ldc/ddmd/constfold.d
David Nadlinger 9f998a398d Initial merge of upstream v2.071.0-b2
Notably, the glue layer side of the changed multiple interface
inheritance layout (DMD a54e89d) has not been implemented yet.

This corresponds to DMD commit 3f6a763c0589dd03c1c206eafd434b593702564e.
2016-04-03 15:15:14 +01:00

1770 lines
50 KiB
D

// Compiler implementation of the D programming language
// Copyright (c) 1999-2015 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
module ddmd.constfold;
import core.stdc.string;
import core.stdc.stdio;
import ddmd.arraytypes;
import ddmd.builtin;
import ddmd.complex;
import ddmd.ctfeexpr;
import ddmd.declaration;
import ddmd.dstruct;
import ddmd.errors;
import ddmd.expression;
import ddmd.func;
import ddmd.globals;
import ddmd.mtype;
import ddmd.root.longdouble;
import ddmd.root.port;
import ddmd.root.rmem;
import ddmd.sideeffect;
import ddmd.tokens;
import ddmd.utf;
version(IN_LLVM)
{
import gen.dpragma;
}
private enum LOG = false;
extern (C++) Expression expType(Type type, Expression e)
{
if (type != e.type)
{
e = e.copy();
e.type = type;
}
return e;
}
/* ================================== isConst() ============================== */
extern (C++) int isConst(Expression e)
{
//printf("Expression::isConst(): %s\n", e->toChars());
switch (e.op)
{
case TOKint64:
case TOKfloat64:
case TOKcomplex80:
return 1;
case TOKnull:
return 0;
case TOKsymoff:
version(IN_LLVM)
{
// We don't statically know anything about the address of a weak symbol
// if there is no offset. With an offset, we can at least say that it is
// non-zero.
SymOffExp soe = cast(SymOffExp) e;
if (soe.var.llvmInternal == LDCPragma.LLVMextern_weak && !soe.offset)
{
return 0;
}
}
return 2;
default:
return 0;
}
assert(0);
}
/* =============================== constFold() ============================== */
/* The constFold() functions were redundant with the optimize() ones,
* and so have been folded in with them.
*/
/* ========================================================================== */
extern (C++) UnionExp Neg(Type type, Expression e1)
{
UnionExp ue;
Loc loc = e1.loc;
if (e1.type.isreal())
{
emplaceExp!(RealExp)(&ue, loc, -e1.toReal(), type);
}
else if (e1.type.isimaginary())
{
emplaceExp!(RealExp)(&ue, loc, -e1.toImaginary(), type);
}
else if (e1.type.iscomplex())
{
emplaceExp!(ComplexExp)(&ue, loc, -e1.toComplex(), type);
}
else
{
emplaceExp!(IntegerExp)(&ue, loc, -e1.toInteger(), type);
}
return ue;
}
extern (C++) UnionExp Com(Type type, Expression e1)
{
UnionExp ue;
Loc loc = e1.loc;
emplaceExp!(IntegerExp)(&ue, loc, ~e1.toInteger(), type);
return ue;
}
extern (C++) UnionExp Not(Type type, Expression e1)
{
UnionExp ue;
Loc loc = e1.loc;
emplaceExp!(IntegerExp)(&ue, loc, e1.isBool(false) ? 1 : 0, type);
return ue;
}
extern (C++) UnionExp Bool(Type type, Expression e1)
{
UnionExp ue;
Loc loc = e1.loc;
emplaceExp!(IntegerExp)(&ue, loc, e1.isBool(true) ? 1 : 0, type);
return ue;
}
extern (C++) UnionExp Add(Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
static if (LOG)
{
printf("Add(e1 = %s, e2 = %s)\n", e1.toChars(), e2.toChars());
}
if (type.isreal())
{
emplaceExp!(RealExp)(&ue, loc, e1.toReal() + e2.toReal(), type);
}
else if (type.isimaginary())
{
emplaceExp!(RealExp)(&ue, loc, e1.toImaginary() + e2.toImaginary(), type);
}
else if (type.iscomplex())
{
// This rigamarole is necessary so that -0.0 doesn't get
// converted to +0.0 by doing an extraneous add with +0.0
complex_t c1;
real_t r1 = ldouble(0.0);
real_t i1 = ldouble(0.0);
complex_t c2;
real_t r2 = ldouble(0.0);
real_t i2 = ldouble(0.0);
complex_t v;
int x;
if (e1.type.isreal())
{
r1 = e1.toReal();
x = 0;
}
else if (e1.type.isimaginary())
{
i1 = e1.toImaginary();
x = 3;
}
else
{
c1 = e1.toComplex();
x = 6;
}
if (e2.type.isreal())
{
r2 = e2.toReal();
}
else if (e2.type.isimaginary())
{
i2 = e2.toImaginary();
x += 1;
}
else
{
c2 = e2.toComplex();
x += 2;
}
switch (x)
{
case 0 + 0:
v = complex_t(r1 + r2, 0);
break;
case 0 + 1:
v = complex_t(r1, i2);
break;
case 0 + 2:
v = complex_t(r1 + creall(c2), cimagl(c2));
break;
case 3 + 0:
v = complex_t(r2, i1);
break;
case 3 + 1:
v = complex_t(0, i1 + i2);
break;
case 3 + 2:
v = complex_t(creall(c2), i1 + cimagl(c2));
break;
case 6 + 0:
v = complex_t(creall(c1) + r2, cimagl(c2));
break;
case 6 + 1:
v = complex_t(creall(c1), cimagl(c1) + i2);
break;
case 6 + 2:
v = c1 + c2;
break;
default:
assert(0);
}
emplaceExp!(ComplexExp)(&ue, loc, v, type);
}
else if (e1.op == TOKsymoff)
{
SymOffExp soe = cast(SymOffExp)e1;
emplaceExp!(SymOffExp)(&ue, loc, soe.var, soe.offset + e2.toInteger());
ue.exp().type = type;
}
else if (e2.op == TOKsymoff)
{
SymOffExp soe = cast(SymOffExp)e2;
emplaceExp!(SymOffExp)(&ue, loc, soe.var, soe.offset + e1.toInteger());
ue.exp().type = type;
}
else
emplaceExp!(IntegerExp)(&ue, loc, e1.toInteger() + e2.toInteger(), type);
return ue;
}
extern (C++) UnionExp Min(Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
if (type.isreal())
{
emplaceExp!(RealExp)(&ue, loc, e1.toReal() - e2.toReal(), type);
}
else if (type.isimaginary())
{
emplaceExp!(RealExp)(&ue, loc, e1.toImaginary() - e2.toImaginary(), type);
}
else if (type.iscomplex())
{
