;
while (condition.op != TOKerror)
{
// preserve enum type for final switches
if (condition.type.ty == Tenum)
te = cast(TypeEnum)condition.type;
if (condition.type.isString())
{
// If it's not an array, cast it to one
if (condition.type.ty != Tarray)
{
condition = condition.implicitCastTo(sc, condition.type.nextOf().arrayOf());
}
condition.type = condition.type.constOf();
break;
}
condition = integralPromotions(condition, sc);
if (condition.op != TOKerror && condition.type.isintegral())
break;
auto ad = isAggregate(condition.type);
if (ad && ad.aliasthis && condition.type != att)
{
if (!att && condition.type.checkAliasThisRec())
att = condition.type;
if (auto e = resolveAliasThis(sc, condition, true))
{
condition = e;
continue;
}
}
if (condition.op != TOKerror)
{
error("'%s' must be of integral or string type, it is a %s",
condition.toChars(), condition.type.toChars());
conditionError = true;
break;
}
}
if (checkNonAssignmentArrayOp(condition))
condition = new ErrorExp();
condition = condition.optimize(WANTvalue);
condition = checkGC(sc, condition);
if (condition.op == TOKerror)
conditionError = true;
bool needswitcherror = false;
sc = sc.push();
sc.sbreak = this;
sc.sw = this;
cases = new CaseStatements();
sc.noctor++; // BUG: should use Scope::mergeCallSuper() for each case instead
_body = _body.semantic(sc);
sc.noctor--;
if (conditionError || _body.isErrorStatement())
goto Lerror;
// Resolve any goto case's with exp
foreach (gcs; gotoCases)
{
if (!gcs.exp)
{
gcs.error("no case statement following goto case;");
goto Lerror;
}
for (Scope* scx = sc; scx; scx = scx.enclosing)
{
if (!scx.sw)
continue;
foreach (cs; *scx.sw.cases)
{
if (cs.exp.equals(gcs.exp))
{
gcs.cs = cs;
version(IN_LLVM)
{
cs.gototarget = true;
}
goto Lfoundcase;
}
}
}
gcs.error("case %s not found", gcs.exp.toChars());
goto Lerror;
Lfoundcase:
}
if (isFinal)
{
Type t = condition.type;
Dsymbol ds;
EnumDeclaration ed = null;
if (t && ((ds = t.toDsymbol(sc)) !is null))
ed = ds.isEnumDeclaration(); // typedef'ed enum
if (!ed && te && ((ds = te.toDsymbol(sc)) !is null))
ed = ds.isEnumDeclaration();
if (ed)
{
foreach (es; *ed.members)
{
EnumMember em = es.isEnumMember();
if (em)
{
foreach (cs; *cases)
{
if (cs.exp.equals(em.value) || (!cs.exp.type.isString() && !em.value.type.isString() && cs.exp.toInteger() == em.value.toInteger()))
goto L1;
}
error("enum member %s not represented in final switch", em.toChars());
goto Lerror;
}
L1:
}
}
else
needswitcherror = true;
}
if (!sc.sw.sdefault && (!isFinal || needswitcherror || global.params.useAssert))
{
hasNoDefault = 1;
if (!isFinal && !_body.isErrorStatement())
error("switch statement without a default; use 'final switch' or add 'default: assert(0);' or add 'default: break;'");
// Generate runtime error if the default is hit
auto a = new Statements();
CompoundStatement cs;
Statement s;
if (global.params.useSwitchError)
s = new SwitchErrorStatement(loc);
else
s = new ExpStatement(loc, new HaltExp(loc));
a.reserve(2);
sc.sw.sdefault = new DefaultStatement(loc, s);
a.push(_body);
if (_body.blockExit(sc.func, false) & BEfallthru)
a.push(new BreakStatement(Loc(), null));
a.push(sc.sw.sdefault);
cs = new CompoundStatement(loc, a);
_body = cs;
}
version(IN_LLVM)
{
/+ hasGotoDefault is set by GotoDefaultStatement.semantic
+ at which point sdefault may still be null, therefore
+ set sdefault.gototarget here.
+/
if (hasGotoDefault) {
assert(sdefault);
sdefault.gototarget = true;
}
}
sc.pop();
return this;
Lerror:
sc.pop();
return new ErrorStatement();
}
override bool hasBreak()
{
return true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class CaseStatement : Statement
{
public:
Expression exp;
Statement statement;
int index; // which case it is (since we sort this)
version(IN_LLVM)
{
bool gototarget; // true iff this is the target of a 'goto case'
void* bodyBB; // llvm::BasicBlock*
void* llvmIdx; // llvm::Value*
}
extern (D) this(Loc loc, Expression exp, Statement s)
{
super(loc);
this.exp = exp;
this.statement = s;
}
override Statement syntaxCopy()
{
return new CaseStatement(loc, exp.syntaxCopy(), statement.syntaxCopy());
}
override Statement semantic(Scope* sc)
{
SwitchStatement sw = sc.sw;
bool errors = false;
//printf("CaseStatement::semantic() %s\n", toChars());
sc = sc.startCTFE();
exp = exp.semantic(sc);
exp = resolveProperties(sc, exp);
sc = sc.endCTFE();
if (sw)
{
exp = exp.implicitCastTo(sc, sw.condition.type);
exp = exp.optimize(WANTvalue | WANTexpand);
/* This is where variables are allowed as case expressions.
