mirror of
https://github.com/ldc-developers/ldc.git
synced 2025-05-01 23:50:43 +03:00
2767 lines
93 KiB
C++
2767 lines
93 KiB
C++
//===-- toir.cpp ----------------------------------------------------------===//
|
||
//
|
||
// LDC – the LLVM D compiler
|
||
//
|
||
// This file is distributed under the BSD-style LDC license. See the LICENSE
|
||
// file for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "attrib.h"
|
||
#include "enum.h"
|
||
#include "gen/aa.h"
|
||
#include "gen/abi.h"
|
||
#include "gen/arrays.h"
|
||
#include "gen/binops.h"
|
||
#include "gen/classes.h"
|
||
#include "gen/complex.h"
|
||
#include "gen/coverage.h"
|
||
#include "gen/dvalue.h"
|
||
#include "gen/functions.h"
|
||
#include "gen/funcgenstate.h"
|
||
#include "gen/inlineir.h"
|
||
#include "gen/irstate.h"
|
||
#include "gen/llvm.h"
|
||
#include "gen/llvmhelpers.h"
|
||
#include "gen/logger.h"
|
||
#include "gen/mangling.h"
|
||
#include "gen/nested.h"
|
||
#include "gen/optimizer.h"
|
||
#include "gen/pragma.h"
|
||
#include "gen/runtime.h"
|
||
#include "gen/scope_exit.h"
|
||
#include "gen/structs.h"
|
||
#include "gen/tollvm.h"
|
||
#include "gen/typinf.h"
|
||
#include "gen/warnings.h"
|
||
#include "hdrgen.h"
|
||
#include "id.h"
|
||
#include "init.h"
|
||
#include "ir/irfunction.h"
|
||
#include "ir/irtypeclass.h"
|
||
#include "ir/irtypestruct.h"
|
||
#include "ldcbindings.h"
|
||
#include "module.h"
|
||
#include "mtype.h"
|
||
#include "port.h"
|
||
#include "rmem.h"
|
||
#include "template.h"
|
||
#include "llvm/Support/CommandLine.h"
|
||
#include "llvm/Support/ManagedStatic.h"
|
||
#include <fstream>
|
||
#include <math.h>
|
||
#include <stack>
|
||
#include <stdio.h>
|
||
|
||
// Needs other includes.
|
||
#include "ctfe.h"
|
||
|
||
llvm::cl::opt<bool> checkPrintf(
|
||
"check-printf-calls", llvm::cl::ZeroOrMore,
|
||
llvm::cl::desc("Validate printf call format strings against arguments"));
|
||
|
||
bool walkPostorder(Expression *e, StoppableVisitor *v);
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
static LLValue *write_zeroes(LLValue *mem, unsigned start, unsigned end) {
|
||
mem = DtoBitCast(mem, getVoidPtrType());
|
||
LLValue *gep = DtoGEPi1(mem, start, ".padding");
|
||
DtoMemSetZero(gep, DtoConstSize_t(end - start));
|
||
return mem;
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
static void write_struct_literal(Loc loc, LLValue *mem, StructDeclaration *sd,
|
||
Expressions *elements) {
|
||
assert(elements && "struct literal has null elements");
|
||
const auto numMissingElements = sd->fields.dim - elements->dim;
|
||
(void)numMissingElements;
|
||
assert(numMissingElements == 0 || (sd->vthis && numMissingElements == 1));
|
||
|
||
// might be reset to an actual i8* value so only a single bitcast is emitted
|
||
LLValue *voidptr = mem;
|
||
|
||
struct Data {
|
||
VarDeclaration *field;
|
||
Expression *expr;
|
||
};
|
||
LLSmallVector<Data, 16> data;
|
||
|
||
// collect init expressions in fields declaration order
|
||
for (size_t index = 0; index < sd->fields.dim; ++index) {
|
||
VarDeclaration *field = sd->fields[index];
|
||
|
||
// Skip zero-sized fields such as zero-length static arrays: `ubyte[0]
|
||
// data`.
|
||
if (field->type->size() == 0)
|
||
continue;
|
||
|
||
// the initializer expression may be null for overridden overlapping fields
|
||
Expression *expr = (index < elements->dim ? (*elements)[index] : nullptr);
|
||
if (expr || field == sd->vthis) {
|
||
// DMD issue #16471:
|
||
// There may be overlapping initializer expressions in some cases.
|
||
// Prefer the last expression in lexical (declaration) order to mimic DMD.
|
||
if (field->overlapped) {
|
||
const unsigned f_begin = field->offset;
|
||
const unsigned f_end = f_begin + field->type->size();
|
||
const auto newEndIt =
|
||
std::remove_if(data.begin(), data.end(), [=](const Data &d) {
|
||
unsigned v_begin = d.field->offset;
|
||
unsigned v_end = v_begin + d.field->type->size();
|
||
return v_begin < f_end && v_end > f_begin;
|
||
});
|
||
data.erase(newEndIt, data.end());
|
||
}
|
||
|
||
data.push_back({field, expr});
|
||
}
|
||
}
|
||
|
||
// sort by offset
|
||
std::sort(data.begin(), data.end(), [](const Data &l, const Data &r) {
|
||
return l.field->offset < r.field->offset;
|
||
});
|
||
|
||
unsigned offset = 0;
|
||
for (const auto &d : data) {
|
||
const auto vd = d.field;
|
||
const auto expr = d.expr;
|
||
|
||
// initialize any padding so struct comparisons work
|
||
if (vd->offset != offset) {
|
||
assert(vd->offset > offset);
|
||
voidptr = write_zeroes(voidptr, offset, vd->offset);
|
||
offset = vd->offset;
|
||
}
|
||
|
||
IF_LOG Logger::println("initializing field: %s %s (+%u)",
|
||
vd->type->toChars(), vd->toChars(), vd->offset);
|
||
LOG_SCOPE
|
||
|
||
// get a pointer to this field
|
||
assert(!isSpecialRefVar(vd) && "Code not expected to handle special ref "
|
||
"vars, although it can easily be made to.");
|
||
DLValue field(vd->type, DtoIndexAggregate(mem, sd, vd));
|
||
|
||
// initialize the field
|
||
if (expr) {
|
||
IF_LOG Logger::println("expr = %s", expr->toChars());
|
||
// try to construct it in-place
|
||
if (!toInPlaceConstruction(&field, expr)) {
|
||
DtoAssign(loc, &field, toElem(expr), TOKblit);
|
||
if (expr->isLvalue())
|
||
callPostblit(loc, expr, DtoLVal(&field));
|
||
}
|
||
} else {
|
||
assert(vd == sd->vthis);
|
||
IF_LOG Logger::println("initializing vthis");
|
||
LOG_SCOPE
|
||
DImValue val(vd->type,
|
||
DtoBitCast(DtoNestedContext(loc, sd), DtoType(vd->type)));
|
||
DtoAssign(loc, &field, &val, TOKblit);
|
||
}
|
||
|
||
offset += vd->type->size();
|
||
|
||
// Also zero out padding bytes counted as being part of the type in DMD
|
||
// but not in LLVM; e.g. real/x86_fp80.
|
||
int implicitPadding =
|
||
vd->type->size() - gDataLayout->getTypeStoreSize(DtoType(vd->type));
|
||
assert(implicitPadding >= 0);
|
||
if (implicitPadding > 0) {
|
||
IF_LOG Logger::println("zeroing %d padding bytes", implicitPadding);
|
||
voidptr = write_zeroes(voidptr, offset - implicitPadding, offset);
|
||
}
|
||
}
|
||
|
||
// initialize trailing padding
|
||
if (sd->structsize != offset)
|
||
voidptr = write_zeroes(voidptr, offset, sd->structsize);
|
||
}
|
||
|
||
namespace {
|
||
void pushVarDtorCleanup(IRState *p, VarDeclaration *vd) {
|
||
llvm::BasicBlock *beginBB = p->insertBB(llvm::Twine("dtor.") + vd->toChars());
|
||
|
||
// TODO: Clean this up with push/pop insertion point methods.
|
||
IRScope oldScope = p->scope();
|
||
p->scope() = IRScope(beginBB);
|
||
toElemDtor(vd->edtor);
|
||
p->funcGen().scopes.pushCleanup(beginBB, p->scopebb());
|
||
p->scope() = oldScope;
|
||
}
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
static Expression *skipOverCasts(Expression *e) {
|
||
while (e->op == TOKcast)
|
||
e = static_cast<CastExp *>(e)->e1;
|
||
return e;
|
||
}
|
||
|
||
DValue *toElem(Expression *e, bool doSkipOverCasts) {
|
||
Expression *inner = skipOverCasts(e);
|
||
if (!doSkipOverCasts || inner == e)
|
||
return toElem(e);
|
||
|
||
return DtoCast(e->loc, toElem(inner), e->type);
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
class ToElemVisitor : public Visitor {
|
||
IRState *p;
|
||
bool destructTemporaries;
|
||
CleanupCursor initialCleanupScope;
|
||
DValue *result;
|
||
|
||
public:
|
||
ToElemVisitor(IRState *p_, bool destructTemporaries_)
|
||
: p(p_), destructTemporaries(destructTemporaries_), result(nullptr) {
|
||
initialCleanupScope = p->funcGen().scopes.currentCleanupScope();
|
||
}
|
||
|
||
DValue *getResult() {
|
||
if (destructTemporaries &&
|
||
p->funcGen().scopes.currentCleanupScope() != initialCleanupScope) {
|
||
// We might share the CFG edges through the below cleanup blocks with
|
||
// other paths (e.g. exception unwinding) where the result value has not
|
||
// been constructed. At runtime, the branches will be chosen such that the
|
||
// end bb (which will likely go on to access the value) is never executed
|
||
// in those other cases, but we need to make sure that the SSA is also
|
||
// well-formed statically (i.e. all instructions dominate their uses).
|
||
// Thus, dump the result to a temporary stack slot (created in the entry
|
||
// bb) if it is not guaranteed to dominate the end bb after possibly
|
||
// adding more control flow.
|
||
if (result && result->type->ty != Tvoid &&
|
||
!result->definedInFuncEntryBB()) {
|
||
LLValue *copy = DtoAllocaDump(result);
|
||
result = new DLValue(result->type, copy);
|
||
}
|
||
|
||
llvm::BasicBlock *endbb = p->insertBB("toElem.success");
|
||
p->funcGen().scopes.runCleanups(initialCleanupScope, endbb);
|
||
p->funcGen().scopes.popCleanups(initialCleanupScope);
|
||
p->scope() = IRScope(endbb);
|
||
|
||
destructTemporaries = false;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
// Import all functions from class Visitor
|
||
using Visitor::visit;
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(DeclarationExp *e) override {
|
||
IF_LOG Logger::print("DeclarationExp::toElem: %s | T=%s\n", e->toChars(),
|
||
e->type ? e->type->toChars() : "(null)");
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
result = DtoDeclarationExp(e->declaration);
|
||
|
||
if (auto vd = e->declaration->isVarDeclaration()) {
|
||
if (!vd->isDataseg() && vd->needsScopeDtor()) {
|
||
pushVarDtorCleanup(p, vd);
|
||
}
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(VarExp *e) override {
|
||
IF_LOG Logger::print("VarExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
assert(e->var);
|
||
|
||
if (auto fd = e->var->isFuncLiteralDeclaration()) {
|
||
genFuncLiteral(fd, nullptr);
|
||
}
|
||
|
||
if (auto em = e->var->isEnumMember()) {
|
||
IF_LOG Logger::println("Create temporary for enum member");
|
||
// Return the value of the enum member instead of trying to take its
|
||
// address (impossible because we don't emit them as variables)
|
||
// In most cases, the front-end constfolds a VarExp of an EnumMember,
|
||
// leaving the AST free of EnumMembers. However in rare cases,
|
||
// EnumMembers remain and thus we have to deal with them here.
|
||
// See DMD issues 16022 and 16100.