// This rigamarole is necessary so that -0.0 doesn't get
// converted to +0.0 by doing an extraneous add with +0.0
complex_t c1;
real_t r1 = ldouble(0.0);
real_t i1 = ldouble(0.0);
complex_t c2;
real_t r2 = ldouble(0.0);
real_t i2 = ldouble(0.0);
complex_t v;
int x;
if (e1.type.isreal())
{
r1 = e1.toReal();
x = 0;
}
else if (e1.type.isimaginary())
{
i1 = e1.toImaginary();
x = 3;
}
else
{
c1 = e1.toComplex();
x = 6;
}
if (e2.type.isreal())
{
r2 = e2.toReal();
}
else if (e2.type.isimaginary())
{
i2 = e2.toImaginary();
x += 1;
}
else
{
c2 = e2.toComplex();
x += 2;
}
switch (x)
{
case 0 + 0:
v = complex_t(r1 - r2, 0);
break;
case 0 + 1:
v = complex_t(r1, -i2);
break;
case 0 + 2:
v = complex_t(r1 - creall(c2), -cimagl(c2));
break;
case 3 + 0:
v = complex_t(-r2, i1);
break;
case 3 + 1:
v = complex_t(0, i1 - i2);
break;
case 3 + 2:
v = complex_t(-creall(c2), i1 - cimagl(c2));
break;
case 6 + 0:
v = complex_t(creall(c1) - r2, cimagl(c1));
break;
case 6 + 1:
v = complex_t(creall(c1), cimagl(c1) - i2);
break;
case 6 + 2:
v = c1 - c2;
break;
default:
assert(0);
}
emplaceExp!(ComplexExp)(&ue, loc, v, type);
}
else if (e1.op == TOKsymoff)
{
SymOffExp soe = cast(SymOffExp)e1;
emplaceExp!(SymOffExp)(&ue, loc, soe.var, soe.offset - e2.toInteger());
ue.exp().type = type;
}
else
{
emplaceExp!(IntegerExp)(&ue, loc, e1.toInteger() - e2.toInteger(), type);
}
return ue;
}
extern (C++) UnionExp Mul(Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
if (type.isfloating())
{
complex_t c;
d_float80 r;
if (e1.type.isreal())
{
r = e1.toReal();
c = e2.toComplex();
c = complex_t(r * creall(c), r * cimagl(c));
}
else if (e1.type.isimaginary())
{
r = e1.toImaginary();
c = e2.toComplex();
c = complex_t(-r * cimagl(c), r * creall(c));
}
else if (e2.type.isreal())
{
r = e2.toReal();
c = e1.toComplex();
c = complex_t(r * creall(c), r * cimagl(c));
}
else if (e2.type.isimaginary())
{
r = e2.toImaginary();
c = e1.toComplex();
c = complex_t(-r * cimagl(c), r * creall(c));
}
else
c = e1.toComplex() * e2.toComplex();
if (type.isreal())
emplaceExp!(RealExp)(&ue, loc, creall(c), type);
else if (type.isimaginary())
emplaceExp!(RealExp)(&ue, loc, cimagl(c), type);
else if (type.iscomplex())
emplaceExp!(ComplexExp)(&ue, loc, c, type);
else
assert(0);
}
else
{
emplaceExp!(IntegerExp)(&ue, loc, e1.toInteger() * e2.toInteger(), type);
}
return ue;
}
extern (C++) UnionExp Div(Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
if (type.isfloating())
{
complex_t c;
d_float80 r;
//e1->type->print();
//e2->type->print();
if (e2.type.isreal())
{
if (e1.type.isreal())
{
version (all)
{
// Work around redundant REX.W prefix breaking Valgrind
// when built with affected versions of DMD.
// https://issues.dlang.org/show_bug.cgi?id=14952
// This can be removed once compiling with DMD 2.068 or
// older is no longer supported.
d_float80 r1 = e1.toReal();
d_float80 r2 = e2.toReal();
emplaceExp!(RealExp)(&ue, loc, r1 / r2, type);
}
else
{
emplaceExp!(RealExp)(&ue, loc, e1.toReal() / e2.toReal(), type);
}
return ue;
}
r = e2.toReal();
c = e1.toComplex();
c = complex_t(creall(c) / r, cimagl(c) / r);
}
else if (e2.type.isimaginary())
{
r = e2.toImaginary();
c = e1.toComplex();
c = complex_t(cimagl(c) / r, -creall(c) / r);
}
else
{
c = e1.toComplex() / e2.toComplex();
}
if (type.isreal())
emplaceExp!(RealExp)(&ue, loc, creall(c), type);
else if (type.isimaginary())
emplaceExp!(RealExp)(&ue, loc, cimagl(c), type);
else if (type.iscomplex())
emplaceExp!(ComplexExp)(&ue, loc, c, type);
else
assert(0);
}
else
{
sinteger_t n1;
sinteger_t n2;
sinteger_t n;
n1 = e1.toInteger();
n2 = e2.toInteger();
if (n2 == 0)
{
e2.error("divide by 0");
n2 = 1;
}
if (e1.type.isunsigned() || e2.type.isunsigned())
n = (cast(dinteger_t)n1) / (cast(dinteger_t)n2);
else
n = n1 / n2;
emplaceExp!(IntegerExp)(&ue, loc, n, type);
}
return ue;
}
extern (C++) UnionExp Mod(Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
if (type.isfloating())
{
complex_t c;
if (e2.type.isreal())
{
real_t r2 = e2.toReal();
c = complex_t(Port.fmodl(e1.toReal(), r2), Port.fmodl(e1.toImaginary(), r2));
}
else if (e2.type.isimaginary())
{
real_t i2 = e2.toImaginary();
c = complex_t(Port.fmodl(e1.toReal(), i2), Port.fmodl(e1.toImaginary(), i2));
}
else
assert(0);
if (type.isreal())
emplaceExp!(RealExp)(&ue, loc, creall(c), type);
else if (type.isimaginary())
emplaceExp!(RealExp)(&ue, loc, cimagl(c), type);
else if (type.iscomplex())
emplaceExp!(ComplexExp)(&ue, loc, c, type);
else
assert(0);
}
else
{
sinteger_t n1;
sinteger_t n2;
sinteger_t n;
n1 = e1.toInteger();
n2 = e2.toInteger();
if (n2 == 0)
{
e2.error("divide by 0");
n2 = 1;
}
if (n2 == -1 && !type.isunsigned())
{
// Check for int.min % -1
if (n1 == 0xFFFFFFFF80000000UL && type.toBasetype().ty != Tint64)
{
e2.error("integer overflow: int.min % -1");
n2 = 1;
}
else if (n1 == 0x8000000000000000L) // long.min % -1
{
e2.error("integer overflow: long.min % -1");
n2 = 1;
}
}
if (e1.type.isunsigned() || e2.type.isunsigned())
n = (cast(dinteger_t)n1) % (cast(dinteger_t)n2);
else
n = n1 % n2;
emplaceExp!(IntegerExp)(&ue, loc, n, type);
}
return ue;
}
extern (C++) UnionExp Pow(Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
// Handle integer power operations.