*/
if (exp.op == TOKvar)
{
VarExp ve = cast(VarExp)exp;
VarDeclaration v = ve.var.isVarDeclaration();
Type t = exp.type.toBasetype();
if (v && (t.isintegral() || t.ty == Tclass))
{
/* Flag that we need to do special code generation
* for this, i.e. generate a sequence of if-then-else
*/
sw.hasVars = 1;
if (sw.isFinal)
{
error("case variables not allowed in final switch statements");
errors = true;
}
goto L1;
}
}
else
exp = exp.ctfeInterpret();
if (StringExp se = exp.toStringExp())
exp = se;
else if (exp.op != TOKint64 && exp.op != TOKerror)
{
error("case must be a string or an integral constant, not %s", exp.toChars());
errors = true;
}
L1:
foreach (cs; *sw.cases)
{
//printf("comparing '%s' with '%s'\n", exp->toChars(), cs->exp->toChars());
if (cs.exp.equals(exp))
{
error("duplicate case %s in switch statement", exp.toChars());
errors = true;
break;
}
}
sw.cases.push(this);
// Resolve any goto case's with no exp to this case statement
for (size_t i = 0; i < sw.gotoCases.dim;)
{
GotoCaseStatement gcs = sw.gotoCases[i];
if (!gcs.exp)
{
gcs.cs = this;
sw.gotoCases.remove(i); // remove from array
continue;
}
i++;
}
if (sc.sw.tf != sc.tf)
{
error("switch and case are in different finally blocks");
errors = true;
}
}
else
{
error("case not in switch statement");
errors = true;
}
statement = statement.semantic(sc);
if (statement.isErrorStatement())
return statement;
if (errors || exp.op == TOKerror)
return new ErrorStatement();
return this;
}
override int compare(RootObject obj)
{
// Sort cases so we can do an efficient lookup
CaseStatement cs2 = cast(CaseStatement)obj;
return exp.compare(cs2.exp);
}
override CaseStatement isCaseStatement()
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class CaseRangeStatement : Statement
{
public:
Expression first;
Expression last;
Statement statement;
extern (D) this(Loc loc, Expression first, Expression last, Statement s)
{
super(loc);
this.first = first;
this.last = last;
this.statement = s;
}
override Statement syntaxCopy()
{
return new CaseRangeStatement(loc, first.syntaxCopy(), last.syntaxCopy(), statement.syntaxCopy());
}
override Statement semantic(Scope* sc)
{
SwitchStatement sw = sc.sw;
if (sw is null)
{
error("case range not in switch statement");
return new ErrorStatement();
}
//printf("CaseRangeStatement::semantic() %s\n", toChars());
bool errors = false;
if (sw.isFinal)
{
error("case ranges not allowed in final switch");
errors = true;
}
sc = sc.startCTFE();
first = first.semantic(sc);
first = resolveProperties(sc, first);
sc = sc.endCTFE();
first = first.implicitCastTo(sc, sw.condition.type);
first = first.ctfeInterpret();
sc = sc.startCTFE();
last = last.semantic(sc);
last = resolveProperties(sc, last);
sc = sc.endCTFE();
last = last.implicitCastTo(sc, sw.condition.type);
last = last.ctfeInterpret();
if (first.op == TOKerror || last.op == TOKerror || errors)
{
if (statement)
statement.semantic(sc);
return new ErrorStatement();
}
uinteger_t fval = first.toInteger();
uinteger_t lval = last.toInteger();
if ((first.type.isunsigned() && fval > lval) || (!first.type.isunsigned() && cast(sinteger_t)fval > cast(sinteger_t)lval))
{
error("first case %s is greater than last case %s", first.toChars(), last.toChars());
errors = true;
lval = fval;
}
if (lval - fval > 256)
{
error("had %llu cases which is more than 256 cases in case range", lval - fval);
errors = true;
lval = fval + 256;
}
if (errors)
return new ErrorStatement();
/* This works by replacing the CaseRange with an array of Case's.
*
* case a: .. case b: s;
* =>
* case a:
* [...]
* case b:
* s;
*/
auto statements = new Statements();
for (uinteger_t i = fval; i != lval + 1; i++)
{
Statement s = statement;
if (i != lval) // if not last case
s = new ExpStatement(loc, cast(Expression)null);
Expression e = new IntegerExp(loc, i, first.type);
Statement cs = new CaseStatement(loc, e, s);
statements.push(cs);
}
Statement s = new CompoundStatement(loc, statements);
s = s.semantic(sc);
return s;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class DefaultStatement : Statement
{
public:
Statement statement;
version(IN_LLVM)
{
bool gototarget; // true iff this is the target of a 'goto default'
void* bodyBB; // llvm::BasicBlock*
}
extern (D) this(Loc loc, Statement s)
{
super(loc);
this.statement = s;
}
override Statement syntaxCopy()
{
return new DefaultStatement(loc, statement.syntaxCopy());
}
override Statement semantic(Scope* sc)
{
//printf("DefaultStatement::semantic()\n");
bool errors = false;
if (sc.sw)
{
if (sc.sw.sdefault)
{
error("switch statement already has a default");
errors = true;
}
sc.sw.sdefault = this;
if (sc.sw.tf != sc.tf)
{
error("switch and default are in different finally blocks");
errors = true;
}
if (sc.sw.isFinal)
{
error("default statement not allowed in final switch statement");
errors = true;
}
}
else
{
error("default not in switch statement");
errors = true;
}
statement = statement.semantic(sc);
if (errors || statement.isErrorStatement())
return new ErrorStatement();
return this;
}
override DefaultStatement isDefaultStatement()
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class GotoDefaultStatement : Statement
{
public:
SwitchStatement sw;
extern (D) this(Loc loc)
{
super(loc);
}
override Statement syntaxCopy()
{
return new GotoDefaultStatement(loc);
}
override Statement semantic(Scope* sc)
{
sw = sc.sw;
if (!sw)
{
error("goto default not in switch statement");
return new ErrorStatement();
}
if (sw.isFinal)
{
error("goto default not allowed in final switch statement");
return new ErrorStatement();
}
version(IN_LLVM)
{
sw.hasGotoDefault = true;
}
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class GotoCaseStatement : Statement
{
public:
Expression exp; // null, or which case to goto
CaseStatement cs; // case statement it resolves to
version(IN_LLVM)
{
SwitchStatement sw;
}
extern (D) this(Loc loc, Expression exp)
{
super(loc);
this.exp = exp;
}
override Statement syntaxCopy()
{
return new GotoCaseStatement(loc, exp ? exp.syntaxCopy() : null);
}
override Statement semantic(Scope* sc)
{
if (!sc.sw)
{
error("goto case not in switch statement");
return new ErrorStatement();
}
version(IN_LLVM)
{
sw = sc.sw;
}
if (exp)
{
exp = exp.semantic(sc);