|
||
result = toElem(em->value(), p);
|
||
return;
|
||
}
|
||
|
||
result = DtoSymbolAddress(e->loc, e->type, e->var);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(IntegerExp *e) override {
|
||
IF_LOG Logger::print("IntegerExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
LLConstant *c = toConstElem(e, p);
|
||
result = new DConstValue(e->type, c);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(RealExp *e) override {
|
||
IF_LOG Logger::print("RealExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
LLConstant *c = toConstElem(e, p);
|
||
result = new DConstValue(e->type, c);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(NullExp *e) override {
|
||
IF_LOG Logger::print("NullExp::toElem(type=%s): %s\n", e->type->toChars(),
|
||
e->toChars());
|
||
LOG_SCOPE;
|
||
LLConstant *c = toConstElem(e, p);
|
||
result = new DNullValue(e->type, c);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(ComplexExp *e) override {
|
||
IF_LOG Logger::print("ComplexExp::toElem(): %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
LLConstant *c = toConstElem(e, p);
|
||
LLValue *res;
|
||
|
||
if (c->isNullValue()) {
|
||
switch (e->type->toBasetype()->ty) {
|
||
default:
|
||
llvm_unreachable("Unexpected complex floating point type");
|
||
case Tcomplex32:
|
||
c = DtoConstFP(Type::tfloat32, ldouble(0));
|
||
break;
|
||
case Tcomplex64:
|
||
c = DtoConstFP(Type::tfloat64, ldouble(0));
|
||
break;
|
||
case Tcomplex80:
|
||
c = DtoConstFP(Type::tfloat80, ldouble(0));
|
||
break;
|
||
}
|
||
res = DtoAggrPair(DtoType(e->type), c, c);
|
||
} else {
|
||
res = DtoAggrPair(DtoType(e->type), c->getOperand(0), c->getOperand(1));
|
||
}
|
||
|
||
result = new DImValue(e->type, res);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(StringExp *e) override {
|
||
IF_LOG Logger::print("StringExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
Type *dtype = e->type->toBasetype();
|
||
Type *cty = dtype->nextOf()->toBasetype();
|
||
|
||
LLType *ct = DtoMemType(cty);
|
||
|
||
llvm::StringMap<llvm::GlobalVariable *> *stringLiteralCache =
|
||
stringLiteralCacheForType(cty);
|
||
LLConstant *_init = buildStringLiteralConstant(e, true);
|
||
const auto at = _init->getType();
|
||
|
||
llvm::StringRef key(e->toChars());
|
||
llvm::GlobalVariable *gvar =
|
||
(stringLiteralCache->find(key) == stringLiteralCache->end())
|
||
? nullptr
|
||
: (*stringLiteralCache)[key];
|
||
if (gvar == nullptr) {
|
||
llvm::GlobalValue::LinkageTypes _linkage =
|
||
llvm::GlobalValue::PrivateLinkage;
|
||
IF_LOG {
|
||
Logger::cout() << "type: " << *at << '\n';
|
||
Logger::cout() << "init: " << *_init << '\n';
|
||
}
|
||
gvar = new llvm::GlobalVariable(gIR->module, at, true, _linkage, _init,
|
||
".str");
|
||
#if LDC_LLVM_VER >= 309
|
||
gvar->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
||
#else
|
||
gvar->setUnnamedAddr(true);
|
||
#endif
|
||
(*stringLiteralCache)[key] = gvar;
|
||
}
|
||
|
||
llvm::ConstantInt *zero =
|
||
LLConstantInt::get(LLType::getInt32Ty(gIR->context()), 0, false);
|
||
LLConstant *idxs[2] = {zero, zero};
|
||
LLConstant *arrptr = llvm::ConstantExpr::getGetElementPtr(
|
||
isaPointer(gvar)->getElementType(), gvar, idxs, true);
|
||
|
||
if (dtype->ty == Tarray) {
|
||
LLConstant *clen =
|
||
LLConstantInt::get(DtoSize_t(), e->numberOfCodeUnits(), false);
|
||
result = new DImValue(e->type, DtoConstSlice(clen, arrptr, dtype));
|
||
} else if (dtype->ty == Tsarray) {
|
||
LLType *dstType =
|
||
getPtrToType(LLArrayType::get(ct, e->numberOfCodeUnits()));
|
||
LLValue *emem =
|
||
(gvar->getType() == dstType) ? gvar : DtoBitCast(gvar, dstType);
|
||
result = new DLValue(e->type, emem);
|
||
} else if (dtype->ty == Tpointer) {
|
||
result = new DImValue(e->type, arrptr);
|
||
} else {
|
||
llvm_unreachable("Unknown type for StringExp.");
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(AssignExp *e) override {
|
||
IF_LOG Logger::print("AssignExp::toElem: %s | (%s)(%s = %s)\n",
|
||
e->toChars(), e->type->toChars(),
|
||
e->e1->type->toChars(),
|
||
e->e2->type ? e->e2->type->toChars() : nullptr);
|
||
LOG_SCOPE;
|
||
|
||
if (e->e1->op == TOKarraylength) {
|
||
Logger::println("performing array.length assignment");
|
||
ArrayLengthExp *ale = static_cast<ArrayLengthExp *>(e->e1);
|
||
DLValue arrval(ale->e1->type, DtoLVal(ale->e1));
|
||
DValue *newlen = toElem(e->e2);
|
||
DSliceValue *slice =
|
||
DtoResizeDynArray(e->loc, arrval.type, &arrval, DtoRVal(newlen));
|
||
DtoStore(DtoRVal(slice), DtoLVal(&arrval));
|
||
result = newlen;
|
||
return;
|
||
}
|
||
|
||
// Initialization of ref variable?
|
||
// Can't just override ConstructExp::toElem because not all TOKconstruct
|
||
// operations are actually instances of ConstructExp... Long live the DMD
|
||
// coding style!
|
||
if (e->memset & referenceInit) {
|
||
assert(e->op == TOKconstruct || e->op == TOKblit);
|
||
assert(e->e1->op == TOKvar);
|
||
|
||
Declaration *d = static_cast<VarExp *>(e->e1)->var;
|
||
if (d->storage_class & (STCref | STCout)) {
|
||
Logger::println("performing ref variable initialization");
|
||
// Note that the variable value is accessed directly (instead
|
||
// of via getLVal(), which would perform a load from the
|
||
// uninitialized location), and that rhs is stored as an l-value!
|
||
DSpecialRefValue *lhs = toElem(e->e1)->isSpecialRef();
|
||
assert(lhs);
|
||
DValue *rhs = toElem(e->e2);
|
||
|
||
// We shouldn't really need makeLValue() here, but the 2.063
|
||
// frontend generates ref variables initialized from function
|
||
// calls.
|
||
DtoStore(makeLValue(e->loc, rhs), lhs->getRefStorage());
|
||
|
||
result = lhs;
|
||
return;
|
||
}
|
||
}
|
||
|
||
// The front-end sometimes rewrites a static-array-lhs to a slice, e.g.,
|
||
// when initializing a static array with an array literal.
|
||
// Use the static array as lhs in that case.
|
||
DValue *rewrittenLhsStaticArray = nullptr;
|
||
if (e->e1->op == TOKslice) {
|
||
SliceExp *se = static_cast<SliceExp *>(e->e1);
|
||
Type *sliceeBaseType = se->e1->type->toBasetype();
|
||
if (se->lwr == nullptr && sliceeBaseType->ty == Tsarray &&
|
||
se->type->toBasetype()->nextOf() == sliceeBaseType->nextOf())
|
||
rewrittenLhsStaticArray = toElem(se->e1, true);
|
||
}
|
||
|
||
DValue *const lhs = (rewrittenLhsStaticArray ? rewrittenLhsStaticArray
|
||
: toElem(e->e1, true));
|
||
|
||
// Set the result of the AssignExp to the lhs.
|
||
// Defer this to the end of this function, so that static arrays are
|
||
// rewritten (converted to a slice) after the assignment, primarily for a
|
||
// more intuitive IR order.
|
||
SCOPE_EXIT {
|
||
if (rewrittenLhsStaticArray) {
|
||
result =
|
||
new DSliceValue(e->e1->type, DtoArrayLen(rewrittenLhsStaticArray),
|
||
DtoArrayPtr(rewrittenLhsStaticArray));
|
||
} else {
|
||
result = lhs;
|
||
}
|
||
};
|
||
|
||
// try to construct the lhs in-place
|
||
if (lhs->isLVal() && e->op == TOKconstruct &&
|
||
toInPlaceConstruction(lhs->isLVal(), e->e2)) {
|
||
return;
|
||
}
|
||
|
||
DValue *r = toElem(e->e2);
|
||
|
||
if (e->e1->type->toBasetype()->ty == Tstruct && e->e2->op == TOKint64) {
|
||
Logger::println("performing aggregate zero initialization");
|
||
assert(e->e2->toInteger() == 0);
|
||
LLValue *lval = DtoLVal(lhs);
|
||
DtoMemSetZero(lval);
|
||
TypeStruct *ts = static_cast<TypeStruct *>(e->e1->type);
|
||
if (ts->sym->isNested() && ts->sym->vthis)
|
||
DtoResolveNestedContext(e->loc, ts->sym, lval);
|
||
return;
|
||
}
|
||
|
||
// This matches the logic in AssignExp::semantic.
|
||
// TODO: Should be cached in the frontend to avoid issues with the code
|
||
// getting out of sync?
|
||
bool lvalueElem = false;
|
||
if ((e->e2->op == TOKslice &&
|
||
static_cast<UnaExp *>(e->e2)->e1->isLvalue()) ||
|
||
(e->e2->op == TOKcast &&
|
||
static_cast<UnaExp *>(e->e2)->e1->isLvalue()) ||
|
||
(e->e2->op != TOKslice && e->e2->isLvalue())) {
|
||
lvalueElem = true;
|
||
}
|
||
|
||
Logger::println("performing normal assignment (rhs has lvalue elems = %d)",
|
||
lvalueElem);
|
||
DtoAssign(e->loc, lhs, r, e->op, !lvalueElem);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void errorOnIllegalArrayOp(Expression *base, Expression *e1, Expression *e2) {
|
||
Type *t1 = e1->type->toBasetype();
|
||
Type *t2 = e2->type->toBasetype();
|
||
|
||
// valid array ops would have been transformed by optimize
|
||
if ((t1->ty == Tarray || t1->ty == Tsarray) &&
|
||
(t2->ty == Tarray || t2->ty == Tsarray)) {
|
||
base->error("Array operation `%s` not recognized", base->toChars());
|
||
fatal();
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
#define BIN_OP(Op, Func) \
|
||
void visit(Op##Exp *e) override { \
|
||
IF_LOG Logger::print(#Op "Exp::toElem: %s @ %s\n", e->toChars(), \
|
||
e->type->toChars()); \
|
||
LOG_SCOPE; \
|
||
\
|
||
errorOnIllegalArrayOp(e, e->e1, e->e2); \
|
||
\
|
||
auto &PGO = gIR->funcGen().pgo; \
|
||
PGO.setCurrentStmt(e); \
|
||
\
|
||
result = Func(e->loc, e->type, toElem(e->e1), e->e2); \
|
||
}
|
||
|
||
BIN_OP(Add, binAdd)
|
||
BIN_OP(Min, binMin)
|
||
BIN_OP(Mul, binMul)
|
||
BIN_OP(Div, binDiv)
|
||
BIN_OP(Mod, binMod)
|
||
|
||
BIN_OP(And, binAnd)
|
||
BIN_OP(Or, binOr)
|
||
BIN_OP(Xor, binXor)
|
||
BIN_OP(Shl, binShl)
|
||
BIN_OP(Shr, binShr)
|
||
BIN_OP(Ushr, binUshr)
|
||
#undef BIN_OP
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
using BinOpFunc = DValue *(Loc &, Type *, DValue *, Expression *, bool);
|
||
|
||
static Expression *getLValExp(Expression *e) {
|
||
e = skipOverCasts(e);
|
||
if (e->op == TOKcomma) {
|
||
CommaExp *ce = static_cast<CommaExp *>(e);
|
||
Expression *newCommaRhs = getLValExp(ce->e2);
|
||
if (newCommaRhs != ce->e2) {
|
||
CommaExp *newComma = static_cast<CommaExp *>(ce->copy());
|
||
newComma->e2 = newCommaRhs;
|
||
newComma->type = newCommaRhs->type;
|
||
e = newComma;
|
||
}
|
||
}
|
||
return e;
|
||
}
|
||
|
||
template <BinOpFunc binOpFunc, bool useLValTypeForBinOp>
|
||
static DValue *binAssign(BinAssignExp *e) {
|
||
Expression *lvalExp = getLValExp(e->e1);
|
||
DValue *lhsLVal = toElem(lvalExp);
|
||
|
||
// Use the lhs lvalue for the binop lhs and optionally cast it to the full
|
||
// lhs type (!useLValTypeForBinOp).
|
||
// The front-end apparently likes to specify the binop type via lhs casts,
|
||
// e.g., `byte x; cast(int)x += 5;`.
|
||
// Load the binop lhs AFTER evaluating the rhs.
