ldc/ddmd/dtemplate.d
David Nadlinger 9f998a398d Initial merge of upstream v2.071.0-b2
Notably, the glue layer side of the changed multiple interface
inheritance layout (DMD a54e89d) has not been implemented yet.

This corresponds to DMD commit 3f6a763c0589dd03c1c206eafd434b593702564e.
2016-04-03 15:15:14 +01:00

8542 lines
301 KiB
D

// Compiler implementation of the D programming language
// Copyright (c) 1999-2015 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
module ddmd.dtemplate;
import core.stdc.stdio;
import core.stdc.stdlib;
import core.stdc.string;
import ddmd.aggregate;
import ddmd.aliasthis;
import ddmd.arraytypes;
import ddmd.attrib;
import ddmd.gluelayer;
import ddmd.dcast;
import ddmd.dclass;
import ddmd.declaration;
import ddmd.dmangle;
import ddmd.dmodule;
import ddmd.doc;
import ddmd.dscope;
import ddmd.dsymbol;
import ddmd.errors;
import ddmd.expression;
import ddmd.func;
import ddmd.globals;
import ddmd.hdrgen;
import ddmd.id;
import ddmd.identifier;
import ddmd.init;
import ddmd.mtype;
import ddmd.opover;
import ddmd.root.aav;
import ddmd.root.array;
import ddmd.root.outbuffer;
import ddmd.root.rootobject;
import ddmd.tokens;
import ddmd.visitor;
version(IN_LLVM)
{
import gen.llvmhelpers;
}
private enum LOG = false;
enum IDX_NOTFOUND = 0x12345678;
/********************************************
* These functions substitute for dynamic_cast. dynamic_cast does not work
* on earlier versions of gcc.
*/
extern (C++) Expression isExpression(RootObject o)
{
//return dynamic_cast<Expression *>(o);
if (!o || o.dyncast() != DYNCAST_EXPRESSION)
return null;
return cast(Expression)o;
}
extern (C++) Dsymbol isDsymbol(RootObject o)
{
//return dynamic_cast<Dsymbol *>(o);
if (!o || o.dyncast() != DYNCAST_DSYMBOL)
return null;
return cast(Dsymbol)o;
}
extern (C++) Type isType(RootObject o)
{
//return dynamic_cast<Type *>(o);
if (!o || o.dyncast() != DYNCAST_TYPE)
return null;
return cast(Type)o;
}
extern (C++) Tuple isTuple(RootObject o)
{
//return dynamic_cast<Tuple *>(o);
if (!o || o.dyncast() != DYNCAST_TUPLE)
return null;
return cast(Tuple)o;
}
extern (C++) Parameter isParameter(RootObject o)
{
//return dynamic_cast<Parameter *>(o);
if (!o || o.dyncast() != DYNCAST_PARAMETER)
return null;
return cast(Parameter)o;
}
/**************************************
* Is this Object an error?
*/
extern (C++) bool isError(RootObject o)
{
Type t = isType(o);
if (t)
return (t.ty == Terror);
Expression e = isExpression(o);
if (e)
return (e.op == TOKerror || !e.type || e.type.ty == Terror);
Tuple v = isTuple(o);
if (v)
return arrayObjectIsError(&v.objects);
Dsymbol s = isDsymbol(o);
assert(s);
if (s.errors)
return true;
return s.parent ? isError(s.parent) : false;
}
/**************************************
* Are any of the Objects an error?
*/
extern (C++) bool arrayObjectIsError(Objects* args)
{
for (size_t i = 0; i < args.dim; i++)
{
RootObject o = (*args)[i];
if (isError(o))
return true;
}
return false;
}
/***********************
* Try to get arg as a type.
*/
extern (C++) Type getType(RootObject o)
{
Type t = isType(o);
if (!t)
{
Expression e = isExpression(o);
if (e)
t = e.type;
}
return t;
}
extern (C++) Dsymbol getDsymbol(RootObject oarg)
{
//printf("getDsymbol()\n");
//printf("e %p s %p t %p v %p\n", isExpression(oarg), isDsymbol(oarg), isType(oarg), isTuple(oarg));
Dsymbol sa;
Expression ea = isExpression(oarg);
if (ea)
{
// Try to convert Expression to symbol
if (ea.op == TOKvar)
sa = (cast(VarExp)ea).var;
else if (ea.op == TOKfunction)
{
if ((cast(FuncExp)ea).td)
sa = (cast(FuncExp)ea).td;
else
sa = (cast(FuncExp)ea).fd;
}
else if (ea.op == TOKtemplate)
sa = (cast(TemplateExp)ea).td;
else
sa = null;
}
else
{
// Try to convert Type to symbol
Type ta = isType(oarg);
if (ta)
sa = ta.toDsymbol(null);
else
sa = isDsymbol(oarg); // if already a symbol
}
return sa;
}
extern (C++) Expression getValue(ref Dsymbol s)
{
Expression e = null;
if (s)
{
VarDeclaration v = s.isVarDeclaration();
if (v && v.storage_class & STCmanifest)
{
e = v.getConstInitializer();
}
}
return e;
}
/***********************
* Try to get value from manifest constant
*/
extern (C++) Expression getValue(Expression e)
{
if (e && e.op == TOKvar)
{
VarDeclaration v = (cast(VarExp)e).var.isVarDeclaration();
if (v && v.storage_class & STCmanifest)
{
e = v.getConstInitializer();
}
}
return e;
}
/******************************
* If o1 matches o2, return true.
* Else, return false.
*/
extern (C++) bool match(RootObject o1, RootObject o2)
{
static Expression getExpression(RootObject o)
{
auto s = isDsymbol(o);
return s ? .getValue(s) : .getValue(isExpression(o));
}
enum debugPrint = 0;
static if (debugPrint)
{
printf("match() o1 = %p %s (%d), o2 = %p %s (%d)\n",
o1, o1.toChars(), o1.dyncast(), o2, o2.toChars(), o2.dyncast());
}
/* A proper implementation of the various equals() overrides
* should make it possible to just do o1.equals(o2), but
* we'll do that another day.
*/
/* Manifest constants should be compared by their values,
* at least in template arguments.
*/
if (auto t1 = isType(o1))
{
auto t2 = isType(o2);
if (!t2)
goto Lnomatch;
static if (debugPrint)
{
printf("\tt1 = %s\n", t1.toChars());
printf("\tt2 = %s\n", t2.toChars());
}
if (!t1.equals(t2))
goto Lnomatch;
goto Lmatch;
}
if (auto e1 = getExpression(o1))
{
auto e2 = getExpression(o2);
if (!e2)
goto Lnomatch;
static if (debugPrint)
{
printf("\te1 = %s '%s' %s\n", e1.type.toChars(), Token.toChars(e1.op), e1.toChars());
printf("\te2 = %s '%s' %s\n", e2.type.toChars(), Token.toChars(e2.op), e2.toChars());
}
if (!e1.equals(e2))
goto Lnomatch;
goto Lmatch;
}
if (auto s1 = isDsymbol(o1))
{
auto s2 = isDsymbol(o2);
if (!s2)
goto Lnomatch;
static if (debugPrint)
{
printf("\ts1 = %s \n", s1.kind(), s1.toChars());
printf("\ts2 = %s \n", s2.kind(), s2.toChars());
}
if (!s1.equals(s2))
goto Lnomatch;
if (s1.parent != s2.parent && !s1.isFuncDeclaration() && !s2.isFuncDeclaration())
goto Lnomatch;
goto Lmatch;
}
if (auto u1 = isTuple(o1))
{
auto u2 = isTuple(o2);
if (!u2)
goto Lnomatch;
static if (debugPrint)
{
printf("\tu1 = %s\n", u1.toChars());
printf("\tu2 = %s\n", u2.toChars());
}
if (!arrayObjectMatch(&u1.objects, &u2.objects))
goto Lnomatch;
goto Lmatch;
}
Lmatch:
static if (debugPrint)
printf("\t-> match\n");
return true;
Lnomatch:
static if (debugPrint)
printf("\t-> nomatch\n");
return false;
}
/************************************
* Match an array of them.
*/
extern (C++) int arrayObjectMatch(Objects* oa1, Objects* oa2)
{
if (oa1 == oa2)
return 1;
if (oa1.dim != oa2.dim)
return 0;
for (size_t j = 0; j < oa1.dim; j++)
{
RootObject o1 = (*oa1)[j];
RootObject o2 = (*oa2)[j];
if (!match(o1, o2))
{
return 0;
}
}
return 1;
}
/************************************
* Return hash of Objects.
*/
extern (C++) hash_t arrayObjectHash(Objects* oa1)
{
hash_t hash = 0;
for (size_t j = 0; j < oa1.dim; j++)
{
/* Must follow the logic of match()
*/
RootObject o1 = (*oa1)[j];
if (Type t1 = isType(o1))
hash += cast(size_t)t1.deco;
else
{
Dsymbol s1 = isDsymbol(o1);
Expression e1 = s1 ? getValue(s1) : getValue(isExpression(o1));
if (e1)
{
if (e1.op == TOKint64)
{
IntegerExp ne = cast(IntegerExp)e1;
hash += cast(size_t)ne.getInteger();
}
}
else if (s1)
{
FuncAliasDeclaration fa1 = s1.isFuncAliasDeclaration();
if (fa1)
s1 = fa1.toAliasFunc();
hash += cast(size_t)cast(void*)s1.getIdent() + cast(size_t)cast(void*)s1.parent;
}
else if (Tuple u1 = isTuple(o1))
hash += arrayObjectHash(&u1.objects);
}
}
return hash;
}
extern (C++) RootObject objectSyntaxCopy(RootObject o)
{
if (!o)
return null;
if (Type t = isType(o))
return t.syntaxCopy();
if (Expression e = isExpression(o))
return e.syntaxCopy();
return o;
}
extern (C++) final class Tuple : RootObject
{
public:
Objects objects;
// kludge for template.isType()
override int dyncast()
{
return DYNCAST_TUPLE;
}
override const(char)* toChars()
{
return objects.toChars();
}
}
struct TemplatePrevious
{
TemplatePrevious* prev;
Scope* sc;
Objects* dedargs;
}
/***********************************************************
*/
extern (C++) final class TemplateDeclaration : ScopeDsymbol
{
public:
TemplateParameters* parameters; // array of TemplateParameter's
TemplateParameters* origParameters; // originals for Ddoc
Expression constraint;
// Hash table to look up TemplateInstance's of this TemplateDeclaration
Array!(TemplateInstances*) buckets;
size_t numinstances; // number of instances in the hash table
TemplateDeclaration overnext; // next overloaded TemplateDeclaration
TemplateDeclaration overroot; // first in overnext list
FuncDeclaration funcroot; // first function in unified overload list
Dsymbol onemember; // if !=null then one member of this template
bool literal; // this template declaration is a literal
bool ismixin; // template declaration is only to be used as a mixin
bool isstatic; // this is static template declaration
Prot protection;
// threaded list of previous instantiation attempts on stack
TemplatePrevious* previous;
version(IN_LLVM) {
const(char)* intrinsicName;
}
extern (D) this(Loc loc, Identifier id, TemplateParameters* parameters, Expression constraint, Dsymbols* decldefs, bool ismixin = false, bool literal = false)
{
super(id);
static if (LOG)
{
printf("TemplateDeclaration(this = %p, id = '%s')\n", this, id.toChars());
}
version (none)
{
if (parameters)
for (int i = 0; i < parameters.dim; i++)
{
TemplateParameter tp = (*parameters)[i];
//printf("\tparameter[%d] = %p\n", i, tp);
TemplateTypeParameter ttp = tp.isTemplateTypeParameter();
if (ttp)
{
printf("\tparameter[%d] = %s : %s\n", i, tp.ident.toChars(), ttp.specType ? ttp.specType.toChars() : "");
}
}
}
this.loc = loc;
this.parameters = parameters;
this.origParameters = parameters;
this.constraint = constraint;
this.members = decldefs;
this.literal = literal;
this.ismixin = ismixin;
this.isstatic = true;
this.protection = Prot(PROTundefined);
// Compute in advance for Ddoc's use
// Bugzilla 11153: ident could be NULL if parsing fails.
if (members && ident)
{
Dsymbol s;
if (Dsymbol.oneMembers(members, &s, ident) && s)
{
onemember = s;
s.parent = this;
}
}
}
override Dsymbol syntaxCopy(Dsymbol)
{
//printf("TemplateDeclaration::syntaxCopy()\n");
TemplateParameters* p = null;
if (parameters)
{
p = new TemplateParameters();
p.setDim(parameters.dim);
for (size_t i = 0; i < p.dim; i++)
(*p)[i] = (*parameters)[i].syntaxCopy();
}
version(IN_LLVM)
{
auto td = new TemplateDeclaration(loc, ident, p,
constraint ? constraint.syntaxCopy() : null,
Dsymbol.arraySyntaxCopy(members), ismixin, literal);
td.intrinsicName = intrinsicName ? strdup(intrinsicName) : null;
return td;
}
else
{
return new TemplateDeclaration(loc, ident, p, constraint ? constraint.syntaxCopy() : null, Dsymbol.arraySyntaxCopy(members), ismixin, literal);
}
}
override void semantic(Scope* sc)
{
static if (LOG)
{
printf("TemplateDeclaration::semantic(this = %p, id = '%s')\n", this, ident.toChars());
printf("sc->stc = %llx\n", sc.stc);
printf("sc->module = %s\n", sc._module.toChars());
}
if (semanticRun != PASSinit)
return; // semantic() already run
semanticRun = PASSsemantic;
// Remember templates defined in module object that we need to know about
if (sc._module && sc._module.ident == Id.object)
{
if (ident == Id.RTInfo)
Type.rtinfo = this;
}
/* Remember Scope for later instantiations, but make
* a copy since attributes can change.
*/
if (!this._scope)
{
this._scope = sc.copy();
this._scope.setNoFree();
}
// Set up scope for parameters
auto paramsym = new ScopeDsymbol();
paramsym.parent = sc.parent;
Scope* paramscope = sc.push(paramsym);
paramscope.stc = 0;
if (!parent)
parent = sc.parent;
isstatic = toParent().isModule() || (_scope.stc & STCstatic);
protection = sc.protection;
if (global.params.doDocComments)
{
origParameters = new TemplateParameters();
origParameters.setDim(parameters.dim);
for (size_t i = 0; i < parameters.dim; i++)
{
TemplateParameter tp = (*parameters)[i];
(*origParameters)[i] = tp.syntaxCopy();
}
}
for (size_t i = 0; i < parameters.dim; i++)
{
TemplateParameter tp = (*parameters)[i];
if (!tp.declareParameter(paramscope))
{
error(tp.loc, "parameter '%s' multiply defined", tp.ident.toChars());
errors = true;
}
if (!tp.semantic(paramscope, parameters))
{
errors = true;
}
if (i + 1 != parameters.dim && tp.isTemplateTupleParameter())
{
error("template tuple parameter must be last one");
errors = true;
}
}
/* Calculate TemplateParameter::dependent
*/
TemplateParameters tparams;
tparams.setDim(1);
for (size_t i = 0; i < parameters.dim; i++)
{
TemplateParameter tp = (*parameters)[i];
tparams[0] = tp;
for (size_t j = 0; j < parameters.dim; j++)
{
// Skip cases like: X(T : T)
if (i == j)
continue;
if (TemplateTypeParameter ttp = (*parameters)[j].isTemplateTypeParameter())
{
if (reliesOnTident(ttp.specType, &tparams))
tp.dependent = true;
}
else if (TemplateAliasParameter tap = (*parameters)[j].isTemplateAliasParameter())
{
if (reliesOnTident(tap.specType, &tparams) || reliesOnTident(isType(tap.specAlias), &tparams))
{
tp.dependent = true;
}
}
}
}
paramscope.pop();
// Compute again
onemember = null;
if (members)
{
Dsymbol s;
if (Dsymbol.oneMembers(members, &s, ident) && s)
{
onemember = s;
s.parent = this;
}
}
/* BUG: should check:
* o no virtual functions or non-static data members of classes
*/
}
/**********************************
* Overload existing TemplateDeclaration 'this' with the new one 's'.
* Return true if successful; i.e. no conflict.
*/
override bool overloadInsert(Dsymbol s)
{
static if (LOG)
{
printf("TemplateDeclaration::overloadInsert('%s')\n", s.toChars());
}
FuncDeclaration fd = s.isFuncDeclaration();
if (fd)
{
if (funcroot)
return funcroot.overloadInsert(fd);
funcroot = fd;
return funcroot.overloadInsert(this);
}
TemplateDeclaration td = s.isTemplateDeclaration();
if (!td)
return false;
TemplateDeclaration pthis = this;
TemplateDeclaration* ptd;
for (ptd = &pthis; *ptd; ptd = &(*ptd).overnext)
{
}
td.overroot = this;
*ptd = td;
static if (LOG)
{
printf("\ttrue: no conflict\n");
}
return true;
}
override bool hasStaticCtorOrDtor()
{
return false; // don't scan uninstantiated templates
}
override const(char)* kind() const
{
return (onemember && onemember.isAggregateDeclaration()) ? onemember.kind() : "template";
}
override const(char)* toChars()
{
if (literal)
return Dsymbol.toChars();
OutBuffer buf;
HdrGenState hgs;
buf.writestring(ident.toChars());
buf.writeByte('(');
for (size_t i = 0; i < parameters.dim; i++)
{
TemplateParameter tp = (*parameters)[i];
if (i)
buf.writestring(", ");
.toCBuffer(tp, &buf, &hgs);
}
buf.writeByte(')');
if (onemember)
{
FuncDeclaration fd = onemember.isFuncDeclaration();
if (fd && fd.type)
{
TypeFunction tf = cast(TypeFunction)fd.type;
buf.writestring(parametersTypeToChars(tf.parameters, tf.varargs));
}
}
if (constraint)
{
buf.writestring(" if (");
.toCBuffer(constraint, &buf, &hgs);
buf.writeByte(')');
}
return buf.extractString();
}
override Prot prot()
{
return protection;
}
/****************************
* Check to see if constraint is satisfied.
*/
bool evaluateConstraint(TemplateInstance ti, Scope* sc, Scope* paramscope, Objects* dedargs, FuncDeclaration fd)
{
/* Detect recursive attempts to instantiate this template declaration,
* Bugzilla 4072
* void foo(T)(T x) if (is(typeof(foo(x)))) { }
* static assert(!is(typeof(foo(7))));
* Recursive attempts are regarded as a constraint failure.
*/
/* There's a chicken-and-egg problem here. We don't know yet if this template
* instantiation will be a local one (enclosing is set), and we won't know until
* after selecting the correct template. Thus, function we're nesting inside
* is not on the sc scope chain, and this can cause errors in FuncDeclaration::getLevel().
* Workaround the problem by setting a flag to relax the checking on frame errors.
*/
for (TemplatePrevious* p = previous; p; p = p.prev)
{
if (arrayObjectMatch(p.dedargs, dedargs))
{
//printf("recursive, no match p->sc=%p %p %s\n", p->sc, this, this->toChars());
/* It must be a subscope of p->sc, other scope chains are not recursive
* instantiations.
*/
for (Scope* scx = sc; scx; scx = scx.enclosing)
{
if (scx == p.sc)
return false;
}
}
/* BUG: should also check for ref param differences
*/
}
TemplatePrevious pr;
pr.prev = previous;
pr.sc = paramscope;
pr.dedargs = dedargs;
previous = &pr; // add this to threaded list
uint nerrors = global.errors;
Scope* scx = paramscope.push(ti);
scx.parent = ti;
scx.tinst = null;
scx.minst = null;
assert(!ti.symtab);
if (fd)
{
/* Declare all the function parameters as variables and add them to the scope
* Making parameters is similar to FuncDeclaration::semantic3
*/
TypeFunction tf = cast(TypeFunction)fd.type;
assert(tf.ty == Tfunction);
scx.parent = fd;
Parameters* fparameters = tf.parameters;
int fvarargs = tf.varargs;
size_t nfparams = Parameter.dim(fparameters);
for (size_t i = 0; i < nfparams; i++)
{
Parameter fparam = Parameter.getNth(fparameters, i);
fparam.storageClass &= (STCin | STCout | STCref | STClazy | STCfinal | STC_TYPECTOR | STCnodtor);
fparam.storageClass |= STCparameter;
if (fvarargs == 2 && i + 1 == nfparams)
fparam.storageClass |= STCvariadic;
}
for (size_t i = 0; i < fparameters.dim; i++)
{
Parameter fparam = (*fparameters)[i];
if (!fparam.ident)
continue;
// don't add it, if it has no name
auto v = new VarDeclaration(loc, fparam.type, fparam.ident, null);
v.storage_class = fparam.storageClass;
v.semantic(scx);
if (!ti.symtab)
ti.symtab = new DsymbolTable();
if (!scx.insert(v))
error("parameter %s.%s is already defined", toChars(), v.toChars());
else
v.parent = fd;
}
if (isstatic)
fd.storage_class |= STCstatic;
fd.vthis = fd.declareThis(scx, fd.isThis());
}
Expression e = constraint.syntaxCopy();
scx = scx.startCTFE();
scx.flags |= SCOPEcondition | SCOPEconstraint;
assert(ti.inst is null);
ti.inst = ti; // temporary instantiation to enable genIdent()
//printf("\tscx->parent = %s %s\n", scx->parent->kind(), scx->parent->toPrettyChars());
e = e.semantic(scx);
e = resolveProperties(scx, e);
ti.inst = null;
ti.symtab = null;
scx = scx.endCTFE();
scx = scx.pop();
previous = pr.prev; // unlink from threaded list
if (nerrors != global.errors) // if any errors from evaluating the constraint, no match
return false;
if (e.op == TOKerror)
return false;
e = e.ctfeInterpret();
if (e.isBool(true))
{
}
else if (e.isBool(false))
return false;
else
{
e.error("constraint %s is not constant or does not evaluate to a bool", e.toChars());
}
return true;
}
/***************************************
* Given that ti is an instance of this TemplateDeclaration,
* deduce the types of the parameters to this, and store
* those deduced types in dedtypes[].
* Input:
* flag 1: don't do semantic() because of dummy types
* 2: don't change types in matchArg()
* Output:
* dedtypes deduced arguments
* Return match level.
*/
MATCH matchWithInstance(Scope* sc, TemplateInstance ti, Objects* dedtypes, Expressions* fargs, int flag)
{
enum LOGM = 0;
static if (LOGM)
{
printf("\n+TemplateDeclaration::matchWithInstance(this = %s, ti = %s, flag = %d)\n", toChars(), ti.toChars(), flag);
}
version (none)
{
printf("dedtypes->dim = %d, parameters->dim = %d\n", dedtypes.dim, parameters.dim);
if (ti.tiargs.dim)
printf("ti->tiargs->dim = %d, [0] = %p\n", ti.tiargs.dim, (*ti.tiargs)[0]);
}
MATCH m;
size_t dedtypes_dim = dedtypes.dim;
dedtypes.zero();
if (errors)
return MATCHnomatch;
size_t parameters_dim = parameters.dim;
int variadic = isVariadic() !is null;
// If more arguments than parameters, no match
if (ti.tiargs.dim > parameters_dim && !variadic)
{
static if (LOGM)
{
printf(" no match: more arguments than parameters\n");
}
return MATCHnomatch;
}
assert(dedtypes_dim == parameters_dim);
assert(dedtypes_dim >= ti.tiargs.dim || variadic);
assert(_scope);
// Set up scope for template parameters
auto paramsym = new ScopeDsymbol();
paramsym.parent = _scope.parent;
Scope* paramscope = _scope.push(paramsym);
paramscope.tinst = ti;
paramscope.minst = sc.minst;
paramscope.callsc = sc;
paramscope.stc = 0;
// Attempt type deduction
m = MATCHexact;
for (size_t i = 0; i < dedtypes_dim; i++)
{
MATCH m2;
TemplateParameter tp = (*parameters)[i];
Declaration sparam;
//printf("\targument [%d]\n", i);
static if (LOGM)
{
//printf("\targument [%d] is %s\n", i, oarg ? oarg->toChars() : "null");
TemplateTypeParameter ttp = tp.isTemplateTypeParameter();
if (ttp)
printf("\tparameter[%d] is %s : %s\n", i, tp.ident.toChars(), ttp.specType ? ttp.specType.toChars() : "");
}
m2 = tp.matchArg(ti.loc, paramscope, ti.tiargs, i, parameters, dedtypes, &sparam);
//printf("\tm2 = %d\n", m2);
if (m2 == MATCHnomatch)
{
version (none)
{
printf("\tmatchArg() for parameter %i failed\n", i);
}
goto Lnomatch;
}
if (m2 < m)
m = m2;
if (!flag)
sparam.semantic(paramscope);
if (!paramscope.insert(sparam)) // TODO: This check can make more early
goto Lnomatch;
// in TemplateDeclaration::semantic, and
// then we don't need to make sparam if flags == 0
}
if (!flag)
{
/* Any parameter left without a type gets the type of
* its corresponding arg
*/
for (size_t i = 0; i < dedtypes_dim; i++)
{
if (!(*dedtypes)[i])
{
assert(i < ti.tiargs.dim);
(*dedtypes)[i] = cast(Type)(*ti.tiargs)[i];
}
}
}
if (m > MATCHnomatch && constraint && !flag)
{
if (ti.hasNestedArgs(ti.tiargs, this.isstatic)) // TODO: should gag error
ti.parent = ti.enclosing;
else
ti.parent = this.parent;
// Similar to doHeaderInstantiation
FuncDeclaration fd = onemember ? onemember.isFuncDeclaration() : null;
if (fd)
{
assert(fd.type.ty == Tfunction);
TypeFunction tf = cast(TypeFunction)fd.type.syntaxCopy();
fd = new FuncDeclaration(fd.loc, fd.endloc, fd.ident, fd.storage_class, tf);
fd.parent = ti;
fd.inferRetType = true;
// Shouldn't run semantic on default arguments and return type.
for (size_t i = 0; i < tf.parameters.dim; i++)
(*tf.parameters)[i].defaultArg = null;
tf.next = null;
// Resolve parameter types and 'auto ref's.
tf.fargs = fargs;
uint olderrors = global.startGagging();
fd.type = tf.semantic(loc, paramscope);
if (global.endGagging(olderrors))
{
assert(fd.type.ty != Tfunction);
goto Lnomatch;
}
assert(fd.type.ty == Tfunction);
fd.originalType = fd.type; // for mangling
}
// TODO: dedtypes => ti->tiargs ?
if (!evaluateConstraint(ti, sc, paramscope, dedtypes, fd))
goto Lnomatch;
}
static if (LOGM)
{
// Print out the results
printf("--------------------------\n");
printf("template %s\n", toChars());
printf("instance %s\n", ti.toChars());
if (m > MATCHnomatch)
{
for (size_t i = 0; i < dedtypes_dim; i++)
{
TemplateParameter tp = (*parameters)[i];
RootObject oarg;
printf(" [%d]", i);
if (i < ti.tiargs.dim)
oarg = (*ti.tiargs)[i];
else
oarg = null;
tp.print(oarg, (*dedtypes)[i]);
}
}
else
goto Lnomatch;
}
static if (LOGM)
{
printf(" match = %d\n", m);
}
goto Lret;
Lnomatch:
static if (LOGM)
{
printf(" no match\n");
}
m = MATCHnomatch;
Lret:
paramscope.pop();
static if (LOGM)
{
printf("-TemplateDeclaration::matchWithInstance(this = %p, ti = %p) = %d\n", this, ti, m);
}
return m;
}
/********************************************
* Determine partial specialization order of 'this' vs td2.
* Returns:
* match this is at least as specialized as td2
* 0 td2 is more specialized than this
*/
MATCH leastAsSpecialized(Scope* sc, TemplateDeclaration td2, Expressions* fargs)
{
enum LOG_LEASTAS = 0;
static if (LOG_LEASTAS)
{
printf("%s.leastAsSpecialized(%s)\n", toChars(), td2.toChars());
}
/* This works by taking the template parameters to this template
* declaration and feeding them to td2 as if it were a template
* instance.
* If it works, then this template is at least as specialized
* as td2.
*/
scope TemplateInstance ti = new TemplateInstance(Loc(), ident); // create dummy template instance
// Set type arguments to dummy template instance to be types
// generated from the parameters to this template declaration
ti.tiargs = new Objects();
ti.tiargs.reserve(parameters.dim);
for (size_t i = 0; i < parameters.dim; i++)
{
TemplateParameter tp = (*parameters)[i];
if (tp.dependent)
break;
RootObject p = cast(RootObject)tp.dummyArg();
if (!p)
break;
ti.tiargs.push(p);
}
// Temporary Array to hold deduced types
Objects dedtypes;
dedtypes.setDim(td2.parameters.dim);
// Attempt a type deduction
MATCH m = td2.matchWithInstance(sc, ti, &dedtypes, fargs, 1);
if (m > MATCHnomatch)
{
/* A non-variadic template is more specialized than a
* variadic one.
*/
TemplateTupleParameter tp = isVariadic();
if (tp && !tp.dependent && !td2.isVariadic())
goto L1;
static if (LOG_LEASTAS)
{
printf(" matches %d, so is least as specialized\n", m);
}
return m;
}
L1:
static if (LOG_LEASTAS)
{
printf(" doesn't match, so is not as specialized\n");
}
return MATCHnomatch;
}
/*************************************************
* Match function arguments against a specific template function.