exp = exp.implicitCastTo(sc, sc.sw.condition.type);
exp = exp.optimize(WANTvalue);
if (exp.op == TOKerror)
return new ErrorStatement();
}
sc.sw.gotoCases.push(this);
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class SwitchErrorStatement : Statement
{
public:
extern (D) this(Loc loc)
{
super(loc);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class ReturnStatement : Statement
{
public:
Expression exp;
size_t caseDim;
extern (D) this(Loc loc, Expression exp)
{
super(loc);
this.exp = exp;
}
override Statement syntaxCopy()
{
return new ReturnStatement(loc, exp ? exp.syntaxCopy() : null);
}
override Statement semantic(Scope* sc)
{
//printf("ReturnStatement::semantic() %s\n", toChars());
FuncDeclaration fd = sc.parent.isFuncDeclaration();
if (fd.fes)
fd = fd.fes.func; // fd is now function enclosing foreach
TypeFunction tf = cast(TypeFunction)fd.type;
assert(tf.ty == Tfunction);
if (exp && exp.op == TOKvar && (cast(VarExp)exp).var == fd.vresult)
{
// return vresult;
if (sc.fes)
{
assert(caseDim == 0);
sc.fes.cases.push(this);
return new ReturnStatement(Loc(), new IntegerExp(sc.fes.cases.dim + 1));
}
if (fd.returnLabel)
{
auto gs = new GotoStatement(loc, Id.returnLabel);
gs.label = fd.returnLabel;
return gs;
}
if (!fd.returns)
fd.returns = new ReturnStatements();
fd.returns.push(this);
return this;
}
Type tret = tf.next;
Type tbret = tret ? tret.toBasetype() : null;
bool inferRef = (tf.isref && (fd.storage_class & STCauto));
Expression e0 = null;
bool errors = false;
if (sc.flags & SCOPEcontract)
{
error("return statements cannot be in contracts");
errors = true;
}
if (sc.os && sc.os.tok != TOKon_scope_failure)
{
error("return statements cannot be in %s bodies", Token.toChars(sc.os.tok));
errors = true;
}
if (sc.tf)
{
error("return statements cannot be in finally bodies");
errors = true;
}
if (fd.isCtorDeclaration())
{
if (exp)
{
error("cannot return expression from constructor");
errors = true;
}
// Constructors implicitly do:
// return this;
exp = new ThisExp(Loc());
exp.type = tret;
}
else if (exp)
{
fd.hasReturnExp |= 1;
FuncLiteralDeclaration fld = fd.isFuncLiteralDeclaration();
if (tret)
exp = inferType(exp, tret);
else if (fld && fld.treq)
exp = inferType(exp, fld.treq.nextOf().nextOf());
exp = exp.semantic(sc);
exp = resolveProperties(sc, exp);
if (exp.checkType())
exp = new ErrorExp();
if (auto f = isFuncAddress(exp))
{
if (fd.inferRetType && f.checkForwardRef(exp.loc))
exp = new ErrorExp();
}
if (checkNonAssignmentArrayOp(exp))
exp = new ErrorExp();
// Extract side-effect part
exp = Expression.extractLast(exp, &e0);
if (exp.op == TOKcall)
exp = valueNoDtor(exp);
/* Void-return function can have void typed expression
* on return statement.
*/
if (tbret && tbret.ty == Tvoid || exp.type.ty == Tvoid)
{
if (exp.type.ty != Tvoid)
{
error("cannot return non-void from void function");
errors = true;
exp = new CastExp(loc, exp, Type.tvoid);
exp = exp.semantic(sc);
}
/* Replace:
* return exp;
* with:
* exp; return;
*/
e0 = Expression.combine(e0, exp);
exp = null;
}
if (e0)
e0 = checkGC(sc, e0);
}
if (exp)
{
if (fd.inferRetType) // infer return type
{
if (!tret)
{
tf.next = exp.type;
}
else if (tret.ty != Terror && !exp.type.equals(tret))
{
int m1 = exp.type.implicitConvTo(tret);
int m2 = tret.implicitConvTo(exp.type);
//printf("exp->type = %s m2<-->m1 tret %s\n", exp->type->toChars(), tret->toChars());
//printf("m1 = %d, m2 = %d\n", m1, m2);
if (m1 && m2)
{
}
else if (!m1 && m2)
tf.next = exp.type;
else if (m1 && !m2)
{
}
else if (exp.op != TOKerror)
{
error("mismatched function return type inference of %s and %s", exp.type.toChars(), tret.toChars());
errors = true;
tf.next = Type.terror;
}
}
tret = tf.next;
tbret = tret.toBasetype();
}
if (inferRef) // deduce 'auto ref'
{
/* Determine "refness" of function return:
* if it's an lvalue, return by ref, else return by value
*/
if (exp.isLvalue())
{
/* May return by ref
*/
if (checkEscapeRef(sc, exp, true))
tf.isref = false; // return by value
}
else
tf.isref = false; // return by value
/* The "refness" is determined by all of return statements.
* This means:
* return 3; return x; // ok, x can be a value
* return x; return 3; // ok, x can be a value
*/
}
// handle NRVO
if (fd.nrvo_can && exp.op == TOKvar)
{
VarExp ve = cast(VarExp)exp;
VarDeclaration v = ve.var.isVarDeclaration();
if (tf.isref)
{
// Function returns a reference
if (!inferRef)
fd.nrvo_can = 0;
}
else if (!v || v.isOut() || v.isRef())
fd.nrvo_can = 0;
else if (fd.nrvo_var is null)
{
if (!v.isDataseg() && !v.isParameter() && v.toParent2() == fd)
{
//printf("Setting nrvo to %s\n", v->toChars());
fd.nrvo_var = v;
}
else
fd.nrvo_can = 0;
}
else if (fd.nrvo_var != v)
fd.nrvo_can = 0;
}
else //if (!exp->isLvalue()) // keep NRVO-ability
fd.nrvo_can = 0;
}
else
{
// handle NRVO
fd.nrvo_can = 0;
// infer return type
if (fd.inferRetType)
{
if (tf.next && tf.next.ty != Tvoid)
{
if (tf.next.ty != Terror)
{
error("mismatched function return type inference of void and %s", tf.next.toChars());
}
errors = true;
tf.next = Type.terror;
}
else
tf.next = Type.tvoid;
tret = tf.next;
tbret = tret.toBasetype();
}
if (inferRef) // deduce 'auto ref'
tf.isref = false;
if (tbret.ty != Tvoid) // if non-void return
{
if (tbret.ty != Terror)
error("return expression expected");
errors = true;
}
else if (fd.isMain())
{
// main() returns 0, even if it returns void
exp = new IntegerExp(0);
}
}
// If any branches have called a ctor, but this branch hasn't, it's an error
if (sc.callSuper & CSXany_ctor && !(sc.callSuper & (CSXthis_ctor | CSXsuper_ctor)))
{
error("return without calling constructor");
errors = true;
}
sc.callSuper |= CSXreturn;
if (sc.fieldinit)
{
AggregateDeclaration ad = fd.isAggregateMember2();
assert(ad);
size_t dim = sc.fieldinit_dim;
foreach (i; 0 .. dim)
{
VarDeclaration v = ad.fields[i];
bool mustInit = (v.storage_class & STCnodefaultctor || v.type.needsNested());
if (mustInit && !(sc.fieldinit[i] & CSXthis_ctor))
{
error("an earlier return statement skips field %s initialization", v.toChars());
errors = true;
}
sc.fieldinit[i] |= CSXreturn;
}
}
if (errors)
return new ErrorStatement();
if (sc.fes)
{
if (!exp)
{
// Send out "case receiver" statement to the foreach.