|
||
Type *opType = (useLValTypeForBinOp ? lhsLVal->type : e->e1->type);
|
||
DValue *opResult = binOpFunc(e->loc, opType, lhsLVal, e->e2, true);
|
||
|
||
DValue *assignedResult = DtoCast(e->loc, opResult, lhsLVal->type);
|
||
DtoAssign(e->loc, lhsLVal, assignedResult, TOKassign);
|
||
|
||
if (e->type->equals(lhsLVal->type))
|
||
return lhsLVal;
|
||
|
||
return new DLValue(e->type, DtoLVal(lhsLVal));
|
||
}
|
||
|
||
#define BIN_ASSIGN(Op, Func, useLValTypeForBinOp) \
|
||
void visit(Op##AssignExp *e) override { \
|
||
IF_LOG Logger::print(#Op "AssignExp::toElem: %s @ %s\n", e->toChars(), \
|
||
e->type->toChars()); \
|
||
LOG_SCOPE; \
|
||
\
|
||
errorOnIllegalArrayOp(e, e->e1, e->e2); \
|
||
\
|
||
auto &PGO = gIR->funcGen().pgo; \
|
||
PGO.setCurrentStmt(e); \
|
||
\
|
||
result = binAssign<Func, useLValTypeForBinOp>(e); \
|
||
}
|
||
|
||
BIN_ASSIGN(Add, binAdd, false)
|
||
BIN_ASSIGN(Min, binMin, false)
|
||
BIN_ASSIGN(Mul, binMul, false)
|
||
BIN_ASSIGN(Div, binDiv, false)
|
||
BIN_ASSIGN(Mod, binMod, false)
|
||
|
||
BIN_ASSIGN(And, binAnd, false)
|
||
BIN_ASSIGN(Or, binOr, false)
|
||
BIN_ASSIGN(Xor, binXor, false)
|
||
BIN_ASSIGN(Shl, binShl, true)
|
||
BIN_ASSIGN(Shr, binShr, true)
|
||
BIN_ASSIGN(Ushr, binUshr, true)
|
||
#undef BIN_ASSIGN
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
static DValue *call(IRState *p, CallExp *e, LLValue *sretPointer = nullptr) {
|
||
IF_LOG Logger::print("CallExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
// handle magic inline asm
|
||
if (e->e1->op == TOKvar) {
|
||
VarExp *ve = static_cast<VarExp *>(e->e1);
|
||
if (FuncDeclaration *fd = ve->var->isFuncDeclaration()) {
|
||
if (fd->llvmInternal == LLVMinline_asm) {
|
||
return DtoInlineAsmExpr(e->loc, fd, e->arguments, sretPointer);
|
||
}
|
||
if (fd->llvmInternal == LLVMinline_ir) {
|
||
return DtoInlineIRExpr(e->loc, fd, e->arguments, sretPointer);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Check if we are about to construct a just declared temporary. DMD
|
||
// unfortunately rewrites this as
|
||
// MyStruct(myArgs) => (MyStruct tmp; tmp).this(myArgs),
|
||
// which would lead us to invoke the dtor even if the ctor throws. To
|
||
// work around this, we hold on to the cleanup and push it only after
|
||
// making the function call.
|
||
//
|
||
// The correct fix for this (DMD issue 13095) would have been to adapt
|
||
// the AST, but we are stuck with this as DMD also patched over it with
|
||
// a similar hack.
|
||
VarDeclaration *delayedDtorVar = nullptr;
|
||
Expression *delayedDtorExp = nullptr;
|
||
if (e->f && e->f->isCtorDeclaration() && e->e1->op == TOKdotvar) {
|
||
DotVarExp *dve = static_cast<DotVarExp *>(e->e1);
|
||
if (dve->e1->op == TOKcomma) {
|
||
CommaExp *ce = static_cast<CommaExp *>(dve->e1);
|
||
if (ce->e1->op == TOKdeclaration && ce->e2->op == TOKvar) {
|
||
VarExp *ve = static_cast<VarExp *>(ce->e2);
|
||
if (VarDeclaration *vd = ve->var->isVarDeclaration()) {
|
||
if (vd->needsScopeDtor()) {
|
||
Logger::println("Delaying edtor");
|
||
delayedDtorVar = vd;
|
||
delayedDtorExp = vd->edtor;
|
||
vd->edtor = nullptr;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// get the callee value
|
||
DValue *fnval;
|
||
if (e->directcall) {
|
||
// TODO: Do this as an extra parameter to DotVarExp implementation.
|
||
assert(e->e1->op == TOKdotvar);
|
||
DotVarExp *dve = static_cast<DotVarExp *>(e->e1);
|
||
FuncDeclaration *fdecl = dve->var->isFuncDeclaration();
|
||
assert(fdecl);
|
||
DtoDeclareFunction(fdecl);
|
||
fnval = new DFuncValue(fdecl, DtoCallee(fdecl), DtoRVal(dve->e1));
|
||
} else {
|
||
fnval = toElem(e->e1);
|
||
}
|
||
|
||
// get func value if any
|
||
DFuncValue *dfnval = fnval->isFunc();
|
||
|
||
// handle magic intrinsics (mapping to instructions)
|
||
if (dfnval && dfnval->func) {
|
||
FuncDeclaration *fndecl = dfnval->func;
|
||
|
||
// as requested by bearophile, see if it's a C printf call and that it's
|
||
// valid.
|
||
if (global.params.warnings && checkPrintf) {
|
||
if (fndecl->linkage == LINKc &&
|
||
strcmp(fndecl->ident->toChars(), "printf") == 0) {
|
||
warnInvalidPrintfCall(e->loc, (*e->arguments)[0], e->arguments->dim);
|
||
}
|
||
}
|
||
|
||
DValue *result = nullptr;
|
||
if (DtoLowerMagicIntrinsic(p, fndecl, e, result))
|
||
return result;
|
||
}
|
||
|
||
DValue *result =
|
||
DtoCallFunction(e->loc, e->type, fnval, e->arguments, sretPointer);
|
||
|
||
if (delayedDtorVar) {
|
||
delayedDtorVar->edtor = delayedDtorExp;
|
||
pushVarDtorCleanup(p, delayedDtorVar);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
void visit(CallExp *e) override { result = call(p, e); }
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(CastExp *e) override {
|
||
IF_LOG Logger::print("CastExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
// get the value to cast
|
||
DValue *u = toElem(e->e1);
|
||
|
||
// handle cast to void (usually created by frontend to avoid "has no effect"
|
||
// error)
|
||
if (e->to == Type::tvoid) {
|
||
result = nullptr;
|
||
return;
|
||
}
|
||
|
||
// cast it to the 'to' type, if necessary
|
||
result = u;
|
||
if (!e->to->equals(e->e1->type)) {
|
||
result = DtoCast(e->loc, u, e->to);
|
||
}
|
||
|
||
// paint the type, if necessary
|
||
if (!e->type->equals(e->to)) {
|
||
result = DtoPaintType(e->loc, result, e->type);
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(SymOffExp *e) override {
|
||
IF_LOG Logger::print("SymOffExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
DValue *base = DtoSymbolAddress(e->loc, e->var->type, e->var);
|
||
|
||
// This weird setup is required to be able to handle both variables as
|
||
// well as functions and TypeInfo references (which are not a DLValue
|
||
// as well due to the level-of-indirection hack in Type::getTypeInfo that
|
||
// is unfortunately required by the frontend).
|
||
llvm::Value *baseValue;
|
||
if (base->isLVal()) {
|
||
baseValue = DtoLVal(base);
|
||
} else {
|
||
baseValue = DtoRVal(base);
|
||
}
|
||
assert(isaPointer(baseValue));
|
||
|
||
llvm::Value *offsetValue;
|
||
|
||
if (e->offset == 0) {
|
||
offsetValue = baseValue;
|
||
} else {
|
||
uint64_t elemSize = gDataLayout->getTypeAllocSize(
|
||
baseValue->getType()->getContainedType(0));
|
||
if (e->offset % elemSize == 0) {
|
||
// We can turn this into a "nice" GEP.
|
||
offsetValue = DtoGEPi1(baseValue, e->offset / elemSize);
|
||
} else {
|
||
// Offset isn't a multiple of base type size, just cast to i8* and
|
||
// apply the byte offset.
|
||
offsetValue =
|
||
DtoGEPi1(DtoBitCast(baseValue, getVoidPtrType()), e->offset);
|
||
}
|
||
}
|
||
|
||
// Casts are also "optimized into" SymOffExp by the frontend.
|
||
LLValue *llVal = (e->type->toBasetype()->isintegral()
|
||
? p->ir->CreatePtrToInt(offsetValue, DtoType(e->type))
|
||
: DtoBitCast(offsetValue, DtoType(e->type)));
|
||
result = new DImValue(e->type, llVal);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(AddrExp *e) override {
|
||
IF_LOG Logger::println("AddrExp::toElem: %s @ %s", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
// The address of a StructLiteralExp can in fact be a global variable, check
|
||
// for that instead of re-codegening the literal.
|
||
if (e->e1->op == TOKstructliteral) {
|
||
// lvalue literal must be a global, hence we can just use
|
||
// toConstElem on the AddrExp to get the address.
|
||
LLConstant *addr = toConstElem(e, p);
|
||
IF_LOG Logger::cout()
|
||
<< "returning address of struct literal global: " << addr << '\n';
|
||
result = new DImValue(e->type, DtoBitCast(addr, DtoType(e->type)));
|
||
return;
|
||
}
|
||
|
||
DValue *v = toElem(e->e1, true);
|
||
if (DFuncValue *fv = v->isFunc()) {
|
||
Logger::println("is func");
|
||
// Logger::println("FuncDeclaration");
|
||
FuncDeclaration *fd = fv->func;
|
||
assert(fd);
|
||
DtoResolveFunction(fd);
|
||
result = new DFuncValue(fd, DtoCallee(fd));
|
||
return;
|
||
}
|
||
if (v->isIm()) {
|
||
Logger::println("is immediate");
|
||
result = v;
|
||
return;
|
||
}
|
||
Logger::println("is nothing special");
|
||
|
||
// we special case here, since apparently taking the address of a slice is
|
||
// ok
|
||
LLValue *lval;
|
||
if (v->isLVal()) {
|
||
lval = DtoLVal(v);
|
||
} else {
|
||
assert(v->isSlice());
|
||
lval = DtoAllocaDump(v, ".tmp_slice_storage");
|
||
}
|
||
|
||
IF_LOG Logger::cout() << "lval: " << *lval << '\n';
|
||
result = new DImValue(e->type, DtoBitCast(lval, DtoType(e->type)));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(PtrExp *e) override {
|
||
IF_LOG Logger::println("PtrExp::toElem: %s @ %s", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
// function pointers are special
|
||
if (e->type->toBasetype()->ty == Tfunction) {
|
||
DValue *dv = toElem(e->e1);
|
||
LLValue *llVal = DtoRVal(dv);
|
||
if (DFuncValue *dfv = dv->isFunc()) {
|
||
result = new DFuncValue(e->type, dfv->func, llVal);
|
||
} else {
|
||
result = new DImValue(e->type, llVal);
|
||
}
|
||
return;
|
||
}
|
||
|
||
// get the rvalue and return it as an lvalue
|
||
LLValue *V = DtoRVal(e->e1);
|
||
|
||
result = new DLValue(e->type, DtoBitCast(V, DtoPtrToType(e->type)));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(DotVarExp *e) override {
|
||
IF_LOG Logger::print("DotVarExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
DValue *l = toElem(e->e1);
|
||
|
||
Type *e1type = e->e1->type->toBasetype();
|
||
|
||
// Logger::println("e1type=%s", e1type->toChars());
|
||
// Logger::cout() << *DtoType(e1type) << '\n';
|
||
|
||
if (VarDeclaration *vd = e->var->isVarDeclaration()) {
|
||
LLValue *arrptr;
|
||
// indexing struct pointer
|
||
if (e1type->ty == Tpointer) {
|
||
assert(e1type->nextOf()->ty == Tstruct);
|
||
TypeStruct *ts = static_cast<TypeStruct *>(e1type->nextOf());
|
||
arrptr = DtoIndexAggregate(DtoRVal(l), ts->sym, vd);
|
||
}
|
||
// indexing normal struct
|
||
else if (e1type->ty == Tstruct) {
|
||
TypeStruct *ts = static_cast<TypeStruct *>(e1type);
|
||
arrptr = DtoIndexAggregate(DtoLVal(l), ts->sym, vd);
|
||
}
|
||
// indexing class
|
||
else if (e1type->ty == Tclass) {
|
||
TypeClass *tc = static_cast<TypeClass *>(e1type);
|
||
arrptr = DtoIndexAggregate(DtoRVal(l), tc->sym, vd);
|
||
} else {
|
||
llvm_unreachable("Unknown DotVarExp type for VarDeclaration.");
|
||
}
|
||
|
||
// Logger::cout() << "mem: " << *arrptr << '\n';
|
||
result = new DLValue(e->type, DtoBitCast(arrptr, DtoPtrToType(e->type)));
|
||
} else if (FuncDeclaration *fdecl = e->var->isFuncDeclaration()) {
|
||
DtoResolveFunction(fdecl);
|
||
|
||
// This is a bit more convoluted than it would need to be, because it
|
||
// has to take templated interface methods into account, for which
|
||
// isFinalFunc is not necessarily true.
|
||
// Also, private/package methods are always non-virtual.
|
||
const bool nonFinal = !fdecl->isFinalFunc() &&
|
||
(fdecl->isAbstract() || fdecl->isVirtual()) &&
|
||
fdecl->prot().kind != PROTprivate &&
|
||
fdecl->prot().kind != PROTpackage;
|
||
|
||
// Get the actual function value to call.