* Input:
* ti
* sc instantiation scope
* fd
* tthis 'this' argument if !NULL
* fargs arguments to function
* Output:
* fd Partially instantiated function declaration
* ti->tdtypes Expression/Type deduced template arguments
* Returns:
* match level
* bit 0-3 Match template parameters by inferred template arguments
* bit 4-7 Match template parameters by initial template arguments
*/
MATCH deduceFunctionTemplateMatch(TemplateInstance ti, Scope* sc, ref FuncDeclaration fd, Type tthis, Expressions* fargs)
{
size_t nfparams;
size_t nfargs;
size_t ntargs; // array size of tiargs
size_t fptupindex = IDX_NOTFOUND;
MATCH match = MATCHexact;
MATCH matchTiargs = MATCHexact;
Parameters* fparameters; // function parameter list
int fvarargs; // function varargs
uint wildmatch = 0;
size_t inferStart = 0;
Loc instLoc = ti.loc;
Objects* tiargs = ti.tiargs;
auto dedargs = new Objects();
Objects* dedtypes = &ti.tdtypes; // for T:T*, the dedargs is the T*, dedtypes is the T
version (none)
{
printf("\nTemplateDeclaration::deduceFunctionTemplateMatch() %s\n", toChars());
for (size_t i = 0; i < (fargs ? fargs.dim : 0); i++)
{
Expression e = (*fargs)[i];
printf("\tfarg[%d] is %s, type is %s\n", i, e.toChars(), e.type.toChars());
}
printf("fd = %s\n", fd.toChars());
printf("fd->type = %s\n", fd.type.toChars());
if (tthis)
printf("tthis = %s\n", tthis.toChars());
}
assert(_scope);
dedargs.setDim(parameters.dim);
dedargs.zero();
dedtypes.setDim(parameters.dim);
dedtypes.zero();
if (errors || fd.errors)
return MATCHnomatch;
// Set up scope for parameters
auto paramsym = new ScopeDsymbol();
paramsym.parent = _scope.parent; // should use hasnestedArgs and enclosing?
Scope* paramscope = _scope.push(paramsym);
paramscope.tinst = ti;
paramscope.minst = sc.minst;
paramscope.callsc = sc;
paramscope.stc = 0;
TemplateTupleParameter tp = isVariadic();
Tuple declaredTuple = null;
version (none)
{
for (size_t i = 0; i < dedargs.dim; i++)
{
printf("\tdedarg[%d] = ", i);
RootObject oarg = (*dedargs)[i];
if (oarg)
printf("%s", oarg.toChars());
printf("\n");
}
}
ntargs = 0;
if (tiargs)
{
// Set initial template arguments
ntargs = tiargs.dim;
size_t n = parameters.dim;
if (tp)
n--;
if (ntargs > n)
{
if (!tp)
goto Lnomatch;
/* The extra initial template arguments
* now form the tuple argument.
*/
auto t = new Tuple();
assert(parameters.dim);
(*dedargs)[parameters.dim - 1] = t;
t.objects.setDim(ntargs - n);
for (size_t i = 0; i < t.objects.dim; i++)
{
t.objects[i] = (*tiargs)[n + i];
}
declareParameter(paramscope, tp, t);
declaredTuple = t;
}
else
n = ntargs;
memcpy(dedargs.tdata(), tiargs.tdata(), n * (*dedargs.tdata()).sizeof);
for (size_t i = 0; i < n; i++)
{
assert(i < parameters.dim);
Declaration sparam = null;
MATCH m = (*parameters)[i].matchArg(instLoc, paramscope, dedargs, i, parameters, dedtypes, &sparam);
//printf("\tdeduceType m = %d\n", m);
if (m <= MATCHnomatch)
goto Lnomatch;
if (m < matchTiargs)
matchTiargs = m;
sparam.semantic(paramscope);
if (!paramscope.insert(sparam))
goto Lnomatch;
}
if (n < parameters.dim && !declaredTuple)
{
inferStart = n;
}
else
inferStart = parameters.dim;
//printf("tiargs matchTiargs = %d\n", matchTiargs);
}
version (none)
{
for (size_t i = 0; i < dedargs.dim; i++)
{
printf("\tdedarg[%d] = ", i);
RootObject oarg = (*dedargs)[i];
if (oarg)
printf("%s", oarg.toChars());
printf("\n");
}
}
fparameters = fd.getParameters(&fvarargs);
nfparams = Parameter.dim(fparameters); // number of function parameters
nfargs = fargs ? fargs.dim : 0; // number of function arguments
/* Check for match of function arguments with variadic template
* parameter, such as:
*
* void foo(T, A...)(T t, A a);
* void main() { foo(1,2,3); }
*/
if (tp) // if variadic
{
// TemplateTupleParameter always makes most lesser matching.
matchTiargs = MATCHconvert;
if (nfparams == 0 && nfargs != 0) // if no function parameters
{
if (!declaredTuple)
{
auto t = new Tuple();
//printf("t = %p\n", t);
(*dedargs)[parameters.dim - 1] = t;
declareParameter(paramscope, tp, t);
declaredTuple = t;
}
}
else
{
/* Figure out which of the function parameters matches
* the tuple template parameter. Do this by matching
* type identifiers.
* Set the index of this function parameter to fptupindex.
*/
for (fptupindex = 0; fptupindex < nfparams; fptupindex++)
{
Parameter fparam = (*fparameters)[fptupindex];
if (fparam.type.ty != Tident)
continue;
TypeIdentifier tid = cast(TypeIdentifier)fparam.type;
if (!tp.ident.equals(tid.ident) || tid.idents.dim)
continue;
if (fvarargs) // variadic function doesn't
goto Lnomatch;
// go with variadic template
goto L1;
}
fptupindex = IDX_NOTFOUND;
L1:
}
}
if (toParent().isModule() || (_scope.stc & STCstatic))
tthis = null;
if (tthis)
{
bool hasttp = false;
// Match 'tthis' to any TemplateThisParameter's
for (size_t i = 0; i < parameters.dim; i++)
{
TemplateThisParameter ttp = (*parameters)[i].isTemplateThisParameter();
if (ttp)
{
hasttp = true;
Type t = new TypeIdentifier(Loc(), ttp.ident);
MATCH m = deduceType(tthis, paramscope, t, parameters, dedtypes);
if (m <= MATCHnomatch)
goto Lnomatch;
if (m < match)
match = m; // pick worst match
}
}
// Match attributes of tthis against attributes of fd
if (fd.type && !fd.isCtorDeclaration())
{
StorageClass stc = _scope.stc | fd.storage_class2;
// Propagate parent storage class (see bug 5504)
Dsymbol p = parent;
while (p.isTemplateDeclaration() || p.isTemplateInstance())
p = p.parent;
AggregateDeclaration ad = p.isAggregateDeclaration();
if (ad)
stc |= ad.storage_class;
ubyte mod = fd.type.mod;
if (stc & STCimmutable)
mod = MODimmutable;
else
{
if (stc & (STCshared | STCsynchronized))
mod |= MODshared;
if (stc & STCconst)
mod |= MODconst;
if (stc & STCwild)
mod |= MODwild;
}
ubyte thismod = tthis.mod;
if (hasttp)
mod = MODmerge(thismod, mod);
MATCH m = MODmethodConv(thismod, mod);
if (m <= MATCHnomatch)
goto Lnomatch;
if (m < match)
match = m;
}
}
// Loop through the function parameters
{
//printf("%s\n\tnfargs = %d, nfparams = %d, tuple_dim = %d\n", toChars(), nfargs, nfparams, declaredTuple ? declaredTuple->objects.dim : 0);
//printf("\ttp = %p, fptupindex = %d, found = %d, declaredTuple = %s\n", tp, fptupindex, fptupindex != IDX_NOTFOUND, declaredTuple ? declaredTuple->toChars() : NULL);
size_t argi = 0;
size_t nfargs2 = nfargs; // nfargs + supplied defaultArgs
for (size_t parami = 0; parami < nfparams; parami++)
{
Parameter fparam = Parameter.getNth(fparameters, parami);
// Apply function parameter storage classes to parameter types
Type prmtype = fparam.type.addStorageClass(fparam.storageClass);
Expression farg;
/* See function parameters which wound up
* as part of a template tuple parameter.
*/
if (fptupindex != IDX_NOTFOUND && parami == fptupindex)
{
assert(prmtype.ty == Tident);
TypeIdentifier tid = cast(TypeIdentifier)prmtype;
if (!declaredTuple)
{
/* The types of the function arguments
* now form the tuple argument.
*/
declaredTuple = new Tuple();
(*dedargs)[parameters.dim - 1] = declaredTuple;
/* Count function parameters following a tuple parameter.
* void foo(U, T...)(int y, T, U, int) {} // rem == 2 (U, int)
*/
size_t rem = 0;
for (size_t j = parami + 1; j < nfparams; j++)
{
Parameter p = Parameter.getNth(fparameters, j);
if (!reliesOnTident(p.type, parameters, inferStart))
{
Type pt = p.type.syntaxCopy().semantic(fd.loc, paramscope);
rem += pt.ty == Ttuple ? (cast(TypeTuple)pt).arguments.dim : 1;
}
else
{
++rem;
}
}
if (nfargs2 - argi < rem)
goto Lnomatch;
declaredTuple.objects.setDim(nfargs2 - argi - rem);
for (size_t i = 0; i < declaredTuple.objects.dim; i++)
{
farg = (*fargs)[argi + i];
// Check invalid arguments to detect errors early.
if (farg.op == TOKerror || farg.type.ty == Terror)
goto Lnomatch;
if (!(fparam.storageClass & STClazy) && farg.type.ty == Tvoid)
goto Lnomatch;
Type tt;
MATCH m;
if (ubyte wm = deduceWildHelper(farg.type, &tt, tid))
{
wildmatch |= wm;
m = MATCHconst;
}
else
{
m = deduceTypeHelper(farg.type, &tt, tid);
}
if (m <= MATCHnomatch)
goto Lnomatch;
if (m < match)
match = m;
/* Remove top const for dynamic array types and pointer types
*/
if ((tt.ty == Tarray || tt.ty == Tpointer) && !tt.isMutable() && (!(fparam.storageClass & STCref) || (fparam.storageClass & STCauto) && !farg.isLvalue()))
{
tt = tt.mutableOf();
}
declaredTuple.objects[i] = tt;
}
declareParameter(paramscope, tp, declaredTuple);
}
else
{
// Bugzilla 6810: If declared tuple is not a type tuple,
// it cannot be function parameter types.
for (size_t i = 0; i < declaredTuple.objects.dim; i++)
{
if (!isType(declaredTuple.objects[i]))
goto Lnomatch;
}
}
assert(declaredTuple);
argi += declaredTuple.objects.dim;
continue;
}
// If parameter type doesn't depend on inferred template parameters,
// semantic it to get actual type.
if (!reliesOnTident(prmtype, parameters, inferStart))
{
// should copy prmtype to avoid affecting semantic result
prmtype = prmtype.syntaxCopy().semantic(fd.loc, paramscope);
if (prmtype.ty == Ttuple)
{
TypeTuple tt = cast(TypeTuple)prmtype;
size_t tt_dim = tt.arguments.dim;
for (size_t j = 0; j < tt_dim; j++, ++argi)
{
Parameter p = (*tt.arguments)[j];
if (j == tt_dim - 1 && fvarargs == 2 && parami + 1 == nfparams && argi < nfargs)
{
prmtype = p.type;
goto Lvarargs;
}
if (argi >= nfargs)
{
if (p.defaultArg)
continue;
goto Lnomatch;
}
farg = (*fargs)[argi];
if (!farg.implicitConvTo(p.type))
goto Lnomatch;
}
continue;
}
}
if (argi >= nfargs) // if not enough arguments
{
if (!fparam.defaultArg)
goto Lvarargs;
/* Bugzilla 2803: Before the starting of type deduction from the function
* default arguments, set the already deduced parameters into paramscope.
* It's necessary to avoid breaking existing acceptable code. Cases:
*
* 1. Already deduced template parameters can appear in fparam->defaultArg:
* auto foo(A, B)(A a, B b = A.stringof);
* foo(1);
* // at fparam == 'B b = A.string', A is equivalent with the deduced type 'int'
*
* 2. If prmtype depends on default-specified template parameter, the
* default type should be preferred.
* auto foo(N = size_t, R)(R r, N start = 0)
* foo([1,2,3]);
* // at fparam `N start = 0`, N should be 'size_t' before
* // the deduction result from fparam->defaultArg.
*/
if (argi == nfargs)
{
for (size_t i = 0; i < dedtypes.dim; i++)
{
Type at = isType((*dedtypes)[i]);
if (at && at.ty == Tnone)
{
TypeDeduced xt = cast(TypeDeduced)at;
(*dedtypes)[i] = xt.tded; // 'unbox'
}
}
for (size_t i = ntargs; i < dedargs.dim; i++)
{
TemplateParameter tparam = (*parameters)[i];
RootObject oarg = (*dedargs)[i];
RootObject oded = (*dedtypes)[i];
if (!oarg)
{
if (oded)
{
if (tparam.specialization() || !tparam.isTemplateTypeParameter())
{
/* The specialization can work as long as afterwards
* the oded == oarg
*/
(*dedargs)[i] = oded;
MATCH m2 = tparam.matchArg(instLoc, paramscope, dedargs, i, parameters, dedtypes, null);
//printf("m2 = %d\n", m2);
if (m2 <= MATCHnomatch)
goto Lnomatch;
if (m2 < matchTiargs)
matchTiargs = m2; // pick worst match
if (!(*dedtypes)[i].equals(oded))
error("specialization not allowed for deduced parameter %s", tparam.ident.toChars());
}
else
{
if (MATCHconvert < matchTiargs)
matchTiargs = MATCHconvert;
}
(*dedargs)[i] = declareParameter(paramscope, tparam, oded);
}
else
{
oded = tparam.defaultArg(instLoc, paramscope);
if (oded)
(*dedargs)[i] = declareParameter(paramscope, tparam, oded);
}
}
}
}
nfargs2 = argi + 1;
/* If prmtype does not depend on any template parameters:
*
* auto foo(T)(T v, double x = 0);
* foo("str");
* // at fparam == 'double x = 0'
*
* or, if all template parameters in the prmtype are already deduced:
*
* auto foo(R)(R range, ElementType!R sum = 0);
* foo([1,2,3]);
* // at fparam == 'ElementType!R sum = 0'
*
* Deducing prmtype from fparam->defaultArg is not necessary.
*/
if (prmtype.deco || prmtype.syntaxCopy().trySemantic(loc, paramscope))
{
++argi;
continue;
}
// Deduce prmtype from the defaultArg.
farg = fparam.defaultArg.syntaxCopy();
farg = farg.semantic(paramscope);
farg = resolveProperties(paramscope, farg);
}
else
{
farg = (*fargs)[argi];
}
{
// Check invalid arguments to detect errors early.
if (farg.op == TOKerror || farg.type.ty == Terror)
goto Lnomatch;
Lretry:
version (none)
{
printf("\tfarg->type = %s\n", farg.type.toChars());
printf("\tfparam->type = %s\n", prmtype.toChars());
}
Type argtype = farg.type;
if (!(fparam.storageClass & STClazy) && argtype.ty == Tvoid && farg.op != TOKfunction)
goto Lnomatch;
// Bugzilla 12876: optimize arugument to allow CT-known length matching
farg = farg.optimize(WANTvalue, (fparam.storageClass & (STCref | STCout)) != 0);
//printf("farg = %s %s\n", farg->type->toChars(), farg->toChars());
RootObject oarg = farg;
if ((fparam.storageClass & STCref) && (!(fparam.storageClass & STCauto) || farg.isLvalue()))
{
/* Allow expressions that have CT-known boundaries and type [] to match with [dim]
*/
Type taai;
if (argtype.ty == Tarray && (prmtype.ty == Tsarray || prmtype.ty == Taarray && (taai = (cast(TypeAArray)prmtype).index).ty == Tident && (cast(TypeIdentifier)taai).idents.dim == 0))
{
if (farg.op == TOKstring)
{
StringExp se = cast(StringExp)farg;
argtype = se.type.nextOf().sarrayOf(se.len);
}
else if (farg.op == TOKarrayliteral)
{
ArrayLiteralExp ae = cast(ArrayLiteralExp)farg;
argtype = ae.type.nextOf().sarrayOf(ae.elements.dim);
}
else if (farg.op == TOKslice)
{
SliceExp se = cast(SliceExp)farg;
if (Type tsa = toStaticArrayType(se))
argtype = tsa;
}
}
oarg = argtype;
}
else if ((fparam.storageClass & STCout) == 0 && (argtype.ty == Tarray || argtype.ty == Tpointer) && templateParameterLookup(prmtype, parameters) != IDX_NOTFOUND && (cast(TypeIdentifier)prmtype).idents.dim == 0)
{
/* The farg passing to the prmtype always make a copy. Therefore,
* we can shrink the set of the deduced type arguments for prmtype
* by adjusting top-qualifier of the argtype.
*
* prmtype argtype ta
* T <- const(E)[] const(E)[]
* T <- const(E[]) const(E)[]
* qualifier(T) <- const(E)[] const(E[])
* qualifier(T) <- const(E[]) const(E[])
*/
Type ta = argtype.castMod(prmtype.mod ? argtype.nextOf().mod : 0);
if (ta != argtype)
{
Expression ea = farg.copy();
ea.type = ta;
oarg = ea;
}
}
if (fvarargs == 2 && parami + 1 == nfparams && argi + 1 < nfargs)
goto Lvarargs;
uint wm = 0;
MATCH m = deduceType(oarg, paramscope, prmtype, parameters, dedtypes, &wm, inferStart);
//printf("\tL%d deduceType m = %d, wm = x%x, wildmatch = x%x\n", __LINE__, m, wm, wildmatch);
wildmatch |= wm;
/* If no match, see if the argument can be matched by using
* implicit conversions.
*/
if (m == MATCHnomatch && prmtype.deco)
m = farg.implicitConvTo(prmtype);
if (m == MATCHnomatch)
{
AggregateDeclaration ad = isAggregate(farg.type);
if (ad && ad.aliasthis)
{
/* If a semantic error occurs while doing alias this,
* eg purity(bug 7295), just regard it as not a match.
*/
uint olderrors = global.startGagging();
Expression e = resolveAliasThis(sc, farg);
if (!global.endGagging(olderrors))
{
farg = e;
goto Lretry;
}
}
}
if (m > MATCHnomatch && (fparam.storageClass & (STCref | STCauto)) == STCref)
{
if (!farg.isLvalue())
{
if ((farg.op == TOKstring || farg.op == TOKslice) && (prmtype.ty == Tsarray || prmtype.ty == Taarray))
{
// Allow conversion from T[lwr .. upr] to ref T[upr-lwr]
}
else
goto Lnomatch;
}
}
if (m > MATCHnomatch && (fparam.storageClass & STCout))
{
if (!farg.isLvalue())
goto Lnomatch;
if (!farg.type.isMutable()) // Bugzilla 11916
goto Lnomatch;
}
if (m == MATCHnomatch && (fparam.storageClass & STClazy) && prmtype.ty == Tvoid && farg.type.ty != Tvoid)
m = MATCHconvert;
if (m != MATCHnomatch)
{
if (m < match)
match = m; // pick worst match
argi++;
continue;
}
}
Lvarargs:
/* The following code for variadic arguments closely
* matches TypeFunction::callMatch()
*/
if (!(fvarargs == 2 && parami + 1 == nfparams))
goto Lnomatch;
/* Check for match with function parameter T...
*/
Type tb = prmtype.toBasetype();
switch (tb.ty)
{
// 6764 fix - TypeAArray may be TypeSArray have not yet run semantic().
case Tsarray:
case Taarray:
{
// Perhaps we can do better with this, see TypeFunction::callMatch()
if (tb.ty == Tsarray)
{
TypeSArray tsa = cast(TypeSArray)tb;
dinteger_t sz = tsa.dim.toInteger();
if (sz != nfargs - argi)
goto Lnomatch;
}
else if (tb.ty == Taarray)
{
TypeAArray taa = cast(TypeAArray)tb;
Expression dim = new IntegerExp(instLoc, nfargs - argi, Type.tsize_t);
size_t i = templateParameterLookup(taa.index, parameters);
if (i == IDX_NOTFOUND)
{
Expression e;
Type t;
Dsymbol s;
taa.index.resolve(instLoc, sc, &e, &t, &s);
if (!e)
goto Lnomatch;
e = e.ctfeInterpret();
e = e.implicitCastTo(sc, Type.tsize_t);
e = e.optimize(WANTvalue);
if (!dim.equals(e))
goto Lnomatch;
}
else
{
// This code matches code in TypeInstance::deduceType()
TemplateParameter tprm = (*parameters)[i];
TemplateValueParameter tvp = tprm.isTemplateValueParameter();
if (!tvp)
goto Lnomatch;
Expression e = cast(Expression)(*dedtypes)[i];
if (e)
{
if (!dim.equals(e))
goto Lnomatch;
}
else
{
Type vt = tvp.valType.semantic(Loc(), sc);
MATCH m = dim.implicitConvTo(vt);
if (m <= MATCHnomatch)
goto Lnomatch;
(*dedtypes)[i] = dim;
}
}
}
goto case Tarray;
}
case Tarray:
{
TypeArray ta = cast(TypeArray)tb;
Type tret = fparam.isLazyArray();
for (; argi < nfargs; argi++)
{
Expression arg = (*fargs)[argi];
assert(arg);
MATCH m;
/* If lazy array of delegates,
* convert arg(s) to delegate(s)
*/
if (tret)
{
if (ta.next.equals(arg.type))
{
m = MATCHexact;
}
else
{
m = arg.implicitConvTo(tret);
if (m == MATCHnomatch)
{
if (tret.toBasetype().ty == Tvoid)
m = MATCHconvert;
}
}
}
else
{
uint wm = 0;
m = deduceType(arg, paramscope, ta.next, parameters, dedtypes, &wm, inferStart);
wildmatch |= wm;
}
if (m == MATCHnomatch)
goto Lnomatch;
if (m < match)
match = m;
}
goto Lmatch;
}
case Tclass:
case Tident:
goto Lmatch;
default:
goto Lnomatch;
}
assert(0);
}
//printf("-> argi = %d, nfargs = %d, nfargs2 = %d\n", argi, nfargs, nfargs2);
if (argi != nfargs2 && !fvarargs)
goto Lnomatch;
}
Lmatch:
for (size_t i = 0; i < dedtypes.dim; i++)
{
Type at = isType((*dedtypes)[i]);
if (at)
{
if (at.ty == Tnone)
{
TypeDeduced xt = cast(TypeDeduced)at;
at = xt.tded; // 'unbox'
}
(*dedtypes)[i] = at.merge2();
}
}
for (size_t i = ntargs; i < dedargs.dim; i++)
{
TemplateParameter tparam = (*parameters)[i];
//printf("tparam[%d] = %s\n", i, tparam->ident->toChars());
/* For T:T*, the dedargs is the T*, dedtypes is the T
* But for function templates, we really need them to match
*/
RootObject oarg = (*dedargs)[i];
RootObject oded = (*dedtypes)[i];
//printf("1dedargs[%d] = %p, dedtypes[%d] = %p\n", i, oarg, i, oded);
//if (oarg) printf("oarg: %s\n", oarg->toChars());
//if (oded) printf("oded: %s\n", oded->toChars());
if (!oarg)
{
if (oded)
{
if (tparam.specialization() || !tparam.isTemplateTypeParameter())
{
/* The specialization can work as long as afterwards
* the oded == oarg
*/
(*dedargs)[i] = oded;
MATCH m2 = tparam.matchArg(instLoc, paramscope, dedargs, i, parameters, dedtypes, null);
//printf("m2 = %d\n", m2);
if (m2 <= MATCHnomatch)
goto Lnomatch;
if (m2 < matchTiargs)
matchTiargs = m2; // pick worst match
if (!(*dedtypes)[i].equals(oded))
error("specialization not allowed for deduced parameter %s", tparam.ident.toChars());
}
else
{
if (MATCHconvert < matchTiargs)
matchTiargs = MATCHconvert;
}
}
else
{
oded = tparam.defaultArg(instLoc, paramscope);
if (!oded)
{
// if tuple parameter and
// tuple parameter was not in function parameter list and
// we're one or more arguments short (i.e. no tuple argument)
if (tparam == tp &&
fptupindex == IDX_NOTFOUND &&
ntargs <= dedargs.dim - 1)
{
// make tuple argument an empty tuple
oded = cast(RootObject)new Tuple();
}
else
goto Lnomatch;
}
if (isError(oded))
goto Lerror;
ntargs++;
/* At the template parameter T, the picked default template argument
* X!int should be matched to T in order to deduce dependent
* template parameter A.
* auto foo(T : X!A = X!int, A...)() { ... }
* foo(); // T <-- X!int, A <-- (int)
*/
if (tparam.specialization())
{
(*dedargs)[i] = oded;
MATCH m2 = tparam.matchArg(instLoc, paramscope, dedargs, i, parameters, dedtypes, null);
//printf("m2 = %d\n", m2);
if (m2 <= MATCHnomatch)
goto Lnomatch;
if (m2 < matchTiargs)
matchTiargs = m2; // pick worst match
if (!(*dedtypes)[i].equals(oded))
error("specialization not allowed for deduced parameter %s", tparam.ident.toChars());
}
}
oded = declareParameter(paramscope, tparam, oded);
(*dedargs)[i] = oded;
}
}
/* Bugzilla 7469: As same as the code for 7469 in findBestMatch,
* expand a Tuple in dedargs to normalize template arguments.
*/
if (auto d = dedargs.dim)
{
if (auto va = isTuple((*dedargs)[d - 1]))
{
dedargs.setDim(d - 1);
dedargs.insert(d - 1, &va.objects);
}
}
ti.tiargs = dedargs; // update to the normalized template arguments.
// Partially instantiate function for constraint and fd->leastAsSpecialized()
{
assert(paramsym);
Scope* sc2 = _scope;
sc2 = sc2.push(paramsym);
sc2 = sc2.push(ti);
sc2.parent = ti;
sc2.tinst = ti;
sc2.minst = sc.minst;
fd = doHeaderInstantiation(ti, sc2, fd, tthis, fargs);
sc2 = sc2.pop();
sc2 = sc2.pop();
if (!fd)
goto Lnomatch;
}
if (constraint)
{
if (!evaluateConstraint(ti, sc, paramscope, dedargs, fd))
goto Lnomatch;
}
version (none)
{
for (size_t i = 0; i < dedargs.dim; i++)
{
RootObject o = (*dedargs)[i];
printf("\tdedargs[%d] = %d, %s\n", i, o.dyncast(), o.toChars());
}
}
paramscope.pop();
//printf("\tmatch %d\n", match);
return cast(MATCH)(match | (matchTiargs << 4));
Lnomatch:
paramscope.pop();
//printf("\tnomatch\n");
return MATCHnomatch;
Lerror:
// todo: for the future improvement
paramscope.pop();
//printf("\terror\n");
return MATCHnomatch;
}
/**************************************************
* Declare template parameter tp with value o, and install it in the scope sc.
*/
RootObject declareParameter(Scope* sc, TemplateParameter tp, RootObject o)
{
//printf("TemplateDeclaration::declareParameter('%s', o = %p)\n", tp->ident->toChars(), o);
Type ta = isType(o);
Expression ea = isExpression(o);
Dsymbol sa = isDsymbol(o);
Tuple va = isTuple(o);
Declaration d;
VarDeclaration v = null;
if (ea && ea.op == TOKtype)
ta = ea.type;
else if (ea && ea.op == TOKscope)
sa = (cast(ScopeExp)ea).sds;
else if (ea && (ea.op == TOKthis || ea.op == TOKsuper))
sa = (cast(ThisExp)ea).var;
else if (ea && ea.op == TOKfunction)
{
if ((cast(FuncExp)ea).td)
sa = (cast(FuncExp)ea).td;
else
sa = (cast(FuncExp)ea).fd;
}
if (ta)
{
//printf("type %s\n", ta->toChars());
d = new AliasDeclaration(Loc(), tp.ident, ta);
}
else if (sa)
{
//printf("Alias %s %s;\n", sa->ident->toChars(), tp->ident->toChars());
d = new AliasDeclaration(Loc(), tp.ident, sa);
}
else if (ea)
{
// tdtypes.data[i] always matches ea here
Initializer _init = new ExpInitializer(loc, ea);
TemplateValueParameter tvp = tp.isTemplateValueParameter();
Type t = tvp ? tvp.valType : null;
v = new VarDeclaration(loc, t, tp.ident, _init);
v.storage_class = STCmanifest | STCtemplateparameter;
d = v;
}
else if (va)
{
//printf("\ttuple\n");
d = new TupleDeclaration(loc, tp.ident, &va.objects);
}
else
{
debug
{
o.print();
}
assert(0);
}
d.storage_class |= STCtemplateparameter;
if (ta)
{
Type t = ta;
// consistent with Type::checkDeprecated()
while (t.ty != Tenum)
{
if (!t.nextOf())
break;
t = (cast(TypeNext)t).next;
}
if (Dsymbol s = t.toDsymbol(null))
{
if (s.isDeprecated())
d.storage_class |= STCdeprecated;
}
}
else if (sa)
{
if (sa.isDeprecated())
d.storage_class |= STCdeprecated;
}
if (!sc.insert(d))
error("declaration %s is already defined", tp.ident.toChars());
d.semantic(sc);
/* So the caller's o gets updated with the result of semantic() being run on o
*/
if (v)
o = v._init.toExpression();
return o;
}
/*************************************************
* Limited function template instantiation for using fd->leastAsSpecialized()
*/
FuncDeclaration doHeaderInstantiation(TemplateInstance ti, Scope* sc2, FuncDeclaration fd, Type tthis, Expressions* fargs)
{
assert(fd);
version (none)
{
printf("doHeaderInstantiation this = %s\n", toChars());
}
// function body and contracts are not need
if (fd.isCtorDeclaration())
fd = new CtorDeclaration(fd.loc, fd.endloc, fd.storage_class, fd.type.syntaxCopy());
else
fd = new FuncDeclaration(fd.loc, fd.endloc, fd.ident, fd.storage_class, fd.type.syntaxCopy());
fd.parent = ti;
assert(fd.type.ty == Tfunction);
TypeFunction tf = cast(TypeFunction)fd.type;
tf.fargs = fargs;
if (tthis)
{
// Match 'tthis' to any TemplateThisParameter's
bool hasttp = false;
for (size_t i = 0; i < parameters.dim; i++)
{
TemplateParameter tp = (*parameters)[i];
TemplateThisParameter ttp = tp.isTemplateThisParameter();
if (ttp)
hasttp = true;
}
if (hasttp)
{
tf = cast(TypeFunction)tf.addSTC(ModToStc(tthis.mod));
assert(!tf.deco);
}
}
Scope* scx = sc2.push();
// Shouldn't run semantic on default arguments and return type.
for (size_t i = 0; i < tf.parameters.dim; i++)
(*tf.parameters)[i].defaultArg = null;
if (fd.isCtorDeclaration())
{
// For constructors, emitting return type is necessary for
// isolateReturn() in functionResolve.
scx.flags |= SCOPEctor;
Dsymbol parent = toParent2();
Type tret;
AggregateDeclaration ad = parent.isAggregateDeclaration();
if (!ad || parent.isUnionDeclaration())
{
tret = Type.tvoid;
}
else
{
tret = ad.handleType();
assert(tret);
tret = tret.addStorageClass(fd.storage_class | scx.stc);
tret = tret.addMod(tf.mod);
}
tf.next = tret;
if (ad && ad.isStructDeclaration())
tf.isref = 1;
//printf("tf = %s\n", tf->toChars());
}
else
tf.next = null;
fd.type = tf;
fd.type = fd.type.addSTC(scx.stc);
fd.type = fd.type.semantic(fd.loc, scx);
scx = scx.pop();
if (fd.type.ty != Tfunction)
return null;
fd.originalType = fd.type; // for mangling
//printf("\t[%s] fd->type = %s, mod = %x, ", loc.toChars(), fd->type->toChars(), fd->type->mod);
//printf("fd->needThis() = %d\n", fd->needThis());
return fd;
}
/****************************************************
* Given a new instance tithis of this TemplateDeclaration,
* see if there already exists an instance.