// return exp;
Statement s = new ReturnStatement(Loc(), exp);
sc.fes.cases.push(s);
// Immediately rewrite "this" return statement as:
// return cases->dim+1;
this.exp = new IntegerExp(sc.fes.cases.dim + 1);
if (e0)
return new CompoundStatement(loc, new ExpStatement(loc, e0), this);
return this;
}
else
{
fd.buildResultVar(null, exp.type);
bool r = fd.vresult.checkNestedReference(sc, Loc());
assert(!r); // vresult should be always accessible
// Send out "case receiver" statement to the foreach.
// return vresult;
Statement s = new ReturnStatement(Loc(), new VarExp(Loc(), fd.vresult));
sc.fes.cases.push(s);
// Save receiver index for the later rewriting from:
// return exp;
// to:
// vresult = exp; retrun caseDim;
caseDim = sc.fes.cases.dim + 1;
}
}
if (exp)
{
if (!fd.returns)
fd.returns = new ReturnStatements();
fd.returns.push(this);
}
if (e0)
return new CompoundStatement(loc, new ExpStatement(loc, e0), this);
return this;
}
override ReturnStatement isReturnStatement()
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class BreakStatement : Statement
{
public:
Identifier ident;
version(IN_LLVM)
{
// LDC: only set if ident is set: label statement to jump to
LabelStatement target;
}
extern (D) this(Loc loc, Identifier ident)
{
super(loc);
this.ident = ident;
}
override Statement syntaxCopy()
{
return new BreakStatement(loc, ident);
}
override Statement semantic(Scope* sc)
{
//printf("BreakStatement::semantic()\n");
// If:
// break Identifier;
if (ident)
{
ident = fixupLabelName(sc, ident);
FuncDeclaration thisfunc = sc.func;
for (Scope* scx = sc; scx; scx = scx.enclosing)
{
if (scx.func != thisfunc) // if in enclosing function
{
if (sc.fes) // if this is the body of a foreach
{
/* Post this statement to the fes, and replace
* it with a return value that caller will put into
* a switch. Caller will figure out where the break
* label actually is.
* Case numbers start with 2, not 0, as 0 is continue
* and 1 is break.
*/
sc.fes.cases.push(this);
Statement s = new ReturnStatement(Loc(), new IntegerExp(sc.fes.cases.dim + 1));
return s;
}
break;
// can't break to it
}
LabelStatement ls = scx.slabel;
if (ls && ls.ident == ident)
{
Statement s = ls.statement;
if (!s || !s.hasBreak())
error("label '%s' has no break", ident.toChars());
else if (ls.tf != sc.tf)
error("cannot break out of finally block");
else
{
version(IN_LLVM)
target = ls;
ls.breaks = true;
return this;
}
return new ErrorStatement();
}
}
error("enclosing label '%s' for break not found", ident.toChars());
return new ErrorStatement();
}
else if (!sc.sbreak)
{
if (sc.os && sc.os.tok != TOKon_scope_failure)
{
error("break is not inside %s bodies", Token.toChars(sc.os.tok));
}
else if (sc.fes)
{
// Replace break; with return 1;
Statement s = new ReturnStatement(Loc(), new IntegerExp(1));
return s;
}
else
error("break is not inside a loop or switch");
return new ErrorStatement();
}
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class ContinueStatement : Statement
{
public:
Identifier ident;
version(IN_LLVM)
{
// LDC: only set if ident is set: label statement to jump to
LabelStatement target;
}
extern (D) this(Loc loc, Identifier ident)
{
super(loc);
this.ident = ident;
}
override Statement syntaxCopy()
{
return new ContinueStatement(loc, ident);
}
override Statement semantic(Scope* sc)
{
//printf("ContinueStatement::semantic() %p\n", this);
if (ident)
{
ident = fixupLabelName(sc, ident);
Scope* scx;
FuncDeclaration thisfunc = sc.func;
for (scx = sc; scx; scx = scx.enclosing)
{
LabelStatement ls;
if (scx.func != thisfunc) // if in enclosing function
{
if (sc.fes) // if this is the body of a foreach
{
for (; scx; scx = scx.enclosing)
{
ls = scx.slabel;
if (ls && ls.ident == ident && ls.statement == sc.fes)
{
// Replace continue ident; with return 0;
return new ReturnStatement(Loc(), new IntegerExp(0));
}
}
/* Post this statement to the fes, and replace
* it with a return value that caller will put into
* a switch. Caller will figure out where the break
* label actually is.
* Case numbers start with 2, not 0, as 0 is continue
* and 1 is break.
*/
sc.fes.cases.push(this);
Statement s = new ReturnStatement(Loc(), new IntegerExp(sc.fes.cases.dim + 1));
return s;
}
break;
// can't continue to it
}
ls = scx.slabel;
if (ls && ls.ident == ident)
{
Statement s = ls.statement;
if (!s || !s.hasContinue())
error("label '%s' has no continue", ident.toChars());
else if (ls.tf != sc.tf)
error("cannot continue out of finally block");
else
{
version(IN_LLVM)
target = ls;
return this;
}
return new ErrorStatement();
}
}
error("enclosing label '%s' for continue not found", ident.toChars());
return new ErrorStatement();
}
else if (!sc.scontinue)
{
if (sc.os && sc.os.tok != TOKon_scope_failure)
{
error("continue is not inside %s bodies", Token.toChars(sc.os.tok));
}
else if (sc.fes)
{
// Replace continue; with return 0;
Statement s = new ReturnStatement(Loc(), new IntegerExp(0));
return s;
}
else
error("continue is not inside a loop");
return new ErrorStatement();
}
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class SynchronizedStatement : Statement
{
public:
Expression exp;
Statement _body;
extern (D) this(Loc loc, Expression exp, Statement _body)
{
super(loc);
this.exp = exp;
this._body = _body;
}
override Statement syntaxCopy()
{
return new SynchronizedStatement(loc, exp ? exp.syntaxCopy() : null, _body ? _body.syntaxCopy() : null);
}
override Statement semantic(Scope* sc)
{
if (exp)
{
exp = exp.semantic(sc);
exp = resolveProperties(sc, exp);
exp = exp.optimize(WANTvalue);
exp = checkGC(sc, exp);
if (exp.op == TOKerror)
goto Lbody;
ClassDeclaration cd = exp.type.isClassHandle();
if (!cd)
{
error("can only synchronize on class objects, not '%s'", exp.type.toChars());
return new ErrorStatement();
}
else if (cd.isInterfaceDeclaration())
{
/* Cast the interface to an object, as the object has the monitor,
* not the interface.