if (e2.type.isintegral())
{
dinteger_t n = e2.toInteger();
bool neg;
if (!e2.type.isunsigned() && cast(sinteger_t)n < 0)
{
if (e1.type.isintegral())
{
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
return ue;
}
// Don't worry about overflow, from now on n is unsigned.
neg = true;
n = -n;
}
else
neg = false;
UnionExp ur, uv;
if (e1.type.iscomplex())
{
emplaceExp!(ComplexExp)(&ur, loc, e1.toComplex(), e1.type);
emplaceExp!(ComplexExp)(&uv, loc, complex_t(1.0, 0.0), e1.type);
}
else if (e1.type.isfloating())
{
emplaceExp!(RealExp)(&ur, loc, e1.toReal(), e1.type);
emplaceExp!(RealExp)(&uv, loc, ldouble(1.0), e1.type);
}
else
{
emplaceExp!(IntegerExp)(&ur, loc, e1.toInteger(), e1.type);
emplaceExp!(IntegerExp)(&uv, loc, 1, e1.type);
}
Expression r = ur.exp();
Expression v = uv.exp();
while (n != 0)
{
if (n & 1)
{
// v = v * r;
uv = Mul(loc, v.type, v, r);
}
n >>= 1;
// r = r * r
ur = Mul(loc, r.type, r, r);
}
if (neg)
{
// ue = 1.0 / v
UnionExp one;
emplaceExp!(RealExp)(&one, loc, ldouble(1.0), v.type);
uv = Div(loc, v.type, one.exp(), v);
}
if (type.iscomplex())
emplaceExp!(ComplexExp)(&ue, loc, v.toComplex(), type);
else if (type.isintegral())
emplaceExp!(IntegerExp)(&ue, loc, v.toInteger(), type);
else
emplaceExp!(RealExp)(&ue, loc, v.toReal(), type);
}
else if (e2.type.isfloating())
{
// x ^^ y for x < 0 and y not an integer is not defined; so set result as NaN
if (e1.toReal() < 0.0)
{
emplaceExp!(RealExp)(&ue, loc, Port.ldbl_nan, type);
}
else
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
}
else
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
return ue;
}
extern (C++) UnionExp Shl(Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
emplaceExp!(IntegerExp)(&ue, loc, e1.toInteger() << e2.toInteger(), type);
return ue;
}
extern (C++) UnionExp Shr(Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
dinteger_t value = e1.toInteger();
dinteger_t dcount = e2.toInteger();
assert(dcount <= 0xFFFFFFFF);
uint count = cast(uint)dcount;
switch (e1.type.toBasetype().ty)
{
case Tint8:
value = cast(d_int8)value >> count;
break;
case Tuns8:
case Tchar:
value = cast(d_uns8)value >> count;
break;
case Tint16:
value = cast(d_int16)value >> count;
break;
case Tuns16:
case Twchar:
value = cast(d_uns16)value >> count;
break;
case Tint32:
value = cast(d_int32)value >> count;
break;
case Tuns32:
case Tdchar:
value = cast(d_uns32)value >> count;
break;
case Tint64:
value = cast(d_int64)value >> count;
break;
case Tuns64:
value = cast(d_uns64)value >> count;
break;
case Terror:
emplaceExp!(ErrorExp)(&ue);
return ue;
default:
assert(0);
}
emplaceExp!(IntegerExp)(&ue, loc, value, type);
return ue;
}
extern (C++) UnionExp Ushr(Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
dinteger_t value = e1.toInteger();
dinteger_t dcount = e2.toInteger();
assert(dcount <= 0xFFFFFFFF);
uint count = cast(uint)dcount;
switch (e1.type.toBasetype().ty)
{
case Tint8:
case Tuns8:
case Tchar:
// Possible only with >>>=. >>> always gets promoted to int.
value = (value & 0xFF) >> count;
break;
case Tint16:
case Tuns16:
case Twchar:
// Possible only with >>>=. >>> always gets promoted to int.
value = (value & 0xFFFF) >> count;
break;
case Tint32:
case Tuns32:
case Tdchar:
value = (value & 0xFFFFFFFF) >> count;
break;
case Tint64:
case Tuns64:
value = cast(d_uns64)value >> count;
break;
case Terror:
emplaceExp!(ErrorExp)(&ue);
return ue;
default:
assert(0);
}
emplaceExp!(IntegerExp)(&ue, loc, value, type);
return ue;
}
extern (C++) UnionExp And(Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
emplaceExp!(IntegerExp)(&ue, loc, e1.toInteger() & e2.toInteger(), type);
return ue;
}
extern (C++) UnionExp Or(Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
emplaceExp!(IntegerExp)(&ue, loc, e1.toInteger() | e2.toInteger(), type);
return ue;
}
extern (C++) UnionExp Xor(Loc loc, Type type, Expression e1, Expression e2)
{
//printf("Xor(linnum = %d, e1 = %s, e2 = %s)\n", loc.linnum, e1.toChars(), e2.toChars());
UnionExp ue;
emplaceExp!(IntegerExp)(&ue, loc, e1.toInteger() ^ e2.toInteger(), type);
return ue;
}
/* Also returns TOKcantexp if cannot be computed.