* If so, return that existing instance.
*/
TemplateInstance findExistingInstance(TemplateInstance tithis, Expressions* fargs)
{
tithis.fargs = fargs;
hash_t hash = tithis.hashCode();
if (!buckets.dim)
{
buckets.setDim(7);
buckets.zero();
}
size_t bi = hash % buckets.dim;
TemplateInstances* instances = buckets[bi];
if (instances)
{
for (size_t i = 0; i < instances.dim; i++)
{
TemplateInstance ti = (*instances)[i];
static if (LOG)
{
printf("\t%s: checking for match with instance %d (%p): '%s'\n", tithis.toChars(), i, ti, ti.toChars());
}
if (hash == ti.hash && tithis.compare(ti) == 0)
{
//printf("hash = %p yes %d n = %d\n", hash, instances->dim, numinstances);
return ti;
}
}
}
//printf("hash = %p no\n", hash);
return null; // didn't find a match
}
/********************************************
* Add instance ti to TemplateDeclaration's table of instances.
* Return a handle we can use to later remove it if it fails instantiation.
*/
TemplateInstance addInstance(TemplateInstance ti)
{
/* See if we need to rehash
*/
if (numinstances > buckets.dim * 4)
{
// rehash
//printf("rehash\n");
size_t newdim = buckets.dim * 2 + 1;
TemplateInstances** newp = cast(TemplateInstances**).calloc(newdim, (TemplateInstances*).sizeof);
assert(newp);
for (size_t bi = 0; bi < buckets.dim; ++bi)
{
TemplateInstances* instances = buckets[bi];
if (instances)
{
for (size_t i = 0; i < instances.dim; i++)
{
TemplateInstance ti1 = (*instances)[i];
size_t newbi = ti1.hash % newdim;
TemplateInstances* newinstances = newp[newbi];
if (!newinstances)
newp[newbi] = newinstances = new TemplateInstances();
newinstances.push(ti1);
}
}
}
buckets.setDim(newdim);
memcpy(buckets.tdata(), newp, newdim * TemplateInstance.sizeof);
.free(newp);
}
// Insert ti into hash table
size_t bi = ti.hash % buckets.dim;
TemplateInstances* instances = buckets[bi];
if (!instances)
buckets[bi] = instances = new TemplateInstances();
instances.push(ti);
++numinstances;
return ti;
}
/*******************************************
* Remove TemplateInstance from table of instances.
* Input:
* handle returned by addInstance()
*/
void removeInstance(TemplateInstance handle)
{
size_t bi = handle.hash % buckets.dim;
TemplateInstances* instances = buckets[bi];
for (size_t i = 0; i < instances.dim; i++)
{
TemplateInstance ti = (*instances)[i];
if (handle == ti)
{
instances.remove(i);
break;
}
}
--numinstances;
}
override inout(TemplateDeclaration) isTemplateDeclaration() inout
{
return this;
}
TemplateTupleParameter isVariadic()
{
return .isVariadic(parameters);
}
/***********************************
* We can overload templates.
*/
override bool isOverloadable()
{
return true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
extern (C++) final class TypeDeduced : Type
{
public:
Type tded;
Expressions argexps; // corresponding expressions
Types tparams; // tparams[i]->mod
extern (D) this(Type tt, Expression e, Type tparam)
{
super(Tnone);
tded = tt;
argexps.push(e);
tparams.push(tparam);
}
void update(Expression e, Type tparam)
{
argexps.push(e);
tparams.push(tparam);
}
void update(Type tt, Expression e, Type tparam)
{
tded = tt;
argexps.push(e);
tparams.push(tparam);
}
MATCH matchAll(Type tt)
{
MATCH match = MATCHexact;
for (size_t j = 0; j < argexps.dim; j++)
{
Expression e = argexps[j];
assert(e);
if (e == emptyArrayElement)
continue;
Type t = tt.addMod(tparams[j].mod).substWildTo(MODconst);
MATCH m = e.implicitConvTo(t);
if (match > m)
match = m;
if (match <= MATCHnomatch)
break;
}
return match;
}
}
/**************************************
* Determine if TemplateDeclaration is variadic.
*/
extern (C++) TemplateTupleParameter isVariadic(TemplateParameters* parameters)
{
size_t dim = parameters.dim;
TemplateTupleParameter tp = null;
if (dim)
tp = (*parameters)[dim - 1].isTemplateTupleParameter();
return tp;
}
/*************************************************
* Given function arguments, figure out which template function
* to expand, and return matching result.
* Input:
* m matching result
* dstart the root of overloaded function templates
* loc instantiation location
* sc instantiation scope
* tiargs initial list of template arguments
* tthis if !NULL, the 'this' pointer argument
* fargs arguments to function
*/
extern (C++) void functionResolve(Match* m, Dsymbol dstart, Loc loc, Scope* sc, Objects* tiargs, Type tthis, Expressions* fargs)
{
version (none)
{
printf("functionResolve() dstart = %s\n", dstart.toChars());
printf(" tiargs:\n");
if (tiargs)
{
for (size_t i = 0; i < tiargs.dim; i++)
{
RootObject arg = (*tiargs)[i];
printf("\t%s\n", arg.toChars());
}
}
printf(" fargs:\n");
for (size_t i = 0; i < (fargs ? fargs.dim : 0); i++)
{
Expression arg = (*fargs)[i];
printf("\t%s %s\n", arg.type.toChars(), arg.toChars());
//printf("\tty = %d\n", arg->type->ty);
}
//printf("stc = %llx\n", dstart->scope->stc);
//printf("match:t/f = %d/%d\n", ta_last, m->last);
}
// results
int property = 0; // 0: unintialized
// 1: seen @property
// 2: not @property
size_t ov_index = 0;
TemplateDeclaration td_best;
TemplateInstance ti_best;
MATCH ta_last = m.last != MATCHnomatch ? MATCHexact : MATCHnomatch;
Type tthis_best;
int applyFunction(FuncDeclaration fd)
{
// skip duplicates
if (fd == m.lastf)
return 0;
// explicitly specified tiargs never match to non template function
if (tiargs && tiargs.dim > 0)
return 0;
if (fd.semanticRun == PASSinit && fd._scope)
{
Ungag ungag = fd.ungagSpeculative();
fd.semantic(fd._scope);
}
if (fd.semanticRun == PASSinit)
{
.error(loc, "forward reference to template %s", fd.toChars());
return 1;
}
//printf("fd = %s %s, fargs = %s\n", fd->toChars(), fd->type->toChars(), fargs->toChars());
m.anyf = fd;
auto tf = cast(TypeFunction)fd.type;
int prop = tf.isproperty ? 1 : 2;
if (property == 0)
property = prop;
else if (property != prop)
error(fd.loc, "cannot overload both property and non-property functions");
/* For constructors, qualifier check will be opposite direction.
* Qualified constructor always makes qualified object, then will be checked
* that it is implicitly convertible to tthis.
*/
Type tthis_fd = fd.needThis() ? tthis : null;
if (tthis_fd && fd.isCtorDeclaration())
{
//printf("%s tf->mod = x%x tthis_fd->mod = x%x %d\n", tf->toChars(),
// tf->mod, tthis_fd->mod, fd->isolateReturn());
if (MODimplicitConv(tf.mod, tthis_fd.mod) ||
tf.isWild() && tf.isShared() == tthis_fd.isShared() ||
fd.isolateReturn())
{
/* && tf->isShared() == tthis_fd->isShared()*/
// Uniquely constructed object can ignore shared qualifier.
// TODO: Is this appropriate?
tthis_fd = null;
}
else
return 0; // MATCHnomatch
}
MATCH mfa = tf.callMatch(tthis_fd, fargs);
//printf("test1: mfa = %d\n", mfa);
if (mfa > MATCHnomatch)
{
if (mfa > m.last) goto LfIsBetter;
if (mfa < m.last) goto LlastIsBetter;
/* See if one of the matches overrides the other.
*/
assert(m.lastf);
if (m.lastf.overrides(fd)) goto LlastIsBetter;
if (fd.overrides(m.lastf)) goto LfIsBetter;
/* Try to disambiguate using template-style partial ordering rules.
* In essence, if f() and g() are ambiguous, if f() can call g(),
* but g() cannot call f(), then pick f().
* This is because f() is "more specialized."
*/
{
MATCH c1 = fd.leastAsSpecialized(m.lastf);
MATCH c2 = m.lastf.leastAsSpecialized(fd);
//printf("c1 = %d, c2 = %d\n", c1, c2);
if (c1 > c2) goto LfIsBetter;
if (c1 < c2) goto LlastIsBetter;
}
/* If the two functions are the same function, like:
* int foo(int);
* int foo(int x) { ... }
* then pick the one with the body.
*/
if (tf.equals(m.lastf.type) &&
fd.storage_class == m.lastf.storage_class &&
fd.parent == m.lastf.parent &&
fd.protection == m.lastf.protection &&
fd.linkage == m.lastf.linkage)
{
if (fd.fbody && !m.lastf.fbody) goto LfIsBetter;
if (!fd.fbody && m.lastf.fbody) goto LlastIsBetter;
}
m.nextf = fd;
m.count++;
return 0;
LlastIsBetter:
return 0;
LfIsBetter:
td_best = null;
ti_best = null;
ta_last = MATCHexact;
m.last = mfa;
m.lastf = fd;
tthis_best = tthis_fd;
ov_index = 0;
m.count = 1;
return 0;
}
return 0;
}
int applyTemplate(TemplateDeclaration td)
{
// skip duplicates
if (td == td_best)
return 0;
if (!sc)
sc = td._scope; // workaround for Type::aliasthisOf
if (td.semanticRun == PASSinit && td._scope)
{
// Try to fix forward reference. Ungag errors while doing so.
Ungag ungag = td.ungagSpeculative();
td.semantic(td._scope);
}
if (td.semanticRun == PASSinit)
{
.error(loc, "forward reference to template %s", td.toChars());
Lerror:
m.lastf = null;
m.count = 0;
m.last = MATCHnomatch;
return 1;
}
//printf("td = %s\n", td->toChars());
auto f = td.onemember ? td.onemember.isFuncDeclaration() : null;
if (!f)
{
if (!tiargs)
tiargs = new Objects();
auto ti = new TemplateInstance(loc, td, tiargs);
Objects dedtypes;
dedtypes.setDim(td.parameters.dim);
assert(td.semanticRun != PASSinit);
MATCH mta = td.matchWithInstance(sc, ti, &dedtypes, fargs, 0);
//printf("matchWithInstance = %d\n", mta);
if (mta <= MATCHnomatch || mta < ta_last) // no match or less match
return 0;
ti.semantic(sc, fargs);
if (!ti.inst) // if template failed to expand
return 0;
Dsymbol s = ti.inst.toAlias();
FuncDeclaration fd;
if (auto tdx = s.isTemplateDeclaration())
{
Objects dedtypesX; // empty tiargs
// Bugzilla 11553: Check for recursive instantiation of tdx.
for (TemplatePrevious* p = tdx.previous; p; p = p.prev)
{
if (arrayObjectMatch(p.dedargs, &dedtypesX))
{
//printf("recursive, no match p->sc=%p %p %s\n", p->sc, this, this->toChars());
/* It must be a subscope of p->sc, other scope chains are not recursive
* instantiations.
*/
for (Scope* scx = sc; scx; scx = scx.enclosing)
{
if (scx == p.sc)
{
error(loc, "recursive template expansion while looking for %s.%s", ti.toChars(), tdx.toChars());
goto Lerror;
}
}
}
/* BUG: should also check for ref param differences
*/
}
TemplatePrevious pr;
pr.prev = tdx.previous;
pr.sc = sc;
pr.dedargs = &dedtypesX;
tdx.previous = &pr; // add this to threaded list
fd = resolveFuncCall(loc, sc, s, null, tthis, fargs, 1);
tdx.previous = pr.prev; // unlink from threaded list
}
else if (s.isFuncDeclaration())
{
fd = resolveFuncCall(loc, sc, s, null, tthis, fargs, 1);
}
else
goto Lerror;
if (!fd)
return 0;
if (fd.type.ty != Tfunction)
{
m.lastf = fd; // to propagate "error match"
m.count = 1;
m.last = MATCHnomatch;
return 1;
}
Type tthis_fd = fd.needThis() && !fd.isCtorDeclaration() ? tthis : null;
auto tf = cast(TypeFunction)fd.type;
MATCH mfa = tf.callMatch(tthis_fd, fargs);
if (mfa < m.last)
return 0;
if (mta < ta_last) goto Ltd_best2;
if (mta > ta_last) goto Ltd2;
if (mfa < m.last) goto Ltd_best2;
if (mfa > m.last) goto Ltd2;
Lambig2: // td_best and td are ambiguous
//printf("Lambig2\n");
m.nextf = fd;
m.count++;
return 0;
Ltd_best2:
return 0;
Ltd2:
// td is the new best match
assert(td._scope);
td_best = td;
ti_best = null;
property = 0; // (backward compatibility)
ta_last = mta;
m.last = mfa;
m.lastf = fd;
tthis_best = tthis_fd;
ov_index = 0;
m.nextf = null;
m.count = 1;
return 0;
}
//printf("td = %s\n", td->toChars());
for (size_t ovi = 0; f; f = f.overnext0, ovi++)
{
if (f.type.ty != Tfunction || f.errors)
goto Lerror;
/* This is a 'dummy' instance to evaluate constraint properly.
*/
auto ti = new TemplateInstance(loc, td, tiargs);
ti.parent = td.parent; // Maybe calculating valid 'enclosing' is unnecessary.
auto fd = f;
int x = td.deduceFunctionTemplateMatch(ti, sc, fd, tthis, fargs);
MATCH mta = cast(MATCH)(x >> 4);
MATCH mfa = cast(MATCH)(x & 0xF);
//printf("match:t/f = %d/%d\n", mta, mfa);
if (!fd || mfa == MATCHnomatch)
continue;
Type tthis_fd = fd.needThis() ? tthis : null;
if (fd.isCtorDeclaration())
{
// Constructor call requires additional check.
auto tf = cast(TypeFunction)fd.type;
if (tthis_fd)
{
assert(tf.next);
if (MODimplicitConv(tf.mod, tthis_fd.mod) ||
tf.isWild() && tf.isShared() == tthis_fd.isShared() ||
fd.isolateReturn())
{
tthis_fd = null;
}
else
continue; // MATCHnomatch
}
}
if (mta < ta_last) goto Ltd_best;
if (mta > ta_last) goto Ltd;
if (mfa < m.last) goto Ltd_best;
if (mfa > m.last) goto Ltd;
if (td_best)
{
// Disambiguate by picking the most specialized TemplateDeclaration
MATCH c1 = td.leastAsSpecialized(sc, td_best, fargs);
MATCH c2 = td_best.leastAsSpecialized(sc, td, fargs);
//printf("1: c1 = %d, c2 = %d\n", c1, c2);
if (c1 > c2) goto Ltd;
if (c1 < c2) goto Ltd_best;
}
assert(fd && m.lastf);
{
// Disambiguate by tf->callMatch
auto tf1 = cast(TypeFunction)fd.type;
assert(tf1.ty == Tfunction);
auto tf2 = cast(TypeFunction)m.lastf.type;
assert(tf2.ty == Tfunction);
MATCH c1 = tf1.callMatch(tthis_fd, fargs);
MATCH c2 = tf2.callMatch(tthis_best, fargs);
//printf("2: c1 = %d, c2 = %d\n", c1, c2);
if (c1 > c2) goto Ltd;
if (c1 < c2) goto Ltd_best;
}
{
// Disambiguate by picking the most specialized FunctionDeclaration
MATCH c1 = fd.leastAsSpecialized(m.lastf);
MATCH c2 = m.lastf.leastAsSpecialized(fd);
//printf("3: c1 = %d, c2 = %d\n", c1, c2);
if (c1 > c2) goto Ltd;
if (c1 < c2) goto Ltd_best;
}
m.nextf = fd;
m.count++;
continue;
Ltd_best: // td_best is the best match so far
//printf("Ltd_best\n");
continue;
Ltd: // td is the new best match
//printf("Ltd\n");
assert(td._scope);
td_best = td;
ti_best = ti;
property = 0; // (backward compatibility)
ta_last = mta;
m.last = mfa;
m.lastf = fd;
tthis_best = tthis_fd;
ov_index = ovi;
m.nextf = null;
m.count = 1;
continue;
}
return 0;
}
auto td = dstart.isTemplateDeclaration();
if (td && td.funcroot)
dstart = td.funcroot;
overloadApply(dstart, (Dsymbol s)
{
if (s.errors)
return 0;
if (auto fd = s.isFuncDeclaration())
return applyFunction(fd);
if (auto td = s.isTemplateDeclaration())
return applyTemplate(td);
return 0;
});
//printf("td_best = %p, m->lastf = %p\n", td_best, m.lastf);
if (td_best && ti_best && m.count == 1)
{
// Matches to template function
assert(td_best.onemember && td_best.onemember.isFuncDeclaration());
/* The best match is td_best with arguments tdargs.
* Now instantiate the template.
*/
assert(td_best._scope);
if (!sc)
sc = td_best._scope; // workaround for Type::aliasthisOf
auto ti = new TemplateInstance(loc, td_best, ti_best.tiargs);
ti.semantic(sc, fargs);
m.lastf = ti.toAlias().isFuncDeclaration();
if (!m.lastf)
goto Lnomatch;
if (ti.errors)
{
Lerror:
m.count = 1;
assert(m.lastf);
m.last = MATCHnomatch;
return;
}
// look forward instantiated overload function
// Dsymbol::oneMembers is alredy called in TemplateInstance::semantic.
// it has filled overnext0d
while (ov_index--)
{
m.lastf = m.lastf.overnext0;
assert(m.lastf);
}
tthis_best = m.lastf.needThis() && !m.lastf.isCtorDeclaration() ? tthis : null;
auto tf = cast(TypeFunction)m.lastf.type;
if (tf.ty == Terror)
goto Lerror;
assert(tf.ty == Tfunction);
if (!tf.callMatch(tthis_best, fargs))
goto Lnomatch;
/* As Bugzilla 3682 shows, a template instance can be matched while instantiating
* that same template. Thus, the function type can be incomplete. Complete it.
*
* Bugzilla 9208: For auto function, completion should be deferred to the end of
* its semantic3. Should not complete it in here.
*/
if (tf.next && !m.lastf.inferRetType)
{
m.lastf.type = tf.semantic(loc, sc);
}
}
else if (m.lastf)
{
// Matches to non template function,
// or found matches were ambiguous.
assert(m.count >= 1);
}
else
{
Lnomatch:
m.count = 0;
m.lastf = null;
m.last = MATCHnomatch;
}
}
/* ======================== Type ============================================ */
/****
* Given an identifier, figure out which TemplateParameter it is.
* Return IDX_NOTFOUND if not found.
*/
extern (C++) size_t templateIdentifierLookup(Identifier id, TemplateParameters* parameters)
{
for (size_t i = 0; i < parameters.dim; i++)
{
TemplateParameter tp = (*parameters)[i];
if (tp.ident.equals(id))
return i;
}
return IDX_NOTFOUND;
}
extern (C++) size_t templateParameterLookup(Type tparam, TemplateParameters* parameters)
{
if (tparam.ty == Tident)
{
TypeIdentifier tident = cast(TypeIdentifier)tparam;
//printf("\ttident = '%s'\n", tident->toChars());
return templateIdentifierLookup(tident.ident, parameters);
}
return IDX_NOTFOUND;
}
extern (C++) ubyte deduceWildHelper(Type t, Type* at, Type tparam)
{
if ((tparam.mod & MODwild) == 0)
return 0;
*at = null;
auto X(T, U)(T U, U T)
{
return (U << 4) | T;
}
switch (X(tparam.mod, t.mod))
{
case X(MODwild, 0):
case X(MODwild, MODconst):
case X(MODwild, MODshared):
case X(MODwild, MODshared | MODconst):
case X(MODwild, MODimmutable):
case X(MODwildconst, 0):
case X(MODwildconst, MODconst):
case X(MODwildconst, MODshared):
case X(MODwildconst, MODshared | MODconst):
case X(MODwildconst, MODimmutable):
case X(MODshared | MODwild, MODshared):
case X(MODshared | MODwild, MODshared | MODconst):
case X(MODshared | MODwild, MODimmutable):
case X(MODshared | MODwildconst, MODshared):
case X(MODshared | MODwildconst, MODshared | MODconst):
case X(MODshared | MODwildconst, MODimmutable):
{
ubyte wm = (t.mod & ~MODshared);
if (wm == 0)
wm = MODmutable;
ubyte m = (t.mod & (MODconst | MODimmutable)) | (tparam.mod & t.mod & MODshared);
*at = t.unqualify(m);
return wm;
}
case X(MODwild, MODwild):
case X(MODwild, MODwildconst):
case X(MODwild, MODshared | MODwild):
case X(MODwild, MODshared | MODwildconst):
case X(MODwildconst, MODwild):
case X(MODwildconst, MODwildconst):
case X(MODwildconst, MODshared | MODwild):
case X(MODwildconst, MODshared | MODwildconst):
case X(MODshared | MODwild, MODshared | MODwild):
case X(MODshared | MODwild, MODshared | MODwildconst):
case X(MODshared | MODwildconst, MODshared | MODwild):
case X(MODshared | MODwildconst, MODshared | MODwildconst):
{
*at = t.unqualify(tparam.mod & t.mod);
return MODwild;
}
default:
return 0;
}
}
extern (C++) MATCH deduceTypeHelper(Type t, Type* at, Type tparam)
{
// 9*9 == 81 cases
auto X(T, U)(T U, U T)
{
return (U << 4) | T;
}
switch (X(tparam.mod, t.mod))
{
case X(0, 0):
case X(0, MODconst):
case X(0, MODwild):
case X(0, MODwildconst):
case X(0, MODshared):
case X(0, MODshared | MODconst):
case X(0, MODshared | MODwild):
case X(0, MODshared | MODwildconst):
case X(0, MODimmutable):
// foo(U) T => T
// foo(U) const(T) => const(T)
// foo(U) inout(T) => inout(T)
// foo(U) inout(const(T)) => inout(const(T))
// foo(U) shared(T) => shared(T)
// foo(U) shared(const(T)) => shared(const(T))
// foo(U) shared(inout(T)) => shared(inout(T))
// foo(U) shared(inout(const(T))) => shared(inout(const(T)))
// foo(U) immutable(T) => immutable(T)
{
*at = t;
return MATCHexact;
}
case X(MODconst, MODconst):
case X(MODwild, MODwild):
case X(MODwildconst, MODwildconst):
case X(MODshared, MODshared):
case X(MODshared | MODconst, MODshared | MODconst):
case X(MODshared | MODwild, MODshared | MODwild):
case X(MODshared | MODwildconst, MODshared | MODwildconst):
case X(MODimmutable, MODimmutable):
// foo(const(U)) const(T) => T
// foo(inout(U)) inout(T) => T
// foo(inout(const(U))) inout(const(T)) => T
// foo(shared(U)) shared(T) => T
// foo(shared(const(U))) shared(const(T)) => T
// foo(shared(inout(U))) shared(inout(T)) => T
// foo(shared(inout(const(U)))) shared(inout(const(T))) => T
// foo(immutable(U)) immutable(T) => T
{
*at = t.mutableOf().unSharedOf();
return MATCHexact;
}
case X(MODconst, 0):
case X(MODconst, MODwild):
case X(MODconst, MODwildconst):
case X(MODconst, MODshared | MODconst):
case X(MODconst, MODshared | MODwild):
case X(MODconst, MODshared | MODwildconst):
case X(MODconst, MODimmutable):
case X(MODwild, MODshared | MODwild):
case X(MODwildconst, MODshared | MODwildconst):
case X(MODshared | MODconst, MODimmutable):
// foo(const(U)) T => T
// foo(const(U)) inout(T) => T
// foo(const(U)) inout(const(T)) => T
// foo(const(U)) shared(const(T)) => shared(T)
// foo(const(U)) shared(inout(T)) => shared(T)
// foo(const(U)) shared(inout(const(T))) => shared(T)
// foo(const(U)) immutable(T) => T
// foo(inout(U)) shared(inout(T)) => shared(T)
// foo(inout(const(U))) shared(inout(const(T))) => shared(T)
// foo(shared(const(U))) immutable(T) => T
{
*at = t.mutableOf();
return MATCHconst;
}
case X(MODconst, MODshared):
// foo(const(U)) shared(T) => shared(T)
{
*at = t;
return MATCHconst;
}
case X(MODshared, MODshared | MODconst):
case X(MODshared, MODshared | MODwild):
case X(MODshared, MODshared | MODwildconst):
case X(MODshared | MODconst, MODshared):
// foo(shared(U)) shared(const(T)) => const(T)
// foo(shared(U)) shared(inout(T)) => inout(T)
// foo(shared(U)) shared(inout(const(T))) => inout(const(T))
// foo(shared(const(U))) shared(T) => T
{
*at = t.unSharedOf();
return MATCHconst;
}
case X(MODwildconst, MODimmutable):
case X(MODshared | MODconst, MODshared | MODwildconst):
case X(MODshared | MODwildconst, MODimmutable):
case X(MODshared | MODwildconst, MODshared | MODwild):
// foo(inout(const(U))) immutable(T) => T
// foo(shared(const(U))) shared(inout(const(T))) => T
// foo(shared(inout(const(U)))) immutable(T) => T
// foo(shared(inout(const(U)))) shared(inout(T)) => T
{
*at = t.unSharedOf().mutableOf();
return MATCHconst;
}
case X(MODshared | MODconst, MODshared | MODwild):
// foo(shared(const(U))) shared(inout(T)) => T
{
*at = t.unSharedOf().mutableOf();
return MATCHconst;
}
case X(MODwild, 0):
case X(MODwild, MODconst):
case X(MODwild, MODwildconst):
case X(MODwild, MODimmutable):
case X(MODwild, MODshared):
case X(MODwild, MODshared | MODconst):
case X(MODwild, MODshared | MODwildconst):
case X(MODwildconst, 0):
case X(MODwildconst, MODconst):
case X(MODwildconst, MODwild):
case X(MODwildconst, MODshared):
case X(MODwildconst, MODshared | MODconst):
case X(MODwildconst, MODshared | MODwild):
case X(MODshared, 0):
case X(MODshared, MODconst):
case X(MODshared, MODwild):
case X(MODshared, MODwildconst):
case X(MODshared, MODimmutable):
case X(MODshared | MODconst, 0):
case X(MODshared | MODconst, MODconst):
case X(MODshared | MODconst, MODwild):
case X(MODshared | MODconst, MODwildconst):
case X(MODshared | MODwild, 0):
case X(MODshared | MODwild, MODconst):
case X(MODshared | MODwild, MODwild):
case X(MODshared | MODwild, MODwildconst):
case X(MODshared | MODwild, MODimmutable):
case X(MODshared | MODwild, MODshared):
case X(MODshared | MODwild, MODshared | MODconst):
case X(MODshared | MODwild, MODshared | MODwildconst):
case X(MODshared | MODwildconst, 0):
case X(MODshared | MODwildconst, MODconst):
case X(MODshared | MODwildconst, MODwild):
case X(MODshared | MODwildconst, MODwildconst):
case X(MODshared | MODwildconst, MODshared):
case X(MODshared | MODwildconst, MODshared | MODconst):
case X(MODimmutable, 0):
case X(MODimmutable, MODconst):
case X(MODimmutable, MODwild):
case X(MODimmutable, MODwildconst):
case X(MODimmutable, MODshared):
case X(MODimmutable, MODshared | MODconst):
case X(MODimmutable, MODshared | MODwild):
case X(MODimmutable, MODshared | MODwildconst):
// foo(inout(U)) T => nomatch
// foo(inout(U)) const(T) => nomatch
// foo(inout(U)) inout(const(T)) => nomatch
// foo(inout(U)) immutable(T) => nomatch
// foo(inout(U)) shared(T) => nomatch
// foo(inout(U)) shared(const(T)) => nomatch
// foo(inout(U)) shared(inout(const(T))) => nomatch
// foo(inout(const(U))) T => nomatch
// foo(inout(const(U))) const(T) => nomatch
// foo(inout(const(U))) inout(T) => nomatch
// foo(inout(const(U))) shared(T) => nomatch
// foo(inout(const(U))) shared(const(T)) => nomatch
// foo(inout(const(U))) shared(inout(T)) => nomatch
// foo(shared(U)) T => nomatch
// foo(shared(U)) const(T) => nomatch
// foo(shared(U)) inout(T) => nomatch
// foo(shared(U)) inout(const(T)) => nomatch
// foo(shared(U)) immutable(T) => nomatch
// foo(shared(const(U))) T => nomatch
// foo(shared(const(U))) const(T) => nomatch
// foo(shared(const(U))) inout(T) => nomatch
// foo(shared(const(U))) inout(const(T)) => nomatch
// foo(shared(inout(U))) T => nomatch
// foo(shared(inout(U))) const(T) => nomatch
// foo(shared(inout(U))) inout(T) => nomatch
// foo(shared(inout(U))) inout(const(T)) => nomatch
// foo(shared(inout(U))) immutable(T) => nomatch
// foo(shared(inout(U))) shared(T) => nomatch
// foo(shared(inout(U))) shared(const(T)) => nomatch
// foo(shared(inout(U))) shared(inout(const(T))) => nomatch
// foo(shared(inout(const(U)))) T => nomatch
// foo(shared(inout(const(U)))) const(T) => nomatch
// foo(shared(inout(const(U)))) inout(T) => nomatch
// foo(shared(inout(const(U)))) inout(const(T)) => nomatch
// foo(shared(inout(const(U)))) shared(T) => nomatch
// foo(shared(inout(const(U)))) shared(const(T)) => nomatch
// foo(immutable(U)) T => nomatch
// foo(immutable(U)) const(T) => nomatch
// foo(immutable(U)) inout(T) => nomatch
// foo(immutable(U)) inout(const(T)) => nomatch
// foo(immutable(U)) shared(T) => nomatch
// foo(immutable(U)) shared(const(T)) => nomatch
// foo(immutable(U)) shared(inout(T)) => nomatch
// foo(immutable(U)) shared(inout(const(T))) => nomatch
return MATCHnomatch;
default:
assert(0);
}
}
extern (C++) __gshared Expression emptyArrayElement = null;
/* These form the heart of template argument deduction.