|
||
LLValue *funcval = nullptr;
|
||
if (nonFinal) {
|
||
funcval = DtoVirtualFunctionPointer(l, fdecl, e->toChars());
|
||
} else {
|
||
funcval = DtoCallee(fdecl);
|
||
}
|
||
assert(funcval);
|
||
|
||
LLValue *vthis = (DtoIsInMemoryOnly(l->type) ? DtoLVal(l) : DtoRVal(l));
|
||
result = new DFuncValue(fdecl, funcval, vthis);
|
||
} else {
|
||
llvm_unreachable("Unknown target for VarDeclaration.");
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(ThisExp *e) override {
|
||
IF_LOG Logger::print("ThisExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
VarDeclaration *vd = nullptr;
|
||
|
||
// special cases: `this(int) { this(); }` and `this(int) { super(); }`
|
||
if (!e->var) {
|
||
Logger::println("this exp without var declaration");
|
||
if (auto thisArg = p->func()->thisArg) {
|
||
result = new DLValue(e->type, thisArg);
|
||
return;
|
||
}
|
||
// use the inner-most parent's `vthis`
|
||
for (int i = p->funcGenStates.size() - 2; i >= 0; --i) {
|
||
if (auto vthis = p->funcGenStates[i]->irFunc.decl->vthis) {
|
||
vd = vthis;
|
||
break;
|
||
}
|
||
}
|
||
} else {
|
||
vd = e->var->isVarDeclaration();
|
||
}
|
||
|
||
assert(vd);
|
||
assert(!isSpecialRefVar(vd) && "Code not expected to handle special ref "
|
||
"vars, although it can easily be made to.");
|
||
|
||
const auto ident = p->func()->decl->ident;
|
||
if (ident == Id::ensure || ident == Id::require) {
|
||
Logger::println("contract this exp");
|
||
LLValue *v = DtoBitCast(p->func()->nestArg, DtoType(e->type));
|
||
result = new DImValue(e->type, v);
|
||
} else if (vd->toParent2() != p->func()->decl) {
|
||
Logger::println("nested this exp");
|
||
result = DtoNestedVariable(e->loc, e->type, vd, e->type->ty == Tstruct);
|
||
} else {
|
||
Logger::println("normal this exp");
|
||
LLValue *v = p->func()->thisArg;
|
||
result = new DLValue(e->type, DtoBitCast(v, DtoPtrToType(e->type)));
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(IndexExp *e) override {
|
||
IF_LOG Logger::print("IndexExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
DValue *l = toElem(e->e1);
|
||
|
||
Type *e1type = e->e1->type->toBasetype();
|
||
|
||
p->arrays.push_back(l); // if $ is used it must be an array so this is fine.
|
||
DValue *r = toElem(e->e2);
|
||
p->arrays.pop_back();
|
||
|
||
LLValue *arrptr = nullptr;
|
||
if (e1type->ty == Tpointer) {
|
||
arrptr = DtoGEP1(DtoRVal(l), DtoRVal(r), false);
|
||
} else if (e1type->ty == Tsarray) {
|
||
if (p->emitArrayBoundsChecks() && !e->indexIsInBounds) {
|
||
DtoIndexBoundsCheck(e->loc, l, r);
|
||
}
|
||
arrptr =
|
||
DtoGEP(DtoLVal(l), DtoConstUint(0), DtoRVal(r), e->indexIsInBounds);
|
||
} else if (e1type->ty == Tarray) {
|
||
if (p->emitArrayBoundsChecks() && !e->indexIsInBounds) {
|
||
DtoIndexBoundsCheck(e->loc, l, r);
|
||
}
|
||
arrptr = DtoGEP1(DtoArrayPtr(l), DtoRVal(r), e->indexIsInBounds);
|
||
} else if (e1type->ty == Taarray) {
|
||
result = DtoAAIndex(e->loc, e->type, l, r, e->modifiable);
|
||
return;
|
||
} else {
|
||
IF_LOG Logger::println("e1type: %s", e1type->toChars());
|
||
llvm_unreachable("Unknown IndexExp target.");
|
||
}
|
||
result = new DLValue(e->type, DtoBitCast(arrptr, DtoPtrToType(e->type)));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(SliceExp *e) override {
|
||
IF_LOG Logger::print("SliceExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
// value being sliced
|
||
Type *const etype = e->e1->type->toBasetype();
|
||
LLValue *eptr = nullptr;
|
||
LLValue *elen = nullptr;
|
||
|
||
// evaluate the base expression but delay getting its pointer until the
|
||
// potential bounds have been evaluated
|
||
DValue *v = toElem(e->e1);
|
||
auto getBasePointer = [e, v, etype]() {
|
||
if (etype->ty == Tpointer) {
|
||
// pointer slicing
|
||
assert(e->lwr);
|
||
return DtoRVal(v);
|
||
} else {
|
||
// array slice
|
||
return DtoArrayPtr(v);
|
||
}
|
||
};
|
||
|
||
// has lower bound, pointer needs adjustment
|
||
if (e->lwr) {
|
||
// must have upper bound too then
|
||
assert(e->upr);
|
||
|
||
// get bounds (make sure $ works)
|
||
// The lower bound expression must be fully evaluated to an RVal before
|
||
// evaluating the upper bound expression, because the lower bound
|
||
// expression might change value after evaluating the upper bound, e.g. in
|
||
// a statement like this: `auto a1 = values[offset .. offset += 2];`
|
||
p->arrays.push_back(v);
|
||
LLValue *vlo = DtoRVal(e->lwr);
|
||
LLValue *vup = DtoRVal(e->upr);
|
||
p->arrays.pop_back();
|
||
|
||
const bool needCheckUpper =
|
||
(etype->ty != Tpointer) && !e->upperIsInBounds;
|
||
const bool needCheckLower = !e->lowerIsLessThanUpper;
|
||
if (p->emitArrayBoundsChecks() && (needCheckUpper || needCheckLower)) {
|
||
llvm::BasicBlock *okbb = p->insertBB("bounds.ok");
|
||
llvm::BasicBlock *failbb = p->insertBBAfter(okbb, "bounds.fail");
|
||
|
||
llvm::Value *okCond = nullptr;
|
||
if (needCheckUpper) {
|
||
okCond = p->ir->CreateICmp(llvm::ICmpInst::ICMP_ULE, vup,
|
||
DtoArrayLen(v), "bounds.cmp.lo");
|
||
}
|
||
|
||
if (needCheckLower) {
|
||
llvm::Value *cmp = p->ir->CreateICmp(llvm::ICmpInst::ICMP_ULE, vlo,
|
||
vup, "bounds.cmp.up");
|
||
if (okCond) {
|
||
okCond = p->ir->CreateAnd(okCond, cmp);
|
||
} else {
|
||
okCond = cmp;
|
||
}
|
||
}
|
||
|
||
p->ir->CreateCondBr(okCond, okbb, failbb);
|
||
|
||
p->scope() = IRScope(failbb);
|
||
DtoBoundsCheckFailCall(p, e->loc);
|
||
|
||
p->scope() = IRScope(okbb);
|
||
}
|
||
|
||
// offset by lower
|
||
eptr = DtoGEP1(getBasePointer(), vlo, !needCheckLower, "lowerbound");
|
||
|
||
// adjust length
|
||
elen = p->ir->CreateSub(vup, vlo);
|
||
}
|
||
// no bounds or full slice -> just convert to slice
|
||
else {
|
||
assert(etype->ty != Tpointer);
|
||
eptr = getBasePointer();
|
||
// if the slicee is a static array, we use the length of that as DMD seems
|
||
// to give contrary inconsistent sizesin some multidimensional static
|
||
// array cases.
|
||
// (namely default initialization, int[16][16] arr; -> int[256] arr = 0;)
|
||
if (etype->ty == Tsarray) {
|
||
TypeSArray *tsa = static_cast<TypeSArray *>(etype);
|
||
elen = DtoConstSize_t(tsa->dim->toUInteger());
|
||
|
||
// in this case, we also need to make sure the pointer is cast to the
|
||
// innermost element type
|
||
eptr = DtoBitCast(eptr, DtoType(tsa->nextOf()->pointerTo()));
|
||
}
|
||
}
|
||
|
||
// The frontend generates a SliceExp of static array type when assigning a
|
||
// fixed-width slice to a static array.
|
||
Type *const ety = e->type->toBasetype();
|
||
if (ety->ty == Tsarray) {
|
||
result = new DLValue(e->type, DtoBitCast(eptr, DtoPtrToType(e->type)));
|
||
return;
|
||
}
|
||
|
||
assert(ety->ty == Tarray);
|
||
if (!elen)
|
||
elen = DtoArrayLen(v);
|
||
eptr = DtoBitCast(eptr, DtoPtrToType(ety->nextOf()));
|
||
|
||
result = new DSliceValue(e->type, elen, eptr);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(CmpExp *e) override {
|
||
IF_LOG Logger::print("CmpExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
DValue *l = toElem(e->e1);
|
||
DValue *r = toElem(e->e2);
|
||
|
||
Type *t = e->e1->type->toBasetype();
|
||
|
||
LLValue *eval = nullptr;
|
||
|
||
if (t->isintegral() || t->ty == Tpointer || t->ty == Tnull) {
|
||
llvm::ICmpInst::Predicate icmpPred;
|
||
tokToICmpPred(e->op, isLLVMUnsigned(t), &icmpPred, &eval);
|
||
|
||
if (!eval) {
|
||
LLValue *a = DtoRVal(l);
|
||
LLValue *b = DtoRVal(r);
|
||
IF_LOG {
|
||
Logger::cout() << "type 1: " << *a << '\n';
|
||
Logger::cout() << "type 2: " << *b << '\n';
|
||
}
|
||
if (a->getType() != b->getType()) {
|
||
b = DtoBitCast(b, a->getType());
|
||
}
|
||
eval = p->ir->CreateICmp(icmpPred, a, b);
|
||
}
|
||
} else if (t->isfloating()) {
|
||
llvm::FCmpInst::Predicate cmpop;
|
||
switch (e->op) {
|
||
case TOKlt:
|
||
cmpop = llvm::FCmpInst::FCMP_OLT;
|
||
break;
|
||
case TOKle:
|
||
cmpop = llvm::FCmpInst::FCMP_OLE;
|
||
break;
|
||
case TOKgt:
|
||
cmpop = llvm::FCmpInst::FCMP_OGT;
|
||
break;
|
||
case TOKge:
|
||
cmpop = llvm::FCmpInst::FCMP_OGE;
|
||
break;
|
||
case TOKunord:
|
||
cmpop = llvm::FCmpInst::FCMP_UNO;
|
||
break;
|
||
case TOKule:
|
||
cmpop = llvm::FCmpInst::FCMP_ULE;
|
||
break;
|
||
case TOKul:
|
||
cmpop = llvm::FCmpInst::FCMP_ULT;
|
||
break;
|
||
case TOKuge:
|
||
cmpop = llvm::FCmpInst::FCMP_UGE;
|
||
break;
|
||
case TOKug:
|
||
cmpop = llvm::FCmpInst::FCMP_UGT;
|
||
break;
|
||
case TOKue:
|
||
cmpop = llvm::FCmpInst::FCMP_UEQ;
|
||
break;
|
||
case TOKlg:
|
||
cmpop = llvm::FCmpInst::FCMP_ONE;
|
||
break;
|
||
case TOKleg:
|
||
cmpop = llvm::FCmpInst::FCMP_ORD;
|
||
break;
|
||
|
||
default:
|
||
llvm_unreachable("Unsupported floating point comparison operator.");
|
||
}
|
||
eval = p->ir->CreateFCmp(cmpop, DtoRVal(l), DtoRVal(r));
|
||
} else if (t->ty == Taarray) {
|
||
eval = LLConstantInt::getFalse(gIR->context());
|
||
} else if (t->ty == Tdelegate) {
|
||
llvm::ICmpInst::Predicate icmpPred;
|
||
tokToICmpPred(e->op, isLLVMUnsigned(t), &icmpPred, &eval);
|
||
|
||
if (!eval) {
|
||
// First compare the function pointers, then the context ones. This is
|
||
// what DMD does.