*/
if (!ClassDeclaration.object)
{
error("missing or corrupt object.d");
fatal();
}
Type t = ClassDeclaration.object.type;
t = t.semantic(Loc(), sc).toBasetype();
assert(t.ty == Tclass);
exp = new CastExp(loc, exp, t);
exp = exp.semantic(sc);
}
version (all)
{
/* Rewrite as:
* auto tmp = exp;
* _d_monitorenter(tmp);
* try { body } finally { _d_monitorexit(tmp); }
*/
Identifier id = Identifier.generateId("__sync");
auto ie = new ExpInitializer(loc, exp);
auto tmp = new VarDeclaration(loc, exp.type, id, ie);
tmp.storage_class |= STCtemp;
auto cs = new Statements();
cs.push(new ExpStatement(loc, tmp));
auto args = new Parameters();
args.push(new Parameter(0, ClassDeclaration.object.type, null, null));
FuncDeclaration fdenter = FuncDeclaration.genCfunc(args, Type.tvoid, Id.monitorenter);
Expression e = new CallExp(loc, new VarExp(loc, fdenter, false), new VarExp(loc, tmp));
e.type = Type.tvoid; // do not run semantic on e
cs.push(new ExpStatement(loc, e));
FuncDeclaration fdexit = FuncDeclaration.genCfunc(args, Type.tvoid, Id.monitorexit);
e = new CallExp(loc, new VarExp(loc, fdexit, false), new VarExp(loc, tmp));
e.type = Type.tvoid; // do not run semantic on e
Statement s = new ExpStatement(loc, e);
s = new TryFinallyStatement(loc, _body, s);
cs.push(s);
s = new CompoundStatement(loc, cs);
return s.semantic(sc);
}
}
else
{
/* Generate our own critical section, then rewrite as:
* __gshared byte[CriticalSection.sizeof] critsec;
* _d_criticalenter(critsec.ptr);
* try { body } finally { _d_criticalexit(critsec.ptr); }
*/
Identifier id = Identifier.generateId("__critsec");
Type t = new TypeSArray(Type.tint8, new IntegerExp(Target.ptrsize + Target.critsecsize()));
auto tmp = new VarDeclaration(loc, t, id, null);
tmp.storage_class |= STCtemp | STCgshared | STCstatic;
auto cs = new Statements();
cs.push(new ExpStatement(loc, tmp));
/* This is just a dummy variable for "goto skips declaration" error.
* Backend optimizer could remove this unused variable.
*/
auto v = new VarDeclaration(loc, Type.tvoidptr, Identifier.generateId("__sync"), null);
v.semantic(sc);
cs.push(new ExpStatement(loc, v));
auto args = new Parameters();
args.push(new Parameter(0, t.pointerTo(), null, null));
FuncDeclaration fdenter = FuncDeclaration.genCfunc(args, Type.tvoid, Id.criticalenter, STCnothrow);
Expression e = new DotIdExp(loc, new VarExp(loc, tmp), Id.ptr);
e = e.semantic(sc);
e = new CallExp(loc, new VarExp(loc, fdenter, false), e);
e.type = Type.tvoid; // do not run semantic on e
cs.push(new ExpStatement(loc, e));
FuncDeclaration fdexit = FuncDeclaration.genCfunc(args, Type.tvoid, Id.criticalexit, STCnothrow);
e = new DotIdExp(loc, new VarExp(loc, tmp), Id.ptr);
e = e.semantic(sc);
e = new CallExp(loc, new VarExp(loc, fdexit, false), e);
e.type = Type.tvoid; // do not run semantic on e
Statement s = new ExpStatement(loc, e);
s = new TryFinallyStatement(loc, _body, s);
cs.push(s);
s = new CompoundStatement(loc, cs);
return s.semantic(sc);
}
Lbody:
if (_body)
_body = _body.semantic(sc);
if (_body && _body.isErrorStatement())
return _body;
return this;
}
override bool hasBreak()
{
return false; //true;
}
override bool hasContinue()
{
return false; //true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class WithStatement : Statement
{
public:
Expression exp;
Statement _body;
VarDeclaration wthis;
extern (D) this(Loc loc, Expression exp, Statement _body)
{
super(loc);
this.exp = exp;
this._body = _body;
}
override Statement syntaxCopy()
{
return new WithStatement(loc, exp.syntaxCopy(), _body ? _body.syntaxCopy() : null);
}
override Statement semantic(Scope* sc)
{
ScopeDsymbol sym;
Initializer _init;
//printf("WithStatement::semantic()\n");
exp = exp.semantic(sc);
exp = resolveProperties(sc, exp);
exp = exp.optimize(WANTvalue);
exp = checkGC(sc, exp);
if (exp.op == TOKerror)
return new ErrorStatement();
if (exp.op == TOKscope)
{
sym = new WithScopeSymbol(this);
sym.parent = sc.scopesym;
}
else if (exp.op == TOKtype)
{
Dsymbol s = (cast(TypeExp)exp).type.toDsymbol(sc);
if (!s || !s.isScopeDsymbol())
{
error("with type %s has no members", exp.toChars());
return new ErrorStatement();
}
sym = new WithScopeSymbol(this);
sym.parent = sc.scopesym;
}
else
{
Type t = exp.type.toBasetype();
Expression olde = exp;
if (t.ty == Tpointer)
{
exp = new PtrExp(loc, exp);
exp = exp.semantic(sc);
t = exp.type.toBasetype();
}
assert(t);
t = t.toBasetype();
if (t.isClassHandle())
{
_init = new ExpInitializer(loc, exp);
wthis = new VarDeclaration(loc, exp.type, Id.withSym, _init);
wthis.semantic(sc);
sym = new WithScopeSymbol(this);
sym.parent = sc.scopesym;
}
else if (t.ty == Tstruct)
{
if (!exp.isLvalue())
{
/* Re-write to
* {
* auto __withtmp = exp
* with(__withtmp)
* {
* ...