* Given 'this' being the type argument to the template instance,
* it is matched against the template declaration parameter specialization
* 'tparam' to determine the type to be used for the parameter.
* Example:
* template Foo(T:T*) // template declaration
* Foo!(int*) // template instantiation
* Input:
* this = int*
* tparam = T*
* parameters = [ T:T* ] // Array of TemplateParameter's
* Output:
* dedtypes = [ int ] // Array of Expression/Type's
*/
extern (C++) MATCH deduceType(RootObject o, Scope* sc, Type tparam, TemplateParameters* parameters, Objects* dedtypes, uint* wm = null, size_t inferStart = 0)
{
extern (C++) final class DeduceType : Visitor
{
alias visit = super.visit;
public:
Scope* sc;
Type tparam;
TemplateParameters* parameters;
Objects* dedtypes;
uint* wm;
size_t inferStart;
MATCH result;
extern (D) this(Scope* sc, Type tparam, TemplateParameters* parameters, Objects* dedtypes, uint* wm, size_t inferStart)
{
this.sc = sc;
this.tparam = tparam;
this.parameters = parameters;
this.dedtypes = dedtypes;
this.wm = wm;
this.inferStart = inferStart;
result = MATCHnomatch;
}
override void visit(Type t)
{
version (none)
{
printf("Type::deduceType()\n");
printf("\tthis = %d, ", t.ty);
t.print();
printf("\ttparam = %d, ", tparam.ty);
tparam.print();
}
if (!tparam)
goto Lnomatch;
if (t == tparam)
goto Lexact;
if (tparam.ty == Tident)
{
// Determine which parameter tparam is
size_t i = templateParameterLookup(tparam, parameters);
if (i == IDX_NOTFOUND)
{
if (!sc)
goto Lnomatch;
/* Need a loc to go with the semantic routine.
*/
Loc loc;
if (parameters.dim)
{
TemplateParameter tp = (*parameters)[0];
loc = tp.loc;
}
/* BUG: what if tparam is a template instance, that
* has as an argument another Tident?
*/
tparam = tparam.semantic(loc, sc);
assert(tparam.ty != Tident);
result = deduceType(t, sc, tparam, parameters, dedtypes, wm);
return;
}
TemplateParameter tp = (*parameters)[i];
TypeIdentifier tident = cast(TypeIdentifier)tparam;
if (tident.idents.dim > 0)
{
//printf("matching %s to %s\n", tparam->toChars(), t->toChars());
Dsymbol s = t.toDsymbol(sc);
for (size_t j = tident.idents.dim; j-- > 0;)
{
RootObject id = tident.idents[j];
if (id.dyncast() == DYNCAST_IDENTIFIER)
{
if (!s || !s.parent)
goto Lnomatch;
Dsymbol s2 = s.parent.search(Loc(), cast(Identifier)id);
if (!s2)
goto Lnomatch;
s2 = s2.toAlias();
//printf("[%d] s = %s %s, s2 = %s %s\n", j, s->kind(), s->toChars(), s2->kind(), s2->toChars());
if (s != s2)
{
if (Type tx = s2.getType())
{
if (s != tx.toDsymbol(sc))
goto Lnomatch;
}
else
goto Lnomatch;
}
s = s.parent;
}
else
goto Lnomatch;
}
//printf("[e] s = %s\n", s?s->toChars():"(null)");
if (tp.isTemplateTypeParameter())
{
Type tt = s.getType();
if (!tt)
goto Lnomatch;
Type at = cast(Type)(*dedtypes)[i];
if (at && at.ty == Tnone)
at = (cast(TypeDeduced)at).tded;
if (!at || tt.equals(at))
{
(*dedtypes)[i] = tt;
goto Lexact;
}
}
if (tp.isTemplateAliasParameter())
{
Dsymbol s2 = cast(Dsymbol)(*dedtypes)[i];
if (!s2 || s == s2)
{
(*dedtypes)[i] = s;
goto Lexact;
}
}
goto Lnomatch;
}
// Found the corresponding parameter tp
if (!tp.isTemplateTypeParameter())
goto Lnomatch;
Type at = cast(Type)(*dedtypes)[i];
Type tt;
if (ubyte wx = wm ? deduceWildHelper(t, &tt, tparam) : 0)
{
// type vs (none)
if (!at)
{
(*dedtypes)[i] = tt;
*wm |= wx;
result = MATCHconst;
return;
}
// type vs expressions
if (at.ty == Tnone)
{
TypeDeduced xt = cast(TypeDeduced)at;
result = xt.matchAll(tt);
if (result > MATCHnomatch)
{
(*dedtypes)[i] = tt;
if (result > MATCHconst)
result = MATCHconst; // limit level for inout matches
}
return;
}
// type vs type
if (tt.equals(at))
{
(*dedtypes)[i] = tt; // Prefer current type match
goto Lconst;
}
if (tt.implicitConvTo(at.constOf()))
{
(*dedtypes)[i] = at.constOf().mutableOf();
*wm |= MODconst;
goto Lconst;
}
if (at.implicitConvTo(tt.constOf()))
{
(*dedtypes)[i] = tt.constOf().mutableOf();
*wm |= MODconst;
goto Lconst;
}
goto Lnomatch;
}
else if (MATCH m = deduceTypeHelper(t, &tt, tparam))
{
// type vs (none)
if (!at)
{
(*dedtypes)[i] = tt;
result = m;
return;
}
// type vs expressions
if (at.ty == Tnone)
{
TypeDeduced xt = cast(TypeDeduced)at;
result = xt.matchAll(tt);
if (result > MATCHnomatch)
{
(*dedtypes)[i] = tt;
}
return;
}
// type vs type
if (tt.equals(at))
{
goto Lexact;
}
if (tt.ty == Tclass && at.ty == Tclass)
{
result = tt.implicitConvTo(at);
return;
}
if (tt.ty == Tsarray && at.ty == Tarray && tt.nextOf().implicitConvTo(at.nextOf()) >= MATCHconst)
{
goto Lexact;
}
}
goto Lnomatch;
}
if (tparam.ty == Ttypeof)
{
/* Need a loc to go with the semantic routine.
*/
Loc loc;
if (parameters.dim)
{
TemplateParameter tp = (*parameters)[0];
loc = tp.loc;
}
tparam = tparam.semantic(loc, sc);
}
if (t.ty != tparam.ty)
{
if (Dsymbol sym = t.toDsymbol(sc))
{
if (sym.isforwardRef() && !tparam.deco)
goto Lnomatch;
}
MATCH m = t.implicitConvTo(tparam);
if (m == MATCHnomatch)
{
if (t.ty == Tclass)
{
TypeClass tc = cast(TypeClass)t;
if (tc.sym.aliasthis && !(tc.att & RECtracingDT))
{
tc.att = cast(AliasThisRec)(tc.att | RECtracingDT);
m = deduceType(t.aliasthisOf(), sc, tparam, parameters, dedtypes, wm);
tc.att = cast(AliasThisRec)(tc.att & ~RECtracingDT);
}
}
else if (t.ty == Tstruct)
{
TypeStruct ts = cast(TypeStruct)t;
if (ts.sym.aliasthis && !(ts.att & RECtracingDT))
{
ts.att = cast(AliasThisRec)(ts.att | RECtracingDT);
m = deduceType(t.aliasthisOf(), sc, tparam, parameters, dedtypes, wm);
ts.att = cast(AliasThisRec)(ts.att & ~RECtracingDT);
}
}
}
result = m;
return;
}
if (t.nextOf())
{
if (tparam.deco && !tparam.hasWild())
{
result = t.implicitConvTo(tparam);
return;
}
Type tpn = tparam.nextOf();
if (wm && t.ty == Taarray && tparam.isWild())
{
// Bugzilla 12403: In IFTI, stop inout matching on transitive part of AA types.
tpn = tpn.substWildTo(MODmutable);
}
result = deduceType(t.nextOf(), sc, tpn, parameters, dedtypes, wm);
return;
}
Lexact:
result = MATCHexact;
return;
Lnomatch:
result = MATCHnomatch;
return;
Lconst:
result = MATCHconst;
}
override void visit(TypeVector t)
{
version (none)
{
printf("TypeVector::deduceType()\n");
printf("\tthis = %d, ", t.ty);
t.print();
printf("\ttparam = %d, ", tparam.ty);
tparam.print();
}
if (tparam.ty == Tvector)
{
TypeVector tp = cast(TypeVector)tparam;
result = deduceType(t.basetype, sc, tp.basetype, parameters, dedtypes, wm);
return;
}
visit(cast(Type)t);
}
override void visit(TypeDArray t)
{
version (none)
{
printf("TypeDArray::deduceType()\n");
printf("\tthis = %d, ", t.ty);
t.print();
printf("\ttparam = %d, ", tparam.ty);
tparam.print();
}
visit(cast(Type)t);
}
override void visit(TypeSArray t)
{
version (none)
{
printf("TypeSArray::deduceType()\n");
printf("\tthis = %d, ", t.ty);
t.print();
printf("\ttparam = %d, ", tparam.ty);
tparam.print();
}
// Extra check that array dimensions must match
if (tparam)
{
if (tparam.ty == Tarray)
{
MATCH m = deduceType(t.next, sc, tparam.nextOf(), parameters, dedtypes, wm);
result = (m >= MATCHconst) ? MATCHconvert : MATCHnomatch;
return;
}
TemplateParameter tp = null;
Expression edim = null;
size_t i;
if (tparam.ty == Tsarray)
{
TypeSArray tsa = cast(TypeSArray)tparam;
if (tsa.dim.op == TOKvar && (cast(VarExp)tsa.dim).var.storage_class & STCtemplateparameter)
{
Identifier id = (cast(VarExp)tsa.dim).var.ident;
i = templateIdentifierLookup(id, parameters);
assert(i != IDX_NOTFOUND);
tp = (*parameters)[i];
}
else
edim = tsa.dim;
}
else if (tparam.ty == Taarray)
{
TypeAArray taa = cast(TypeAArray)tparam;
i = templateParameterLookup(taa.index, parameters);
if (i != IDX_NOTFOUND)
tp = (*parameters)[i];
else
{
Expression e;
Type tx;
Dsymbol s;
taa.index.resolve(Loc(), sc, &e, &tx, &s);
edim = s ? getValue(s) : getValue(e);
}
}
if (tp && tp.matchArg(sc, t.dim, i, parameters, dedtypes, null) || edim && edim.toInteger() == t.dim.toInteger())
{
result = deduceType(t.next, sc, tparam.nextOf(), parameters, dedtypes, wm);
return;
}
}
visit(cast(Type)t);
}
override void visit(TypeAArray t)
{
version (none)
{
printf("TypeAArray::deduceType()\n");
printf("\tthis = %d, ", t.ty);
t.print();
printf("\ttparam = %d, ", tparam.ty);
tparam.print();
}
// Extra check that index type must match
if (tparam && tparam.ty == Taarray)
{
TypeAArray tp = cast(TypeAArray)tparam;
if (!deduceType(t.index, sc, tp.index, parameters, dedtypes))
{
result = MATCHnomatch;
return;
}
}
visit(cast(Type)t);
}
override void visit(TypeFunction t)
{
//printf("TypeFunction::deduceType()\n");
//printf("\tthis = %d, ", t->ty); t->print();
//printf("\ttparam = %d, ", tparam->ty); tparam->print();
// Extra check that function characteristics must match
if (tparam && tparam.ty == Tfunction)
{
TypeFunction tp = cast(TypeFunction)tparam;
if (t.varargs != tp.varargs || t.linkage != tp.linkage)
{
result = MATCHnomatch;
return;
}
size_t nfargs = Parameter.dim(t.parameters);
size_t nfparams = Parameter.dim(tp.parameters);
// bug 2579 fix: Apply function parameter storage classes to parameter types
for (size_t i = 0; i < nfparams; i++)
{
Parameter fparam = Parameter.getNth(tp.parameters, i);
fparam.type = fparam.type.addStorageClass(fparam.storageClass);
fparam.storageClass &= ~(STC_TYPECTOR | STCin);
}
//printf("\t-> this = %d, ", t->ty); t->print();
//printf("\t-> tparam = %d, ", tparam->ty); tparam->print();
/* See if tuple match
*/
if (nfparams > 0 && nfargs >= nfparams - 1)
{
/* See if 'A' of the template parameter matches 'A'
* of the type of the last function parameter.
*/
Parameter fparam = Parameter.getNth(tp.parameters, nfparams - 1);
assert(fparam);
assert(fparam.type);
if (fparam.type.ty != Tident)
goto L1;
TypeIdentifier tid = cast(TypeIdentifier)fparam.type;
if (tid.idents.dim)
goto L1;
/* Look through parameters to find tuple matching tid->ident
*/
size_t tupi = 0;
for (; 1; tupi++)
{
if (tupi == parameters.dim)
goto L1;
TemplateParameter tx = (*parameters)[tupi];
TemplateTupleParameter tup = tx.isTemplateTupleParameter();
if (tup && tup.ident.equals(tid.ident))
break;
}
/* The types of the function arguments [nfparams - 1 .. nfargs]
* now form the tuple argument.
*/
size_t tuple_dim = nfargs - (nfparams - 1);
/* See if existing tuple, and whether it matches or not
*/
RootObject o = (*dedtypes)[tupi];
if (o)
{
// Existing deduced argument must be a tuple, and must match
Tuple tup = isTuple(o);
if (!tup || tup.objects.dim != tuple_dim)
{
result = MATCHnomatch;
return;
}
for (size_t i = 0; i < tuple_dim; i++)
{
Parameter arg = Parameter.getNth(t.parameters, nfparams - 1 + i);
if (!arg.type.equals(tup.objects[i]))
{
result = MATCHnomatch;
return;
}
}
}
else
{
// Create new tuple
auto tup = new Tuple();
tup.objects.setDim(tuple_dim);
for (size_t i = 0; i < tuple_dim; i++)
{
Parameter arg = Parameter.getNth(t.parameters, nfparams - 1 + i);
tup.objects[i] = arg.type;
}
(*dedtypes)[tupi] = tup;
}
nfparams--; // don't consider the last parameter for type deduction
goto L2;
}
L1:
if (nfargs != nfparams)
{
result = MATCHnomatch;
return;
}
L2:
for (size_t i = 0; i < nfparams; i++)
{
Parameter a = Parameter.getNth(t.parameters, i);
Parameter ap = Parameter.getNth(tp.parameters, i);
if (a.storageClass != ap.storageClass || !deduceType(a.type, sc, ap.type, parameters, dedtypes))
{
result = MATCHnomatch;
return;
}
}
}
visit(cast(Type)t);
}
override void visit(TypeIdentifier t)
{
// Extra check
if (tparam && tparam.ty == Tident)
{
TypeIdentifier tp = cast(TypeIdentifier)tparam;
for (size_t i = 0; i < t.idents.dim; i++)
{
RootObject id1 = t.idents[i];
RootObject id2 = tp.idents[i];
if (!id1.equals(id2))
{
result = MATCHnomatch;
return;
}
}
}
visit(cast(Type)t);
}
override void visit(TypeInstance t)
{
version (none)
{
printf("TypeInstance::deduceType()\n");
printf("\tthis = %d, ", t.ty);
t.print();
printf("\ttparam = %d, ", tparam.ty);
tparam.print();
}
// Extra check
if (tparam && tparam.ty == Tinstance && t.tempinst.tempdecl)
{
TemplateDeclaration tempdecl = t.tempinst.tempdecl.isTemplateDeclaration();
assert(tempdecl);
TypeInstance tp = cast(TypeInstance)tparam;
//printf("tempinst->tempdecl = %p\n", tempdecl);
//printf("tp->tempinst->tempdecl = %p\n", tp->tempinst->tempdecl);
if (!tp.tempinst.tempdecl)
{
//printf("tp->tempinst->name = '%s'\n", tp->tempinst->name->toChars());
/* Handle case of:
* template Foo(T : sa!(T), alias sa)
*/
size_t i = templateIdentifierLookup(tp.tempinst.name, parameters);
if (i == IDX_NOTFOUND)
{
/* Didn't find it as a parameter identifier. Try looking
* it up and seeing if is an alias. See Bugzilla 1454
*/
auto tid = new TypeIdentifier(tp.loc, tp.tempinst.name);
Type tx;
Expression e;
Dsymbol s;
tid.resolve(tp.loc, sc, &e, &tx, &s);
if (tx)
{
s = tx.toDsymbol(sc);
if (TemplateInstance ti = s ? s.parent.isTemplateInstance() : null)
{
// Bugzilla 14290: Try to match with ti->tempecl,
// only when ti is an enclosing instance.
Dsymbol p = sc.parent;
while (p && p != ti)
p = p.parent;
if (p)
s = ti.tempdecl;
}
}
if (s)
{
s = s.toAlias();
TemplateDeclaration td = s.isTemplateDeclaration();
if (td)
{
if (td.overroot)
td = td.overroot;
for (; td; td = td.overnext)
{
if (td == tempdecl)
goto L2;
}
}
}
goto Lnomatch;
}
TemplateParameter tpx = (*parameters)[i];
if (!tpx.matchArg(sc, tempdecl, i, parameters, dedtypes, null))
goto Lnomatch;
}
else if (tempdecl != tp.tempinst.tempdecl)
goto Lnomatch;
L2:
for (size_t i = 0; 1; i++)
{
//printf("\ttest: tempinst->tiargs[%d]\n", i);
RootObject o1 = null;
if (i < t.tempinst.tiargs.dim)
o1 = (*t.tempinst.tiargs)[i];
else if (i < t.tempinst.tdtypes.dim && i < tp.tempinst.tiargs.dim)
{
// Pick up default arg
o1 = t.tempinst.tdtypes[i];
}
else if (i >= tp.tempinst.tiargs.dim)
break;
if (i >= tp.tempinst.tiargs.dim)
{
size_t dim = tempdecl.parameters.dim - (tempdecl.isVariadic() ? 1 : 0);
while (i < dim && ((*tempdecl.parameters)[i].dependent || (*tempdecl.parameters)[i].hasDefaultArg()))
{
i++;
}
if (i >= dim)
break;
// match if all remained parameters are dependent
goto Lnomatch;
}
RootObject o2 = (*tp.tempinst.tiargs)[i];
Type t2 = isType(o2);
size_t j;
if (t2 && t2.ty == Tident && i == tp.tempinst.tiargs.dim - 1 && (j = templateParameterLookup(t2, parameters), j != IDX_NOTFOUND) && j == parameters.dim - 1 && (*parameters)[j].isTemplateTupleParameter())
{
/* Given:
* struct A(B...) {}
* alias A!(int, float) X;
* static if (is(X Y == A!(Z), Z...)) {}
* deduce that Z is a tuple(int, float)
*/
/* Create tuple from remaining args
*/
auto vt = new Tuple();
size_t vtdim = (tempdecl.isVariadic() ? t.tempinst.tiargs.dim : t.tempinst.tdtypes.dim) - i;
vt.objects.setDim(vtdim);
for (size_t k = 0; k < vtdim; k++)
{
RootObject o;
if (k < t.tempinst.tiargs.dim)
o = (*t.tempinst.tiargs)[i + k];
else // Pick up default arg
o = t.tempinst.tdtypes[i + k];
vt.objects[k] = o;
}
Tuple v = cast(Tuple)(*dedtypes)[j];
if (v)
{
if (!match(v, vt))
goto Lnomatch;
}
else
(*dedtypes)[j] = vt;
break;
}
else if (!o1)
break;
Type t1 = isType(o1);
Dsymbol s1 = isDsymbol(o1);
Dsymbol s2 = isDsymbol(o2);
Expression e1 = s1 ? getValue(s1) : getValue(isExpression(o1));
Expression e2 = isExpression(o2);
version (none)
{
Tuple v1 = isTuple(o1);
Tuple v2 = isTuple(o2);
if (t1)
printf("t1 = %s\n", t1.toChars());
if (t2)
printf("t2 = %s\n", t2.toChars());
if (e1)
printf("e1 = %s\n", e1.toChars());
if (e2)
printf("e2 = %s\n", e2.toChars());
if (s1)
printf("s1 = %s\n", s1.toChars());
if (s2)
printf("s2 = %s\n", s2.toChars());
if (v1)
printf("v1 = %s\n", v1.toChars());
if (v2)
printf("v2 = %s\n", v2.toChars());
}
if (t1 && t2)
{
if (!deduceType(t1, sc, t2, parameters, dedtypes))
goto Lnomatch;
}
else if (e1 && e2)
{
Le:
e1 = e1.ctfeInterpret();
/* If it is one of the template parameters for this template,
* we should not attempt to interpret it. It already has a value.
*/
if (e2.op == TOKvar && ((cast(VarExp)e2).var.storage_class & STCtemplateparameter))
{
/*
* (T:Number!(e2), int e2)
*/
j = templateIdentifierLookup((cast(VarExp)e2).var.ident, parameters);
if (j != IDX_NOTFOUND)
goto L1;
// The template parameter was not from this template
// (it may be from a parent template, for example)
}
e2 = e2.semantic(sc); // Bugzilla 13417
e2 = e2.ctfeInterpret();
//printf("e1 = %s, type = %s %d\n", e1->toChars(), e1->type->toChars(), e1->type->ty);
//printf("e2 = %s, type = %s %d\n", e2->toChars(), e2->type->toChars(), e2->type->ty);
if (!e1.equals(e2))
{
if (!e2.implicitConvTo(e1.type))
goto Lnomatch;
e2 = e2.implicitCastTo(sc, e1.type);
e2 = e2.ctfeInterpret();
if (!e1.equals(e2))
goto Lnomatch;
}
}
else if (e1 && t2 && t2.ty == Tident)
{
j = templateParameterLookup(t2, parameters);
L1:
if (j == IDX_NOTFOUND)
{
t2.resolve((cast(TypeIdentifier)t2).loc, sc, &e2, &t2, &s2);
if (e2)
goto Le;
goto Lnomatch;
}
if (!(*parameters)[j].matchArg(sc, e1, j, parameters, dedtypes, null))
goto Lnomatch;
}
else if (s1 && s2)
{
Ls:
if (!s1.equals(s2))
goto Lnomatch;
}
else if (s1 && t2 && t2.ty == Tident)
{
j = templateParameterLookup(t2, parameters);
if (j == IDX_NOTFOUND)
{
t2.resolve((cast(TypeIdentifier)t2).loc, sc, &e2, &t2, &s2);
if (s2)
goto Ls;
goto Lnomatch;
}
if (!(*parameters)[j].matchArg(sc, s1, j, parameters, dedtypes, null))
goto Lnomatch;
}
else
goto Lnomatch;
}
}
visit(cast(Type)t);
return;
Lnomatch:
//printf("no match\n");
result = MATCHnomatch;
}
override void visit(TypeStruct t)
{
version (none)
{
printf("TypeStruct::deduceType()\n");
printf("\tthis->parent = %s, ", t.sym.parent.toChars());
t.print();
printf("\ttparam = %d, ", tparam.ty);
tparam.print();
}
/* If this struct is a template struct, and we're matching
* it against a template instance, convert the struct type
* to a template instance, too, and try again.
*/
TemplateInstance ti = t.sym.parent.isTemplateInstance();
if (tparam && tparam.ty == Tinstance)
{
if (ti && ti.toAlias() == t.sym)
{
auto tx = new TypeInstance(Loc(), ti);
result = deduceType(tx, sc, tparam, parameters, dedtypes, wm);
return;
}
/* Match things like:
* S!(T).foo
*/
TypeInstance tpi = cast(TypeInstance)tparam;
if (tpi.idents.dim)
{
RootObject id = tpi.idents[tpi.idents.dim - 1];
if (id.dyncast() == DYNCAST_IDENTIFIER && t.sym.ident.equals(cast(Identifier)id))
{
Type tparent = t.sym.parent.getType();
if (tparent)
{
/* Slice off the .foo in S!(T).foo
*/
tpi.idents.dim--;
result = deduceType(tparent, sc, tpi, parameters, dedtypes, wm);
tpi.idents.dim++;
return;
}
}
}
}
// Extra check
if (tparam && tparam.ty == Tstruct)
{
TypeStruct tp = cast(TypeStruct)tparam;
//printf("\t%d\n", (MATCH) t->implicitConvTo(tp));
if (wm && t.deduceWild(tparam, false))
{
result = MATCHconst;
return;
}
result = t.implicitConvTo(tp);
return;
}
visit(cast(Type)t);
}
override void visit(TypeEnum t)
{
// Extra check
if (tparam && tparam.ty == Tenum)
{
TypeEnum tp = cast(TypeEnum)tparam;
if (t.sym == tp.sym)
visit(cast(Type)t);
else
result = MATCHnomatch;
return;
}
Type tb = t.toBasetype();
if (tb.ty == tparam.ty || tb.ty == Tsarray && tparam.ty == Taarray)
{
result = deduceType(tb, sc, tparam, parameters, dedtypes, wm);
return;
}
visit(cast(Type)t);
}
/* Helper for TypeClass::deduceType().
* Classes can match with implicit conversion to a base class or interface.
* This is complicated, because there may be more than one base class which
* matches. In such cases, one or more parameters remain ambiguous.
* For example,
*
* interface I(X, Y) {}
* class C : I(uint, double), I(char, double) {}
* C x;
* foo(T, U)( I!(T, U) x)
*
* deduces that U is double, but T remains ambiguous (could be char or uint).
*
* Given a baseclass b, and initial deduced types 'dedtypes', this function
* tries to match tparam with b, and also tries all base interfaces of b.
* If a match occurs, numBaseClassMatches is incremented, and the new deduced
* types are ANDed with the current 'best' estimate for dedtypes.
*/
static void deduceBaseClassParameters(ref BaseClass b, Scope* sc, Type tparam, TemplateParameters* parameters, Objects* dedtypes, Objects* best, ref int numBaseClassMatches)
{
TemplateInstance parti = b.sym ? b.sym.parent.isTemplateInstance() : null;
if (parti)
{
// Make a temporary copy of dedtypes so we don't destroy it
auto tmpdedtypes = new Objects();
tmpdedtypes.setDim(dedtypes.dim);
memcpy(tmpdedtypes.tdata(), dedtypes.tdata(), dedtypes.dim * (void*).sizeof);
auto t = new TypeInstance(Loc(), parti);
MATCH m = deduceType(t, sc, tparam, parameters, tmpdedtypes);
if (m > MATCHnomatch)
{
// If this is the first ever match, it becomes our best estimate
if (numBaseClassMatches == 0)
memcpy(best.tdata(), tmpdedtypes.tdata(), tmpdedtypes.dim * (void*).sizeof);
else
for (size_t k = 0; k < tmpdedtypes.dim; ++k)
{
// If we've found more than one possible type for a parameter,
// mark it as unknown.
if ((*tmpdedtypes)[k] != (*best)[k])
(*best)[k] = (*dedtypes)[k];
}
++numBaseClassMatches;
}
}
// Now recursively test the inherited interfaces
foreach (ref bi; b.baseInterfaces)
{
deduceBaseClassParameters(bi, sc, tparam, parameters, dedtypes, best, numBaseClassMatches);
}
}
override void visit(TypeClass t)
{
//printf("TypeClass::deduceType(this = %s)\n", t->toChars());
/* If this class is a template class, and we're matching
* it against a template instance, convert the class type
* to a template instance, too, and try again.
