ldc/ddmd/root/array.h
David Nadlinger 9f998a398d Initial merge of upstream v2.071.0-b2
Notably, the glue layer side of the changed multiple interface
inheritance layout (DMD a54e89d) has not been implemented yet.

This corresponds to DMD commit 3f6a763c0589dd03c1c206eafd434b593702564e.
2016-04-03 15:15:14 +01:00

385 lines
7.7 KiB
C++

/* Copyright (c) 2011-2014 by Digital Mars
* All Rights Reserved, written by Walter Bright
* http://www.digitalmars.com
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
* https://github.com/D-Programming-Language/dmd/blob/master/src/root/array.h
*/
#ifndef ARRAY_H
#define ARRAY_H
#if __DMC__
#pragma once
#endif
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if IN_LLVM
#include "llvm/Support/Compiler.h"
#include <iterator>
#endif
#include "object.h"
#include "rmem.h"
template <typename TYPE>
struct Array
{
d_size_t dim;
TYPE *data;
private:
d_size_t allocdim;
#define SMALLARRAYCAP 1
TYPE smallarray[SMALLARRAYCAP]; // inline storage for small arrays
public:
Array()
{
data = SMALLARRAYCAP ? &smallarray[0] : NULL;
dim = 0;
allocdim = SMALLARRAYCAP;
}
~Array()
{
if (data != &smallarray[0])
mem.xfree(data);
}
char *toChars()
{
char **buf = (char **)mem.xmalloc(dim * sizeof(char *));
d_size_t len = 2;
for (d_size_t u = 0; u < dim; u++)
{
buf[u] = ((RootObject *)data[u])->toChars();
len += strlen(buf[u]) + 1;
}
char *str = (char *)mem.xmalloc(len);
str[0] = '[';
char *p = str + 1;
for (d_size_t u = 0; u < dim; u++)
{
if (u)
*p++ = ',';
len = strlen(buf[u]);
memcpy(p,buf[u],len);
p += len;
}
*p++ = ']';
*p = 0;
mem.xfree(buf);
return str;
}
void reserve(d_size_t nentries)
{
//printf("Array::reserve: dim = %d, allocdim = %d, nentries = %d\n", (int)dim, (int)allocdim, (int)nentries);
if (allocdim - dim < nentries)
{
if (allocdim == 0)
{ // Not properly initialized, someone memset it to zero
if (nentries <= SMALLARRAYCAP)
{ allocdim = SMALLARRAYCAP;
data = SMALLARRAYCAP ? &smallarray[0] : NULL;
}
else
{ allocdim = nentries;
data = (TYPE *)mem.xmalloc(allocdim * sizeof(*data));
}
}
else if (allocdim == SMALLARRAYCAP)
{
allocdim = dim + nentries;
data = (TYPE *)mem.xmalloc(allocdim * sizeof(*data));
memcpy(data, &smallarray[0], dim * sizeof(*data));
}
else
{ allocdim = dim + nentries;
data = (TYPE *)mem.xrealloc(data, allocdim * sizeof(*data));
}
}
}
void setDim(d_size_t newdim)
{
if (dim < newdim)
{
reserve(newdim - dim);
}
dim = newdim;
}
void fixDim()
{
if (dim != allocdim)
{
if (allocdim >= SMALLARRAYCAP)
{
if (dim <= SMALLARRAYCAP)
{
memcpy(&smallarray[0], data, dim * sizeof(*data));
mem.xfree(data);
}
else
data = (TYPE *)mem.xrealloc(data, dim * sizeof(*data));
}
allocdim = dim;
}
}
TYPE pop()
{
return data[--dim];
}
void shift(TYPE ptr)
{
reserve(1);
memmove(data + 1, data, dim * sizeof(*data));
data[0] = ptr;
dim++;
}
void remove(d_size_t i)
{
if (dim - i - 1)
memmove(data + i, data + i + 1, (dim - i - 1) * sizeof(data[0]));