* }
* }
*/
_init = new ExpInitializer(loc, exp);
wthis = new VarDeclaration(loc, exp.type, Identifier.generateId("__withtmp"), _init);
wthis.storage_class |= STCtemp;
auto es = new ExpStatement(loc, wthis);
exp = new VarExp(loc, wthis);
Statement ss = new ScopeStatement(loc, new CompoundStatement(loc, es, this));
return ss.semantic(sc);
}
Expression e = exp.addressOf();
_init = new ExpInitializer(loc, e);
wthis = new VarDeclaration(loc, e.type, Id.withSym, _init);
wthis.semantic(sc);
sym = new WithScopeSymbol(this);
// Need to set the scope to make use of resolveAliasThis
sym.setScope(sc);
sym.parent = sc.scopesym;
}
else
{
error("with expressions must be aggregate types or pointers to them, not '%s'", olde.type.toChars());
return new ErrorStatement();
}
}
if (_body)
{
sym._scope = sc;
sc = sc.push(sym);
sc.insert(sym);
_body = _body.semantic(sc);
sc.pop();
if (_body && _body.isErrorStatement())
return _body;
}
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class TryCatchStatement : Statement
{
public:
Statement _body;
Catches* catches;
extern (D) this(Loc loc, Statement _body, Catches* catches)
{
super(loc);
this._body = _body;
this.catches = catches;
}
override Statement syntaxCopy()
{
auto a = new Catches();
a.setDim(catches.dim);
foreach (i, c; *catches)
{
(*a)[i] = c.syntaxCopy();
}
return new TryCatchStatement(loc, _body.syntaxCopy(), a);
}
override Statement semantic(Scope* sc)
{
uint flags;
enum FLAGcpp = 1;
enum FLAGd = 2;
_body = _body.semanticScope(sc, null, null);
assert(_body);
/* Even if body is empty, still do semantic analysis on catches
*/
bool catchErrors = false;
foreach (i, c; *catches)
{
c.semantic(sc);
if (c.errors)
{
catchErrors = true;
continue;
}
auto cd = c.type.toBasetype().isClassHandle();
flags |= cd.isCPPclass() ? FLAGcpp : FLAGd;
// Determine if current catch 'hides' any previous catches
foreach (j; 0 .. i)
{
Catch cj = (*catches)[j];
const si = c.loc.toChars();
const sj = cj.loc.toChars();
if (c.type.toBasetype().implicitConvTo(cj.type.toBasetype()))
{
error("catch at %s hides catch at %s", sj, si);
catchErrors = true;
}
}
}
if (sc.func)
{
if (flags == (FLAGcpp | FLAGd))
{
error("cannot mix catching D and C++ exceptions in the same try-catch");
catchErrors = true;
}
}
if (catchErrors)
return new ErrorStatement();
if (_body.isErrorStatement())
return _body;
/* If the try body never throws, we can eliminate any catches
* of recoverable exceptions.
*/
if (!(_body.blockExit(sc.func, false) & BEthrow) && ClassDeclaration.exception)
{
foreach_reverse (i; 0 .. catches.dim)
{
Catch c = (*catches)[i];
/* If catch exception type is derived from Exception
*/
if (c.type.toBasetype().implicitConvTo(ClassDeclaration.exception.type) && (!c.handler || !c.handler.comeFrom()))
{
// Remove c from the array of catches
catches.remove(i);
}
}
}
if (catches.dim == 0)
return _body.hasCode() ? _body : null;
return this;
}
override bool hasBreak()
{
return false;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class Catch : RootObject
{
public:
Loc loc;
Type type;
Identifier ident;
VarDeclaration var;
Statement handler;
bool errors; // set if semantic processing errors
// was generated by the compiler, wasn't present in source code
bool internalCatch;
extern (D) this(Loc loc, Type t, Identifier id, Statement handler)
{
//printf("Catch(%s, loc = %s)\n", id->toChars(), loc.toChars());
this.loc = loc;
this.type = t;
this.ident = id;
this.handler = handler;
}
Catch syntaxCopy()
{
auto c = new Catch(loc, type ? type.syntaxCopy() : null, ident, (handler ? handler.syntaxCopy() : null));
c.internalCatch = internalCatch;
return c;
}
void semantic(Scope* sc)
{
//printf("Catch::semantic(%s)\n", ident->toChars());
static if (!IN_GCC)
{
if (sc.os && sc.os.tok != TOKon_scope_failure)
{
// If enclosing is scope(success) or scope(exit), this will be placed in finally block.
error(loc, "cannot put catch statement inside %s", Token.toChars(sc.os.tok));
errors = true;
}
if (sc.tf)
{
/* This is because the _d_local_unwind() gets the stack munged
* up on this. The workaround is to place any try-catches into
* a separate function, and call that.
* To fix, have the compiler automatically convert the finally
* body into a nested function.
*/
error(loc, "cannot put catch statement inside finally block");
errors = true;
}
}
auto sym = new ScopeDsymbol();
sym.parent = sc.scopesym;
sc = sc.push(sym);
if (!type)
{
// reference .object.Throwable
auto tid = new TypeIdentifier(Loc(), Id.empty);
tid.addIdent(Id.object);
tid.addIdent(Id.Throwable);
type = tid;
}
type = type.semantic(loc, sc);
if (type == Type.terror)
errors = true;
else
{
auto cd = type.toBasetype().isClassHandle();
if (!cd)
{
error(loc, "can only catch class objects, not '%s'", type.toChars());
errors = true;
}
else if (cd.isCPPclass())
{
if (!Target.cppExceptions)
{
error(loc, "catching C++ class objects not supported for this target");
errors = true;
}
if (sc.func && !sc.intypeof && !internalCatch && sc.func.setUnsafe())
{
error(loc, "cannot catch C++ class objects in @safe code");
errors = true;
}
}
else if (cd != ClassDeclaration.throwable && !ClassDeclaration.throwable.isBaseOf(cd, null))
{
error(loc, "can only catch class objects derived from Throwable, not '%s'", type.toChars());
errors = true;
}
else if (sc.func && !sc.intypeof && !internalCatch &&
cd != ClassDeclaration.exception && !ClassDeclaration.exception.isBaseOf(cd, null) &&
sc.func.setUnsafe())
{
error(loc, "can only catch class objects derived from Exception in @safe code, not '%s'", type.toChars());
errors = true;
}
if (ident)
{
var = new VarDeclaration(loc, type, ident, null);
var.semantic(sc);
sc.insert(var);
}
handler = handler.semantic(sc);
if (handler && handler.isErrorStatement())
errors = true;
}
sc.pop();
}
}
/***********************************************************
*/
extern (C++) final class TryFinallyStatement : Statement
{
public:
Statement _body;
Statement finalbody;
extern (D) this(Loc loc, Statement _body, Statement finalbody)
{
super(loc);
this._body = _body;
this.finalbody = finalbody;
}
static TryFinallyStatement create(Loc loc, Statement _body, Statement finalbody)
{
return new TryFinallyStatement(loc, _body, finalbody);
}
override Statement syntaxCopy()
{
return new TryFinallyStatement(loc, _body.syntaxCopy(), finalbody.syntaxCopy());
}
override Statement semantic(Scope* sc)
{
//printf("TryFinallyStatement::semantic()\n");
_body = _body.semantic(sc);
sc = sc.push();
sc.tf = this;
sc.sbreak = null;
sc.scontinue = null; // no break or continue out of finally block
finalbody = finalbody.semanticNoScope(sc);
sc.pop();
if (!_body)
return finalbody;
if (!finalbody)
return _body;
if (_body.blockExit(sc.func, false) == BEfallthru)
{
Statement s = new CompoundStatement(loc, _body, finalbody);
return s;
}
return this;
}
override bool hasBreak()
{
return false; //true;
}
override bool hasContinue()
{
return false; //true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class OnScopeStatement : Statement
{
public:
TOK tok;
Statement statement;
extern (D) this(Loc loc, TOK tok, Statement statement)
{
super(loc);
this.tok = tok;
this.statement = statement;
}
override Statement syntaxCopy()
{
return new OnScopeStatement(loc, tok, statement.syntaxCopy());
}
override Statement semantic(Scope* sc)
{
static if (!IN_GCC)
{
if (tok != TOKon_scope_exit)
{
// scope(success) and scope(failure) are rewritten to try-catch(-finally) statement,
// so the generated catch block cannot be placed in finally block.