*/
extern (C++) UnionExp Equal(TOK op, Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
int cmp = 0;
real_t r1;
real_t r2;
//printf("Equal(e1 = %s, e2 = %s)\n", e1->toChars(), e2->toChars());
assert(op == TOKequal || op == TOKnotequal);
if (e1.op == TOKnull)
{
if (e2.op == TOKnull)
cmp = 1;
else if (e2.op == TOKstring)
{
StringExp es2 = cast(StringExp)e2;
cmp = (0 == es2.len);
}
else if (e2.op == TOKarrayliteral)
{
ArrayLiteralExp es2 = cast(ArrayLiteralExp)e2;
cmp = !es2.elements || (0 == es2.elements.dim);
}
else
{
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
return ue;
}
}
else if (e2.op == TOKnull)
{
if (e1.op == TOKstring)
{
StringExp es1 = cast(StringExp)e1;
cmp = (0 == es1.len);
}
else if (e1.op == TOKarrayliteral)
{
ArrayLiteralExp es1 = cast(ArrayLiteralExp)e1;
cmp = !es1.elements || (0 == es1.elements.dim);
}
else
{
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
return ue;
}
}
else if (e1.op == TOKstring && e2.op == TOKstring)
{
StringExp es1 = cast(StringExp)e1;
StringExp es2 = cast(StringExp)e2;
if (es1.sz != es2.sz)
{
assert(global.errors);
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
return ue;
}
if (es1.len == es2.len && memcmp(es1.string, es2.string, es1.sz * es1.len) == 0)
cmp = 1;
else
cmp = 0;
}
else if (e1.op == TOKarrayliteral && e2.op == TOKarrayliteral)
{
ArrayLiteralExp es1 = cast(ArrayLiteralExp)e1;
ArrayLiteralExp es2 = cast(ArrayLiteralExp)e2;
if ((!es1.elements || !es1.elements.dim) && (!es2.elements || !es2.elements.dim))
cmp = 1; // both arrays are empty
else if (!es1.elements || !es2.elements)
cmp = 0;
else if (es1.elements.dim != es2.elements.dim)
cmp = 0;
else
{
for (size_t i = 0; i < es1.elements.dim; i++)
{
auto ee1 = es1.getElement(i);
auto ee2 = es2.getElement(i);
ue = Equal(TOKequal, loc, Type.tint32, ee1, ee2);
if (CTFEExp.isCantExp(ue.exp()))
return ue;
cmp = cast(int)ue.exp().toInteger();
if (cmp == 0)
break;
}
}
}
else if (e1.op == TOKarrayliteral && e2.op == TOKstring)
{
// Swap operands and use common code
Expression etmp = e1;
e1 = e2;
e2 = etmp;
goto Lsa;
}
else if (e1.op == TOKstring && e2.op == TOKarrayliteral)
{
Lsa:
StringExp es1 = cast(StringExp)e1;
ArrayLiteralExp es2 = cast(ArrayLiteralExp)e2;
size_t dim1 = es1.len;
size_t dim2 = es2.elements ? es2.elements.dim : 0;
if (dim1 != dim2)
cmp = 0;
else
{
cmp = 1; // if dim1 winds up being 0
for (size_t i = 0; i < dim1; i++)
{
uinteger_t c = es1.charAt(i);
auto ee2 = es2.getElement(i);
if (ee2.isConst() != 1)
{
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
return ue;
}
cmp = (c == ee2.toInteger());
if (cmp == 0)
break;
}
}
}
else if (e1.op == TOKstructliteral && e2.op == TOKstructliteral)
{
StructLiteralExp es1 = cast(StructLiteralExp)e1;
StructLiteralExp es2 = cast(StructLiteralExp)e2;
if (es1.sd != es2.sd)
cmp = 0;
else if ((!es1.elements || !es1.elements.dim) && (!es2.elements || !es2.elements.dim))
cmp = 1; // both arrays are empty
else if (!es1.elements || !es2.elements)
cmp = 0;
else if (es1.elements.dim != es2.elements.dim)
cmp = 0;
else
{
cmp = 1;
for (size_t i = 0; i < es1.elements.dim; i++)
{
Expression ee1 = (*es1.elements)[i];
Expression ee2 = (*es2.elements)[i];
if (ee1 == ee2)
continue;
if (!ee1 || !ee2)
{
cmp = 0;
break;
}
ue = Equal(TOKequal, loc, Type.tint32, ee1, ee2);
if (ue.exp().op == TOKcantexp)
return ue;
cmp = cast(int)ue.exp().toInteger();
if (cmp == 0)
break;
}
}
}
else if (e1.isConst() != 1 || e2.isConst() != 1)
{
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
return ue;
}
else if (e1.type.isreal())
{
r1 = e1.toReal();
r2 = e2.toReal();
goto L1;
}
else if (e1.type.isimaginary())
{
r1 = e1.toImaginary();
r2 = e2.toImaginary();
L1:
if (Port.isNan(r1) || Port.isNan(r2)) // if unordered
{
cmp = 0;
}
else
{
cmp = (r1 == r2);
}
}
else if (e1.type.iscomplex())
{
cmp = e1.toComplex() == e2.toComplex();
}
else if (e1.type.isintegral() || e1.type.toBasetype().ty == Tpointer)
{
cmp = (e1.toInteger() == e2.toInteger());
}
else
{
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
return ue;
}
if (op == TOKnotequal)
cmp ^= 1;
emplaceExp!(IntegerExp)(&ue, loc, cmp, type);
return ue;
}
extern (C++) UnionExp Identity(TOK op, Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
int cmp;
if (e1.op == TOKnull)
{
cmp = (e2.op == TOKnull);
}
else if (e2.op == TOKnull)
{
cmp = 0;
}
else if (e1.op == TOKsymoff && e2.op == TOKsymoff)
{
SymOffExp es1 = cast(SymOffExp)e1;
SymOffExp es2 = cast(SymOffExp)e2;
cmp = (es1.var == es2.var && es1.offset == es2.offset);
}
else
{
if (e1.type.isreal())
{
cmp = RealEquals(e1.toReal(), e2.toReal());
}
else if (e1.type.isimaginary())
{
cmp = RealEquals(e1.toImaginary(), e2.toImaginary());
}
else if (e1.type.iscomplex())
{
complex_t v1 = e1.toComplex();
complex_t v2 = e2.toComplex();
cmp = RealEquals(creall(v1), creall(v2)) && RealEquals(cimagl(v1), cimagl(v1));
}
else
{
ue = Equal((op == TOKidentity) ? TOKequal : TOKnotequal, loc, type, e1, e2);
return ue;
}
}
if (op == TOKnotidentity)
cmp ^= 1;
emplaceExp!(IntegerExp)(&ue, loc, cmp, type);
return ue;
}
extern (C++) UnionExp Cmp(TOK op, Loc loc, Type type, Expression e1, Expression e2)
{
UnionExp ue;
dinteger_t n;
real_t r1;
real_t r2;
//printf("Cmp(e1 = %s, e2 = %s)\n", e1->toChars(), e2->toChars());
if (e1.op == TOKstring && e2.op == TOKstring)
{
StringExp es1 = cast(StringExp)e1;
StringExp es2 = cast(StringExp)e2;
size_t sz = es1.sz;
assert(sz == es2.sz);
size_t len = es1.len;
if (es2.len < len)
len = es2.len;
int rawCmp = memcmp(es1.string, es2.string, sz * len);
if (rawCmp == 0)
rawCmp = cast(int)(es1.len - es2.len);
n = specificCmp(op, rawCmp);
}
else if (e1.isConst() != 1 || e2.isConst() != 1)
{
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
return ue;
}
else if (e1.type.isreal())
{
r1 = e1.toReal();
r2 = e2.toReal();
goto L1;
}
else if (e1.type.isimaginary())
{
r1 = e1.toImaginary();
r2 = e2.toImaginary();
L1:
n = realCmp(op, r1, r2);
}
else if (e1.type.iscomplex())
{
assert(0);
}
else
{
sinteger_t n1;
sinteger_t n2;
n1 = e1.toInteger();
n2 = e2.toInteger();
if (e1.type.isunsigned() || e2.type.isunsigned())
n = intUnsignedCmp(op, n1, n2);
else
n = intSignedCmp(op, n1, n2);
}
emplaceExp!(IntegerExp)(&ue, loc, n, type);
return ue;
}
/* Also returns TOKcantexp if cannot be computed.