dim--;
}
void zero()
{
memset(data,0,dim * sizeof(data[0]));
}
TYPE tos()
{
return dim ? data[dim - 1] : NULL;
}
void sort()
{
struct ArraySort
{
static int
#if _WIN32
__cdecl
#endif
Array_sort_compare(const void *x, const void *y)
{
RootObject *ox = *(RootObject **)x;
RootObject *oy = *(RootObject **)y;
return ox->compare(oy);
}
};
if (dim)
{
qsort(data, dim, sizeof(RootObject *), &ArraySort::Array_sort_compare);
}
}
TYPE *tdata()
{
return data;
}
TYPE& operator[] (d_size_t index)
{
#ifdef DEBUG
assert(index < dim);
#endif
return data[index];
}
void insert(d_size_t index, TYPE v)
{
reserve(1);
memmove(data + index + 1, data + index, (dim - index) * sizeof(*data));
data[index] = v;
dim++;
}
void insert(d_size_t index, Array *a)
{
if (a)
{
d_size_t d = a->dim;
reserve(d);
if (dim != index)
memmove(data + index + d, data + index, (dim - index) * sizeof(*data));
memcpy(data + index, a->data, d * sizeof(*data));
dim += d;
}
}
void append(Array *a)
{
insert(dim, a);
}
void push(TYPE a)
{
reserve(1);
data[dim++] = a;
}
Array *copy()
{
Array *a = new Array();
a->setDim(dim);
memcpy(a->data, data, dim * sizeof(*data));
return a;
}
#if IN_LLVM
// Define members and types like std::vector
typedef size_t size_type;
Array(const Array<TYPE> &a) : dim(0), data(0), allocdim(0)
{
setDim(a.dim);
memcpy(data, a.data, dim * sizeof(*data));
}
Array &operator=(Array<TYPE> &a)
{
setDim(a.dim);
memcpy(data, a.data, dim * sizeof(*data));
return *this;
}
#if LLVM_HAS_RVALUE_REFERENCES
Array(Array<TYPE> &&a)
{
if (data != &smallarray[0])
mem.xfree(data);
dim = a.dim;
allocdim = a.allocdim;
if (a.data == &a.smallarray[0])
{
data = &smallarray[0];
memcpy(data, a.data, dim * sizeof(*data));
}
else
{
data = a.data;
a.data = 0;
}
a.dim = 0;
a.allocdim = 0;
}
Array &operator=(Array<TYPE> &&a)
{
if (data != &smallarray[0])
mem.xfree(data);
dim = a.dim;
allocdim = a.allocdim;
if (a.data == &a.smallarray[0])
{
data = &smallarray[0];
memcpy(data, a.data, dim * sizeof(*data));
}
else
{
data = a.data;
a.data = 0;
}
a.dim = 0;
a.allocdim = 0;
return *this;
}
#endif
size_type size()
{
return static_cast<size_type>(dim);
}
bool empty()
{
return dim == 0;
}
TYPE front()
{
return data[0];
}
TYPE back()
{
return data[dim-1];
}
void push_back(TYPE a)
{
push(a);
}
void pop_back()
{
pop();
}
typedef TYPE *iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
iterator begin()
{
return static_cast<iterator>(&data[0]);
}
iterator end()
{
return static_cast<iterator>(&data[dim]);
}
reverse_iterator rbegin()
{
return reverse_iterator(end());
}
reverse_iterator rend()
{
return reverse_iterator(begin());
}
iterator erase(iterator pos)
{
size_t index = pos - &data[0];
remove(index);
return static_cast<iterator>(&data[index]);
}
#endif
};
struct BitArray
{
BitArray()
: len(0)
, ptr(NULL)
{}
~BitArray()
{
mem.xfree(ptr);
}
size_t len;
size_t *ptr;
private:
BitArray(const BitArray&);
};
#endif