|
||
llvm::Value *lhs = DtoRVal(l);
|
||
llvm::Value *rhs = DtoRVal(r);
|
||
|
||
llvm::BasicBlock *fptreq = p->insertBB("fptreq");
|
||
llvm::BasicBlock *fptrneq = p->insertBBAfter(fptreq, "fptrneq");
|
||
llvm::BasicBlock *dgcmpend = p->insertBBAfter(fptrneq, "dgcmpend");
|
||
|
||
llvm::Value *lfptr = p->ir->CreateExtractValue(lhs, 1, ".lfptr");
|
||
llvm::Value *rfptr = p->ir->CreateExtractValue(rhs, 1, ".rfptr");
|
||
|
||
llvm::Value *fptreqcmp = p->ir->CreateICmp(llvm::ICmpInst::ICMP_EQ,
|
||
lfptr, rfptr, ".fptreqcmp");
|
||
llvm::BranchInst::Create(fptreq, fptrneq, fptreqcmp, p->scopebb());
|
||
|
||
p->scope() = IRScope(fptreq);
|
||
llvm::Value *lctx = p->ir->CreateExtractValue(lhs, 0, ".lctx");
|
||
llvm::Value *rctx = p->ir->CreateExtractValue(rhs, 0, ".rctx");
|
||
llvm::Value *ctxcmp =
|
||
p->ir->CreateICmp(icmpPred, lctx, rctx, ".ctxcmp");
|
||
llvm::BranchInst::Create(dgcmpend, p->scopebb());
|
||
|
||
p->scope() = IRScope(fptrneq);
|
||
llvm::Value *fptrcmp =
|
||
p->ir->CreateICmp(icmpPred, lfptr, rfptr, ".fptrcmp");
|
||
llvm::BranchInst::Create(dgcmpend, p->scopebb());
|
||
|
||
p->scope() = IRScope(dgcmpend);
|
||
llvm::PHINode *phi = p->ir->CreatePHI(ctxcmp->getType(), 2, ".dgcmp");
|
||
phi->addIncoming(ctxcmp, fptreq);
|
||
phi->addIncoming(fptrcmp, fptrneq);
|
||
eval = phi;
|
||
}
|
||
} else {
|
||
llvm_unreachable("Unsupported CmpExp type");
|
||
}
|
||
|
||
result = new DImValue(e->type, eval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(EqualExp *e) override {
|
||
IF_LOG Logger::print("EqualExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
DValue *l = toElem(e->e1);
|
||
DValue *r = toElem(e->e2);
|
||
|
||
Type *t = e->e1->type->toBasetype();
|
||
|
||
LLValue *eval = nullptr;
|
||
|
||
// the Tclass catches interface comparisons, regular
|
||
// class equality should be rewritten as a.opEquals(b) by this time
|
||
if (t->isintegral() || t->ty == Tpointer || t->ty == Tclass ||
|
||
t->ty == Tnull) {
|
||
Logger::println("integral or pointer or interface");
|
||
llvm::ICmpInst::Predicate cmpop;
|
||
switch (e->op) {
|
||
case TOKequal:
|
||
cmpop = llvm::ICmpInst::ICMP_EQ;
|
||
break;
|
||
case TOKnotequal:
|
||
cmpop = llvm::ICmpInst::ICMP_NE;
|
||
break;
|
||
default:
|
||
llvm_unreachable("Unsupported integral type equality comparison.");
|
||
}
|
||
LLValue *lv = DtoRVal(l);
|
||
LLValue *rv = DtoRVal(r);
|
||
if (rv->getType() != lv->getType()) {
|
||
rv = DtoBitCast(rv, lv->getType());
|
||
}
|
||
IF_LOG {
|
||
Logger::cout() << "lv: " << *lv << '\n';
|
||
Logger::cout() << "rv: " << *rv << '\n';
|
||
}
|
||
eval = p->ir->CreateICmp(cmpop, lv, rv);
|
||
if (t->ty == Tvector) {
|
||
eval = mergeVectorEquals(eval, e->op);
|
||
}
|
||
} else if (t->isfloating()) // includes iscomplex
|
||
{
|
||
eval = DtoBinNumericEquals(e->loc, l, r, e->op);
|
||
} else if (t->ty == Tsarray || t->ty == Tarray) {
|
||
Logger::println("static or dynamic array");
|
||
eval = DtoArrayEquals(e->loc, e->op, l, r);
|
||
} else if (t->ty == Taarray) {
|
||
Logger::println("associative array");
|
||
eval = DtoAAEquals(e->loc, e->op, l, r);
|
||
} else if (t->ty == Tdelegate) {
|
||
Logger::println("delegate");
|
||
eval = DtoDelegateEquals(e->op, DtoRVal(l), DtoRVal(r));
|
||
} else if (t->ty == Tstruct) {
|
||
Logger::println("struct");
|
||
// when this is reached it means there is no opEquals overload.
|
||
eval = DtoStructEquals(e->op, l, r);
|
||
} else {
|
||
llvm_unreachable("Unsupported EqualExp type.");
|
||
}
|
||
|
||
result = new DImValue(e->type, eval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(PostExp *e) override {
|
||
IF_LOG Logger::print("PostExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
DValue *const dv = toElem(e->e1);
|
||
LLValue *const lval = DtoLVal(dv);
|
||
toElem(e->e2);
|
||
|
||
LLValue *val = DtoLoad(lval);
|
||
LLValue *post = nullptr;
|
||
|
||
Type *e1type = e->e1->type->toBasetype();
|
||
Type *e2type = e->e2->type->toBasetype();
|
||
|
||
if (e1type->isintegral()) {
|
||
assert(e2type->isintegral());
|
||
LLValue *one =
|
||
LLConstantInt::get(val->getType(), 1, !e2type->isunsigned());
|
||
if (e->op == TOKplusplus) {
|
||
post = llvm::BinaryOperator::CreateAdd(val, one, "", p->scopebb());
|
||
} else if (e->op == TOKminusminus) {
|
||
post = llvm::BinaryOperator::CreateSub(val, one, "", p->scopebb());
|
||
}
|
||
} else if (e1type->ty == Tpointer) {
|
||
assert(e->e2->op == TOKint64);
|
||
LLConstant *offset =
|
||
e->op == TOKplusplus ? DtoConstUint(1) : DtoConstInt(-1);
|
||
post = DtoGEP1(val, offset, false, "", p->scopebb());
|
||
} else if (e1type->iscomplex()) {
|
||
assert(e2type->iscomplex());
|
||
LLValue *one = LLConstantFP::get(DtoComplexBaseType(e1type), 1.0);
|
||
LLValue *re, *im;
|
||
DtoGetComplexParts(e->loc, e1type, dv, re, im);
|
||
if (e->op == TOKplusplus) {
|
||
re = llvm::BinaryOperator::CreateFAdd(re, one, "", p->scopebb());
|
||
} else if (e->op == TOKminusminus) {
|
||
re = llvm::BinaryOperator::CreateFSub(re, one, "", p->scopebb());
|
||
}
|
||
DtoComplexSet(lval, re, im);
|
||
} else if (e1type->isfloating()) {
|
||
assert(e2type->isfloating());
|
||
LLValue *one = DtoConstFP(e1type, ldouble(1.0));
|
||
if (e->op == TOKplusplus) {
|
||
post = llvm::BinaryOperator::CreateFAdd(val, one, "", p->scopebb());
|
||
} else if (e->op == TOKminusminus) {
|
||
post = llvm::BinaryOperator::CreateFSub(val, one, "", p->scopebb());
|
||
}
|
||
} else {
|
||
llvm_unreachable("Unsupported type for PostExp.");
|
||
}
|
||
|
||
// The real part of the complex number has already been updated, skip the
|
||
// store
|
||
if (!e1type->iscomplex()) {
|
||
DtoStore(post, lval);
|
||
}
|
||
result = new DImValue(e->type, val);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(NewExp *e) override {
|
||
IF_LOG Logger::print("NewExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
bool isArgprefixHandled = false;
|
||
|
||
assert(e->newtype);
|
||
Type *ntype = e->newtype->toBasetype();
|
||
|
||
// new class
|
||
if (ntype->ty == Tclass) {
|
||
Logger::println("new class");
|
||
result = DtoNewClass(e->loc, static_cast<TypeClass *>(ntype), e);
|
||
isArgprefixHandled = true; // by DtoNewClass()
|
||
}
|
||
// new dynamic array
|
||
else if (ntype->ty == Tarray) {
|
||
IF_LOG Logger::println("new dynamic array: %s", e->newtype->toChars());
|
||
assert(e->argprefix == NULL);
|
||
// get dim
|
||
assert(e->arguments);
|
||
assert(e->arguments->dim >= 1);
|
||
if (e->arguments->dim == 1) {
|
||
DValue *sz = toElem((*e->arguments)[0]);
|
||
// allocate & init
|
||
result = DtoNewDynArray(e->loc, e->newtype, sz, true);
|
||
} else {
|
||
size_t ndims = e->arguments->dim;
|
||
std::vector<DValue *> dims;
|
||
dims.reserve(ndims);
|
||
for (auto arg : *e->arguments) {
|
||
dims.push_back(toElem(arg));
|
||
}
|
||
result = DtoNewMulDimDynArray(e->loc, e->newtype, &dims[0], ndims);
|
||
}
|
||
}
|
||
// new static array
|
||
else if (ntype->ty == Tsarray) {
|
||
llvm_unreachable("Static array new should decay to dynamic array.");
|
||
}
|
||
// new struct
|
||
else if (ntype->ty == Tstruct) {
|
||
IF_LOG Logger::println("new struct on heap: %s\n", e->newtype->toChars());
|
||
|
||
TypeStruct *ts = static_cast<TypeStruct *>(ntype);
|
||
|
||
// allocate
|
||
LLValue *mem = nullptr;
|
||
if (e->allocator) {
|
||
// custom allocator
|
||
DtoResolveFunction(e->allocator);
|
||
DFuncValue dfn(e->allocator, DtoCallee(e->allocator));
|
||
DValue *res = DtoCallFunction(e->loc, nullptr, &dfn, e->newargs);
|
||
mem = DtoBitCast(DtoRVal(res), DtoType(ntype->pointerTo()),
|
||
".newstruct_custom");
|
||
} else {
|
||
// default allocator
|
||
mem = DtoNewStruct(e->loc, ts);
|
||
}
|
||
|
||
if (!e->member && e->arguments) {
|
||
IF_LOG Logger::println("Constructing using literal");
|
||
write_struct_literal(e->loc, mem, ts->sym, e->arguments);
|
||
} else {
|
||
// set nested context
|
||
if (ts->sym->isNested() && ts->sym->vthis) {
|
||
DtoResolveNestedContext(e->loc, ts->sym, mem);
|
||
}
|
||
|
||
// call constructor
|
||
if (e->member) {
|
||
// evaluate argprefix
|
||
if (e->argprefix) {
|
||
toElemDtor(e->argprefix);
|
||
isArgprefixHandled = true;
|
||
}
|
||
|
||
IF_LOG Logger::println("Calling constructor");
|
||
assert(e->arguments != NULL);
|
||
DtoResolveFunction(e->member);
|
||
DFuncValue dfn(e->member, DtoCallee(e->member), mem);
|
||
DtoCallFunction(e->loc, ts, &dfn, e->arguments);
|
||
}
|
||
}
|
||
|
||
result = new DImValue(e->type, mem);
|
||
}
|
||
// new basic type
|
||
else {
|
||
IF_LOG Logger::println("basic type on heap: %s\n", e->newtype->toChars());
|
||
assert(e->argprefix == NULL);
|
||
|
||
// allocate
|
||
LLValue *mem = DtoNew(e->loc, e->newtype);
|
||
DLValue tmpvar(e->newtype, mem);
|
||
|
||
Expression *exp = nullptr;
|
||
if (!e->arguments || e->arguments->dim == 0) {
|
||
IF_LOG Logger::println("default initializer\n");
|
||
// static arrays never appear here, so using the defaultInit is ok!
|
||
exp = e->newtype->defaultInit(e->loc);
|
||
} else {
|
||
IF_LOG Logger::println("uniform constructor\n");
|
||
assert(e->arguments->dim == 1);
|
||
exp = (*e->arguments)[0];
|
||
}
|
||
|
||
// try to construct it in-place
|
||
if (!toInPlaceConstruction(&tmpvar, exp))
|
||
DtoAssign(e->loc, &tmpvar, toElem(exp), TOKblit);
|
||
|
||
// return as pointer-to
|
||
result = new DImValue(e->type, mem);
|
||
}
|
||
|
||
(void)isArgprefixHandled;
|
||
assert(e->argprefix == NULL || isArgprefixHandled);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(DeleteExp *e) override {
|
||
IF_LOG Logger::print("DeleteExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
DValue *dval = toElem(e->e1);
|
||
Type *et = e->e1->type->toBasetype();
|
||
|
||
// pointer
|
||
if (et->ty == Tpointer) {
|
||
Type *elementType = et->nextOf()->toBasetype();
|
||
if (elementType->ty == Tstruct && elementType->needsDestruction()) {
|
||
DtoDeleteStruct(e->loc, dval);
|
||
} else {
|
||
DtoDeleteMemory(e->loc, dval);
|
||
}
|
||
}
|
||
// class
|
||
else if (et->ty == Tclass) {
|
||
bool onstack = false;
|
||
TypeClass *tc = static_cast<TypeClass *>(et);
|
||
if (tc->sym->isInterfaceDeclaration()) {
|
||
DtoDeleteInterface(e->loc, dval);
|
||
onstack = true;
|
||
} else if (e->e1->op == TOKvar) {
|
||
if (auto vd = static_cast<VarExp *>(e->e1)->var->isVarDeclaration()) {
|
||
if (vd->onstack) {
|
||
assert(vd->scopeClassType);
|
||
const auto cd = vd->scopeClassType->sym->isClassDeclaration();
|
||
DtoFinalizeScopeClass(e->loc, DtoRVal(dval), cd);
|
||
onstack = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!onstack) {
|
||
DtoDeleteClass(e->loc, dval); // sets dval to null
|
||
} else if (dval->isLVal()) {
|
||
LLValue *lval = DtoLVal(dval);
|
||
DtoStore(LLConstant::getNullValue(lval->getType()->getContainedType(0)),
|
||
lval);
|
||
}
|
||
}
|
||
// dyn array
|
||
else if (et->ty == Tarray) {
|
||
DtoDeleteArray(e->loc, dval);
|
||
if (dval->isLVal()) {
|
||
DtoSetArrayToNull(DtoLVal(dval));
|
||
}
|
||
}
|
||
// unknown/invalid
|
||
else {
|
||
llvm_unreachable("Unsupported DeleteExp target.");
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(ArrayLengthExp *e) override {
|
||
IF_LOG Logger::print("ArrayLengthExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
DValue *u = toElem(e->e1);
|
||
result = new DImValue(e->type, DtoArrayLen(u));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(AssertExp *e) override {
|
||
IF_LOG Logger::print("AssertExp::toElem: %s\n", e->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
if (global.params.useAssert != CHECKENABLEon)
|
||
return;
|
||
|
||
// condition
|
||
DValue *cond;
|
||
Type *condty;
|
||
|
||
cond = toElem(e->e1);
|
||
condty = e->e1->type->toBasetype();
|
||
|
||
// create basic blocks
|
||
llvm::BasicBlock *passedbb = p->insertBB("assertPassed");
|
||
llvm::BasicBlock *failedbb = p->insertBBAfter(passedbb, "assertFailed");
|
||
|
||
// test condition
|
||
LLValue *condval = DtoRVal(DtoCast(e->loc, cond, Type::tbool));
|
||
|
||
// branch
|
||
llvm::BranchInst::Create(passedbb, failedbb, condval, p->scopebb());
|
||
// The branch does not need instrumentation for PGO because failedbb
|
||
// terminates in unreachable, which means that LLVM will automatically
|
||
// assign branch weights to this branch instruction.