// See also Catch::semantic.
if (sc.os && sc.os.tok != TOKon_scope_failure)
{
// If enclosing is scope(success) or scope(exit), this will be placed in finally block.
error("cannot put %s statement inside %s", Token.toChars(tok), Token.toChars(sc.os.tok));
return new ErrorStatement();
}
if (sc.tf)
{
error("cannot put %s statement inside finally block", Token.toChars(tok));
return new ErrorStatement();
}
}
}
sc = sc.push();
sc.tf = null;
sc.os = this;
if (tok != TOKon_scope_failure)
{
// Jump out from scope(failure) block is allowed.
sc.sbreak = null;
sc.scontinue = null;
}
statement = statement.semanticNoScope(sc);
sc.pop();
if (!statement || statement.isErrorStatement())
return statement;
return this;
}
override Statement scopeCode(Scope* sc, Statement* sentry, Statement* sexception, Statement* sfinally)
{
//printf("OnScopeStatement::scopeCode()\n");
//print();
*sentry = null;
*sexception = null;
*sfinally = null;
Statement s = new PeelStatement(statement);
switch (tok)
{
case TOKon_scope_exit:
*sfinally = s;
break;
case TOKon_scope_failure:
*sexception = s;
break;
case TOKon_scope_success:
{
/* Create:
* sentry: bool x = false;
* sexception: x = true;
* sfinally: if (!x) statement;
*/
Identifier id = Identifier.generateId("__os");
auto ie = new ExpInitializer(loc, new IntegerExp(Loc(), 0, Type.tbool));
auto v = new VarDeclaration(loc, Type.tbool, id, ie);
v.storage_class |= STCtemp;
*sentry = new ExpStatement(loc, v);
Expression e = new IntegerExp(Loc(), 1, Type.tbool);
e = new AssignExp(Loc(), new VarExp(Loc(), v), e);
*sexception = new ExpStatement(Loc(), e);
e = new VarExp(Loc(), v);
e = new NotExp(Loc(), e);
*sfinally = new IfStatement(Loc(), null, e, s, null);
break;
}
default:
assert(0);
}
return null;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class ThrowStatement : Statement
{
public:
Expression exp;
// was generated by the compiler, wasn't present in source code
bool internalThrow;
extern (D) this(Loc loc, Expression exp)
{
super(loc);
this.exp = exp;
}
override Statement syntaxCopy()
{
auto s = new ThrowStatement(loc, exp.syntaxCopy());
s.internalThrow = internalThrow;
return s;
}
override Statement semantic(Scope* sc)
{
//printf("ThrowStatement::semantic()\n");
FuncDeclaration fd = sc.parent.isFuncDeclaration();
fd.hasReturnExp |= 2;
exp = exp.semantic(sc);
exp = resolveProperties(sc, exp);
exp = checkGC(sc, exp);
if (exp.op == TOKerror)
return new ErrorStatement();
ClassDeclaration cd = exp.type.toBasetype().isClassHandle();
if (!cd || ((cd != ClassDeclaration.throwable) && !ClassDeclaration.throwable.isBaseOf(cd, null)))
{
error("can only throw class objects derived from Throwable, not type %s", exp.type.toChars());
return new ErrorStatement();
}
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class DebugStatement : Statement
{
public:
Statement statement;
extern (D) this(Loc loc, Statement statement)
{
super(loc);
this.statement = statement;
}
override Statement syntaxCopy()
{
return new DebugStatement(loc, statement ? statement.syntaxCopy() : null);
}
override Statement semantic(Scope* sc)
{
if (statement)
{
sc = sc.push();
sc.flags |= SCOPEdebug;
statement = statement.semantic(sc);
sc.pop();
}
return statement;
}
override Statements* flatten(Scope* sc)
{
Statements* a = statement ? statement.flatten(sc) : null;
if (a)
{
foreach (ref s; *a)
{
s = new DebugStatement(loc, s);
}
}
return a;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class GotoStatement : Statement
{
public:
Identifier ident;
LabelDsymbol label;
TryFinallyStatement tf;
OnScopeStatement os;
VarDeclaration lastVar;
extern (D) this(Loc loc, Identifier ident)
{
super(loc);
this.ident = ident;
}
override Statement syntaxCopy()
{
return new GotoStatement(loc, ident);
}
override Statement semantic(Scope* sc)
{
//printf("GotoStatement::semantic()\n");
FuncDeclaration fd = sc.func;
ident = fixupLabelName(sc, ident);
label = fd.searchLabel(ident);
tf = sc.tf;
os = sc.os;
lastVar = sc.lastVar;
if (!label.statement && sc.fes)
{
/* Either the goto label is forward referenced or it
* is in the function that the enclosing foreach is in.
* Can't know yet, so wrap the goto in a scope statement
* so we can patch it later, and add it to a 'look at this later'
* list.
*/
auto ss = new ScopeStatement(loc, this);
sc.fes.gotos.push(ss); // 'look at this later' list
return ss;
}
// Add to fwdref list to check later
if (!label.statement)
{
if (!fd.gotos)
fd.gotos = new GotoStatements();
fd.gotos.push(this);
}
else if (checkLabel())
return new ErrorStatement();
return this;
}
bool checkLabel()
{
if (!label.statement)
{
error("label '%s' is undefined", label.toChars());
return true;
}
if (label.statement.os != os)
{
if (os && os.tok == TOKon_scope_failure && !label.statement.os)
{
// Jump out from scope(failure) block is allowed.