* to: type to cast to
* type: type to paint the result
*/
extern (C++) UnionExp Cast(Loc loc, Type type, Type to, Expression e1)
{
UnionExp ue;
Type tb = to.toBasetype();
Type typeb = type.toBasetype();
//printf("Cast(type = %s, to = %s, e1 = %s)\n", type->toChars(), to->toChars(), e1->toChars());
//printf("\te1->type = %s\n", e1->type->toChars());
if (e1.type.equals(type) && type.equals(to))
{
emplaceExp!(UnionExp)(&ue, e1);
return ue;
}
if (e1.op == TOKvector && (cast(TypeVector)e1.type).basetype.equals(type) && type.equals(to))
{
Expression ex = (cast(VectorExp)e1).e1;
emplaceExp!(UnionExp)(&ue, ex);
return ue;
}
if (e1.type.implicitConvTo(to) >= MATCHconst || to.implicitConvTo(e1.type) >= MATCHconst)
{
goto L1;
}
// Allow covariant converions of delegates
// (Perhaps implicit conversion from pure to impure should be a MATCHconst,
// then we wouldn't need this extra check.)
if (e1.type.toBasetype().ty == Tdelegate && e1.type.implicitConvTo(to) == MATCHconvert)
{
goto L1;
}
/* Allow casting from one string type to another
*/
if (e1.op == TOKstring)
{
if (tb.ty == Tarray && typeb.ty == Tarray && tb.nextOf().size() == typeb.nextOf().size())
{
goto L1;
}
}
if (e1.op == TOKarrayliteral && typeb == tb)
{
L1:
Expression ex = expType(to, e1);
emplaceExp!(UnionExp)(&ue, ex);
return ue;
}
if (e1.isConst() != 1)
{
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
}
else if (tb.ty == Tbool)
{
emplaceExp!(IntegerExp)(&ue, loc, e1.toInteger() != 0, type);
}
else if (type.isintegral())
{
if (e1.type.isfloating())
{
dinteger_t result;
real_t r = e1.toReal();
switch (typeb.ty)
{
case Tint8:
result = cast(d_int8)r;
break;
case Tchar:
case Tuns8:
result = cast(d_uns8)r;
break;
case Tint16:
result = cast(d_int16)r;
break;
case Twchar:
case Tuns16:
result = cast(d_uns16)r;
break;
case Tint32:
result = cast(d_int32)r;
break;
case Tdchar:
case Tuns32:
result = cast(d_uns32)r;
break;
case Tint64:
result = cast(d_int64)r;
break;
case Tuns64:
result = cast(d_uns64)r;
break;
default:
assert(0);
}
emplaceExp!(IntegerExp)(&ue, loc, result, type);
}
else if (type.isunsigned())
emplaceExp!(IntegerExp)(&ue, loc, e1.toUInteger(), type);
else
emplaceExp!(IntegerExp)(&ue, loc, e1.toInteger(), type);
}
else if (tb.isreal())
{
real_t value = e1.toReal();
emplaceExp!(RealExp)(&ue, loc, value, type);
}
else if (tb.isimaginary())
{
real_t value = e1.toImaginary();
emplaceExp!(RealExp)(&ue, loc, value, type);
}
else if (tb.iscomplex())
{
complex_t value = e1.toComplex();
emplaceExp!(ComplexExp)(&ue, loc, value, type);
}
else if (tb.isscalar())
{
emplaceExp!(IntegerExp)(&ue, loc, e1.toInteger(), type);
}
else if (tb.ty == Tvoid)
{
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
}
else if (tb.ty == Tstruct && e1.op == TOKint64)
{
// Struct = 0;
StructDeclaration sd = tb.toDsymbol(null).isStructDeclaration();
assert(sd);
auto elements = new Expressions();
for (size_t i = 0; i < sd.fields.dim; i++)
{
VarDeclaration v = sd.fields[i];
UnionExp zero;
emplaceExp!(IntegerExp)(&zero, 0);
ue = Cast(loc, v.type, v.type, zero.exp());
if (ue.exp().op == TOKcantexp)
return ue;
elements.push(ue.exp().copy());
}
emplaceExp!(StructLiteralExp)(&ue, loc, sd, elements);
ue.exp().type = type;
}
else
{
if (type != Type.terror)
{
// have to change to Internal Compiler Error
// all invalid casts should be handled already in Expression::castTo().