|
||
|
||
// failed: call assert runtime function
|
||
p->scope() = IRScope(failedbb);
|
||
|
||
/* DMD Bugzilla 8360: If the condition is evaluated to true,
|
||
* msg is not evaluated at all. So should use toElemDtor()
|
||
* instead of toElem().
|
||
*/
|
||
DValue *const msg = e->msg ? toElemDtor(e->msg) : nullptr;
|
||
Module *const module = p->func()->decl->getModule();
|
||
if (global.params.checkAction == CHECKACTION_C) {
|
||
const auto cMsg =
|
||
msg ? DtoArrayPtr(msg) // assuming `msg` is null-terminated, like DMD
|
||
: DtoConstCString(e->e1->toChars());
|
||
DtoCAssert(module, e->e1->loc, cMsg);
|
||
} else {
|
||
DtoAssert(module, e->loc, msg);
|
||
}
|
||
|
||
// passed:
|
||
p->scope() = IRScope(passedbb);
|
||
|
||
// class/struct invariants
|
||
if (!global.params.useInvariants)
|
||
return;
|
||
if (condty->ty == Tclass) {
|
||
const auto sym = static_cast<TypeClass *>(condty)->sym;
|
||
if (sym->isInterfaceDeclaration() || sym->isCPPclass())
|
||
return;
|
||
|
||
Logger::println("calling class invariant");
|
||
|
||
const auto fnMangle =
|
||
getIRMangledFuncName("_D9invariant12_d_invariantFC6ObjectZv", LINKd);
|
||
const auto fn = getRuntimeFunction(e->loc, gIR->module, fnMangle.c_str());
|
||
|
||
const auto arg =
|
||
DtoBitCast(DtoRVal(cond), fn->getFunctionType()->getParamType(0));
|
||
|
||
gIR->CreateCallOrInvoke(fn, arg);
|
||
} else if (condty->ty == Tpointer && condty->nextOf()->ty == Tstruct) {
|
||
const auto invDecl =
|
||
static_cast<TypeStruct *>(condty->nextOf())->sym->inv;
|
||
if (!invDecl)
|
||
return;
|
||
|
||
Logger::print("calling struct invariant");
|
||
|
||
DtoResolveFunction(invDecl);
|
||
DFuncValue invFunc(invDecl, DtoCallee(invDecl), DtoRVal(cond));
|
||
DtoCallFunction(e->loc, nullptr, &invFunc, nullptr);
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(NotExp *e) override {
|
||
IF_LOG Logger::print("NotExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
DValue *u = toElem(e->e1);
|
||
|
||
LLValue *b = DtoRVal(DtoCast(e->loc, u, Type::tbool));
|
||
|
||
LLConstant *zero = DtoConstBool(false);
|
||
b = p->ir->CreateICmpEQ(b, zero);
|
||
|
||
result = new DImValue(e->type, b);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(LogicalExp *e) override {
|
||
IF_LOG Logger::print("LogicalExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
DValue *u = toElem(e->e1);
|
||
|
||
const bool isAndAnd = (e->op == TOKandand); // otherwise OrOr
|
||
llvm::BasicBlock *rhsBB = p->insertBB(isAndAnd ? "andand" : "oror");
|
||
llvm::BasicBlock *endBB =
|
||
p->insertBBAfter(rhsBB, isAndAnd ? "andandend" : "ororend");
|
||
|
||
LLValue *ubool = DtoRVal(DtoCast(e->loc, u, Type::tbool));
|
||
|
||
llvm::BasicBlock *oldblock = p->scopebb();
|
||
uint64_t truecount, falsecount;
|
||
if (isAndAnd) {
|
||
truecount = PGO.getRegionCount(e);
|
||
falsecount = PGO.getCurrentRegionCount() - truecount;
|
||
} else {
|
||
falsecount = PGO.getRegionCount(e);
|
||
truecount = PGO.getCurrentRegionCount() - falsecount;
|
||
}
|
||
auto branchweights = PGO.createProfileWeights(truecount, falsecount);
|
||
p->ir->CreateCondBr(ubool, isAndAnd ? rhsBB : endBB,
|
||
isAndAnd ? endBB : rhsBB, branchweights);
|
||
|
||
p->scope() = IRScope(rhsBB);
|
||
PGO.emitCounterIncrement(e);
|
||
emitCoverageLinecountInc(e->e2->loc);
|
||
DValue *v = toElemDtor(e->e2);
|
||
|
||
LLValue *vbool = nullptr;
|
||
if (v && !v->isFunc() && v->type != Type::tvoid) {
|
||
vbool = DtoRVal(DtoCast(e->loc, v, Type::tbool));
|
||
}
|
||
|
||
llvm::BasicBlock *newblock = p->scopebb();
|
||
llvm::BranchInst::Create(endBB, p->scopebb());
|
||
p->scope() = IRScope(endBB);
|
||
|
||
// DMD allows stuff like `x == 0 && assert(false)`
|
||
if (e->type->toBasetype()->ty == Tvoid) {
|
||
result = nullptr;
|
||
return;
|
||
}
|
||
|
||
LLValue *resval = nullptr;
|
||
if (ubool == vbool || !vbool) {
|
||
// No need to create a PHI node.
|
||
resval = ubool;
|
||
} else {
|
||
llvm::PHINode *phi =
|
||
p->ir->CreatePHI(LLType::getInt1Ty(gIR->context()), 2,
|
||
isAndAnd ? "andandval" : "ororval");
|
||
if (isAndAnd) {
|
||
// If we jumped over evaluation of the right-hand side,
|
||
// the result is false. Otherwise it's the value of the right-hand side.
|
||
phi->addIncoming(LLConstantInt::getFalse(gIR->context()), oldblock);
|
||
} else {
|
||
// If we jumped over evaluation of the right-hand side,
|
||
// the result is true. Otherwise, it's the value of the right-hand side.
|
||
phi->addIncoming(LLConstantInt::getTrue(gIR->context()), oldblock);
|
||
}
|
||
phi->addIncoming(vbool, newblock);
|
||
resval = phi;
|
||
}
|
||
|
||
result = new DImValue(e->type, resval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(HaltExp *e) override {
|
||
IF_LOG Logger::print("HaltExp::toElem: %s\n", e->toChars());
|
||
LOG_SCOPE;
|
||
|
||
p->ir->CreateCall(GET_INTRINSIC_DECL(trap), {});
|
||
p->ir->CreateUnreachable();
|
||
|
||
// this terminated the basicblock, start a new one
|
||
// this is sensible, since someone might goto behind the assert
|
||
// and prevents compiler errors if a terminator follows the assert
|
||
llvm::BasicBlock *bb = p->insertBB("afterhalt");
|
||
p->scope() = IRScope(bb);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(DelegateExp *e) override {
|
||
IF_LOG Logger::print("DelegateExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (e->func->isStatic()) {
|
||
e->error("can't take delegate of static function `%s`, it does not "
|
||
"require a context ptr",
|
||
e->func->toChars());
|
||
}
|
||
|
||
LLPointerType *int8ptrty = getPtrToType(LLType::getInt8Ty(gIR->context()));
|
||
|
||
assert(e->type->toBasetype()->ty == Tdelegate);
|
||
LLType *dgty = DtoType(e->type);
|
||
|
||
DValue *u = toElem(e->e1);
|
||
LLValue *uval;
|
||
if (DFuncValue *f = u->isFunc()) {
|
||
assert(f->func);
|
||
LLValue *contextptr = DtoNestedContext(e->loc, f->func);
|
||
uval = DtoBitCast(contextptr, getVoidPtrType());
|
||
} else {
|
||
uval = (DtoIsInMemoryOnly(u->type) ? DtoLVal(u) : DtoRVal(u));
|
||
}
|
||
|
||
IF_LOG Logger::cout() << "context = " << *uval << '\n';
|
||
|
||
LLValue *castcontext = DtoBitCast(uval, int8ptrty);
|
||
|
||
IF_LOG Logger::println("func: '%s'", e->func->toPrettyChars());
|
||
|
||
LLValue *castfptr;
|
||
|
||
if (e->e1->op != TOKsuper && e->e1->op != TOKdottype &&
|
||
e->func->isVirtual() && !e->func->isFinalFunc()) {
|
||
castfptr = DtoVirtualFunctionPointer(u, e->func, e->toChars());
|
||
} else if (e->func->isAbstract()) {
|
||
llvm_unreachable("Delegate to abstract method not implemented.");
|
||
} else if (e->func->toParent()->isInterfaceDeclaration()) {
|
||
llvm_unreachable("Delegate to interface method not implemented.");
|
||
} else {
|
||
DtoResolveFunction(e->func);
|
||
|
||
// We need to actually codegen the function here, as literals are not
|
||
// added to the module member list.
|
||
if (e->func->semanticRun == PASSsemantic3done) {
|
||
Dsymbol *owner = e->func->toParent();
|
||
while (!owner->isTemplateInstance() && owner->toParent()) {
|
||
owner = owner->toParent();
|
||
}
|
||
if (owner->isTemplateInstance() || owner == p->dmodule) {
|
||
Declaration_codegen(e->func, p);
|
||
}
|
||
}
|
||
|
||
castfptr = DtoCallee(e->func);
|
||
}
|
||
|
||
castfptr = DtoBitCast(castfptr, dgty->getContainedType(1));
|
||
|
||
result = new DImValue(
|
||
e->type, DtoAggrPair(DtoType(e->type), castcontext, castfptr, ".dg"));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(IdentityExp *e) override {
|
||
IF_LOG Logger::print("IdentityExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue *l = toElem(e->e1);
|
||
DValue *r = toElem(e->e2);
|
||
|
||
Type *t1 = e->e1->type->toBasetype();
|
||
|
||
// handle dynarray specially
|
||
if (t1->ty == Tarray) {
|
||
result = new DImValue(e->type, DtoDynArrayIs(e->op, l, r));
|
||
return;
|
||
}
|
||
// also structs
|
||
if (t1->ty == Tstruct) {
|
||
result = new DImValue(e->type, DtoStructEquals(e->op, l, r));
|
||
return;
|
||
}
|
||
|
||
// FIXME this stuff isn't pretty
|
||
LLValue *eval = nullptr;
|
||
|
||
if (t1->ty == Tdelegate) {
|
||
LLValue *lv = DtoRVal(l);
|
||
LLValue *rv = nullptr;
|
||
if (!r->isNull()) {
|
||
rv = DtoRVal(r);
|
||
assert(lv->getType() == rv->getType());
|
||
}
|
||
eval = DtoDelegateEquals(e->op, lv, rv);
|
||
} else if (t1->isfloating()) // includes iscomplex
|
||
{
|
||
eval = DtoBinNumericEquals(e->loc, l, r, e->op);
|
||
} else if (t1->ty == Tpointer || t1->ty == Tclass) {
|
||
LLValue *lv = DtoRVal(l);
|
||
LLValue *rv = DtoRVal(r);
|
||
if (lv->getType() != rv->getType()) {
|
||
if (r->isNull()) {
|
||
rv = llvm::ConstantPointerNull::get(isaPointer(lv->getType()));
|
||
} else {
|
||
rv = DtoBitCast(rv, lv->getType());
|
||
}
|
||
}
|
||
eval = (e->op == TOKidentity) ? p->ir->CreateICmpEQ(lv, rv)
|
||
: p->ir->CreateICmpNE(lv, rv);
|
||
} else if (t1->ty == Tsarray) {
|
||
LLValue *lptr = DtoLVal(l);
|
||
LLValue *rptr = DtoLVal(r);
|
||
assert(lptr->getType() == rptr->getType());
|
||
eval = (e->op == TOKidentity) ? p->ir->CreateICmpEQ(lptr, rptr)
|
||
: p->ir->CreateICmpNE(lptr, rptr);
|
||
} else {
|
||
LLValue *lv = DtoRVal(l);
|
||
LLValue *rv = DtoRVal(r);
|
||
assert(lv->getType() == rv->getType());
|
||
eval = (e->op == TOKidentity) ? p->ir->CreateICmpEQ(lv, rv)
|
||
: p->ir->CreateICmpNE(lv, rv);
|
||
}
|
||
result = new DImValue(e->type, eval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(CommaExp *e) override {
|
||
IF_LOG Logger::print("CommaExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
toElem(e->e1);
|
||
result = toElem(e->e2);
|
||
|
||
// Actually, we can get qualifier mismatches in the 2.064 frontend:
|
||
// assert(e2->type == type);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(CondExp *e) override {
|
||
IF_LOG Logger::print("CondExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
auto &PGO = gIR->funcGen().pgo;
|
||
PGO.setCurrentStmt(e);
|
||
|
||
Type *dtype = e->type->toBasetype();
|
||
LLValue *retPtr = nullptr;
|
||
if (dtype->ty != Tvoid) {
|
||
// allocate a temporary for pointer to the final result.