*/
TemplateInstance ti = t.sym.parent.isTemplateInstance();
if (tparam && tparam.ty == Tinstance)
{
if (ti && ti.toAlias() == t.sym)
{
auto tx = new TypeInstance(Loc(), ti);
MATCH m = deduceType(tx, sc, tparam, parameters, dedtypes, wm);
// Even if the match fails, there is still a chance it could match
// a base class.
if (m != MATCHnomatch)
{
result = m;
return;
}
}
/* Match things like:
* S!(T).foo
*/
TypeInstance tpi = cast(TypeInstance)tparam;
if (tpi.idents.dim)
{
RootObject id = tpi.idents[tpi.idents.dim - 1];
if (id.dyncast() == DYNCAST_IDENTIFIER && t.sym.ident.equals(cast(Identifier)id))
{
Type tparent = t.sym.parent.getType();
if (tparent)
{
/* Slice off the .foo in S!(T).foo
*/
tpi.idents.dim--;
result = deduceType(tparent, sc, tpi, parameters, dedtypes, wm);
tpi.idents.dim++;
return;
}
}
}
// If it matches exactly or via implicit conversion, we're done
visit(cast(Type)t);
if (result != MATCHnomatch)
return;
/* There is still a chance to match via implicit conversion to
* a base class or interface. Because there could be more than one such
* match, we need to check them all.
*/
int numBaseClassMatches = 0; // Have we found an interface match?
// Our best guess at dedtypes
auto best = new Objects();
best.setDim(dedtypes.dim);
ClassDeclaration s = t.sym;
while (s && s.baseclasses.dim > 0)
{
// Test the base class
deduceBaseClassParameters(*(*s.baseclasses)[0], sc, tparam, parameters, dedtypes, best, numBaseClassMatches);
// Test the interfaces inherited by the base class
foreach (b; s.interfaces)
{
deduceBaseClassParameters(*b, sc, tparam, parameters, dedtypes, best, numBaseClassMatches);
}
s = (*s.baseclasses)[0].sym;
}
if (numBaseClassMatches == 0)
{
result = MATCHnomatch;
return;
}
// If we got at least one match, copy the known types into dedtypes
memcpy(dedtypes.tdata(), best.tdata(), best.dim * (void*).sizeof);
result = MATCHconvert;
return;
}
// Extra check
if (tparam && tparam.ty == Tclass)
{
TypeClass tp = cast(TypeClass)tparam;
//printf("\t%d\n", (MATCH) t->implicitConvTo(tp));
if (wm && t.deduceWild(tparam, false))
{
result = MATCHconst;
return;
}
result = t.implicitConvTo(tp);
return;
}
visit(cast(Type)t);
}
override void visit(Expression e)
{
//printf("Expression::deduceType(e = %s)\n", e->toChars());
size_t i = templateParameterLookup(tparam, parameters);
if (i == IDX_NOTFOUND || (cast(TypeIdentifier)tparam).idents.dim > 0)
{
if (e == emptyArrayElement && tparam.ty == Tarray)
{
Type tn = (cast(TypeNext)tparam).next;
result = deduceType(emptyArrayElement, sc, tn, parameters, dedtypes, wm);
return;
}
e.type.accept(this);
return;
}
TemplateTypeParameter tp = (*parameters)[i].isTemplateTypeParameter();
if (!tp)
return; // nomatch
if (e == emptyArrayElement)
{
if ((*dedtypes)[i])
{
result = MATCHexact;
return;
}
if (tp.defaultType)
{
tp.defaultType.accept(this);
return;
}
}
Type at = cast(Type)(*dedtypes)[i];
Type tt;
if (ubyte wx = deduceWildHelper(e.type, &tt, tparam))
{
*wm |= wx;
result = MATCHconst;
}
else if (MATCH m = deduceTypeHelper(e.type, &tt, tparam))
{
result = m;
}
else
return; // nomatch
// expression vs (none)
if (!at)
{
(*dedtypes)[i] = new TypeDeduced(tt, e, tparam);
return;
}
TypeDeduced xt = null;
if (at.ty == Tnone)
{
xt = cast(TypeDeduced)at;
at = xt.tded;
}
// From previous matched expressions to current deduced type
MATCH match1 = xt ? xt.matchAll(tt) : MATCHnomatch;
// From current expresssion to previous deduced type
Type pt = at.addMod(tparam.mod);
if (*wm)
pt = pt.substWildTo(*wm);
MATCH match2 = e.implicitConvTo(pt);
if (match1 > MATCHnomatch && match2 > MATCHnomatch)
{
if (at.implicitConvTo(tt) <= MATCHnomatch)
match1 = MATCHnomatch; // Prefer at
else if (tt.implicitConvTo(at) <= MATCHnomatch)
match2 = MATCHnomatch; // Prefer tt
else if (tt.isTypeBasic() && tt.ty == at.ty && tt.mod != at.mod)
{
if (!tt.isMutable() && !at.isMutable())
tt = tt.mutableOf().addMod(MODmerge(tt.mod, at.mod));
else if (tt.isMutable())
{
if (at.mod == 0) // Prefer unshared
match1 = MATCHnomatch;
else
match2 = MATCHnomatch;
}
else if (at.isMutable())
{
if (tt.mod == 0) // Prefer unshared
match2 = MATCHnomatch;
else
match1 = MATCHnomatch;
}
//printf("tt = %s, at = %s\n", tt->toChars(), at->toChars());
}
else
{
match1 = MATCHnomatch;
match2 = MATCHnomatch;
}
}
if (match1 > MATCHnomatch)
{
// Prefer current match: tt
if (xt)
xt.update(tt, e, tparam);
else
(*dedtypes)[i] = tt;
result = match1;
return;
}
if (match2 > MATCHnomatch)
{
// Prefer previous match: (*dedtypes)[i]
if (xt)
xt.update(e, tparam);
result = match2;
return;
}
/* Deduce common type
*/
if (Type t = rawTypeMerge(at, tt))
{
if (xt)
xt.update(t, e, tparam);
else
(*dedtypes)[i] = t;
pt = tt.addMod(tparam.mod);
if (*wm)
pt = pt.substWildTo(*wm);
result = e.implicitConvTo(pt);
return;
}
result = MATCHnomatch;
}
MATCH deduceEmptyArrayElement()
{
if (!emptyArrayElement)
{
emptyArrayElement = new IdentifierExp(Loc(), Id.p); // dummy
emptyArrayElement.type = Type.tvoid;
}
assert(tparam.ty == Tarray);
Type tn = (cast(TypeNext)tparam).next;
return deduceType(emptyArrayElement, sc, tn, parameters, dedtypes, wm);
}
override void visit(NullExp e)
{
if (tparam.ty == Tarray && e.type.ty == Tnull)
{
// tparam:T[] <- e:null (void[])
result = deduceEmptyArrayElement();
return;
}
visit(cast(Expression)e);
}
override void visit(StringExp e)
{
Type taai;
if (e.type.ty == Tarray && (tparam.ty == Tsarray || tparam.ty == Taarray && (taai = (cast(TypeAArray)tparam).index).ty == Tident && (cast(TypeIdentifier)taai).idents.dim == 0))
{
// Consider compile-time known boundaries
e.type.nextOf().sarrayOf(e.len).accept(this);
return;
}
visit(cast(Expression)e);
}
override void visit(ArrayLiteralExp e)
{
if ((!e.elements || !e.elements.dim) && e.type.toBasetype().nextOf().ty == Tvoid && tparam.ty == Tarray)
{
// tparam:T[] <- e:[] (void[])
result = deduceEmptyArrayElement();
return;
}
if (tparam.ty == Tarray && e.elements && e.elements.dim)
{
Type tn = (cast(TypeDArray)tparam).next;
result = MATCHexact;
if (e.basis)
{
MATCH m = deduceType(e.basis, sc, tn, parameters, dedtypes, wm);
if (m < result)
result = m;
}
for (size_t i = 0; i < e.elements.dim; i++)
{
if (result <= MATCHnomatch)
break;
auto el = (*e.elements)[i];
if (!el)
continue;
MATCH m = deduceType(el, sc, tn, parameters, dedtypes, wm);
if (m < result)
result = m;
}
return;
}
Type taai;
if (e.type.ty == Tarray && (tparam.ty == Tsarray || tparam.ty == Taarray && (taai = (cast(TypeAArray)tparam).index).ty == Tident && (cast(TypeIdentifier)taai).idents.dim == 0))
{
// Consider compile-time known boundaries
e.type.nextOf().sarrayOf(e.elements.dim).accept(this);
return;
}
visit(cast(Expression)e);
}
override void visit(AssocArrayLiteralExp e)
{
if (tparam.ty == Taarray && e.keys && e.keys.dim)
{
TypeAArray taa = cast(TypeAArray)tparam;
result = MATCHexact;
for (size_t i = 0; i < e.keys.dim; i++)
{
MATCH m1 = deduceType((*e.keys)[i], sc, taa.index, parameters, dedtypes, wm);
if (m1 < result)
result = m1;
if (result <= MATCHnomatch)
break;
MATCH m2 = deduceType((*e.values)[i], sc, taa.next, parameters, dedtypes, wm);
if (m2 < result)
result = m2;
if (result <= MATCHnomatch)
break;
}
return;
}
visit(cast(Expression)e);
}
override void visit(FuncExp e)
{
//printf("e->type = %s, tparam = %s\n", e->type->toChars(), tparam->toChars());
if (e.td)
{
Type to = tparam;
if (!to.nextOf() || to.nextOf().ty != Tfunction)
return;
TypeFunction tof = cast(TypeFunction)to.nextOf();
// Parameter types inference from 'tof'
assert(e.td._scope);
TypeFunction tf = cast(TypeFunction)e.fd.type;
//printf("\ttof = %s\n", tof->toChars());
//printf("\ttf = %s\n", tf->toChars());
size_t dim = Parameter.dim(tf.parameters);
if (Parameter.dim(tof.parameters) != dim || tof.varargs != tf.varargs)
return;
auto tiargs = new Objects();
tiargs.reserve(e.td.parameters.dim);
for (size_t i = 0; i < e.td.parameters.dim; i++)
{
TemplateParameter tp = (*e.td.parameters)[i];
size_t u = 0;
for (; u < dim; u++)
{
Parameter p = Parameter.getNth(tf.parameters, u);
if (p.type.ty == Tident && (cast(TypeIdentifier)p.type).ident == tp.ident)
{
break;
}
}
assert(u < dim);
Parameter pto = Parameter.getNth(tof.parameters, u);
if (!pto)
break;
Type t = pto.type.syntaxCopy(); // Bugzilla 11774
if (reliesOnTident(t, parameters, inferStart))
return;
t = t.semantic(e.loc, sc);
if (t.ty == Terror)
return;
tiargs.push(t);
}
// Set target of return type inference
if (!tf.next && tof.next)
e.fd.treq = tparam;
auto ti = new TemplateInstance(e.loc, e.td, tiargs);
Expression ex = (new ScopeExp(e.loc, ti)).semantic(e.td._scope);
// Reset inference target for the later re-semantic
e.fd.treq = null;
if (ex.op == TOKerror)
return;
if (ex.op != TOKfunction)
return;
visit(ex.type);
return;
}
Type t = e.type;
if (t.ty == Tdelegate && tparam.ty == Tpointer)
return;
// Allow conversion from implicit function pointer to delegate
if (e.tok == TOKreserved && t.ty == Tpointer && tparam.ty == Tdelegate)
{
TypeFunction tf = cast(TypeFunction)t.nextOf();
t = (new TypeDelegate(tf)).merge();
}
//printf("tparam = %s <= e->type = %s, t = %s\n", tparam->toChars(), e->type->toChars(), t->toChars());
visit(t);
}
override void visit(SliceExp e)
{
Type taai;
if (e.type.ty == Tarray && (tparam.ty == Tsarray || tparam.ty == Taarray && (taai = (cast(TypeAArray)tparam).index).ty == Tident && (cast(TypeIdentifier)taai).idents.dim == 0))
{
// Consider compile-time known boundaries
if (Type tsa = toStaticArrayType(e))
{
tsa.accept(this);
return;
}
}
visit(cast(Expression)e);
}
override void visit(CommaExp e)
{
e.e2.accept(this);
}
}
scope DeduceType v = new DeduceType(sc, tparam, parameters, dedtypes, wm, inferStart);
if (Type t = isType(o))
t.accept(v);
else
{
assert(isExpression(o) && wm);
(cast(Expression)o).accept(v);
}
return v.result;
}
/***********************************************************
* Check whether the type t representation relies on one or more the template parameters.
* Params:
* t = Tested type, if null, returns false.
* tparams = Template parameters.
* iStart = Start index of tparams to limit the tested parameters. If it's
* nonzero, tparams[0..iStart] will be excluded from the test target.
*/
extern (C++) bool reliesOnTident(Type t, TemplateParameters* tparams = null, size_t iStart = 0)
{
extern (C++) final class ReliesOnTident : Visitor
{
alias visit = super.visit;
public:
TemplateParameters* tparams;
size_t iStart;
bool result;
extern (D) this(TemplateParameters* tparams, size_t iStart)
{
this.tparams = tparams;
this.iStart = iStart;
}
override void visit(Type t)
{
}
override void visit(TypeNext t)
{
t.next.accept(this);
}
override void visit(TypeVector t)
{
t.basetype.accept(this);
}
override void visit(TypeAArray t)
{
visit(cast(TypeNext)t);
if (!result)
t.index.accept(this);
}
override void visit(TypeFunction t)
{
size_t dim = Parameter.dim(t.parameters);
for (size_t i = 0; i < dim; i++)
{
Parameter fparam = Parameter.getNth(t.parameters, i);
fparam.type.accept(this);
if (result)
return;
}
if (t.next)
t.next.accept(this);
}
override void visit(TypeIdentifier t)
{
for (size_t i = iStart; i < tparams.dim; i++)
{
TemplateParameter tp = (*tparams)[i];
if (tp.ident.equals(t.ident))
{
result = true;
return;
}
}
}
override void visit(TypeInstance t)
{
for (size_t i = iStart; i < tparams.dim; i++)
{
TemplateParameter tp = (*tparams)[i];
if (t.tempinst.name == tp.ident)
{
result = true;
return;
}
}
if (!t.tempinst.tiargs)
return;
for (size_t i = 0; i < t.tempinst.tiargs.dim; i++)
{
Type ta = isType((*t.tempinst.tiargs)[i]);
if (ta)
{
ta.accept(this);
if (result)
return;
}
}
}
override void visit(TypeTypeof t)
{
//printf("TypeTypeof::reliesOnTident('%s')\n", t.toChars());
t.exp.accept(this);
}
override void visit(TypeTuple t)
{
if (t.arguments)
{
for (size_t i = 0; i < t.arguments.dim; i++)
{
Parameter arg = (*t.arguments)[i];
arg.type.accept(this);
if (result)
return;
}
}
}
override void visit(Expression e)
{
//printf("Expression::reliesOnTident('%s')\n", e.toChars());
}
override void visit(IdentifierExp e)
{
//printf("IdentifierExp::reliesOnTident('%s')\n", e.toChars());
for (size_t i = iStart; i < tparams.dim; i++)
{
auto tp = (*tparams)[i];
if (e.ident == tp.ident)
{
result = true;
return;
}
}
}
override void visit(TupleExp e)
{
//printf("TupleExp::reliesOnTident('%s')\n", e.toChars());
if (e.exps)
{
foreach (ea; *e.exps)
{
ea.accept(this);
if (result)
return;
}
}
}
override void visit(ArrayLiteralExp e)
{
//printf("ArrayLiteralExp::reliesOnTident('%s')\n", e.toChars());
if (e.elements)
{
foreach (el; *e.elements)
{
el.accept(this);
if (result)
return;
}
}
}
override void visit(AssocArrayLiteralExp e)
{
//printf("AssocArrayLiteralExp::reliesOnTident('%s')\n", e.toChars());
foreach (ek; *e.keys)
{
ek.accept(this);
if (result)
return;
}
foreach (ev; *e.values)
{
ev.accept(this);
if (result)
return;
}
}
override void visit(StructLiteralExp e)
{
//printf("StructLiteralExp::reliesOnTident('%s')\n", e.toChars());
if (e.elements)
{
foreach (ea; *e.elements)
{
ea.accept(this);
if (result)
return;
}
}
}
override void visit(TypeExp e)
{
//printf("TypeExp::reliesOnTident('%s')\n", e.toChars());
e.type.accept(this);
}
override void visit(NewExp e)
{
//printf("NewExp::reliesOnTident('%s')\n", e.toChars());
if (e.thisexp)
e.thisexp.accept(this);
if (!result && e.newargs)
{
foreach (ea; *e.newargs)
{
ea.accept(this);
if (result)
return;
}
}
e.newtype.accept(this);
if (!result && e.arguments)
{
foreach (ea; *e.arguments)
{
ea.accept(this);
if (result)
return;
}
}
}
override void visit(NewAnonClassExp e)
{
//printf("NewAnonClassExp::reliesOnTident('%s')\n", e.toChars());
result = true;
}
override void visit(FuncExp e)
{
//printf("FuncExp::reliesOnTident('%s')\n", e.toChars());
result = true;
}
override void visit(TypeidExp e)
{
//printf("TypeidExp::reliesOnTident('%s')\n", e.toChars());
if (auto ea = isExpression(e.obj))
ea.accept(this);
else if (auto ta = isType(e.obj))
ta.accept(this);
}
override void visit(TraitsExp e)
{
//printf("TraitsExp::reliesOnTident('%s')\n", e.toChars());
if (e.args)
{
foreach (oa; *e.args)
{
if (auto ea = isExpression(oa))
ea.accept(this);
else if (auto ta = isType(oa))
ta.accept(this);
if (result)
return;
}
}
}
override void visit(IsExp e)
{
//printf("IsExp::reliesOnTident('%s')\n", e.toChars());
e.targ.accept(this);
}
override void visit(UnaExp e)
{
//printf("UnaExp::reliesOnTident('%s')\n", e.toChars());
e.e1.accept(this);
}
override void visit(DotTemplateInstanceExp e)
{
//printf("DotTemplateInstanceExp::reliesOnTident('%s')\n", e.toChars());
visit(cast(UnaExp)e);
if (!result && e.ti.tiargs)
{
foreach (oa; *e.ti.tiargs)
{
if (auto ea = isExpression(oa))
ea.accept(this);
else if (auto ta = isType(oa))
ta.accept(this);
if (result)
return;
}
}
}
override void visit(CallExp e)
{
//printf("CallExp::reliesOnTident('%s')\n", e.toChars());
visit(cast(UnaExp)e);
if (!result && e.arguments)
{
foreach (ea; *e.arguments)
{
ea.accept(this);
if (result)
return;
}
}
}
override void visit(CastExp e)
{
//printf("CallExp::reliesOnTident('%s')\n", e.toChars());
visit(cast(UnaExp)e);
if (!result)
e.to.accept(this);
}
override void visit(SliceExp e)
{
//printf("SliceExp::reliesOnTident('%s')\n", e.toChars());
visit(cast(UnaExp)e);
if (!result && e.lwr)
e.lwr.accept(this);
if (!result && e.upr)
e.upr.accept(this);
}
override void visit(IntervalExp e)
{
//printf("IntervalExp::reliesOnTident('%s')\n", e.toChars());
e.lwr.accept(this);
if (!result)
e.upr.accept(this);
}
override void visit(ArrayExp e)
{
//printf("ArrayExp::reliesOnTident('%s')\n", e.toChars());
visit(cast(UnaExp)e);
if (!result && e.arguments)
{
foreach (ea; *e.arguments)
ea.accept(this);
}
}
override void visit(BinExp e)
{
//printf("BinExp::reliesOnTident('%s')\n", e.toChars());
e.e1.accept(this);
if (!result)
e.e2.accept(this);
}
override void visit(CondExp e)
{
//printf("BinExp::reliesOnTident('%s')\n", e.toChars());
e.econd.accept(this);
if (!result)
visit(cast(BinExp)e);
}
}
if (!t)
return false;
assert(tparams);
scope ReliesOnTident v = new ReliesOnTident(tparams, iStart);
t.accept(v);
return v.result;
}
/***********************************************************
*/
extern (C++) class TemplateParameter
{
public:
Loc loc;
Identifier ident;
/* True if this is a part of precedent parameter specialization pattern.
*
* template A(T : X!TL, alias X, TL...) {}
* // X and TL are dependent template parameter
*
* A dependent template parameter should return MATCHexact in matchArg()
* to respect the match level of the corresponding precedent parameter.
*/
bool dependent;
/* ======================== TemplateParameter =============================== */
final extern (D) this(Loc loc, Identifier ident)
{
this.loc = loc;
this.ident = ident;
}
TemplateTypeParameter isTemplateTypeParameter()
{
return null;
}
TemplateValueParameter isTemplateValueParameter()
{
return null;
}
TemplateAliasParameter isTemplateAliasParameter()
{
return null;
}
TemplateThisParameter isTemplateThisParameter()
{
return null;
}
TemplateTupleParameter isTemplateTupleParameter()
{
return null;
}
abstract TemplateParameter syntaxCopy();
abstract bool declareParameter(Scope* sc);
abstract bool semantic(Scope* sc, TemplateParameters* parameters);
abstract void print(RootObject oarg, RootObject oded);
abstract RootObject specialization();
abstract RootObject defaultArg(Loc instLoc, Scope* sc);
abstract bool hasDefaultArg();
/*******************************************
* Match to a particular TemplateParameter.
* Input:
* instLoc location that the template is instantiated.
* tiargs[] actual arguments to template instance
* i i'th argument
* parameters[] template parameters
* dedtypes[] deduced arguments to template instance
* *psparam set to symbol declared and initialized to dedtypes[i]
*/
MATCH matchArg(Loc instLoc, Scope* sc, Objects* tiargs, size_t i, TemplateParameters* parameters, Objects* dedtypes, Declaration* psparam)
{
RootObject oarg;
if (i < tiargs.dim)
oarg = (*tiargs)[i];
else
{
// Get default argument instead
oarg = defaultArg(instLoc, sc);
if (!oarg)
{
assert(i < dedtypes.dim);
// It might have already been deduced
oarg = (*dedtypes)[i];
if (!oarg)
goto Lnomatch;
}
}
return matchArg(sc, oarg, i, parameters, dedtypes, psparam);
Lnomatch:
if (psparam)
*psparam = null;
return MATCHnomatch;
}
abstract MATCH matchArg(Scope* sc, RootObject oarg, size_t i, TemplateParameters* parameters, Objects* dedtypes, Declaration* psparam);
/* Create dummy argument based on parameter.
*/
abstract void* dummyArg();
void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Syntax:
* ident : specType = defaultType
*/
extern (C++) class TemplateTypeParameter : TemplateParameter
{
public:
Type specType; // if !=null, this is the type specialization
Type defaultType;
extern (C++) static __gshared Type tdummy = null;
final extern (D) this(Loc loc, Identifier ident, Type specType, Type defaultType)
{
super(loc, ident);
this.ident = ident;
this.specType = specType;
this.defaultType = defaultType;
}
override final TemplateTypeParameter isTemplateTypeParameter()
{
return this;
}
override TemplateParameter syntaxCopy()
{
return new TemplateTypeParameter(loc, ident, specType ? specType.syntaxCopy() : null, defaultType ? defaultType.syntaxCopy() : null);
}
override final bool declareParameter(Scope* sc)
{
//printf("TemplateTypeParameter::declareParameter('%s')\n", ident->toChars());
auto ti = new TypeIdentifier(loc, ident);
Declaration ad = new AliasDeclaration(loc, ident, ti);
return sc.insert(ad) !is null;
}
override final bool semantic(Scope* sc, TemplateParameters* parameters)
{
//printf("TemplateTypeParameter::semantic('%s')\n", ident->toChars());
if (specType && !reliesOnTident(specType, parameters))
{
specType = specType.semantic(loc, sc);
}
version (none)
{
// Don't do semantic() until instantiation
if (defaultType)
{
defaultType = defaultType.semantic(loc, sc);
}
}
return !(specType && isError(specType));
}
override final void print(RootObject oarg, RootObject oded)
{
printf(" %s\n", ident.toChars());
Type t = isType(oarg);
Type ta = isType(oded);
assert(ta);
if (specType)
printf("\tSpecialization: %s\n", specType.toChars());
if (defaultType)
printf("\tDefault: %s\n", defaultType.toChars());
printf("\tParameter: %s\n", t ? t.toChars() : "NULL");
printf("\tDeduced Type: %s\n", ta.toChars());
}
override final RootObject specialization()
{
return specType;
}
override final RootObject defaultArg(Loc instLoc, Scope* sc)
{
Type t = defaultType;
if (t)
{
t = t.syntaxCopy();
t = t.semantic(loc, sc); // use the parameter loc
}
return t;
}
override final bool hasDefaultArg()
{
return defaultType !is null;
}
override final MATCH matchArg(Scope* sc, RootObject oarg, size_t i, TemplateParameters* parameters, Objects* dedtypes, Declaration* psparam)
{
//printf("TemplateTypeParameter::matchArg('%s')\n", ident->toChars());
MATCH m = MATCHexact;
Type ta = isType(oarg);
if (!ta)
{
//printf("%s %p %p %p\n", oarg->toChars(), isExpression(oarg), isDsymbol(oarg), isTuple(oarg));
goto Lnomatch;
}
//printf("ta is %s\n", ta->toChars());
if (specType)
{
if (!ta || ta == tdummy)
goto Lnomatch;
//printf("\tcalling deduceType(): ta is %s, specType is %s\n", ta->toChars(), specType->toChars());
MATCH m2 = deduceType(ta, sc, specType, parameters, dedtypes);
if (m2 <= MATCHnomatch)
{
//printf("\tfailed deduceType\n");
goto Lnomatch;
}
if (m2 < m)
m = m2;
if ((*dedtypes)[i])
{
Type t = cast(Type)(*dedtypes)[i];
if (dependent && !t.equals(ta)) // Bugzilla 14357
goto Lnomatch;
/* This is a self-dependent parameter. For example:
* template X(T : T*) {}
* template X(T : S!T, alias S) {}
*/
//printf("t = %s ta = %s\n", t->toChars(), ta->toChars());
ta = t;
}
}
else
{
if ((*dedtypes)[i])
{
// Must match already deduced type
Type t = cast(Type)(*dedtypes)[i];
if (!t.equals(ta))
{
//printf("t = %s ta = %s\n", t->toChars(), ta->toChars());
goto Lnomatch;
}
}
else
{
// So that matches with specializations are better
m = MATCHconvert;
}
}
(*dedtypes)[i] = ta;
if (psparam)
*psparam = new AliasDeclaration(loc, ident, ta);
//printf("\tm = %d\n", m);
return dependent ? MATCHexact : m;
Lnomatch:
if (psparam)
*psparam = null;
//printf("\tm = %d\n", MATCHnomatch);
return MATCHnomatch;
}
override final void* dummyArg()
{
Type t = specType;
if (!t)
{
// Use this for alias-parameter's too (?)
if (!tdummy)
tdummy = new TypeIdentifier(loc, ident);
t = tdummy;
}
return cast(void*)t;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Syntax:
* this ident : specType = defaultType
*/
extern (C++) final class TemplateThisParameter : TemplateTypeParameter
{
public:
extern (D) this(Loc loc, Identifier ident, Type specType, Type defaultType)
{
super(loc, ident, specType, defaultType);
}
override TemplateThisParameter isTemplateThisParameter()
{
return this;
}
override TemplateParameter syntaxCopy()
{
return new TemplateThisParameter(loc, ident, specType ? specType.syntaxCopy() : null, defaultType ? defaultType.syntaxCopy() : null);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Syntax:
* valType ident : specValue = defaultValue
*/
extern (C++) final class TemplateValueParameter : TemplateParameter
{
public:
Type valType;
Expression specValue;
Expression defaultValue;
extern (C++) static __gshared AA* edummies = null;
extern (D) this(Loc loc, Identifier ident, Type valType,
Expression specValue, Expression defaultValue)
{
super(loc, ident);
this.ident = ident;
this.valType = valType;
this.specValue = specValue;
this.defaultValue = defaultValue;
}
override TemplateValueParameter isTemplateValueParameter()
{
return this;
}
override TemplateParameter syntaxCopy()
{
return new TemplateValueParameter(loc, ident,
valType.syntaxCopy(),
specValue ? specValue.syntaxCopy() : null,
defaultValue ? defaultValue.syntaxCopy() : null);
}
override bool declareParameter(Scope* sc)
{
auto v = new VarDeclaration(loc, valType, ident, null);
v.storage_class = STCtemplateparameter;
return sc.insert(v) !is null;
}
override bool semantic(Scope* sc, TemplateParameters* parameters)
{
valType = valType.semantic(loc, sc);
version (none)
{
// defer semantic analysis to arg match
if (specValue)
{
Expression e = specValue;
sc = sc.startCTFE();
e = e.semantic(sc);
sc = sc.endCTFE();
e = e.implicitCastTo(sc, valType);
e = e.ctfeInterpret();
if (e.op == TOKint64 || e.op == TOKfloat64 ||
e.op == TOKcomplex80 || e.op == TOKnull || e.op == TOKstring)
specValue = e;
}
if (defaultValue)
{
Expression e = defaultValue;
sc = sc.startCTFE();
e = e.semantic(sc);
sc = sc.endCTFE();
e = e.implicitCastTo(sc, valType);
e = e.ctfeInterpret();
if (e.op == TOKint64)
defaultValue = e;
}
}
return !isError(valType);
}
override void print(RootObject oarg, RootObject oded)
{
printf(" %s\n", ident.toChars());
Expression ea = isExpression(oded);
if (specValue)
printf("\tSpecialization: %s\n", specValue.toChars());
printf("\tParameter Value: %s\n", ea ? ea.toChars() : "NULL");
}
override RootObject specialization()
{
return specValue;
}
override RootObject defaultArg(Loc instLoc, Scope* sc)
{
Expression e = defaultValue;
if (e)
{
e = e.syntaxCopy();
e = e.semantic(sc);
e = resolveProperties(sc, e);
e = e.resolveLoc(instLoc, sc); // use the instantiated loc
e = e.optimize(WANTvalue);
}
return e;
}
override bool hasDefaultArg()
{
return defaultValue !is null;
}
override MATCH matchArg(Scope* sc, RootObject oarg,
size_t i, TemplateParameters* parameters, Objects* dedtypes,
Declaration* psparam)
{
//printf("TemplateValueParameter::matchArg('%s')\n", ident.toChars());
MATCH m = MATCHexact;
Expression ei = isExpression(oarg);
Type vt;
if (!ei && oarg)
{
Dsymbol si = isDsymbol(oarg);
FuncDeclaration f = si ? si.isFuncDeclaration() : null;
if (!f || !f.fbody || f.needThis())
goto Lnomatch;
ei = new VarExp(loc, f);
ei = ei.semantic(sc);
/* If a function is really property-like, and then
* it's CTFEable, ei will be a literal expression.