error(loc, "cannot cast %s to %s", e1.type.toChars(), type.toChars());
}
emplaceExp!(ErrorExp)(&ue);
}
return ue;
}
extern (C++) UnionExp ArrayLength(Type type, Expression e1)
{
UnionExp ue;
Loc loc = e1.loc;
if (e1.op == TOKstring)
{
StringExp es1 = cast(StringExp)e1;
emplaceExp!(IntegerExp)(&ue, loc, es1.len, type);
}
else if (e1.op == TOKarrayliteral)
{
ArrayLiteralExp ale = cast(ArrayLiteralExp)e1;
size_t dim = ale.elements ? ale.elements.dim : 0;
emplaceExp!(IntegerExp)(&ue, loc, dim, type);
}
else if (e1.op == TOKassocarrayliteral)
{
AssocArrayLiteralExp ale = cast(AssocArrayLiteralExp)e1;
size_t dim = ale.keys.dim;
emplaceExp!(IntegerExp)(&ue, loc, dim, type);
}
else if (e1.type.toBasetype().ty == Tsarray)
{
Expression e = (cast(TypeSArray)e1.type.toBasetype()).dim;
emplaceExp!(UnionExp)(&ue, e);
}
else
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
return ue;
}
/* Also return TOKcantexp if this fails
*/
extern (C++) UnionExp Index(Type type, Expression e1, Expression e2)
{
UnionExp ue;
Loc loc = e1.loc;
//printf("Index(e1 = %s, e2 = %s)\n", e1->toChars(), e2->toChars());
assert(e1.type);
if (e1.op == TOKstring && e2.op == TOKint64)
{
StringExp es1 = cast(StringExp)e1;
uinteger_t i = e2.toInteger();
if (i >= es1.len)
{
e1.error("string index %llu is out of bounds [0 .. %llu]", i, cast(ulong)es1.len);
emplaceExp!(ErrorExp)(&ue);
}
else
{
emplaceExp!(IntegerExp)(&ue, loc, es1.charAt(i), type);
}
}
else if (e1.type.toBasetype().ty == Tsarray && e2.op == TOKint64)
{
TypeSArray tsa = cast(TypeSArray)e1.type.toBasetype();
uinteger_t length = tsa.dim.toInteger();
uinteger_t i = e2.toInteger();
if (i >= length)
{
e1.error("array index %llu is out of bounds %s[0 .. %llu]", i, e1.toChars(), length);
emplaceExp!(ErrorExp)(&ue);
}
else if (e1.op == TOKarrayliteral)
{
ArrayLiteralExp ale = cast(ArrayLiteralExp)e1;
auto e = ale.getElement(cast(size_t)i);
e.type = type;
e.loc = loc;
if (hasSideEffect(e))
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
else
emplaceExp!(UnionExp)(&ue, e);
}
else
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
}
else if (e1.type.toBasetype().ty == Tarray && e2.op == TOKint64)
{
uinteger_t i = e2.toInteger();
if (e1.op == TOKarrayliteral)
{
ArrayLiteralExp ale = cast(ArrayLiteralExp)e1;
if (i >= ale.elements.dim)
{
e1.error("array index %llu is out of bounds %s[0 .. %u]", i, e1.toChars(), ale.elements.dim);
emplaceExp!(ErrorExp)(&ue);
}
else
{
auto e = ale.getElement(cast(size_t)i);
e.type = type;
e.loc = loc;
if (hasSideEffect(e))
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
else
emplaceExp!(UnionExp)(&ue, e);
}
}
else
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
}
else if (e1.op == TOKassocarrayliteral)
{
AssocArrayLiteralExp ae = cast(AssocArrayLiteralExp)e1;
/* Search the keys backwards, in case there are duplicate keys
*/
for (size_t i = ae.keys.dim; i;)
{
i--;
Expression ekey = (*ae.keys)[i];
ue = Equal(TOKequal, loc, Type.tbool, ekey, e2);
if (CTFEExp.isCantExp(ue.exp()))
return ue;
if (ue.exp().isBool(true))
{
Expression e = (*ae.values)[i];
e.type = type;
e.loc = loc;
if (hasSideEffect(e))
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
else
emplaceExp!(UnionExp)(&ue, e);
return ue;
}
}
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
}
else
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
return ue;
}
/* Also return TOKcantexp if this fails
*/
extern (C++) UnionExp Slice(Type type, Expression e1, Expression lwr, Expression upr)
{
UnionExp ue;
Loc loc = e1.loc;
static if (LOG)
{
printf("Slice()\n");
if (lwr)
{
printf("\te1 = %s\n", e1.toChars());
printf("\tlwr = %s\n", lwr.toChars());
printf("\tupr = %s\n", upr.toChars());
}
}
if (e1.op == TOKstring && lwr.op == TOKint64 && upr.op == TOKint64)
{
StringExp es1 = cast(StringExp)e1;
uinteger_t ilwr = lwr.toInteger();
uinteger_t iupr = upr.toInteger();
if (iupr > es1.len || ilwr > iupr)
{
e1.error("string slice [%llu .. %llu] is out of bounds", ilwr, iupr);
emplaceExp!(ErrorExp)(&ue);
}
else
{
size_t len = cast(size_t)(iupr - ilwr);
ubyte sz = es1.sz;
void* s = mem.xmalloc(len * sz);
memcpy(cast(char*)s, es1.string + ilwr * sz, len * sz);
emplaceExp!(StringExp)(&ue, loc, s, len, es1.postfix);
StringExp es = cast(StringExp)ue.exp();
es.sz = sz;
es.committed = es1.committed;
es.type = type;
}
}
else if (e1.op == TOKarrayliteral && lwr.op == TOKint64 && upr.op == TOKint64 && !hasSideEffect(e1))
{
ArrayLiteralExp es1 = cast(ArrayLiteralExp)e1;
uinteger_t ilwr = lwr.toInteger();
uinteger_t iupr = upr.toInteger();
if (iupr > es1.elements.dim || ilwr > iupr)
{
e1.error("array slice [%llu .. %llu] is out of bounds", ilwr, iupr);
emplaceExp!(ErrorExp)(&ue);
}
else
{
auto elements = new Expressions();
elements.setDim(cast(size_t)(iupr - ilwr));
memcpy(elements.tdata(), es1.elements.tdata() + ilwr, cast(size_t)(iupr - ilwr) * ((*es1.elements)[0]).sizeof);
emplaceExp!(ArrayLiteralExp)(&ue, e1.loc, elements);
ue.exp().type = type;
}
}
else
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
assert(ue.exp().type);
return ue;
}
/* Set a slice of char/integer array literal 'existingAE' from a string 'newval'.
* existingAE[firstIndex..firstIndex+newval.length] = newval.
*/
extern (C++) void sliceAssignArrayLiteralFromString(ArrayLiteralExp existingAE, const StringExp newval, size_t firstIndex)
{
const len = newval.len;
Type elemType = existingAE.type.nextOf();
foreach (j; 0 .. len)
{
const val = newval.getCodeUnit(j);
(*existingAE.elements)[j + firstIndex] = new IntegerExp(newval.loc, val, elemType);
}
}
/* Set a slice of string 'existingSE' from a char array literal 'newae'.