|
||
retPtr = DtoAlloca(dtype->pointerTo(), "condtmp");
|
||
}
|
||
|
||
llvm::BasicBlock *condtrue = p->insertBB("condtrue");
|
||
llvm::BasicBlock *condfalse = p->insertBBAfter(condtrue, "condfalse");
|
||
llvm::BasicBlock *condend = p->insertBBAfter(condfalse, "condend");
|
||
|
||
DValue *c = toElem(e->econd);
|
||
LLValue *cond_val = DtoRVal(DtoCast(e->loc, c, Type::tbool));
|
||
|
||
auto truecount = PGO.getRegionCount(e);
|
||
auto falsecount = PGO.getCurrentRegionCount() - truecount;
|
||
auto branchweights = PGO.createProfileWeights(truecount, falsecount);
|
||
p->ir->CreateCondBr(cond_val, condtrue, condfalse, branchweights);
|
||
|
||
p->scope() = IRScope(condtrue);
|
||
PGO.emitCounterIncrement(e);
|
||
DValue *u = toElem(e->e1);
|
||
if (retPtr) {
|
||
LLValue *lval = makeLValue(e->loc, u);
|
||
DtoStore(lval, DtoBitCast(retPtr, lval->getType()->getPointerTo()));
|
||
}
|
||
llvm::BranchInst::Create(condend, p->scopebb());
|
||
|
||
p->scope() = IRScope(condfalse);
|
||
DValue *v = toElem(e->e2);
|
||
if (retPtr) {
|
||
LLValue *lval = makeLValue(e->loc, v);
|
||
DtoStore(lval, DtoBitCast(retPtr, lval->getType()->getPointerTo()));
|
||
}
|
||
llvm::BranchInst::Create(condend, p->scopebb());
|
||
|
||
p->scope() = IRScope(condend);
|
||
if (retPtr)
|
||
result = new DSpecialRefValue(e->type, retPtr);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(ComExp *e) override {
|
||
IF_LOG Logger::print("ComExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
LLValue *value = DtoRVal(e->e1);
|
||
LLValue *minusone =
|
||
LLConstantInt::get(value->getType(), static_cast<uint64_t>(-1), true);
|
||
value = llvm::BinaryOperator::Create(llvm::Instruction::Xor, value,
|
||
minusone, "", p->scopebb());
|
||
|
||
result = new DImValue(e->type, value);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(NegExp *e) override {
|
||
IF_LOG Logger::print("NegExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DRValue *dval = toElem(e->e1)->getRVal();
|
||
|
||
if (e->type->iscomplex()) {
|
||
result = DtoComplexNeg(e->loc, e->type, dval);
|
||
return;
|
||
}
|
||
|
||
LLValue *val = DtoRVal(dval);
|
||
|
||
if (e->type->isintegral()) {
|
||
val = p->ir->CreateNeg(val, "negval");
|
||
} else {
|
||
val = p->ir->CreateFNeg(val, "negval");
|
||
}
|
||
|
||
result = new DImValue(e->type, val);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(CatExp *e) override {
|
||
IF_LOG Logger::print("CatExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
result = DtoCatArrays(e->loc, e->type, e->e1, e->e2);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(CatAssignExp *e) override {
|
||
IF_LOG Logger::print("CatAssignExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
result = toElem(e->e1);
|
||
|
||
Type *e1type = e->e1->type->toBasetype();
|
||
assert(e1type->ty == Tarray);
|
||
Type *elemtype = e1type->nextOf()->toBasetype();
|
||
Type *e2type = e->e2->type->toBasetype();
|
||
|
||
if (e1type->ty == Tarray && e2type->ty == Tdchar &&
|
||
(elemtype->ty == Tchar || elemtype->ty == Twchar)) {
|
||
if (elemtype->ty == Tchar) {
|
||
// append dchar to char[]
|
||
DtoAppendDCharToString(e->loc, result, e->e2);
|
||
} else { /*if (elemtype->ty == Twchar)*/
|
||
// append dchar to wchar[]
|
||
DtoAppendDCharToUnicodeString(e->loc, result, e->e2);
|
||
}
|
||
} else if (e1type->equals(e2type)) {
|
||
// append array
|
||
DSliceValue *slice = DtoCatAssignArray(e->loc, result, e->e2);
|
||
DtoStore(DtoRVal(slice), DtoLVal(result));
|
||
} else {
|
||
// append element
|
||
DtoCatAssignElement(e->loc, e1type, result, e->e2);
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void genFuncLiteral(FuncLiteralDeclaration *fd, FuncExp *e) {
|
||
if ((fd->tok == TOKreserved || fd->tok == TOKdelegate) &&
|
||
(e && e->type->ty == Tpointer)) {
|
||
// This is a lambda that was inferred to be a function literal instead
|
||
// of a delegate, so set tok here in order to get correct types/mangling.
|
||
// Horrible hack, but DMD does the same thing.
|
||
fd->tok = TOKfunction;
|
||
fd->vthis = nullptr;
|
||
}
|
||
|
||
if (fd->isNested()) {
|
||
Logger::println("nested");
|
||
}
|
||
Logger::println("kind = %s", fd->kind());
|
||
|
||
// We need to actually codegen the function here, as literals are not added
|
||
// to the module member list.
|
||
Declaration_codegen(fd, p);
|
||
if (!isIrFuncCreated(fd)) {
|
||
// See DtoDefineFunction for reasons why codegen was suppressed.
|
||
// Instead just declare the function.
|
||
DtoDeclareFunction(fd);
|
||
assert(!fd->isNested());
|
||
}
|
||
assert(DtoCallee(fd));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(FuncExp *e) override {
|
||
IF_LOG Logger::print("FuncExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
FuncLiteralDeclaration *fd = e->fd;
|
||
assert(fd);
|
||
|
||
genFuncLiteral(fd, e);
|
||
|
||
if (fd->isNested()) {
|
||
LLType *dgty = DtoType(e->type);
|
||
|
||
LLValue *cval;
|
||
auto &funcGen = p->funcGen();
|
||
auto &irfn = funcGen.irFunc;
|
||
if (funcGen.nestedVar && fd->toParent2() == irfn.decl) {
|
||
// We check fd->toParent2() because a frame allocated in one
|
||
// function cannot be used for a delegate created in another
|
||
// function. Happens with anonymous functions.
|
||
cval = funcGen.nestedVar;
|
||
} else if (irfn.nestArg) {
|
||
cval = irfn.nestArg;
|
||
} else if (irfn.thisArg) {
|
||
AggregateDeclaration *ad = irfn.decl->isMember2();
|
||
if (!ad || !ad->vthis) {
|
||
cval = getNullPtr(getVoidPtrType());
|
||
} else {
|
||
cval =
|
||
ad->isClassDeclaration() ? DtoLoad(irfn.thisArg) : irfn.thisArg;
|
||
cval = DtoLoad(
|
||
DtoGEPi(cval, 0, getFieldGEPIndex(ad, ad->vthis), ".vthis"));
|
||
}
|
||
} else {
|
||
cval = getNullPtr(getVoidPtrType());
|
||
}
|
||
cval = DtoBitCast(cval, dgty->getContainedType(0));
|
||
|
||
LLValue *castfptr = DtoBitCast(DtoCallee(fd), dgty->getContainedType(1));
|
||
|
||
result = new DImValue(e->type, DtoAggrPair(cval, castfptr, ".func"));
|
||
|
||
} else {
|
||
result = new DFuncValue(e->type, fd, DtoCallee(fd));
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(ArrayLiteralExp *e) override {
|
||
IF_LOG Logger::print("ArrayLiteralExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// D types
|
||
Type *arrayType = e->type->toBasetype();
|
||
Type *elemType = arrayType->nextOf()->toBasetype();
|
||
|
||
// is dynamic ?
|
||
bool const dyn = (arrayType->ty == Tarray);
|
||
// length
|
||
size_t const len = e->elements->dim;
|
||
|
||
// llvm target type
|
||
LLType *llType = DtoType(arrayType);
|
||
IF_LOG Logger::cout() << (dyn ? "dynamic" : "static")
|
||
<< " array literal with length " << len
|
||
<< " of D type: '" << arrayType->toChars()
|
||
<< "' has llvm type: '" << *llType << "'\n";
|
||
|
||
// llvm storage type
|
||
LLType *llElemType = DtoMemType(elemType);
|
||
LLType *llStoType = LLArrayType::get(llElemType, len);
|
||
IF_LOG Logger::cout() << "llvm storage type: '" << *llStoType << "'\n";
|
||
|
||
// don't allocate storage for zero length dynamic array literals
|
||
if (dyn && len == 0) {
|
||
// dmd seems to just make them null...
|
||
result = new DSliceValue(e->type, DtoConstSize_t(0),
|
||
getNullPtr(getPtrToType(llElemType)));
|
||
} else if (dyn) {
|
||
if (arrayType->isImmutable() && isConstLiteral(e, true)) {
|
||
llvm::Constant *init = arrayLiteralToConst(p, e);
|
||
auto global = new llvm::GlobalVariable(
|
||
gIR->module, init->getType(), true,
|
||
llvm::GlobalValue::InternalLinkage, init, ".immutablearray");
|
||
result = new DSliceValue(arrayType, DtoConstSize_t(len),
|
||
DtoBitCast(global, getPtrToType(llElemType)));
|
||
} else {
|
||
DSliceValue *dynSlice = DtoNewDynArray(
|
||
e->loc, arrayType,
|
||
new DConstValue(Type::tsize_t, DtoConstSize_t(len)), false);
|
||
initializeArrayLiteral(
|
||
p, e, DtoBitCast(dynSlice->getPtr(), getPtrToType(llStoType)));
|
||
result = dynSlice;
|
||
}
|
||
} else {
|
||
llvm::Value *storage =
|
||
DtoRawAlloca(llStoType, DtoAlignment(e->type), "arrayliteral");
|
||
initializeArrayLiteral(p, e, storage);
|
||
if (arrayType->ty == Tsarray) {
|
||
result = new DLValue(e->type, storage);
|
||
} else if (arrayType->ty == Tpointer) {
|
||
storage = DtoBitCast(storage, llElemType->getPointerTo());
|
||
result = new DImValue(e->type, storage);
|
||
} else {
|
||
llvm_unreachable("Unexpected array literal type");
|
||
}
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
static DLValue *emitStructLiteral(StructLiteralExp *e,
|
||
LLValue *dstMem = nullptr) {
|
||
IF_LOG Logger::print("StructLiteralExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (e->useStaticInit) {
|
||
DtoResolveStruct(e->sd);
|
||
LLValue *initsym = getIrAggr(e->sd)->getInitSymbol();
|
||
initsym = DtoBitCast(initsym, DtoType(e->type->pointerTo()));
|
||
|
||
if (!dstMem)
|
||
return new DLValue(e->type, initsym);
|
||
|
||
assert(dstMem->getType() == initsym->getType());
|
||
DtoMemCpy(dstMem, initsym);
|
||
return new DLValue(e->type, dstMem);
|
||
}
|
||
|
||
if (e->inProgressMemory) {
|
||
assert(!dstMem);
|
||
return new DLValue(e->type, e->inProgressMemory);
|
||
}
|
||
|
||
// make sure the struct is fully resolved
|
||
DtoResolveStruct(e->sd);
|
||
|
||
if (!dstMem)
|
||
dstMem = DtoAlloca(e->type, ".structliteral");
|
||
|
||
e->inProgressMemory = dstMem;
|
||
write_struct_literal(e->loc, dstMem, e->sd, e->elements);
|
||
e->inProgressMemory = nullptr;
|
||
|
||
return new DLValue(e->type, dstMem);
|
||
}
|
||
|
||
void visit(StructLiteralExp *e) override { result = emitStructLiteral(e); }
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(ClassReferenceExp *e) override {
|
||
IF_LOG Logger::print("ClassReferenceExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
result = new DImValue(e->type, toConstElem(e, p));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(InExp *e) override {
|
||
IF_LOG Logger::print("InExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue *key = toElem(e->e1);
|
||
DValue *aa = toElem(e->e2);
|
||
|
||
result = DtoAAIn(e->loc, e->type, aa, key);
|
||
}
|
||
|
||
void visit(RemoveExp *e) override {
|
||
IF_LOG Logger::print("RemoveExp::toElem: %s\n", e->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue *aa = toElem(e->e1);
|
||
DValue *key = toElem(e->e2);
|
||
|
||
result = DtoAARemove(e->loc, aa, key);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
/// Constructs an array initializer constant with the given constants as its
|
||
/// elements. If the element types differ (unions, …), an anonymous struct
|
||
/// literal is emitted (as for array constant initializers).