*/
uint olderrors = global.startGagging();
ei = resolveProperties(sc, ei);
ei = ei.ctfeInterpret();
if (global.endGagging(olderrors) || ei.op == TOKerror)
goto Lnomatch;
/* Bugzilla 14520: A property-like function can match to both
* TemplateAlias and ValueParameter. But for template overloads,
* it should always prefer alias parameter to be consistent
* template match result.
*
* template X(alias f) { enum X = 1; }
* template X(int val) { enum X = 2; }
* int f1() { return 0; } // CTFEable
* int f2(); // body-less function is not CTFEable
* enum x1 = X!f1; // should be 1
* enum x2 = X!f2; // should be 1
*
* e.g. The x1 value must be same even if the f1 definition will be moved
* into di while stripping body code.
*/
m = MATCHconvert;
}
if (ei && ei.op == TOKvar)
{
// Resolve const variables that we had skipped earlier
ei = ei.ctfeInterpret();
}
//printf("\tvalType: %s, ty = %d\n", valType->toChars(), valType->ty);
vt = valType.semantic(loc, sc);
//printf("ei: %s, ei->type: %s\n", ei->toChars(), ei->type->toChars());
//printf("vt = %s\n", vt->toChars());
if (ei.type)
{
MATCH m2 = ei.implicitConvTo(vt);
//printf("m: %d\n", m);
if (m2 < m)
m = m2;
if (m <= MATCHnomatch)
goto Lnomatch;
ei = ei.implicitCastTo(sc, vt);
ei = ei.ctfeInterpret();
}
if (specValue)
{
if (!ei || cast(Expression)dmd_aaGetRvalue(edummies, cast(void*)ei.type) == ei)
goto Lnomatch;
Expression e = specValue;
sc = sc.startCTFE();
e = e.semantic(sc);
e = resolveProperties(sc, e);
sc = sc.endCTFE();
e = e.implicitCastTo(sc, vt);
e = e.ctfeInterpret();
ei = ei.syntaxCopy();
sc = sc.startCTFE();
ei = ei.semantic(sc);
sc = sc.endCTFE();
ei = ei.implicitCastTo(sc, vt);
ei = ei.ctfeInterpret();
//printf("\tei: %s, %s\n", ei->toChars(), ei->type->toChars());
//printf("\te : %s, %s\n", e->toChars(), e->type->toChars());
if (!ei.equals(e))
goto Lnomatch;
}
else
{
if ((*dedtypes)[i])
{
// Must match already deduced value
Expression e = cast(Expression)(*dedtypes)[i];
if (!ei || !ei.equals(e))
goto Lnomatch;
}
}
(*dedtypes)[i] = ei;
if (psparam)
{
Initializer _init = new ExpInitializer(loc, ei);
Declaration sparam = new VarDeclaration(loc, vt, ident, _init);
sparam.storage_class = STCmanifest;
*psparam = sparam;
}
return dependent ? MATCHexact : m;
Lnomatch:
//printf("\tno match\n");
if (psparam)
*psparam = null;
return MATCHnomatch;
}
override void* dummyArg()
{
Expression e = specValue;
if (!e)
{
// Create a dummy value
Expression* pe = cast(Expression*)dmd_aaGet(&edummies, cast(void*)valType);
if (!*pe)
*pe = valType.defaultInit();
e = *pe;
}
return cast(void*)e;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
extern (C++) RootObject aliasParameterSemantic(Loc loc, Scope* sc, RootObject o, TemplateParameters* parameters)
{
if (o)
{
Expression ea = isExpression(o);
Type ta = isType(o);
if (ta && (!parameters || !reliesOnTident(ta, parameters)))
{
Dsymbol s = ta.toDsymbol(sc);
if (s)
o = s;
else
o = ta.semantic(loc, sc);
}
else if (ea)
{
sc = sc.startCTFE();
ea = ea.semantic(sc);
sc = sc.endCTFE();
o = ea.ctfeInterpret();
}
}
return o;
}
/***********************************************************
* Syntax:
* specType ident : specAlias = defaultAlias
*/
extern (C++) final class TemplateAliasParameter : TemplateParameter
{
public:
Type specType;
RootObject specAlias;
RootObject defaultAlias;
extern (C++) static __gshared Dsymbol sdummy = null;
extern (D) this(Loc loc, Identifier ident, Type specType, RootObject specAlias, RootObject defaultAlias)
{
super(loc, ident);
this.ident = ident;
this.specType = specType;
this.specAlias = specAlias;
this.defaultAlias = defaultAlias;
}
override TemplateAliasParameter isTemplateAliasParameter()
{
return this;
}
override TemplateParameter syntaxCopy()
{
return new TemplateAliasParameter(loc, ident, specType ? specType.syntaxCopy() : null, objectSyntaxCopy(specAlias), objectSyntaxCopy(defaultAlias));
}
override bool declareParameter(Scope* sc)
{
auto ti = new TypeIdentifier(loc, ident);
Declaration ad = new AliasDeclaration(loc, ident, ti);
return sc.insert(ad) !is null;
}
override bool semantic(Scope* sc, TemplateParameters* parameters)
{
if (specType && !reliesOnTident(specType, parameters))
{
specType = specType.semantic(loc, sc);
}
specAlias = aliasParameterSemantic(loc, sc, specAlias, parameters);
version (none)
{
// Don't do semantic() until instantiation
if (defaultAlias)
defaultAlias = defaultAlias.semantic(loc, sc);
}
return !(specType && isError(specType)) && !(specAlias && isError(specAlias));
}
override void print(RootObject oarg, RootObject oded)
{
printf(" %s\n", ident.toChars());
Dsymbol sa = isDsymbol(oded);
assert(sa);
printf("\tParameter alias: %s\n", sa.toChars());
}
override RootObject specialization()
{
return specAlias;
}
override RootObject defaultArg(Loc instLoc, Scope* sc)
{
RootObject da = defaultAlias;
Type ta = isType(defaultAlias);
if (ta)
{
if (ta.ty == Tinstance)
{
// If the default arg is a template, instantiate for each type
da = ta.syntaxCopy();
}
}
RootObject o = aliasParameterSemantic(loc, sc, da, null); // use the parameter loc
return o;
}
override bool hasDefaultArg()
{
return defaultAlias !is null;
}
override MATCH matchArg(Scope* sc, RootObject oarg, size_t i, TemplateParameters* parameters, Objects* dedtypes, Declaration* psparam)
{
//printf("TemplateAliasParameter::matchArg('%s')\n", ident->toChars());
MATCH m = MATCHexact;
Type ta = isType(oarg);
RootObject sa = ta && !ta.deco ? null : getDsymbol(oarg);
Expression ea = isExpression(oarg);
if (ea && (ea.op == TOKthis || ea.op == TOKsuper))
sa = (cast(ThisExp)ea).var;
else if (ea && ea.op == TOKscope)
sa = (cast(ScopeExp)ea).sds;
if (sa)
{
if ((cast(Dsymbol)sa).isAggregateDeclaration())
m = MATCHconvert;
/* specType means the alias must be a declaration with a type
* that matches specType.
*/
if (specType)
{
Declaration d = (cast(Dsymbol)sa).isDeclaration();
if (!d)
goto Lnomatch;
if (!d.type.equals(specType))
goto Lnomatch;
}
}
else
{
sa = oarg;
if (ea)
{
if (specType)
{
if (!ea.type.equals(specType))
goto Lnomatch;
}
}
else if (ta && ta.ty == Tinstance && !specAlias)
{
/* Bugzilla xxxxx: Specialized parameter should be prefeerd
* match to the template type parameter.
* template X(alias a) {} // a == this
* template X(alias a : B!A, alias B, A...) {} // B!A => ta
*/
}
else if (sa && sa == TemplateTypeParameter.tdummy)
{
/* Bugzilla 2025: Aggregate Types should preferentially
* match to the template type parameter.
* template X(alias a) {} // a == this
* template X(T) {} // T => sa
*/
}
else
goto Lnomatch;
}
if (specAlias)
{
if (sa == sdummy)
goto Lnomatch;
Dsymbol sx = isDsymbol(sa);
if (sa != specAlias && sx)
{
Type talias = isType(specAlias);
if (!talias)
goto Lnomatch;
TemplateInstance ti = sx.isTemplateInstance();
if (!ti && sx.parent)
{
ti = sx.parent.isTemplateInstance();
if (ti && ti.name != sx.ident)
goto Lnomatch;
}
if (!ti)
goto Lnomatch;
Type t = new TypeInstance(Loc(), ti);
MATCH m2 = deduceType(t, sc, talias, parameters, dedtypes);
if (m2 <= MATCHnomatch)
goto Lnomatch;
}
}
else if ((*dedtypes)[i])
{
// Must match already deduced symbol
RootObject si = (*dedtypes)[i];
if (!sa || si != sa)
goto Lnomatch;
}
(*dedtypes)[i] = sa;
if (psparam)
{
if (Dsymbol s = isDsymbol(sa))
{
*psparam = new AliasDeclaration(loc, ident, s);
}
else if (Type t = isType(sa))
{
*psparam = new AliasDeclaration(loc, ident, t);
}
else
{
assert(ea);
// Declare manifest constant
Initializer _init = new ExpInitializer(loc, ea);
auto v = new VarDeclaration(loc, null, ident, _init);
v.storage_class = STCmanifest;
v.semantic(sc);
*psparam = v;
}
}
return dependent ? MATCHexact : m;
Lnomatch:
if (psparam)
*psparam = null;
//printf("\tm = %d\n", MATCHnomatch);
return MATCHnomatch;
}
override void* dummyArg()
{
RootObject s = specAlias;
if (!s)
{
if (!sdummy)
sdummy = new Dsymbol();
s = sdummy;
}
return cast(void*)s;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Syntax:
* ident ...
*/
extern (C++) final class TemplateTupleParameter : TemplateParameter
{
public:
extern (D) this(Loc loc, Identifier ident)
{
super(loc, ident);
this.ident = ident;
}
override TemplateTupleParameter isTemplateTupleParameter()
{
return this;
}
override TemplateParameter syntaxCopy()
{
return new TemplateTupleParameter(loc, ident);
}
override bool declareParameter(Scope* sc)
{
auto ti = new TypeIdentifier(loc, ident);
Declaration ad = new AliasDeclaration(loc, ident, ti);
return sc.insert(ad) !is null;
}
override bool semantic(Scope* sc, TemplateParameters* parameters)
{
return true;
}
override void print(RootObject oarg, RootObject oded)
{
printf(" %s... [", ident.toChars());
Tuple v = isTuple(oded);
assert(v);
//printf("|%d| ", v->objects.dim);
for (size_t i = 0; i < v.objects.dim; i++)
{
if (i)
printf(", ");
RootObject o = v.objects[i];
Dsymbol sa = isDsymbol(o);
if (sa)
printf("alias: %s", sa.toChars());
Type ta = isType(o);
if (ta)
printf("type: %s", ta.toChars());
Expression ea = isExpression(o);
if (ea)
printf("exp: %s", ea.toChars());
assert(!isTuple(o)); // no nested Tuple arguments
}
printf("]\n");
}
override RootObject specialization()
{
return null;
}
override RootObject defaultArg(Loc instLoc, Scope* sc)
{
return null;
}
override bool hasDefaultArg()
{
return false;
}
override MATCH matchArg(Loc instLoc, Scope* sc, Objects* tiargs, size_t i, TemplateParameters* parameters, Objects* dedtypes, Declaration* psparam)
{
/* The rest of the actual arguments (tiargs[]) form the match
* for the variadic parameter.
*/
assert(i + 1 == dedtypes.dim); // must be the last one
Tuple ovar;
if (Tuple u = isTuple((*dedtypes)[i]))
{
// It has already been deduced
ovar = u;
}
else if (i + 1 == tiargs.dim && isTuple((*tiargs)[i]))
ovar = isTuple((*tiargs)[i]);
else
{
ovar = new Tuple();
//printf("ovar = %p\n", ovar);
if (i < tiargs.dim)
{
//printf("i = %d, tiargs->dim = %d\n", i, tiargs->dim);
ovar.objects.setDim(tiargs.dim - i);
for (size_t j = 0; j < ovar.objects.dim; j++)
ovar.objects[j] = (*tiargs)[i + j];
}
}
return matchArg(sc, ovar, i, parameters, dedtypes, psparam);
}
override MATCH matchArg(Scope* sc, RootObject oarg, size_t i, TemplateParameters* parameters, Objects* dedtypes, Declaration* psparam)
{
//printf("TemplateTupleParameter::matchArg('%s')\n", ident->toChars());
Tuple ovar = isTuple(oarg);
if (!ovar)
return MATCHnomatch;
if ((*dedtypes)[i])
{
Tuple tup = isTuple((*dedtypes)[i]);
if (!tup)
return MATCHnomatch;
if (!match(tup, ovar))
return MATCHnomatch;
}
(*dedtypes)[i] = ovar;
if (psparam)
*psparam = new TupleDeclaration(loc, ident, &ovar.objects);
return dependent ? MATCHexact : MATCHconvert;
}
override void* dummyArg()
{
return null;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Given:
* foo!(args) =>
* name = foo
* tiargs = args
*/
extern (C++) class TemplateInstance : ScopeDsymbol
{
public:
Identifier name;
// Array of Types/Expressions of template
// instance arguments [int*, char, 10*10]
Objects* tiargs;
// Array of Types/Expressions corresponding
// to TemplateDeclaration.parameters
// [int, char, 100]
Objects tdtypes;
Dsymbol tempdecl; // referenced by foo.bar.abc
Dsymbol enclosing; // if referencing local symbols, this is the context
Dsymbol aliasdecl; // !=null if instance is an alias for its sole member
TemplateInstance inst; // refer to existing instance
ScopeDsymbol argsym; // argument symbol table
int inuse; // for recursive expansion detection
int nest; // for recursive pretty printing detection
bool semantictiargsdone; // has semanticTiargs() been done?
bool havetempdecl; // if used second constructor
bool gagged; // if the instantiation is done with error gagging
hash_t hash; // cached result of hashCode()
Expressions* fargs; // for function template, these are the function arguments
TemplateInstances* deferred;
// Used to determine the instance needs code generation.
// Note that these are inaccurate until semantic analysis phase completed.
TemplateInstance tinst; // enclosing template instance
TemplateInstance tnext; // non-first instantiated instances
Module minst; // the top module that instantiated this instance
final extern (D) this(Loc loc, Identifier ident)
{
super(null);
static if (LOG)
{
printf("TemplateInstance(this = %p, ident = '%s')\n", this, ident ? ident.toChars() : "null");
}
this.loc = loc;
this.name = ident;
}
/*****************
* This constructor is only called when we figured out which function
* template to instantiate.
*/
final extern (D) this(Loc loc, TemplateDeclaration td, Objects* tiargs)
{
super(null);
static if (LOG)
{
printf("TemplateInstance(this = %p, tempdecl = '%s')\n", this, td.toChars());
}
this.loc = loc;
this.name = td.ident;
this.tiargs = tiargs;
this.tempdecl = td;
this.semantictiargsdone = true;
this.havetempdecl = true;
assert(tempdecl._scope);
}
final static Objects* arraySyntaxCopy(Objects* objs)
{
Objects* a = null;
if (objs)
{
a = new Objects();
a.setDim(objs.dim);
for (size_t i = 0; i < objs.dim; i++)
(*a)[i] = objectSyntaxCopy((*objs)[i]);
}
return a;
}
override Dsymbol syntaxCopy(Dsymbol s)
{
TemplateInstance ti = s ? cast(TemplateInstance)s : new TemplateInstance(loc, name);
ti.tiargs = arraySyntaxCopy(tiargs);
TemplateDeclaration td;
if (inst && tempdecl && (td = tempdecl.isTemplateDeclaration()) !is null)
td.ScopeDsymbol.syntaxCopy(ti);
else
ScopeDsymbol.syntaxCopy(ti);
return ti;
}
void semantic(Scope* sc, Expressions* fargs)
{
//printf("[%s] TemplateInstance::semantic('%s', this=%p, gag = %d, sc = %p)\n", loc.toChars(), toChars(), this, global.gag, sc);
version (none)
{
for (Dsymbol s = this; s; s = s.parent)
{
printf("\t%s\n", s.toChars());
}
printf("Scope\n");
for (Scope* scx = sc; scx; scx = scx.enclosing)
{
printf("\t%s parent %s\n", scx._module ? scx._module.toChars() : "null", scx.parent ? scx.parent.toChars() : "null");
}
}
static if (LOG)
{
printf("\n+TemplateInstance::semantic('%s', this=%p)\n", toChars(), this);
}
if (inst) // if semantic() was already run
{
static if (LOG)
{
printf("-TemplateInstance::semantic('%s', this=%p) already run\n", inst.toChars(), inst);
}
return;
}
if (semanticRun != PASSinit)
{
static if (LOG)
{
printf("Recursive template expansion\n");
}
auto ungag = Ungag(global.gag);
if (!gagged)
global.gag = 0;
error(loc, "recursive template expansion");
if (gagged)
semanticRun = PASSinit;
else
inst = this;
errors = true;
return;
}
// Get the enclosing template instance from the scope tinst
tinst = sc.tinst;
// Get the instantiating module from the scope minst
minst = sc.minst;
// Bugzilla 10920: If the enclosing function is non-root symbol,
// this instance should be speculative.
if (!tinst && sc.func && sc.func.inNonRoot())
{
minst = null;
}
gagged = (global.gag > 0);
semanticRun = PASSsemantic;
static if (LOG)
{
printf("\tdo semantic\n");
}
/* Find template declaration first,
* then run semantic on each argument (place results in tiargs[]),
* last find most specialized template from overload list/set.
*/
if (!findTempDecl(sc, null) || !semanticTiargs(sc) || !findBestMatch(sc, fargs))
{
Lerror:
if (gagged)
{
// Bugzilla 13220: Rollback status for later semantic re-running.
semanticRun = PASSinit;
}
else
inst = this;
errors = true;
return;
}
TemplateDeclaration tempdecl = this.tempdecl.isTemplateDeclaration();
assert(tempdecl);
// If tempdecl is a mixin, disallow it
if (tempdecl.ismixin)
{
error("mixin templates are not regular templates");
goto Lerror;
}
hasNestedArgs(tiargs, tempdecl.isstatic);
if (errors)
goto Lerror;
/* See if there is an existing TemplateInstantiation that already
* implements the typeargs. If so, just refer to that one instead.
*/
inst = tempdecl.findExistingInstance(this, fargs);
TemplateInstance errinst = null;
if (!inst)
{
// So, we need to implement 'this' instance.
}
else if (inst.gagged && !gagged && inst.errors)
{
// If the first instantiation had failed, re-run semantic,
// so that error messages are shown.
errinst = inst;
}
else
{
// It's a match
parent = inst.parent;
errors = inst.errors;
// If both this and the previous instantiation were gagged,
// use the number of errors that happened last time.
global.errors += errors;
global.gaggedErrors += errors;
// If the first instantiation was gagged, but this is not:
if (inst.gagged)
{
// It had succeeded, mark it is a non-gagged instantiation,
// and reuse it.
inst.gagged = gagged;
}
this.tnext = inst.tnext;
inst.tnext = this;
/* A module can have explicit template instance and its alias
* in module scope (e,g, `alias Base64 = Base64Impl!('+', '/');`).
* If the first instantiation 'inst' had happened in non-root module,
* compiler can assume that its instantiated code would be included
* in the separately compiled obj/lib file (e.g. phobos.lib).
*
* However, if 'this' second instantiation happened in root module,
* compiler might need to invoke its codegen (Bugzilla 2500 & 2644).
* But whole import graph is not determined until all semantic pass finished,
* so 'inst' should conservatively finish the semantic3 pass for the codegen.
*/
if (minst && minst.isRoot() && !(inst.minst && inst.minst.isRoot()))
{
/* Swap the position of 'inst' and 'this' in the instantiation graph.
* Then, the primary instance `inst` will be changed to a root instance.
*
* Before:
* non-root -> A!() -> B!()[inst] -> C!()
* |
* root -> D!() -> B!()[this]
*
* After:
* non-root -> A!() -> B!()[this]
* |
* root -> D!() -> B!()[inst] -> C!()
*/
Module mi = minst;
TemplateInstance ti = tinst;
minst = inst.minst;
tinst = inst.tinst;
inst.minst = mi;
inst.tinst = ti;
if (minst) // if inst was not speculative
{
/* Add 'inst' once again to the root module members[], then the
* instance members will get codegen chances.
*/
inst.appendToModuleMember();
}
}
static if (LOG)
{
printf("\tit's a match with instance %p, %d\n", inst, inst.semanticRun);
}
return;
}
static if (LOG)
{
printf("\timplement template instance %s '%s'\n", tempdecl.parent.toChars(), toChars());
printf("\ttempdecl %s\n", tempdecl.toChars());
}
uint errorsave = global.errors;
inst = this;
parent = enclosing ? enclosing : tempdecl.parent;
//printf("parent = '%s'\n", parent->kind());
TemplateInstance tempdecl_instance_idx = tempdecl.addInstance(this);
//getIdent();
// Store the place we added it to in target_symbol_list(_idx) so we can
// remove it later if we encounter an error.
Dsymbols* target_symbol_list = appendToModuleMember();
size_t target_symbol_list_idx = target_symbol_list ? target_symbol_list.dim - 1 : 0;
// Copy the syntax trees from the TemplateDeclaration
members = Dsymbol.arraySyntaxCopy(tempdecl.members);
// resolve TemplateThisParameter
for (size_t i = 0; i < tempdecl.parameters.dim; i++)
{
if ((*tempdecl.parameters)[i].isTemplateThisParameter() is null)
continue;
Type t = isType((*tiargs)[i]);
assert(t);
if (StorageClass stc = ModToStc(t.mod))
{
//printf("t = %s, stc = x%llx\n", t->toChars(), stc);
auto s = new Dsymbols();
s.push(new StorageClassDeclaration(stc, members));
members = s;
}
break;
}
// Create our own scope for the template parameters
Scope* _scope = tempdecl._scope;
if (tempdecl.semanticRun == PASSinit)
{
error("template instantiation %s forward references template declaration %s", toChars(), tempdecl.toChars());
return;
}
static if (LOG)
{
printf("\tcreate scope for template parameters '%s'\n", toChars());
}
argsym = new ScopeDsymbol();
argsym.parent = _scope.parent;
_scope = _scope.push(argsym);
_scope.tinst = this;
_scope.minst = minst;
//scope->stc = 0;
// Declare each template parameter as an alias for the argument type
Scope* paramscope = _scope.push();
paramscope.stc = 0;
paramscope.protection = Prot(PROTpublic); // Bugzilla 14169: template parameters should be public
declareParameters(paramscope);
paramscope.pop();
// Add members of template instance to template instance symbol table
// parent = scope->scopesym;
symtab = new DsymbolTable();
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
static if (LOG)
{
printf("\t[%d] adding member '%s' %p kind %s to '%s'\n", i, s.toChars(), s, s.kind(), this.toChars());
}
s.addMember(_scope, this);
}
static if (LOG)
{
printf("adding members done\n");
}
/* See if there is only one member of template instance, and that
* member has the same name as the template instance.
* If so, this template instance becomes an alias for that member.
*/
//printf("members->dim = %d\n", members->dim);
if (members.dim)
{
Dsymbol s;
if (Dsymbol.oneMembers(members, &s, tempdecl.ident) && s)
{
//printf("tempdecl.ident = %s, s = '%s'\n", tempdecl.ident.toChars(), s.kind(), s.toPrettyChars());
//printf("setting aliasdecl\n");
aliasdecl = s;
version(IN_LLVM)
{
// LDC propagate internal information
if (tempdecl.llvmInternal != 0) {
s.llvmInternal = tempdecl.llvmInternal;
if (FuncDeclaration fd = s.isFuncDeclaration()) {
DtoSetFuncDeclIntrinsicName(this, tempdecl, fd);
}
}
}
}
}
/* If function template declaration
*/
if (fargs && aliasdecl)
{
FuncDeclaration fd = aliasdecl.isFuncDeclaration();
if (fd)
{
/* Transmit fargs to type so that TypeFunction::semantic() can
* resolve any "auto ref" storage classes.
*/
TypeFunction tf = cast(TypeFunction)fd.type;
if (tf && tf.ty == Tfunction)
tf.fargs = fargs;
}
}
// Do semantic() analysis on template instance members
static if (LOG)
{
printf("\tdo semantic() on template instance members '%s'\n", toChars());
}
Scope* sc2;
sc2 = _scope.push(this);
//printf("enclosing = %d, sc->parent = %s\n", enclosing, sc->parent->toChars());
sc2.parent = this;
sc2.tinst = this;
sc2.minst = minst;
tryExpandMembers(sc2);
semanticRun = PASSsemanticdone;
/* ConditionalDeclaration may introduce eponymous declaration,
* so we should find it once again after semantic.
*/
if (members.dim)
{
Dsymbol s;
if (Dsymbol.oneMembers(members, &s, tempdecl.ident) && s)
{
if (!aliasdecl || aliasdecl != s)
{
//printf("tempdecl.ident = %s, s = '%s'\n", tempdecl.ident.toChars(), s.kind(), s.toPrettyChars());
//printf("setting aliasdecl 2\n");
aliasdecl = s;
}
}
}
if (global.errors != errorsave)
goto Laftersemantic;
/* If any of the instantiation members didn't get semantic() run
* on them due to forward references, we cannot run semantic2()
* or semantic3() yet.
*/
{
bool found_deferred_ad = false;
for (size_t i = 0; i < Module.deferred.dim; i++)
{
Dsymbol sd = Module.deferred[i];
AggregateDeclaration ad = sd.isAggregateDeclaration();
if (ad && ad.parent && ad.parent.isTemplateInstance())
{
//printf("deferred template aggregate: %s %s\n",
// sd->parent->toChars(), sd->toChars());
found_deferred_ad = true;
if (ad.parent == this)
{
ad.deferred = this;
break;
}
}
}
if (found_deferred_ad || Module.deferred.dim)
goto Laftersemantic;
}
/* The problem is when to parse the initializer for a variable.
* Perhaps VarDeclaration::semantic() should do it like it does
* for initializers inside a function.
*/
//if (sc->parent->isFuncDeclaration())
{
/* BUG 782: this has problems if the classes this depends on
* are forward referenced. Find a way to defer semantic()
* on this template.
*/
semantic2(sc2);
}
if (global.errors != errorsave)
goto Laftersemantic;
if ((sc.func || (sc.flags & SCOPEfullinst)) && !tinst)
{
/* If a template is instantiated inside function, the whole instantiation
* should be done at that position. But, immediate running semantic3 of
* dependent templates may cause unresolved forward reference (Bugzilla 9050).
* To avoid the issue, don't run semantic3 until semantic and semantic2 done.
*/
TemplateInstances deferred;
this.deferred = &deferred;
//printf("Run semantic3 on %s\n", toChars());
trySemantic3(sc2);
for (size_t i = 0; i < deferred.dim; i++)
{
//printf("+ run deferred semantic3 on %s\n", deferred[i]->toChars());
deferred[i].semantic3(null);
}
this.deferred = null;
}
else if (tinst)
{
bool doSemantic3 = false;
if (sc.func && aliasdecl && aliasdecl.toAlias().isFuncDeclaration())
{
/* Template function instantiation should run semantic3 immediately
* for attribute inference.
*/
doSemantic3 = true;
}
else if (sc.func)
{
/* A lambda function in template arguments might capture the
* instantiated scope context. For the correct context inference,
* all instantiated functions should run the semantic3 immediately.
* See also compilable/test14973.d
*/
foreach (oarg; tdtypes)
{
auto s = getDsymbol(oarg);
if (!s)
continue;
if (auto td = s.isTemplateDeclaration())
{
if (!td.literal)
continue;
assert(td.members && td.members.dim == 1);
s = (*td.members)[0];
}
if (auto fld = s.isFuncLiteralDeclaration())
{
if (fld.tok == TOKreserved)
{
doSemantic3 = true;
break;
}
}
}
//printf("[%s] %s doSemantic3 = %d\n", loc.toChars(), toChars(), doSemantic3);
}
if (doSemantic3)
trySemantic3(sc2);
TemplateInstance ti = tinst;
int nest = 0;
while (ti && !ti.deferred && ti.tinst)
{
ti = ti.tinst;
// IN_LLVM replaced: if (++nest > 500)
if (++nest > global.params.nestedTmpl) // LDC_FIXME: add testcase for this
{
global.gag = 0; // ensure error message gets printed
error("recursive expansion");
fatal();
}
}
if (ti && ti.deferred)
{
//printf("deferred semantic3 of %p %s, ti = %s, ti->deferred = %p\n", this, toChars(), ti->toChars());
for (size_t i = 0;; i++)
{
if (i == ti.deferred.dim)
{
ti.deferred.push(this);
break;
}
if ((*ti.deferred)[i] == this)
break;
}
}
}
if (aliasdecl)
{
/* Bugzilla 13816: AliasDeclaration tries to resolve forward reference
* twice (See inuse check in AliasDeclaration::toAlias()). It's
* necessary to resolve mutual references of instantiated symbols, but
* it will left a true recursive alias in tuple declaration - an
* AliasDeclaration A refers TupleDeclaration B, and B contains A
* in its elements. To correctly make it an error, we strictly need to
* resolve the alias of eponymous member.