* existingSE[firstIndex..firstIndex+newae.length] = newae.
*/
extern (C++) void sliceAssignStringFromArrayLiteral(StringExp existingSE, ArrayLiteralExp newae, size_t firstIndex)
{
assert(existingSE.ownedByCtfe != OWNEDcode);
foreach (j; 0 .. newae.elements.dim)
{
existingSE.setCodeUnit(firstIndex + j, cast(dchar)newae.getElement(j).toInteger());
}
}
/* Set a slice of string 'existingSE' from a string 'newstr'.
* existingSE[firstIndex..firstIndex+newstr.length] = newstr.
*/
extern (C++) void sliceAssignStringFromString(StringExp existingSE, const StringExp newstr, size_t firstIndex)
{
assert(existingSE.ownedByCtfe != OWNEDcode);
size_t sz = existingSE.sz;
assert(sz == newstr.sz);
memcpy(existingSE.string + firstIndex * sz, newstr.string, sz * newstr.len);
}
/* Compare a string slice with another string slice.
* Conceptually equivalent to memcmp( se1[lo1..lo1+len], se2[lo2..lo2+len])
*/
extern (C++) int sliceCmpStringWithString(const StringExp se1, const StringExp se2, size_t lo1, size_t lo2, size_t len)
{
size_t sz = se1.sz;
assert(sz == se2.sz);
return memcmp(se1.string + sz * lo1, se2.string + sz * lo2, sz * len);
}
/* Compare a string slice with an array literal slice
* Conceptually equivalent to memcmp( se1[lo1..lo1+len], ae2[lo2..lo2+len])
*/
extern (C++) int sliceCmpStringWithArray(const StringExp se1, ArrayLiteralExp ae2, size_t lo1, size_t lo2, size_t len)
{
foreach (j; 0 .. len)
{
const val2 = cast(dchar)ae2.getElement(j + lo2).toInteger();
const val1 = se1.getCodeUnit(j + lo1);
const int c = val1 - val2;
if (c)
return c;
}
return 0;
}
/* Also return TOKcantexp if this fails
*/
extern (C++) UnionExp Cat(Type type, Expression e1, Expression e2)
{
UnionExp ue;
Expression e = CTFEExp.cantexp;
Loc loc = e1.loc;
Type t;
Type t1 = e1.type.toBasetype();
Type t2 = e2.type.toBasetype();
//printf("Cat(e1 = %s, e2 = %s)\n", e1->toChars(), e2->toChars());
//printf("\tt1 = %s, t2 = %s, type = %s\n", t1->toChars(), t2->toChars(), type->toChars());
if (e1.op == TOKnull && (e2.op == TOKint64 || e2.op == TOKstructliteral))
{
e = e2;
t = t1;
goto L2;
}
else if ((e1.op == TOKint64 || e1.op == TOKstructliteral) && e2.op == TOKnull)
{
e = e1;
t = t2;
L2:
Type tn = e.type.toBasetype();
if (tn.ty == Tchar || tn.ty == Twchar || tn.ty == Tdchar)
{
// Create a StringExp
if (t.nextOf())
t = t.nextOf().toBasetype();
ubyte sz = cast(ubyte)t.size();
dinteger_t v = e.toInteger();
size_t len = (t.ty == tn.ty) ? 1 : utf_codeLength(sz, cast(dchar)v);
void* s = mem.xmalloc(len * sz);
if (t.ty == tn.ty)
Port.valcpy(s, v, sz);
else
utf_encode(sz, s, cast(dchar)v);
emplaceExp!(StringExp)(&ue, loc, s, len);
StringExp es = cast(StringExp)ue.exp();
es.sz = sz;
es.committed = 1;
}
else
{
// Create an ArrayLiteralExp
auto elements = new Expressions();
elements.push(e);
emplaceExp!(ArrayLiteralExp)(&ue, e.loc, elements);
}
ue.exp().type = type;
assert(ue.exp().type);
return ue;
}
else if (e1.op == TOKnull && e2.op == TOKnull)
{
if (type == e1.type)
{
// Handle null ~= null
if (t1.ty == Tarray && t2 == t1.nextOf())
{
emplaceExp!(ArrayLiteralExp)(&ue, e1.loc, e2);
ue.exp().type = type;
assert(ue.exp().type);
return ue;
}
else
{
emplaceExp!(UnionExp)(&ue, e1);
assert(ue.exp().type);
return ue;
}
}
if (type == e2.type)
{
emplaceExp!(UnionExp)(&ue, e2);
assert(ue.exp().type);
return ue;
}
emplaceExp!(NullExp)(&ue, e1.loc, type);
assert(ue.exp().type);
return ue;
}
else if (e1.op == TOKstring && e2.op == TOKstring)
{
// Concatenate the strings
StringExp es1 = cast(StringExp)e1;
StringExp es2 = cast(StringExp)e2;
size_t len = es1.len + es2.len;
ubyte sz = es1.sz;
if (sz != es2.sz)
{
/* Can happen with:
* auto s = "foo"d ~ "bar"c;
*/
assert(global.errors);
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
assert(ue.exp().type);
return ue;
}
void* s = mem.xmalloc(len * sz);
memcpy(cast(char*)s, es1.string, es1.len * sz);
memcpy(cast(char*)s + es1.len * sz, es2.string, es2.len * sz);
emplaceExp!(StringExp)(&ue, loc, s, len);
StringExp es = cast(StringExp)ue.exp();
es.sz = sz;
es.committed = es1.committed | es2.committed;
es.type = type;
assert(ue.exp().type);
return ue;
}
else if (e2.op == TOKstring && e1.op == TOKarrayliteral && t1.nextOf().isintegral())
{
// [chars] ~ string --> [chars]
StringExp es = cast(StringExp)e2;
ArrayLiteralExp ea = cast(ArrayLiteralExp)e1;
size_t len = es.len + ea.elements.dim;
auto elems = new Expressions();
elems.setDim(len);
for (size_t i = 0; i < ea.elements.dim; ++i)
{
(*elems)[i] = ea.getElement(i);
}
emplaceExp!(ArrayLiteralExp)(&ue, e1.loc, elems);
ArrayLiteralExp dest = cast(ArrayLiteralExp)ue.exp();
dest.type = type;
sliceAssignArrayLiteralFromString(dest, es, ea.elements.dim);
assert(ue.exp().type);
return ue;
}
else if (e1.op == TOKstring && e2.op == TOKarrayliteral && t2.nextOf().isintegral())
{
// string ~ [chars] --> [chars]
StringExp es = cast(StringExp)e1;
ArrayLiteralExp ea = cast(ArrayLiteralExp)e2;
size_t len = es.len + ea.elements.dim;
auto elems = new Expressions();
elems.setDim(len);
for (size_t i = 0; i < ea.elements.dim; ++i)
{
(*elems)[es.len + i] = ea.getElement(i);
}
emplaceExp!(ArrayLiteralExp)(&ue, e1.loc, elems);
ArrayLiteralExp dest = cast(ArrayLiteralExp)ue.exp();
dest.type = type;
sliceAssignArrayLiteralFromString(dest, es, 0);
assert(ue.exp().type);
return ue;
}
else if (e1.op == TOKstring && e2.op == TOKint64)
{
// string ~ char --> string
StringExp es1 = cast(StringExp)e1;
StringExp es;
ubyte sz = es1.sz;
dinteger_t v = e2.toInteger();
// Is it a concatentation of homogenous types?