}
else
{
if (label.statement.os)
error("cannot goto in to %s block", Token.toChars(label.statement.os.tok));
else
error("cannot goto out of %s block", Token.toChars(os.tok));
return true;
}
}
// IN_LLVM replaced: if (label.statement.tf != tf)
if ( (label.statement !is null) && label.statement.tf != tf)
{
error("cannot goto in or out of finally block");
return true;
}
VarDeclaration vd = label.statement.lastVar;
if (!vd || vd.isDataseg() || (vd.storage_class & STCmanifest))
return false;
VarDeclaration last = lastVar;
while (last && last != vd)
last = last.lastVar;
if (last == vd)
{
// All good, the label's scope has no variables
}
else if (vd.ident == Id.withSym)
{
error("goto skips declaration of with temporary at %s", vd.loc.toChars());
return true;
}
else
{
error("goto skips declaration of variable %s at %s", vd.toPrettyChars(), vd.loc.toChars());
return true;
}
return false;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class LabelStatement : Statement
{
public:
Identifier ident;
Statement statement;
TryFinallyStatement tf;
OnScopeStatement os;
VarDeclaration lastVar;
Statement gotoTarget; // interpret
bool breaks; // someone did a 'break ident'
extern (D) this(Loc loc, Identifier ident, Statement statement)
{
super(loc);
this.ident = ident;
this.statement = statement;
}
override Statement syntaxCopy()
{
return new LabelStatement(loc, ident, statement ? statement.syntaxCopy() : null);
}
override Statement semantic(Scope* sc)
{
//printf("LabelStatement::semantic()\n");
FuncDeclaration fd = sc.parent.isFuncDeclaration();
ident = fixupLabelName(sc, ident);
tf = sc.tf;
os = sc.os;
lastVar = sc.lastVar;
LabelDsymbol ls = fd.searchLabel(ident);
if (ls.statement)
{
error("label '%s' already defined", ls.toChars());
return new ErrorStatement();
}
else
ls.statement = this;
sc = sc.push();
sc.scopesym = sc.enclosing.scopesym;
sc.callSuper |= CSXlabel;
if (sc.fieldinit)
{
size_t dim = sc.fieldinit_dim;
foreach (i; 0 .. dim)
sc.fieldinit[i] |= CSXlabel;
}
sc.slabel = this;
if (statement)
statement = statement.semantic(sc);
sc.pop();
return this;
}
override Statements* flatten(Scope* sc)
{
Statements* a = null;
if (statement)
{
a = statement.flatten(sc);
if (a)
{
if (!a.dim)
{
a.push(new ExpStatement(loc, cast(Expression)null));
}
// reuse 'this' LabelStatement
this.statement = (*a)[0];
(*a)[0] = this;
}
}
return a;
}
override Statement scopeCode(Scope* sc, Statement* sentry, Statement* sexit, Statement* sfinally)
{
//printf("LabelStatement::scopeCode()\n");
if (statement)
statement = statement.scopeCode(sc, sentry, sexit, sfinally);
else
{
*sentry = null;
*sexit = null;
*sfinally = null;
}
return this;
}
override LabelStatement isLabelStatement()
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class LabelDsymbol : Dsymbol
{
public:
LabelStatement statement;
extern (D) this(Identifier ident)
{
super(ident);
}
static LabelDsymbol create(Identifier ident)
{
return new LabelDsymbol(ident);
}
// is this a LabelDsymbol()?
override LabelDsymbol isLabel()
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class AsmStatement : Statement
{
public:
Token* tokens;
code* asmcode;
uint asmalign; // alignment of this statement
uint regs; // mask of registers modified (must match regm_t in back end)
bool refparam; // true if function parameter is referenced
bool naked; // true if function is to be naked
version(IN_LLVM)
{
// non-zero if this is a branch, contains the target label
LabelDsymbol isBranchToLabel;
}
extern (D) this(Loc loc, Token* tokens)
{
super(loc);
this.tokens = tokens;
}
override Statement syntaxCopy()
{
version(IN_LLVM)
{
auto a_s = new AsmStatement(loc, tokens);
a_s.refparam = refparam;
a_s.naked = naked;
return a_s;
}
else
{
return new AsmStatement(loc, tokens);
}
}
override Statement semantic(Scope* sc)
{
return asmSemantic(this, sc);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* a complete asm {} block
*/
extern (C++) final class CompoundAsmStatement : CompoundStatement
{
public:
StorageClass stc; // postfix attributes like nothrow/pure/@trusted
version(IN_LLVM)
{
void* abiret; // llvm::Value*
}
extern (D) this(Loc loc, Statements* s, StorageClass stc)
{
super(loc, s);
this.stc = stc;
}
override CompoundAsmStatement syntaxCopy()
{
auto a = new Statements();
a.setDim(statements.dim);
foreach (i, s; *statements)
{
(*a)[i] = s ? s.syntaxCopy() : null;
}
return new CompoundAsmStatement(loc, a, stc);
}
override CompoundAsmStatement semantic(Scope* sc)
{
foreach (ref s; *statements)
{
s = s ? s.semantic(sc) : null;
}
assert(sc.func);
// use setImpure/setGC when the deprecation cycle is over
PURE purity;
if (!(stc & STCpure) && (purity = sc.func.isPureBypassingInference()) != PUREimpure && purity != PUREfwdref)
deprecation("asm statement is assumed to be impure - mark it with 'pure' if it is not");
if (!(stc & STCnogc) && sc.func.isNogcBypassingInference())
deprecation("asm statement is assumed to use the GC - mark it with '@nogc' if it does not");
if (!(stc & (STCtrusted | STCsafe)) && sc.func.setUnsafe())
error("asm statement is assumed to be @system - mark it with '@trusted' if it is not");
return this;
}
override Statements* flatten(Scope* sc)
{
return null;
}
override void accept(Visitor v)
{
v.visit(this);
}
version(IN_LLVM)
{
override final CompoundStatement isCompoundStatement()
{
return null;
}
override final CompoundAsmStatement isCompoundAsmBlockStatement()
{
return this;
}
override final CompoundAsmStatement endsWithAsm()
{
// yes this is inline asm
return this;
}
}
}
/***********************************************************
*/
extern (C++) final class ImportStatement : Statement
{
public:
Dsymbols* imports; // Array of Import's
extern (D) this(Loc loc, Dsymbols* imports)
{
super(loc);
this.imports = imports;
}
override Statement syntaxCopy()
{
auto m = new Dsymbols();
m.setDim(imports.dim);
foreach (i, s; *imports)
{
(*m)[i] = s.syntaxCopy(null);
}
return new ImportStatement(loc, m);
}
override Statement semantic(Scope* sc)
{
foreach (i; 0 .. imports.dim)
{
Import s = (*imports)[i].isImport();
assert(!s.aliasdecls.dim);
foreach (j, name; s.names)
{
Identifier _alias = s.aliases[j];
if (!_alias)
_alias = name;
auto tname = new TypeIdentifier(s.loc, name);
auto ad = new AliasDeclaration(s.loc, _alias, tname);
ad._import = s;
s.aliasdecls.push(ad);
}
s.semantic(sc);
//s->semantic2(sc); // Bugzilla 14666
sc.insert(s);
foreach (aliasdecl; s.aliasdecls)
{
sc.insert(aliasdecl);
}
}
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}