*/
aliasdecl = aliasdecl.toAlias2();
}
Laftersemantic:
sc2.pop();
_scope.pop();
// Give additional context info if error occurred during instantiation
if (global.errors != errorsave)
{
if (!errors)
{
if (!tempdecl.literal)
error(loc, "error instantiating");
if (tinst)
tinst.printInstantiationTrace();
}
errors = true;
if (gagged)
{
// Errors are gagged, so remove the template instance from the
// instance/symbol lists we added it to and reset our state to
// finish clean and so we can try to instantiate it again later
// (see bugzilla 4302 and 6602).
tempdecl.removeInstance(tempdecl_instance_idx);
if (target_symbol_list)
{
// Because we added 'this' in the last position above, we
// should be able to remove it without messing other indices up.
assert((*target_symbol_list)[target_symbol_list_idx] == this);
target_symbol_list.remove(target_symbol_list_idx);
}
semanticRun = PASSinit;
inst = null;
symtab = null;
}
}
else if (errinst)
{
/* Bugzilla 14541: If the previous gagged instance had failed by
* circular references, currrent "error reproduction instantiation"
* might succeed, because of the difference of instantiated context.
* On such case, the cached error instance needs to be overridden by the
* succeeded instance.
*/
size_t bi = hash % tempdecl.buckets.dim;
TemplateInstances* instances = tempdecl.buckets[bi];
assert(instances);
for (size_t i = 0; i < instances.dim; i++)
{
TemplateInstance ti = (*instances)[i];
if (ti == errinst)
{
(*instances)[i] = this; // override
break;
}
}
}
static if (LOG)
{
printf("-TemplateInstance::semantic('%s', this=%p)\n", toChars(), this);
}
}
override void semantic(Scope* sc)
{
semantic(sc, null);
}
override void semantic2(Scope* sc)
{
if (semanticRun >= PASSsemantic2)
return;
semanticRun = PASSsemantic2;
static if (LOG)
{
printf("+TemplateInstance::semantic2('%s')\n", toChars());
}
if (!errors && members)
{
TemplateDeclaration tempdecl = this.tempdecl.isTemplateDeclaration();
assert(tempdecl);
sc = tempdecl._scope;
assert(sc);
sc = sc.push(argsym);
sc = sc.push(this);
sc.tinst = this;
sc.minst = minst;
int needGagging = (gagged && !global.gag);
uint olderrors = global.errors;
int oldGaggedErrors = -1; // dead-store to prevent spurious warning
if (needGagging)
oldGaggedErrors = global.startGagging();
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
static if (LOG)
{
printf("\tmember '%s', kind = '%s'\n", s.toChars(), s.kind());
}
s.semantic2(sc);
if (gagged && global.errors != olderrors)
break;
}
if (global.errors != olderrors)
{
if (!errors)
{
if (!tempdecl.literal)
error(loc, "error instantiating");
if (tinst)
tinst.printInstantiationTrace();
}
errors = true;
}
if (needGagging)
global.endGagging(oldGaggedErrors);
sc = sc.pop();
sc.pop();
}
static if (LOG)
{
printf("-TemplateInstance::semantic2('%s')\n", toChars());
}
}
override void semantic3(Scope* sc)
{
static if (LOG)
{
printf("TemplateInstance::semantic3('%s'), semanticRun = %d\n", toChars(), semanticRun);
}
//if (toChars()[0] == 'D') *(char*)0=0;
if (semanticRun >= PASSsemantic3)
return;
semanticRun = PASSsemantic3;
if (!errors && members)
{
TemplateDeclaration tempdecl = this.tempdecl.isTemplateDeclaration();
assert(tempdecl);
sc = tempdecl._scope;
sc = sc.push(argsym);
sc = sc.push(this);
sc.tinst = this;
sc.minst = minst;
int needGagging = (gagged && !global.gag);
uint olderrors = global.errors;
int oldGaggedErrors = -1; // dead-store to prevent spurious warning
/* If this is a gagged instantiation, gag errors.
* Future optimisation: If the results are actually needed, errors
* would already be gagged, so we don't really need to run semantic
* on the members.
*/
if (needGagging)
oldGaggedErrors = global.startGagging();
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
s.semantic3(sc);
if (gagged && global.errors != olderrors)
break;
}
if (global.errors != olderrors)
{
if (!errors)
{
if (!tempdecl.literal)
error(loc, "error instantiating");
if (tinst)
tinst.printInstantiationTrace();
}
errors = true;
}
if (needGagging)
global.endGagging(oldGaggedErrors);
sc = sc.pop();
sc.pop();
}
}
// resolve real symbol
override final Dsymbol toAlias()
{
static if (LOG)
{
printf("TemplateInstance::toAlias()\n");
}
if (!inst)
{
// Maybe we can resolve it
if (_scope)
{
semantic(_scope);
}
if (!inst)
{
error("cannot resolve forward reference");
errors = true;
return this;
}
}
if (inst != this)
return inst.toAlias();
if (aliasdecl)
{
return aliasdecl.toAlias();
}
return inst;
}
override const(char)* kind() const
{
return "template instance";
}
override bool oneMember(Dsymbol* ps, Identifier ident)
{
*ps = null;
return true;
}
override const(char)* toChars()
{
OutBuffer buf;
toCBufferInstance(this, &buf);
return buf.extractString();
}
override final char* toPrettyCharsHelper()
{
OutBuffer buf;
toCBufferInstance(this, &buf, true);
return buf.extractString();
}
/**************************************
* Given an error instantiating the TemplateInstance,
* give the nested TemplateInstance instantiations that got
* us here. Those are a list threaded into the nested scopes.
*/
final void printInstantiationTrace()
{
if (global.gag)
return;
const(uint) max_shown = 6;
const(char)* format = "instantiated from here: %s";
// determine instantiation depth and number of recursive instantiations
int n_instantiations = 1;
int n_totalrecursions = 0;
for (TemplateInstance cur = this; cur; cur = cur.tinst)
{
++n_instantiations;
// If two instantiations use the same declaration, they are recursive.
// (this works even if they are instantiated from different places in the
// same template).
// In principle, we could also check for multiple-template recursion, but it's
// probably not worthwhile.
if (cur.tinst && cur.tempdecl && cur.tinst.tempdecl && cur.tempdecl.loc.equals(cur.tinst.tempdecl.loc))
++n_totalrecursions;
}
// show full trace only if it's short or verbose is on
if (n_instantiations <= max_shown || global.params.verbose)
{
for (TemplateInstance cur = this; cur; cur = cur.tinst)
{
cur.errors = true;
errorSupplemental(cur.loc, format, cur.toChars());
}
}
else if (n_instantiations - n_totalrecursions <= max_shown)
{
// By collapsing recursive instantiations into a single line,
// we can stay under the limit.
int recursionDepth = 0;
for (TemplateInstance cur = this; cur; cur = cur.tinst)
{
cur.errors = true;
if (cur.tinst && cur.tempdecl && cur.tinst.tempdecl && cur.tempdecl.loc.equals(cur.tinst.tempdecl.loc))
{
++recursionDepth;
}
else
{
if (recursionDepth)
errorSupplemental(cur.loc, "%d recursive instantiations from here: %s", recursionDepth + 2, cur.toChars());
else
errorSupplemental(cur.loc, format, cur.toChars());
recursionDepth = 0;
}
}
}
else
{
// Even after collapsing the recursions, the depth is too deep.
// Just display the first few and last few instantiations.
uint i = 0;
for (TemplateInstance cur = this; cur; cur = cur.tinst)
{
cur.errors = true;
if (i == max_shown / 2)
errorSupplemental(cur.loc, "... (%d instantiations, -v to show) ...", n_instantiations - max_shown);
if (i < max_shown / 2 || i >= n_instantiations - max_shown + max_shown / 2)
errorSupplemental(cur.loc, format, cur.toChars());
++i;
}
}
}
/*************************************
* Lazily generate identifier for template instance.
* This is because 75% of the ident's are never needed.
*/
override final Identifier getIdent()
{
if (!ident && inst && !errors)
ident = genIdent(tiargs); // need an identifier for name mangling purposes.
return ident;
}
override final int compare(RootObject o)
{
TemplateInstance ti = cast(TemplateInstance)o;
//printf("this = %p, ti = %p\n", this, ti);
assert(tdtypes.dim == ti.tdtypes.dim);
// Nesting must match
if (enclosing != ti.enclosing)
{
//printf("test2 enclosing %s ti->enclosing %s\n", enclosing ? enclosing->toChars() : "", ti->enclosing ? ti->enclosing->toChars() : "");
goto Lnotequals;
}
//printf("parent = %s, ti->parent = %s\n", parent->toPrettyChars(), ti->parent->toPrettyChars());
if (!arrayObjectMatch(&tdtypes, &ti.tdtypes))
goto Lnotequals;
/* Template functions may have different instantiations based on
* "auto ref" parameters.
*/
if (auto fd = ti.toAlias().isFuncDeclaration())
{
if (!fd.errors)
{
auto fparameters = fd.getParameters(null);
size_t nfparams = Parameter.dim(fparameters); // Num function parameters
for (size_t j = 0; j < nfparams; j++)
{
Parameter fparam = Parameter.getNth(fparameters, j);
if (fparam.storageClass & STCautoref) // if "auto ref"
{
if (!fargs)
goto Lnotequals;
if (fargs.dim <= j)
break;
Expression farg = (*fargs)[j];
if (farg.isLvalue())
{
if (!(fparam.storageClass & STCref))
goto Lnotequals;
// auto ref's don't match
}
else
{
if (fparam.storageClass & STCref)
goto Lnotequals;
// auto ref's don't match
}
}
}
}
}
return 0;
Lnotequals:
return 1;
}
final hash_t hashCode()
{
if (!hash)
{
hash = cast(size_t)cast(void*)enclosing;
hash += arrayObjectHash(&tdtypes);
}
return hash;
}
/***********************************************
* Returns true if this is not instantiated in non-root module, and
* is a part of non-speculative instantiatiation.
*
* Note: minst does not stabilize until semantic analysis is completed,
* so don't call this function during semantic analysis to return precise result.
*/
final bool needsCodegen()
{
// Now -allInst is just for the backward compatibility.
if (global.params.allInst)
{
//printf("%s minst = %s, enclosing (%s)->isNonRoot = %d\n",
// toPrettyChars(), minst ? minst->toChars() : NULL,
// enclosing ? enclosing->toPrettyChars() : NULL, enclosing && enclosing->inNonRoot());
if (enclosing)
{
// Bugzilla 14588: If the captured context is not a function
// (e.g. class), the instance layout determination is guaranteed,
// because the semantic/semantic2 pass will be executed
// even for non-root instances.
if (!enclosing.isFuncDeclaration())
return true;
// Bugzilla 14834: If the captured context is a function,
// this excessive instantiation may cause ODR violation, because
// -allInst and others doesn't guarantee the semantic3 execution
// for that function.
// If the enclosing is also an instantiated function,
// we have to rely on the ancestor's needsCodegen() result.
if (TemplateInstance ti = enclosing.isInstantiated())
return ti.needsCodegen();
// Bugzilla 13415: If and only if the enclosing scope needs codegen,
// this nested templates would also need code generation.
return !enclosing.inNonRoot();
}
return true;
}
if (!minst)
{
// If this is a speculative instantiation,
// 1. do codegen if ancestors really needs codegen.
// 2. become non-speculative if siblings are not speculative
TemplateInstance tnext = this.tnext;
TemplateInstance tinst = this.tinst;
// At first, disconnect chain first to prevent infinite recursion.
this.tnext = null;
this.tinst = null;
// Determine necessity of tinst before tnext.
if (tinst && tinst.needsCodegen())
{
minst = tinst.minst; // cache result
assert(minst);
assert(minst.isRoot() || minst.rootImports());
return true;
}
if (tnext && (tnext.needsCodegen() || tnext.minst))
{
minst = tnext.minst; // cache result
assert(minst);
return minst.isRoot() || minst.rootImports();
}
// Elide codegen because this is really speculative.
return false;
}
/* Even when this is reached to the codegen pass,
* a non-root nested template should not generate code,
* due to avoid ODR violation.
*/
if (enclosing && enclosing.inNonRoot())
{
if (tinst)
{
auto r = tinst.needsCodegen();
minst = tinst.minst; // cache result
return r;
}
if (tnext)
{
auto r = tnext.needsCodegen();
minst = tnext.minst; // cache result
return r;
}
return false;
}
/* The issue is that if the importee is compiled with a different -debug
* setting than the importer, the importer may believe it exists
* in the compiled importee when it does not, when the instantiation
* is behind a conditional debug declaration.
*/
// workaround for Bugzilla 11239
if (global.params.useUnitTests ||
global.params.debuglevel)
{
// Prefer instantiations from root modules, to maximize link-ability.
if (minst.isRoot())
return true;
TemplateInstance tnext = this.tnext;
TemplateInstance tinst = this.tinst;
this.tnext = null;
this.tinst = null;
if (tinst && tinst.needsCodegen())
{
minst = tinst.minst; // cache result
assert(minst);
assert(minst.isRoot() || minst.rootImports());
return true;
}
if (tnext && tnext.needsCodegen())
{
minst = tnext.minst; // cache result
assert(minst);
assert(minst.isRoot() || minst.rootImports());
return true;
}
// Bugzilla 2500 case
if (minst.rootImports())
return true;
// Elide codegen because this is not included in root instances.
return false;
}
else
{
// Prefer instantiations from non-root module, to minimize object code size.
/* If a TemplateInstance is ever instantiated by non-root modules,
* we do not have to generate code for it,
* because it will be generated when the non-root module is compiled.
*
* But, if the non-root 'minst' imports any root modules, it might still need codegen.
*
* The problem is if A imports B, and B imports A, and both A
* and B instantiate the same template, does the compilation of A
* or the compilation of B do the actual instantiation?
*
* See Bugzilla 2500.
*/
if (!minst.isRoot() && !minst.rootImports())
return false;
TemplateInstance tnext = this.tnext;
this.tnext = null;
if (tnext && !tnext.needsCodegen() && tnext.minst)
{
minst = tnext.minst; // cache result
assert(!minst.isRoot());
return false;
}
// Do codegen because this is not included in non-root instances.
return true;
}
}
/**********************************************
* Find template declaration corresponding to template instance.
*
* Returns:
* false if finding fails.
* Note:
* This function is reentrant against error occurrence. If returns false,
* any members of this object won't be modified, and repetition call will
* reproduce same error.
*/
final bool findTempDecl(Scope* sc, WithScopeSymbol* pwithsym)
{
if (pwithsym)
*pwithsym = null;
if (havetempdecl)
return true;
//printf("TemplateInstance::findTempDecl() %s\n", toChars());
if (!tempdecl)
{
/* Given:
* foo!( ... )
* figure out which TemplateDeclaration foo refers to.
*/
Identifier id = name;
Dsymbol scopesym;
Dsymbol s = sc.search(loc, id, &scopesym);
if (!s)
{
s = sc.search_correct(id);
if (s)
error("template '%s' is not defined, did you mean %s?", id.toChars(), s.toChars());
else
error("template '%s' is not defined", id.toChars());
return false;
}
static if (LOG)
{
printf("It's an instance of '%s' kind '%s'\n", s.toChars(), s.kind());
if (s.parent)
printf("s->parent = '%s'\n", s.parent.toChars());
}
if (pwithsym)
*pwithsym = scopesym.isWithScopeSymbol();
/* We might have found an alias within a template when
* we really want the template.
*/
TemplateInstance ti;
if (s.parent && (ti = s.parent.isTemplateInstance()) !is null)
{
if (ti.tempdecl && ti.tempdecl.ident == id)
{
/* This is so that one can refer to the enclosing
* template, even if it has the same name as a member
* of the template, if it has a !(arguments)
*/
TemplateDeclaration td = ti.tempdecl.isTemplateDeclaration();
assert(td);
if (td.overroot) // if not start of overloaded list of TemplateDeclaration's
td = td.overroot; // then get the start
s = td;
}
}
if (!updateTempDecl(sc, s))
{
return false;
}
}
assert(tempdecl);
// Look for forward references
auto tovers = tempdecl.isOverloadSet();
foreach (size_t oi; 0 .. tovers ? tovers.a.dim : 1)
{
Dsymbol dstart = tovers ? tovers.a[oi] : tempdecl;
int r = overloadApply(dstart, (Dsymbol s)
{
auto td = s.isTemplateDeclaration();
if (!td)
return 0;
if (td.semanticRun == PASSinit)
{
if (td._scope)
{
// Try to fix forward reference. Ungag errors while doing so.
Ungag ungag = td.ungagSpeculative();
td.semantic(td._scope);
}
if (td.semanticRun == PASSinit)
{
error("%s forward references template declaration %s",
toChars(), td.toChars());
return 1;
}
}
return 0;
});
if (r)
return false;
}
return true;
}
/**********************************************
* Confirm s is a valid template, then store it.
* Input:
* sc
* s candidate symbol of template. It may be:
* TemplateDeclaration
* FuncDeclaration with findTemplateDeclRoot() != NULL
* OverloadSet which contains candidates
* Returns:
* true if updating succeeds.
*/
final bool updateTempDecl(Scope* sc, Dsymbol s)
{
if (s)
{
Identifier id = name;
s = s.toAlias();
/* If an OverloadSet, look for a unique member that is a template declaration
*/
OverloadSet os = s.isOverloadSet();
if (os)
{
s = null;
for (size_t i = 0; i < os.a.dim; i++)
{
Dsymbol s2 = os.a[i];
if (FuncDeclaration f = s2.isFuncDeclaration())
s2 = f.findTemplateDeclRoot();
else
s2 = s2.isTemplateDeclaration();
if (s2)
{
if (s)
{
tempdecl = os;
return true;
}
s = s2;
}
}
if (!s)
{
error("template '%s' is not defined", id.toChars());
return false;
}
}
OverDeclaration od = s.isOverDeclaration();
if (od)
{
tempdecl = od; // TODO: more strict check
return true;
}
/* It should be a TemplateDeclaration, not some other symbol
*/
if (FuncDeclaration f = s.isFuncDeclaration())
tempdecl = f.findTemplateDeclRoot();
else
tempdecl = s.isTemplateDeclaration();
if (!tempdecl)
{
if (!s.parent && global.errors)
return false;
if (!s.parent && s.getType())
{
Dsymbol s2 = s.getType().toDsymbol(sc);
if (!s2)
{
error("%s is not a template declaration, it is a %s", id.toChars(), s.kind());
return false;
}
s = s2;
}
debug
{
//if (!s->parent) printf("s = %s %s\n", s->kind(), s->toChars());
}
//assert(s->parent);
TemplateInstance ti = s.parent ? s.parent.isTemplateInstance() : null;
if (ti && (ti.name == s.ident || ti.toAlias().ident == s.ident) && ti.tempdecl)
{
/* This is so that one can refer to the enclosing
* template, even if it has the same name as a member
* of the template, if it has a !(arguments)
*/
TemplateDeclaration td = ti.tempdecl.isTemplateDeclaration();
assert(td);
if (td.overroot) // if not start of overloaded list of TemplateDeclaration's
td = td.overroot; // then get the start
tempdecl = td;
}
else
{
error("%s is not a template declaration, it is a %s", id.toChars(), s.kind());
return false;
}
}
}
return (tempdecl !is null);
}
/**********************************
* Run semantic of tiargs as arguments of template.
* Input:
* loc
* sc
* tiargs array of template arguments
* flags 1: replace const variables with their initializers
* 2: don't devolve Parameter to Type
* Returns:
* false if one or more arguments have errors.
*/
final static bool semanticTiargs(Loc loc, Scope* sc, Objects* tiargs, int flags)
{
// Run semantic on each argument, place results in tiargs[]
//printf("+TemplateInstance::semanticTiargs()\n");
if (!tiargs)
return true;
bool err = false;
for (size_t j = 0; j < tiargs.dim; j++)
{
RootObject o = (*tiargs)[j];
Type ta = isType(o);
Expression ea = isExpression(o);
Dsymbol sa = isDsymbol(o);
//printf("1: (*tiargs)[%d] = %p, s=%p, v=%p, ea=%p, ta=%p\n", j, o, isDsymbol(o), isTuple(o), ea, ta);
if (ta)
{
//printf("type %s\n", ta->toChars());
// It might really be an Expression or an Alias
ta.resolve(loc, sc, &ea, &ta, &sa);
if (ea)
goto Lexpr;
if (sa)
goto Ldsym;
if (ta is null)
{
assert(global.errors);
ta = Type.terror;
}
Ltype:
if (ta.ty == Ttuple)
{
// Expand tuple
TypeTuple tt = cast(TypeTuple)ta;
size_t dim = tt.arguments.dim;
tiargs.remove(j);
if (dim)
{
tiargs.reserve(dim);
for (size_t i = 0; i < dim; i++)
{
Parameter arg = (*tt.arguments)[i];
if (flags & 2 && arg.ident)
tiargs.insert(j + i, arg);
else
tiargs.insert(j + i, arg.type);
}
}
j--;
continue;
}
if (ta.ty == Terror)
{
err = true;
continue;
}
(*tiargs)[j] = ta.merge2();
}
else if (ea)
{
Lexpr:
//printf("+[%d] ea = %s %s\n", j, Token::toChars(ea->op), ea->toChars());
if (flags & 1) // only used by __traits
{
ea = ea.semantic(sc);
// must not interpret the args, excepting template parameters
if (ea.op != TOKvar || ((cast(VarExp)ea).var.storage_class & STCtemplateparameter))
{
ea = ea.optimize(WANTvalue);
}
}
else
{
sc = sc.startCTFE();
ea = ea.semantic(sc);
sc = sc.endCTFE();
if (ea.op == TOKvar)
{
/* This test is to skip substituting a const var with
* its initializer. The problem is the initializer won't
* match with an 'alias' parameter. Instead, do the
* const substitution in TemplateValueParameter::matchArg().
*/
}
else if (definitelyValueParameter(ea))
{
if (ea.checkValue()) // check void expression
ea = new ErrorExp();
uint olderrs = global.errors;
ea = ea.ctfeInterpret();
if (global.errors != olderrs)
ea = new ErrorExp();
}
}
//printf("-[%d] ea = %s %s\n", j, Token::toChars(ea->op), ea->toChars());
if (ea.op == TOKtuple)
{
// Expand tuple
TupleExp te = cast(TupleExp)ea;
size_t dim = te.exps.dim;
tiargs.remove(j);
if (dim)
{
tiargs.reserve(dim);
for (size_t i = 0; i < dim; i++)
tiargs.insert(j + i, (*te.exps)[i]);
}
j--;
continue;
}
if (ea.op == TOKerror)
{
err = true;
continue;
}
(*tiargs)[j] = ea;
if (ea.op == TOKtype)
{
ta = ea.type;
goto Ltype;
}
if (ea.op == TOKscope)
{
sa = (cast(ScopeExp)ea).sds;
goto Ldsym;
}
if (ea.op == TOKfunction)
{
FuncExp fe = cast(FuncExp)ea;
/* A function literal, that is passed to template and
* already semanticed as function pointer, never requires
* outer frame. So convert it to global function is valid.
*/
if (fe.fd.tok == TOKreserved && fe.type.ty == Tpointer)
{
// change to non-nested
fe.fd.tok = TOKfunction;
fe.fd.vthis = null;
}
else if (fe.td)
{
/* If template argument is a template lambda,
* get template declaration itself. */
//sa = fe->td;
//goto Ldsym;
}
}
if (ea.op == TOKdotvar)
{
// translate expression to dsymbol.
sa = (cast(DotVarExp)ea).var;
goto Ldsym;
}
if (ea.op == TOKtemplate)
{
sa = (cast(TemplateExp)ea).td;
goto Ldsym;
}
if (ea.op == TOKdottd)
{
// translate expression to dsymbol.
sa = (cast(DotTemplateExp)ea).td;
goto Ldsym;
}
}
else if (sa)
{
Ldsym:
//printf("dsym %s %s\n", sa->kind(), sa->toChars());
if (sa.errors)
{
err = true;
continue;
}
TupleDeclaration d = sa.toAlias().isTupleDeclaration();
if (d)
{
// Expand tuple
tiargs.remove(j);
tiargs.insert(j, d.objects);
j--;
continue;
}
if (FuncAliasDeclaration fa = sa.isFuncAliasDeclaration())
{
FuncDeclaration f = fa.toAliasFunc();
if (!fa.hasOverloads && f.isUnique())
{
// Strip FuncAlias only when the aliased function
// does not have any overloads.
sa = f;
}
}
(*tiargs)[j] = sa;
TemplateDeclaration td = sa.isTemplateDeclaration();
if (td && td.semanticRun == PASSinit && td.literal)
{
td.semantic(sc);
}
FuncDeclaration fd = sa.isFuncDeclaration();
if (fd)
fd.functionSemantic();
}
else if (isParameter(o))
{
}
else
{
assert(0);
}
//printf("1: (*tiargs)[%d] = %p\n", j, (*tiargs)[j]);
}
version (none)
{
printf("-TemplateInstance::semanticTiargs()\n");
for (size_t j = 0; j < tiargs.dim; j++)
{
RootObject o = (*tiargs)[j];
Type ta = isType(o);
Expression ea = isExpression(o);
Dsymbol sa = isDsymbol(o);
Tuple va = isTuple(o);
printf("\ttiargs[%d] = ta %p, ea %p, sa %p, va %p\n", j, ta, ea, sa, va);
}
}
return !err;
}
/**********************************
* Run semantic on the elements of tiargs.
* Input:
* sc
* Returns:
* false if one or more arguments have errors.
* Note:
* This function is reentrant against error occurrence. If returns false,
* all elements of tiargs won't be modified.
*/
final bool semanticTiargs(Scope* sc)
{
//printf("+TemplateInstance::semanticTiargs() %s\n", toChars());
if (semantictiargsdone)
return true;
if (semanticTiargs(loc, sc, tiargs, 0))
{
// cache the result iff semantic analysis succeeded entirely
semantictiargsdone = 1;
return true;
}
return false;
}
final bool findBestMatch(Scope* sc, Expressions* fargs)
{
if (havetempdecl)
{
TemplateDeclaration tempdecl = this.tempdecl.isTemplateDeclaration();
assert(tempdecl);
assert(tempdecl._scope);
// Deduce tdtypes
tdtypes.setDim(tempdecl.parameters.dim);
if (!tempdecl.matchWithInstance(sc, this, &tdtypes, fargs, 2))
{
error("incompatible arguments for template instantiation");
return false;
}
// TODO: Normalizing tiargs for bugzilla 7469 is necessary?
return true;
}
static if (LOG)
{
printf("TemplateInstance::findBestMatch()\n");
}
uint errs = global.errors;
TemplateDeclaration td_last = null;
Objects dedtypes;
/* Since there can be multiple TemplateDeclaration's with the same
* name, look for the best match.
*/
auto tovers = tempdecl.isOverloadSet();
foreach (size_t oi; 0 .. tovers ? tovers.a.dim : 1)
{
TemplateDeclaration td_best;
TemplateDeclaration td_ambig;
MATCH m_best = MATCHnomatch;
Dsymbol dstart = tovers ? tovers.a[oi] : tempdecl;
overloadApply(dstart, (Dsymbol s)
{
auto td = s.isTemplateDeclaration();
if (!td || td == td_best) // skip duplicates
return 0;
//printf("td = %s\n", td->toPrettyChars());
// If more arguments than parameters,
// then this is no match.
if (td.parameters.dim < tiargs.dim)
{
if (!td.isVariadic())
return 0;
}
dedtypes.setDim(td.parameters.dim);
dedtypes.zero();
assert(td.semanticRun != PASSinit);
MATCH m = td.matchWithInstance(sc, this, &dedtypes, fargs, 0);
//printf("matchWithInstance = %d\n", m);
if (m <= MATCHnomatch) // no match at all
return 0;
if (m < m_best) goto Ltd_best;
if (m > m_best) goto Ltd;
// Disambiguate by picking the most specialized TemplateDeclaration
{
MATCH c1 = td.leastAsSpecialized(sc, td_best, fargs);
MATCH c2 = td_best.leastAsSpecialized(sc, td, fargs);
//printf("c1 = %d, c2 = %d\n", c1, c2);
if (c1 > c2) goto Ltd;
if (c1 < c2) goto Ltd_best;
}
td_ambig = td;
return 0;
Ltd_best:
// td_best is the best match so far
td_ambig = null;
return 0;
Ltd:
// td is the new best match
td_ambig = null;
td_best = td;
m_best = m;
tdtypes.setDim(dedtypes.dim);
memcpy(tdtypes.tdata(), dedtypes.tdata(), tdtypes.dim * (void*).sizeof);
return 0;
});
if (td_ambig)
{
.error(loc, "%s %s.%s matches more than one template declaration:\n%s: %s\nand\n%s: %s",
td_best.kind(), td_best.parent.toPrettyChars(), td_best.ident.toChars(),
td_best.loc.toChars(), td_best.toChars(),
td_ambig.loc.toChars(), td_ambig.toChars());
return false;
}
if (td_best)
{
if (!td_last)
td_last = td_best;
else if (td_last != td_best)
{
ScopeDsymbol.multiplyDefined(loc, td_last, td_best);
return false;
}
}
}
if (td_last)
{
/* Bugzilla 7469: Normalize tiargs by using corresponding deduced
* template value parameters and tuples for the correct mangling.