// (char[] ~ char, wchar[]~wchar, or dchar[]~dchar)
bool homoConcat = (sz == t2.size());
size_t len = es1.len;
len += homoConcat ? 1 : utf_codeLength(sz, cast(dchar)v);
void* s = mem.xmalloc(len * sz);
memcpy(s, es1.string, es1.len * sz);
if (homoConcat)
Port.valcpy(cast(char*)s + (sz * es1.len), v, sz);
else
utf_encode(sz, cast(char*)s + (sz * es1.len), cast(dchar)v);
emplaceExp!(StringExp)(&ue, loc, s, len);
es = cast(StringExp)ue.exp();
es.sz = sz;
es.committed = es1.committed;
es.type = type;
assert(ue.exp().type);
return ue;
}
else if (e1.op == TOKint64 && e2.op == TOKstring)
{
// Concatenate the strings
StringExp es2 = cast(StringExp)e2;
size_t len = 1 + es2.len;
ubyte sz = es2.sz;
dinteger_t v = e1.toInteger();
void* s = mem.xmalloc(len * sz);
memcpy(cast(char*)s, &v, sz);
memcpy(cast(char*)s + sz, es2.string, es2.len * sz);
emplaceExp!(StringExp)(&ue, loc, s, len);
StringExp es = cast(StringExp)ue.exp();
es.sz = sz;
es.committed = es2.committed;
es.type = type;
assert(ue.exp().type);
return ue;
}
else if (e1.op == TOKarrayliteral && e2.op == TOKarrayliteral && t1.nextOf().equals(t2.nextOf()))
{
// Concatenate the arrays
auto elems = ArrayLiteralExp.copyElements(e1, e2);
emplaceExp!(ArrayLiteralExp)(&ue, e1.loc, elems);
e = ue.exp();
if (type.toBasetype().ty == Tsarray)
{
e.type = t1.nextOf().sarrayOf(elems.dim);
}
else
e.type = type;
assert(ue.exp().type);
return ue;
}
else if (e1.op == TOKarrayliteral && e2.op == TOKnull && t1.nextOf().equals(t2.nextOf()))
{
e = e1;
goto L3;
}
else if (e1.op == TOKnull && e2.op == TOKarrayliteral && t1.nextOf().equals(t2.nextOf()))
{
e = e2;
L3:
// Concatenate the array with null
auto elems = ArrayLiteralExp.copyElements(e);
emplaceExp!(ArrayLiteralExp)(&ue, e.loc, elems);
e = ue.exp();
if (type.toBasetype().ty == Tsarray)
{
e.type = t1.nextOf().sarrayOf(elems.dim);
}
else
e.type = type;
assert(ue.exp().type);
return ue;
}
else if ((e1.op == TOKarrayliteral || e1.op == TOKnull) && e1.type.toBasetype().nextOf() && e1.type.toBasetype().nextOf().equals(e2.type))
{
auto elems = (e1.op == TOKarrayliteral)
? ArrayLiteralExp.copyElements(e1) : new Expressions();
elems.push(e2);
emplaceExp!(ArrayLiteralExp)(&ue, e1.loc, elems);
e = ue.exp();
if (type.toBasetype().ty == Tsarray)
{
e.type = e2.type.sarrayOf(elems.dim);
}
else
e.type = type;
assert(ue.exp().type);
return ue;
}
else if (e2.op == TOKarrayliteral && e2.type.toBasetype().nextOf().equals(e1.type))
{
auto elems = ArrayLiteralExp.copyElements(e1, e2);
emplaceExp!(ArrayLiteralExp)(&ue, e2.loc, elems);
e = ue.exp();
if (type.toBasetype().ty == Tsarray)
{
e.type = e1.type.sarrayOf(elems.dim);
}
else
e.type = type;
assert(ue.exp().type);
return ue;
}
else if (e1.op == TOKnull && e2.op == TOKstring)
{
t = e1.type;
e = e2;
goto L1;
}
else if (e1.op == TOKstring && e2.op == TOKnull)
{
e = e1;
t = e2.type;
L1:
Type tb = t.toBasetype();
if (tb.ty == Tarray && tb.nextOf().equivalent(e.type))
{
auto expressions = new Expressions();
expressions.push(e);
emplaceExp!(ArrayLiteralExp)(&ue, loc, expressions);
e = ue.exp();
e.type = t;
}
else
{
emplaceExp!(UnionExp)(&ue, e);
e = ue.exp();
}
if (!e.type.equals(type))
{
StringExp se = cast(StringExp)e.copy();
e = se.castTo(null, type);
emplaceExp!(UnionExp)(&ue, e);
e = ue.exp();
}
}
else
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
assert(ue.exp().type);
return ue;
}
extern (C++) UnionExp Ptr(Type type, Expression e1)
{
//printf("Ptr(e1 = %s)\n", e1->toChars());
UnionExp ue;
if (e1.op == TOKadd)
{
AddExp ae = cast(AddExp)e1;
if (ae.e1.op == TOKaddress && ae.e2.op == TOKint64)
{
AddrExp ade = cast(AddrExp)ae.e1;
if (ade.e1.op == TOKstructliteral)
{
StructLiteralExp se = cast(StructLiteralExp)ade.e1;
uint offset = cast(uint)ae.e2.toInteger();
Expression e = se.getField(type, offset);
if (e)
{
emplaceExp!(UnionExp)(&ue, e);
return ue;
}
}
}
}
emplaceExp!(CTFEExp)(&ue, TOKcantexp);
return ue;
}