*
* By doing this before hasNestedArgs, CTFEable local variable will be
* accepted as a value parameter. For example:
*
* void foo() {
* struct S(int n) {} // non-global template
* const int num = 1; // CTFEable local variable
* S!num s; // S!1 is instantiated, not S!num
* }
*/
size_t dim = td_last.parameters.dim - (td_last.isVariadic() ? 1 : 0);
for (size_t i = 0; i < dim; i++)
{
if (tiargs.dim <= i)
tiargs.push(tdtypes[i]);
assert(i < tiargs.dim);
auto tvp = (*td_last.parameters)[i].isTemplateValueParameter();
if (!tvp)
continue;
assert(tdtypes[i]);
// tdtypes[i] is already normalized to the required type in matchArg
(*tiargs)[i] = tdtypes[i];
}
if (td_last.isVariadic() && tiargs.dim == dim && tdtypes[dim])
{
Tuple va = isTuple(tdtypes[dim]);
assert(va);
for (size_t i = 0; i < va.objects.dim; i++)
tiargs.push(va.objects[i]);
}
}
else if (errors && inst)
{
// instantiation was failed with error reporting
assert(global.errors);
return false;
}
else
{
auto tdecl = tempdecl.isTemplateDeclaration();
if (errs != global.errors)
errorSupplemental(loc, "while looking for match for %s", toChars());
else if (tdecl && !tdecl.overnext)
{
// Only one template, so we can give better error message
error("does not match template declaration %s", tdecl.toChars());
}
else
.error(loc, "%s %s.%s does not match any template declaration", tempdecl.kind(), tempdecl.parent.toPrettyChars(), tempdecl.ident.toChars());
return false;
}
/* The best match is td_last
*/
tempdecl = td_last;
static if (LOG)
{
printf("\tIt's a match with template declaration '%s'\n", tempdecl.toChars());
}
return (errs == global.errors);
}
/*****************************************************
* Determine if template instance is really a template function,
* and that template function needs to infer types from the function
* arguments.
*
* Like findBestMatch, iterate possible template candidates,
* but just looks only the necessity of type inference.
*/
final bool needsTypeInference(Scope* sc, int flag = 0)
{
//printf("TemplateInstance::needsTypeInference() %s\n", toChars());
if (semanticRun != PASSinit)
return false;
uint olderrs = global.errors;
Objects dedtypes;
size_t count = 0;
auto tovers = tempdecl.isOverloadSet();
foreach (size_t oi; 0 .. tovers ? tovers.a.dim : 1)
{
Dsymbol dstart = tovers ? tovers.a[oi] : tempdecl;
int r = overloadApply(dstart, (Dsymbol s)
{
auto td = s.isTemplateDeclaration();
if (!td)
return 0;
/* If any of the overloaded template declarations need inference,
* then return true
*/
if (!td.onemember)
return 0;
if (auto td2 = td.onemember.isTemplateDeclaration())
{
if (!td2.onemember || !td2.onemember.isFuncDeclaration())
return 0;
if (tiargs.dim >= td.parameters.dim - (td.isVariadic() ? 1 : 0))
return 0;
return 1;
}
auto fd = td.onemember.isFuncDeclaration();
if (!fd || fd.type.ty != Tfunction)
return 0;
foreach (tp; *td.parameters)
{
if (tp.isTemplateThisParameter())
return 1;
}
/* Determine if the instance arguments, tiargs, are all that is necessary
* to instantiate the template.
*/
//printf("tp = %p, td->parameters->dim = %d, tiargs->dim = %d\n", tp, td->parameters->dim, tiargs->dim);
auto tf = cast(TypeFunction)fd.type;
if (size_t dim = Parameter.dim(tf.parameters))
{
auto tp = td.isVariadic();
if (tp && td.parameters.dim > 1)
return 1;
if (!tp && tiargs.dim < td.parameters.dim)
{
// Can remain tiargs be filled by default arguments?
foreach (size_t i; tiargs.dim .. td.parameters.dim)
{
if (!(*td.parameters)[i].hasDefaultArg())
return 1;
}
}
foreach (size_t i; 0 .. dim)
{
// 'auto ref' needs inference.
if (Parameter.getNth(tf.parameters, i).storageClass & STCauto)
return 1;
}
}
if (!flag)
{
/* Calculate the need for overload resolution.
* When only one template can match with tiargs, inference is not necessary.
*/
dedtypes.setDim(td.parameters.dim);
dedtypes.zero();
if (td.semanticRun == PASSinit)
{
if (td._scope)
{
// Try to fix forward reference. Ungag errors while doing so.
Ungag ungag = td.ungagSpeculative();
td.semantic(td._scope);
}
if (td.semanticRun == PASSinit)
{
error("%s forward references template declaration %s", toChars(), td.toChars());
return 1;
}
}
MATCH m = td.matchWithInstance(sc, this, &dedtypes, null, 0);
if (m <= MATCHnomatch)
return 0;
}
/* If there is more than one function template which matches, we may
* need type inference (see Bugzilla 4430)
*/
return ++count > 1 ? 1 : 0;
});
if (r)
return true;
}
if (olderrs != global.errors)
{
if (!global.gag)
{
errorSupplemental(loc, "while looking for match for %s", toChars());
semanticRun = PASSsemanticdone;
inst = this;
}
errors = true;
}
//printf("false\n");
return false;
}
/*****************************************
* Determines if a TemplateInstance will need a nested
* generation of the TemplateDeclaration.
* Sets enclosing property if so, and returns != 0;
*/
final bool hasNestedArgs(Objects* args, bool isstatic)
{
int nested = 0;
//printf("TemplateInstance::hasNestedArgs('%s')\n", tempdecl->ident->toChars());
version (none)
{
if (!enclosing)
{
if (TemplateInstance ti = tempdecl.isInstantiated())
enclosing = ti.enclosing;
}
}
/* A nested instance happens when an argument references a local
* symbol that is on the stack.
*/
for (size_t i = 0; i < args.dim; i++)
{
RootObject o = (*args)[i];
Expression ea = isExpression(o);
Dsymbol sa = isDsymbol(o);
Tuple va = isTuple(o);
if (ea)
{
if (ea.op == TOKvar)
{
sa = (cast(VarExp)ea).var;
goto Lsa;
}
if (ea.op == TOKthis)
{
sa = (cast(ThisExp)ea).var;
goto Lsa;
}
if (ea.op == TOKfunction)
{
if ((cast(FuncExp)ea).td)
sa = (cast(FuncExp)ea).td;
else
sa = (cast(FuncExp)ea).fd;
goto Lsa;
}
// Emulate Expression::toMangleBuffer call that had exist in TemplateInstance::genIdent.
if (ea.op != TOKint64 && ea.op != TOKfloat64 && ea.op != TOKcomplex80 && ea.op != TOKnull && ea.op != TOKstring && ea.op != TOKarrayliteral && ea.op != TOKassocarrayliteral && ea.op != TOKstructliteral)
{
ea.error("expression %s is not a valid template value argument", ea.toChars());
errors = true;
}
}
else if (sa)
{
Lsa:
sa = sa.toAlias();
TemplateDeclaration td = sa.isTemplateDeclaration();
if (td)
{
TemplateInstance ti = sa.toParent().isTemplateInstance();
if (ti && ti.enclosing)
sa = ti;
}
TemplateInstance ti = sa.isTemplateInstance();
Declaration d = sa.isDeclaration();
if ((td && td.literal) || (ti && ti.enclosing) || (d && !d.isDataseg() && !(d.storage_class & STCmanifest) && (!d.isFuncDeclaration() || d.isFuncDeclaration().isNested()) && !isTemplateMixin()))
{
// if module level template
if (isstatic)
{
Dsymbol dparent = sa.toParent2();
if (!enclosing)
enclosing = dparent;
else if (enclosing != dparent)
{
/* Select the more deeply nested of the two.
* Error if one is not nested inside the other.
*/
for (Dsymbol p = enclosing; p; p = p.parent)
{
if (p == dparent)
goto L1;
// enclosing is most nested
}
for (Dsymbol p = dparent; p; p = p.parent)
{
if (p == enclosing)
{
enclosing = dparent;
goto L1;
// dparent is most nested
}
}
error("%s is nested in both %s and %s", toChars(), enclosing.toChars(), dparent.toChars());
errors = true;
}
L1:
//printf("\tnested inside %s\n", enclosing->toChars());
nested |= 1;
}
else
{
error("cannot use local '%s' as parameter to non-global template %s", sa.toChars(), tempdecl.toChars());
errors = true;
}
}
}
else if (va)
{
nested |= cast(int)hasNestedArgs(&va.objects, isstatic);
}
}
//printf("-TemplateInstance::hasNestedArgs('%s') = %d\n", tempdecl->ident->toChars(), nested);
return nested != 0;
}
/*****************************************
* Append 'this' to the specific module members[]
*/
final Dsymbols* appendToModuleMember()
{
Module mi = minst; // instantiated -> inserted module
if (global.params.useUnitTests || global.params.debuglevel)
{
// Turn all non-root instances to speculative
if (mi && !mi.isRoot())
mi = null;
}
//printf("%s->appendToModuleMember() enclosing = %s mi = %s\n",
// toPrettyChars(),
// enclosing ? enclosing.toPrettyChars() : null,
// mi ? mi.toPrettyChars() : null);
if (!mi || mi.isRoot())
{
/* If the instantiated module is speculative or root, insert to the
* member of a root module. Then:
* - semantic3 pass will get called on the instance members.
* - codegen pass will get a selection chance to do/skip it.
*/
struct N
{
extern (C++) static Dsymbol getStrictEnclosing(TemplateInstance ti)
{
if (ti.enclosing)
return ti.enclosing;
if (TemplateInstance tix = ti.tempdecl.isInstantiated())
return getStrictEnclosing(tix);
return null;
}
}
Dsymbol enc = N.getStrictEnclosing(this);
// insert target is made stable by using the module
// where tempdecl is declared.
mi = (enc ? enc : tempdecl).getModule();
if (!mi.isRoot())
mi = mi.importedFrom;
assert(mi.isRoot());
}
else
{
/* If the instantiated module is non-root, insert to the member of the
* non-root module. Then:
* - semantic3 pass won't be called on the instance.
* - codegen pass won't reach to the instance.
*/
}
//printf("\t--> mi = %s\n", mi.toPrettyChars());
Dsymbols* a = mi.members;
for (size_t i = 0; 1; i++)
{
if (i == a.dim)
{
a.push(this);
if (mi.semanticRun >= PASSsemantic3done && mi.isRoot())
Module.addDeferredSemantic3(this);
break;
}
if (this == (*a)[i]) // if already in Array
{
a = null;
break;
}
}
return a;
}
/****************************************************
* Declare parameters of template instance, initialize them with the
* template instance arguments.
*/
final void declareParameters(Scope* sc)
{
TemplateDeclaration tempdecl = this.tempdecl.isTemplateDeclaration();
assert(tempdecl);
//printf("TemplateInstance::declareParameters()\n");
for (size_t i = 0; i < tdtypes.dim; i++)
{
TemplateParameter tp = (*tempdecl.parameters)[i];
//RootObject *o = (*tiargs)[i];
RootObject o = tdtypes[i]; // initializer for tp
//printf("\ttdtypes[%d] = %p\n", i, o);
tempdecl.declareParameter(sc, tp, o);
}
}
/****************************************
* This instance needs an identifier for name mangling purposes.
* Create one by taking the template declaration name and adding
* the type signature for it.
*/
final Identifier genIdent(Objects* args)
{
TemplateDeclaration tempdecl = this.tempdecl.isTemplateDeclaration();
assert(tempdecl);
//printf("TemplateInstance::genIdent('%s')\n", tempdecl->ident->toChars());
OutBuffer buf;
const id = tempdecl.ident.toChars();
if (!members)
{
// Use "__U" for the symbols declared inside template constraint.
buf.printf("__U%llu%s", cast(ulong)strlen(id), id);
}
else
buf.printf("__T%llu%s", cast(ulong)strlen(id), id);
size_t nparams = tempdecl.parameters.dim - (tempdecl.isVariadic() ? 1 : 0);
for (size_t i = 0; i < args.dim; i++)
{
RootObject o = (*args)[i];
Type ta = isType(o);
Expression ea = isExpression(o);
Dsymbol sa = isDsymbol(o);
Tuple va = isTuple(o);
//printf("\to [%d] %p ta %p ea %p sa %p va %p\n", i, o, ta, ea, sa, va);
if (i < nparams && (*tempdecl.parameters)[i].specialization())
buf.writeByte('H'); // Bugzilla 6574
if (ta)
{
buf.writeByte('T');
if (ta.deco)
buf.writestring(ta.deco);
else
{
debug
{
if (!global.errors)
printf("ta = %d, %s\n", ta.ty, ta.toChars());
}
assert(global.errors);
}
}
else if (ea)
{
// Don't interpret it yet, it might actually be an alias
ea = ea.optimize(WANTvalue);
if (ea.op == TOKvar)
{
sa = (cast(VarExp)ea).var;
ea = null;
goto Lsa;
}
if (ea.op == TOKthis)
{
sa = (cast(ThisExp)ea).var;
ea = null;
goto Lsa;
}
if (ea.op == TOKfunction)
{
if ((cast(FuncExp)ea).td)
sa = (cast(FuncExp)ea).td;
else
sa = (cast(FuncExp)ea).fd;
ea = null;
goto Lsa;
}
buf.writeByte('V');
if (ea.op == TOKtuple)
{
ea.error("tuple is not a valid template value argument");
continue;
}
// Now that we know it is not an alias, we MUST obtain a value
uint olderr = global.errors;
ea = ea.ctfeInterpret();
if (ea.op == TOKerror || olderr != global.errors)
continue;
/* Use deco that matches what it would be for a function parameter
*/
buf.writestring(ea.type.deco);
mangleToBuffer(ea, &buf);
}
else if (sa)
{
Lsa:
buf.writeByte('S');
sa = sa.toAlias();
Declaration d = sa.isDeclaration();
if (d && (!d.type || !d.type.deco))
{
error("forward reference of %s %s", d.kind(), d.toChars());
continue;
}
const(char)* p = mangle(sa);
/* Bugzilla 3043: if the first character of p is a digit this
* causes ambiguity issues because the digits of the two numbers are adjacent.
* Current demanglers resolve this by trying various places to separate the
* numbers until one gets a successful demangle.
* Unfortunately, fixing this ambiguity will break existing binary
* compatibility and the demanglers, so we'll leave it as is.
*/
buf.printf("%llu%s", cast(ulong)strlen(p), p);
}
else if (va)
{
assert(i + 1 == args.dim); // must be last one
args = &va.objects;
i = -cast(size_t)1;
}
else
assert(0);
}
buf.writeByte('Z');
//printf("\tgenIdent = %s\n", buf.peekString());
return Identifier.idPool(buf.peekSlice());
}
final void expandMembers(Scope* sc2)
{
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
s.setScope(sc2);
}
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
s.importAll(sc2);
}
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
//printf("\t[%d] semantic on '%s' %p kind %s in '%s'\n", i, s->toChars(), s, s->kind(), this->toChars());
//printf("test: enclosing = %d, sc2->parent = %s\n", enclosing, sc2->parent->toChars());
// if (enclosing)
// s->parent = sc->parent;
//printf("test3: enclosing = %d, s->parent = %s\n", enclosing, s->parent->toChars());
s.semantic(sc2);
//printf("test4: enclosing = %d, s->parent = %s\n", enclosing, s->parent->toChars());
sc2._module.runDeferredSemantic();
}
}
final void tryExpandMembers(Scope* sc2)
{
static __gshared int nest;
// extracted to a function to allow windows SEH to work without destructors in the same function
//printf("%d\n", nest);
// IN_LLVM replaced: if (++nest > 500)
if (++nest > global.params.nestedTmpl) // LDC_FIXME: add testcase for this
{
global.gag = 0; // ensure error message gets printed
error("recursive expansion");
fatal();
}
expandMembers(sc2);
nest--;
}
final void trySemantic3(Scope* sc2)
{
// extracted to a function to allow windows SEH to work without destructors in the same function
static __gshared int nest;
//printf("%d\n", nest);
if (++nest > 300)
{
global.gag = 0; // ensure error message gets printed
error("recursive expansion");
fatal();
}
semantic3(sc2);
--nest;
}
override final inout(TemplateInstance) isTemplateInstance() inout
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/**************************************
* IsExpression can evaluate the specified type speculatively, and even if
* it instantiates any symbols, they are normally unnecessary for the
* final executable.
* However, if those symbols leak to the actual code, compiler should remark
* them as non-speculative to generate their code and link to the final executable.
*/
extern (C++) void unSpeculative(Scope* sc, RootObject o)
{
if (!o)
return;
if (Tuple tup = isTuple(o))
{
for (size_t i = 0; i < tup.objects.dim; i++)
{
unSpeculative(sc, tup.objects[i]);
}
return;
}
Dsymbol s = getDsymbol(o);
if (!s)
return;
Declaration d = s.isDeclaration();
if (d)
{
if (VarDeclaration vd = d.isVarDeclaration())
o = vd.type;
else if (AliasDeclaration ad = d.isAliasDeclaration())
{
o = ad.getType();
if (!o)
o = ad.toAlias();
}
else
o = d.toAlias();
s = getDsymbol(o);
if (!s)
return;
}
if (TemplateInstance ti = s.isTemplateInstance())
{
// If the instance is already non-speculative,
// or it is leaked to the speculative scope.
if (ti.minst !is null || sc.minst is null)
return;
// Remark as non-speculative instance.
ti.minst = sc.minst;
if (!ti.tinst)
ti.tinst = sc.tinst;
unSpeculative(sc, ti.tempdecl);
}
if (TemplateInstance ti = s.isInstantiated())
unSpeculative(sc, ti);
}
/**********************************
* Return true if e could be valid only as a template value parameter.
* Return false if it might be an alias or tuple.
* (Note that even in this case, it could still turn out to be a value).
*/
extern (C++) bool definitelyValueParameter(Expression e)
{
// None of these can be value parameters
if (e.op == TOKtuple || e.op == TOKscope ||
e.op == TOKtype || e.op == TOKdottype ||
e.op == TOKtemplate || e.op == TOKdottd ||
e.op == TOKfunction || e.op == TOKerror ||
e.op == TOKthis || e.op == TOKsuper)
return false;
if (e.op != TOKdotvar)
return true;
/* Template instantiations involving a DotVar expression are difficult.
* In most cases, they should be treated as a value parameter, and interpreted.
* But they might also just be a fully qualified name, which should be treated
* as an alias.
*/
// x.y.f cannot be a value
FuncDeclaration f = (cast(DotVarExp)e).var.isFuncDeclaration();
if (f)
return false;
while (e.op == TOKdotvar)
{
e = (cast(DotVarExp)e).e1;
}
// this.x.y and super.x.y couldn't possibly be valid values.
if (e.op == TOKthis || e.op == TOKsuper)
return false;
// e.type.x could be an alias
if (e.op == TOKdottype)
return false;
// var.x.y is the only other possible form of alias
if (e.op != TOKvar)
return true;
VarDeclaration v = (cast(VarExp)e).var.isVarDeclaration();
// func.x.y is not an alias
if (!v)
return true;
// TODO: Should we force CTFE if it is a global constant?
return false;
}
/***********************************************************
*/
extern (C++) final class TemplateMixin : TemplateInstance
{
public:
TypeQualified tqual;
extern (D) this(Loc loc, Identifier ident, TypeQualified tqual, Objects* tiargs)
{
super(loc, tqual.idents.dim ? cast(Identifier)tqual.idents[tqual.idents.dim - 1] : (cast(TypeIdentifier)tqual).ident);
//printf("TemplateMixin(ident = '%s')\n", ident ? ident->toChars() : "");
this.ident = ident;
this.tqual = tqual;
this.tiargs = tiargs ? tiargs : new Objects();
}
override Dsymbol syntaxCopy(Dsymbol s)
{
auto tm = new TemplateMixin(loc, ident, cast(TypeQualified)tqual.syntaxCopy(), tiargs);
return TemplateInstance.syntaxCopy(tm);
}
override void semantic(Scope* sc)
{
static if (LOG)
{
printf("+TemplateMixin::semantic('%s', this=%p)\n", toChars(), this);
fflush(stdout);
}
if (semanticRun != PASSinit)
{
// When a class/struct contains mixin members, and is done over
// because of forward references, never reach here so semanticRun
// has been reset to PASSinit.
static if (LOG)
{
printf("\tsemantic done\n");
}
return;
}
semanticRun = PASSsemantic;
static if (LOG)
{
printf("\tdo semantic\n");
}
Scope* scx = null;
if (_scope)
{
sc = _scope;
scx = _scope; // save so we don't make redundant copies
_scope = null;
}
/* Run semantic on each argument, place results in tiargs[],
* then find best match template with tiargs
*/
if (!findTempDecl(sc) || !semanticTiargs(sc) || !findBestMatch(sc, null))
{
if (semanticRun == PASSinit) // forward reference had occured
{
/* Cannot handle forward references if mixin is a struct member,
* because addField must happen during struct's semantic, not
* during the mixin semantic.
* runDeferred will re-run mixin's semantic outside of the struct's
* semantic.
*/
AggregateDeclaration ad = toParent().isAggregateDeclaration();
if (ad)
ad.sizeok = SIZEOKfwd;
else
{
// Forward reference
//printf("forward reference - deferring\n");
_scope = scx ? scx : sc.copy();
_scope.setNoFree();
_scope._module.addDeferredSemantic(this);
}
return;
}
inst = this;
errors = true;
return; // error recovery
}
TemplateDeclaration tempdecl = this.tempdecl.isTemplateDeclaration();
assert(tempdecl);
if (!ident)
{
/* Assign scope local unique identifier, as same as lambdas.
*/
const(char)* s = "__mixin";
DsymbolTable symtab;
if (FuncDeclaration func = sc.parent.isFuncDeclaration())
{
symtab = func.localsymtab;
if (symtab)
{
// Inside template constraint, symtab is not set yet.
goto L1;
}
}
else
{
symtab = sc.parent.isScopeDsymbol().symtab;
L1:
assert(symtab);
ident = Identifier.generateId(s, symtab.len + 1);
symtab.insert(this);
}
}
inst = this;
parent = sc.parent;
/* Detect recursive mixin instantiations.
*/
for (Dsymbol s = parent; s; s = s.parent)
{
//printf("\ts = '%s'\n", s->toChars());
TemplateMixin tm = s.isTemplateMixin();
if (!tm || tempdecl != tm.tempdecl)
continue;
/* Different argument list lengths happen with variadic args
*/
if (tiargs.dim != tm.tiargs.dim)
continue;
for (size_t i = 0; i < tiargs.dim; i++)
{
RootObject o = (*tiargs)[i];
Type ta = isType(o);
Expression ea = isExpression(o);
Dsymbol sa = isDsymbol(o);
RootObject tmo = (*tm.tiargs)[i];
if (ta)
{
Type tmta = isType(tmo);
if (!tmta)
goto Lcontinue;
if (!ta.equals(tmta))
goto Lcontinue;
}
else if (ea)
{
Expression tme = isExpression(tmo);
if (!tme || !ea.equals(tme))
goto Lcontinue;
}
else if (sa)
{
Dsymbol tmsa = isDsymbol(tmo);
if (sa != tmsa)
goto Lcontinue;
}
else
assert(0);
}
error("recursive mixin instantiation");
return;
Lcontinue:
continue;
}
// Copy the syntax trees from the TemplateDeclaration
members = Dsymbol.arraySyntaxCopy(tempdecl.members);
if (!members)
return;
symtab = new DsymbolTable();
for (Scope* sce = sc; 1; sce = sce.enclosing)
{
ScopeDsymbol sds = sce.scopesym;
if (sds)
{
sds.importScope(this, Prot(PROTpublic));
break;
}
}
static if (LOG)
{
printf("\tcreate scope for template parameters '%s'\n", toChars());
}
Scope* scy = sc.push(this);
scy.parent = this;
argsym = new ScopeDsymbol();
argsym.parent = scy.parent;
Scope* argscope = scy.push(argsym);
uint errorsave = global.errors;
// Declare each template parameter as an alias for the argument type
declareParameters(argscope);
// Add members to enclosing scope, as well as this scope
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
s.addMember(argscope, this);
//printf("sc->parent = %p, sc->scopesym = %p\n", sc->parent, sc->scopesym);
//printf("s->parent = %s\n", s->parent->toChars());
}
// Do semantic() analysis on template instance members
static if (LOG)
{
printf("\tdo semantic() on template instance members '%s'\n", toChars());
}
Scope* sc2 = argscope.push(this);
//size_t deferred_dim = Module::deferred.dim;
static __gshared int nest;
//printf("%d\n", nest);
// IN_LLVM replaced: if (++nest > 500)
if (++nest > global.params.nestedTmpl) // LDC_FIXME: add testcase for this
{
global.gag = 0; // ensure error message gets printed
error("recursive expansion");
fatal();
}
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
s.setScope(sc2);
}
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
s.importAll(sc2);
}
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
s.semantic(sc2);
}
nest--;
/* In DeclDefs scope, TemplateMixin does not have to handle deferred symbols.
* Because the members would already call Module::addDeferredSemantic() for themselves.
* See Struct, Class, Interface, and EnumDeclaration::semantic().
*/
//if (!sc->func && Module::deferred.dim > deferred_dim) {}
AggregateDeclaration ad = toParent().isAggregateDeclaration();
if (sc.func && !ad)
{
semantic2(sc2);
semantic3(sc2);
}
// Give additional context info if error occurred during instantiation
if (global.errors != errorsave)
{
error("error instantiating");
errors = true;
}
sc2.pop();
argscope.pop();
scy.pop();
static if (LOG)
{
printf("-TemplateMixin::semantic('%s', this=%p)\n", toChars(), this);
}
}
override void semantic2(Scope* sc)
{
if (semanticRun >= PASSsemantic2)
return;
semanticRun = PASSsemantic2;
static if (LOG)
{
printf("+TemplateMixin::semantic2('%s')\n", toChars());
}
if (members)
{
assert(sc);
sc = sc.push(argsym);
sc = sc.push(this);
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
static if (LOG)
{
printf("\tmember '%s', kind = '%s'\n", s.toChars(), s.kind());
}
s.semantic2(sc);
}
sc = sc.pop();
sc.pop();
}
static if (LOG)
{
printf("-TemplateMixin::semantic2('%s')\n", toChars());
}
}
override void semantic3(Scope* sc)
{
if (semanticRun >= PASSsemantic3)
return;
semanticRun = PASSsemantic3;
static if (LOG)
{
printf("TemplateMixin::semantic3('%s')\n", toChars());
}
if (members)
{
sc = sc.push(argsym);
sc = sc.push(this);
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
s.semantic3(sc);
}
sc = sc.pop();
sc.pop();
}
}
override const(char)* kind() const
{
return "mixin";
}
override bool oneMember(Dsymbol* ps, Identifier ident)
{
return Dsymbol.oneMember(ps, ident);
}
override int apply(Dsymbol_apply_ft_t fp, void* param)
{
if (members)
{
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
if (s)
{
if (s.apply(fp, param))
return 1;
}
}
}
return 0;
}
override bool hasPointers()
{
//printf("TemplateMixin::hasPointers() %s\n", toChars());
if (members)
{
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
//printf(" s = %s %s\n", s->kind(), s->toChars());
if (s.hasPointers())
{
return true;
}
}
}
return false;
}
override void setFieldOffset(AggregateDeclaration ad, uint* poffset, bool isunion)
{
//printf("TemplateMixin::setFieldOffset() %s\n", toChars());
if (_scope) // if fwd reference
semantic(null); // try to resolve it
if (members)
{
for (size_t i = 0; i < members.dim; i++)
{
Dsymbol s = (*members)[i];
//printf("\t%s\n", s->toChars());
s.setFieldOffset(ad, poffset, isunion);
}
}
}
override const(char)* toChars()
{
OutBuffer buf;
toCBufferInstance(this, &buf);
return buf.extractString();
}
bool findTempDecl(Scope* sc)
{
// Follow qualifications to find the TemplateDeclaration
if (!tempdecl)
{
Expression e;
Type t;
Dsymbol s;
tqual.resolve(loc, sc, &e, &t, &s);
if (!s)
{
error("is not defined");
return false;
}
s = s.toAlias();
tempdecl = s.isTemplateDeclaration();
OverloadSet os = s.isOverloadSet();
/* If an OverloadSet, look for a unique member that is a template declaration
*/
if (os)
{
Dsymbol ds = null;
for (size_t i = 0; i < os.a.dim; i++)
{
Dsymbol s2 = os.a[i].isTemplateDeclaration();
if (s2)
{
if (ds)
{
tempdecl = os;
break;
}
ds = s2;
}
}
}
if (!tempdecl)
{
error("%s isn't a template", s.toChars());
return false;
}
}
assert(tempdecl);
// Look for forward references
auto tovers = tempdecl.isOverloadSet();
foreach (size_t oi; 0 .. tovers ? tovers.a.dim : 1)
{
Dsymbol dstart = tovers ? tovers.a[oi] : tempdecl;
int r = overloadApply(dstart, (Dsymbol s)
{
auto td = s.isTemplateDeclaration();
if (!td)
return 0;
if (td.semanticRun == PASSinit)
{
if (td._scope)
td.semantic(td._scope);
else
{
semanticRun = PASSinit;
return 1;
}
}
return 0;
});
if (r)
return false;
}
return true;
}
override inout(TemplateMixin) isTemplateMixin() inout
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}