|
||
llvm::Constant *arrayConst(std::vector<llvm::Constant *> &vals,
|
||
Type *nominalElemType) {
|
||
if (vals.size() == 0) {
|
||
llvm::ArrayType *type = llvm::ArrayType::get(DtoType(nominalElemType), 0);
|
||
return llvm::ConstantArray::get(type, vals);
|
||
}
|
||
|
||
llvm::Type *elementType = nullptr;
|
||
bool differentTypes = false;
|
||
for (auto v : vals) {
|
||
if (!elementType) {
|
||
elementType = v->getType();
|
||
} else {
|
||
differentTypes |= (elementType != v->getType());
|
||
}
|
||
}
|
||
|
||
if (differentTypes) {
|
||
return llvm::ConstantStruct::getAnon(vals, true);
|
||
}
|
||
|
||
llvm::ArrayType *t = llvm::ArrayType::get(elementType, vals.size());
|
||
return llvm::ConstantArray::get(t, vals);
|
||
}
|
||
|
||
void visit(AssocArrayLiteralExp *e) override {
|
||
IF_LOG Logger::print("AssocArrayLiteralExp::toElem: %s @ %s\n",
|
||
e->toChars(), e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
assert(e->keys);
|
||
assert(e->values);
|
||
assert(e->keys->dim == e->values->dim);
|
||
|
||
Type *basetype = e->type->toBasetype();
|
||
Type *aatype = basetype;
|
||
Type *vtype = aatype->nextOf();
|
||
|
||
if (!e->keys->dim) {
|
||
goto LruntimeInit;
|
||
}
|
||
|
||
if (aatype->ty != Taarray) {
|
||
// It's the AssociativeArray type.
|
||
// Turn it back into a TypeAArray
|
||
vtype = e->values->tdata()[0]->type;
|
||
aatype = TypeAArray::create(vtype, e->keys->tdata()[0]->type);
|
||
aatype = typeSemantic(aatype, e->loc, nullptr);
|
||
}
|
||
|
||
{
|
||
std::vector<LLConstant *> keysInits, valuesInits;
|
||
keysInits.reserve(e->keys->dim);
|
||
valuesInits.reserve(e->keys->dim);
|
||
for (size_t i = 0, n = e->keys->dim; i < n; ++i) {
|
||
Expression *ekey = (*e->keys)[i];
|
||
Expression *eval = (*e->values)[i];
|
||
IF_LOG Logger::println("(%llu) aa[%s] = %s",
|
||
static_cast<unsigned long long>(i),
|
||
ekey->toChars(), eval->toChars());
|
||
unsigned errors = global.startGagging();
|
||
LLConstant *ekeyConst = toConstElem(ekey, p);
|
||
LLConstant *evalConst = toConstElem(eval, p);
|
||
if (global.endGagging(errors)) {
|
||
goto LruntimeInit;
|
||
}
|
||
assert(ekeyConst && evalConst);
|
||
keysInits.push_back(ekeyConst);
|
||
valuesInits.push_back(evalConst);
|
||
}
|
||
|
||
assert(aatype->ty == Taarray);
|
||
Type *indexType = static_cast<TypeAArray *>(aatype)->index;
|
||
assert(indexType && vtype);
|
||
|
||
llvm::Function *func =
|
||
getRuntimeFunction(e->loc, gIR->module, "_d_assocarrayliteralTX");
|
||
LLFunctionType *funcTy = func->getFunctionType();
|
||
LLValue *aaTypeInfo =
|
||
DtoBitCast(DtoTypeInfoOf(stripModifiers(aatype), /*base=*/false),
|
||
DtoType(Type::typeinfoassociativearray->type));
|
||
|
||
LLConstant *idxs[2] = {DtoConstUint(0), DtoConstUint(0)};
|
||
|
||
LLConstant *initval = arrayConst(keysInits, indexType);
|
||
LLConstant *globalstore = new LLGlobalVariable(
|
||
gIR->module, initval->getType(), false,
|
||
LLGlobalValue::InternalLinkage, initval, ".aaKeysStorage");
|
||
LLConstant *slice = llvm::ConstantExpr::getGetElementPtr(
|
||
isaPointer(globalstore)->getElementType(), globalstore, idxs, true);
|
||
slice = DtoConstSlice(DtoConstSize_t(e->keys->dim), slice);
|
||
LLValue *keysArray = DtoAggrPaint(slice, funcTy->getParamType(1));
|
||
|
||
initval = arrayConst(valuesInits, vtype);
|
||
globalstore = new LLGlobalVariable(gIR->module, initval->getType(), false,
|
||
LLGlobalValue::InternalLinkage,
|
||
initval, ".aaValuesStorage");
|
||
slice = llvm::ConstantExpr::getGetElementPtr(
|
||
isaPointer(globalstore)->getElementType(), globalstore, idxs, true);
|
||
slice = DtoConstSlice(DtoConstSize_t(e->keys->dim), slice);
|
||
LLValue *valuesArray = DtoAggrPaint(slice, funcTy->getParamType(2));
|
||
|
||
LLValue *aa = gIR->CreateCallOrInvoke(func, aaTypeInfo, keysArray,
|
||
valuesArray, "aa")
|
||
.getInstruction();
|
||
if (basetype->ty != Taarray) {
|
||
LLValue *tmp = DtoAlloca(e->type, "aaliteral");
|
||
DtoStore(aa, DtoGEPi(tmp, 0, 0));
|
||
result = new DLValue(e->type, tmp);
|
||
} else {
|
||
result = new DImValue(e->type, aa);
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
LruntimeInit:
|
||
|
||
// it should be possible to avoid the temporary in some cases
|
||
LLValue *tmp = DtoAllocaDump(LLConstant::getNullValue(DtoType(e->type)),
|
||
e->type, "aaliteral");
|
||
result = new DLValue(e->type, tmp);
|
||
|
||
const size_t n = e->keys->dim;
|
||
for (size_t i = 0; i < n; ++i) {
|
||
Expression *ekey = (*e->keys)[i];
|
||
Expression *eval = (*e->values)[i];
|
||
|
||
IF_LOG Logger::println("(%llu) aa[%s] = %s",
|
||
static_cast<unsigned long long>(i),
|
||
ekey->toChars(), eval->toChars());
|
||
|
||
// index
|
||
DValue *key = toElem(ekey);
|
||
DLValue *mem = DtoAAIndex(e->loc, vtype, result, key, true);
|
||
|
||
// try to construct it in-place
|
||
if (!toInPlaceConstruction(mem, eval))
|
||
DtoAssign(e->loc, mem, toElem(eval), TOKblit);
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue *toGEP(UnaExp *exp, unsigned index) {
|
||
// (&a.foo).funcptr is a case where toElem(e1) is genuinely not an l-value.
|
||
LLValue *val = makeLValue(exp->loc, toElem(exp->e1));
|
||
LLValue *v = DtoGEPi(val, 0, index);
|
||
return new DLValue(exp->type, DtoBitCast(v, DtoPtrToType(exp->type)));
|
||
}
|
||
|
||
void visit(DelegatePtrExp *e) override {
|
||
IF_LOG Logger::print("DelegatePtrExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
result = toGEP(e, 0);
|
||
}
|
||
|
||
void visit(DelegateFuncptrExp *e) override {
|
||
IF_LOG Logger::print("DelegateFuncptrExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
result = toGEP(e, 1);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(DotTypeExp *e) override {
|
||
IF_LOG Logger::print("DotTypeExp::toElem: %s @ %s\n", e->toChars(),
|
||
e->type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
assert(e->sym->getType());
|
||
result = toElem(e->e1);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(TypeExp *e) override {
|
||
e->error("type `%s` is not an expression", e->toChars());
|
||
// TODO: Improve error handling. DMD just returns some value here and hopes
|
||
// some more sensible error messages will be triggered.
|
||
fatal();
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(TupleExp *e) override {
|
||
IF_LOG Logger::print("TupleExp::toElem() %s\n", e->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// If there are any side effects, evaluate them first.
|
||
if (e->e0) {
|
||
toElem(e->e0);
|
||
}
|
||
|
||
std::vector<LLType *> types;
|
||
types.reserve(e->exps->dim);
|
||
for (auto exp : *e->exps) {
|
||
types.push_back(DtoMemType(exp->type));
|
||
}
|
||
LLValue *val =
|
||
DtoRawAlloca(LLStructType::get(gIR->context(), types), 0, ".tuple");
|
||
for (size_t i = 0; i < e->exps->dim; i++) {
|
||
Expression *el = (*e->exps)[i];
|
||
DValue *ep = toElem(el);
|
||
LLValue *gep = DtoGEPi(val, 0, i);
|
||
if (DtoIsInMemoryOnly(el->type)) {
|
||
DtoMemCpy(gep, DtoLVal(ep));
|
||
} else if (el->type->ty != Tvoid) {
|
||
DtoStoreZextI8(DtoRVal(ep), gep);
|
||
} else {
|
||
DtoStore(LLConstantInt::get(LLType::getInt8Ty(p->context()), 0, false),
|
||
gep);
|
||
}
|
||
}
|
||
result = new DLValue(e->type, val);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(VectorExp *e) override {
|
||
IF_LOG Logger::print("VectorExp::toElem() %s\n", e->toChars());
|
||
LOG_SCOPE;
|
||
|
||
TypeVector *type = static_cast<TypeVector *>(e->to->toBasetype());
|
||
assert(e->type->ty == Tvector);
|
||
|
||
LLValue *vector = DtoAlloca(e->to);
|
||
|
||
// Array literals are assigned element-wise, other expressions are cast and
|
||
// splat across the vector elements. This is what DMD does.
|
||
if (e->e1->op == TOKarrayliteral) {
|
||
Logger::println("array literal expression");
|
||
ArrayLiteralExp *lit = static_cast<ArrayLiteralExp *>(e->e1);
|
||
assert(lit->elements->dim == e->dim &&
|
||
"Array literal vector initializer "
|
||
"length mismatch, should have been handled in frontend.");
|
||
for (unsigned int i = 0; i < e->dim; ++i) {
|
||
DValue *val = toElem(indexArrayLiteral(lit, i));
|
||
LLValue *llval = DtoRVal(DtoCast(e->loc, val, type->elementType()));
|
||
DtoStore(llval, DtoGEPi(vector, 0, i));
|
||
}
|
||
} else {
|
||
Logger::println("normal (splat) expression");
|
||
DValue *val = toElem(e->e1);
|
||
LLValue *llval = DtoRVal(DtoCast(e->loc, val, type->elementType()));
|
||
for (unsigned int i = 0; i < e->dim; ++i) {
|
||
DtoStore(llval, DtoGEPi(vector, 0, i));
|
||
}
|
||
}
|
||
|
||
result = new DLValue(e->to, vector);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(PowExp *e) override {
|
||
IF_LOG Logger::print("PowExp::toElem() %s\n", e->toChars());
|
||
LOG_SCOPE;
|
||
|
||
e->error("must import `std.math` to use `^^` operator");
|
||
result = new DNullValue(e->type, llvm::UndefValue::get(DtoType(e->type)));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////
|
||
|
||
void visit(TypeidExp *e) override {
|
||
if (Type *t = isType(e->obj)) {
|
||
result = DtoSymbolAddress(e->loc, e->type,
|
||
getOrCreateTypeInfoDeclaration(t, nullptr));
|
||
return;
|
||
}
|
||
if (Expression *ex = isExpression(e->obj)) {
|
||
Type *t = ex->type->toBasetype();
|
||
assert(t->ty == Tclass);
|
||
|
||
LLValue *val = DtoRVal(ex);
|
||
|
||
// Get and load vtbl pointer.
|
||
llvm::Value *vtbl = DtoLoad(DtoGEPi(val, 0, 0));
|
||
|
||
// TypeInfo ptr is first vtbl entry.
|
||
llvm::Value *typinf = DtoGEPi(vtbl, 0, 0);
|
||
|
||
Type *resultType;
|
||
if (static_cast<TypeClass *>(t)->sym->isInterfaceDeclaration()) {
|
||
// For interfaces, the first entry in the vtbl is actually a pointer
|
||
// to an Interface instance, which has the type info as its first
|
||
// member, so we have to add an extra layer of indirection.
|
||
resultType = Type::typeinfointerface->type;
|
||
typinf = DtoLoad(
|
||
DtoBitCast(typinf, DtoType(resultType->pointerTo()->pointerTo())));
|
||
} else {
|
||
resultType = Type::typeinfoclass->type;
|
||
typinf = DtoBitCast(typinf, DtoType(resultType->pointerTo()));
|
||
}
|
||
|
||
result = new DLValue(resultType, typinf);
|
||
return;
|
||
}
|
||
llvm_unreachable("Unknown TypeidExp argument kind");
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
#define STUB(x) \
|
||
void visit(x *e) override { \
|
||
e->error("Internal compiler error: Type `" #x "` not implemented: `%s`", \
|
||
e->toChars()); \
|
||
fatal(); \
|
||
}
|
||
STUB(Expression)
|
||
STUB(ScopeExp)
|
||
STUB(SymbolExp)
|
||
STUB(PowAssignExp)
|
||
#undef STUB
|
||
};
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue *toElem(Expression *e) {
|
||
ToElemVisitor v(gIR, false);
|
||
e->accept(&v);
|
||
return v.getResult();
|
||
}
|
||
|
||
DValue *toElemDtor(Expression *e) {
|
||
ToElemVisitor v(gIR, true);
|
||
e->accept(&v);
|
||
return v.getResult();
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
namespace {
|
||
bool basetypesAreEqualWithoutModifiers(Type *l, Type *r) {
|
||
l = stripModifiers(l->toBasetype(), true);
|
||
r = stripModifiers(r->toBasetype(), true);
|
||
return l->equals(r);
|
||
}
|
||
}
|
||
|
||
bool toInPlaceConstruction(DLValue *lhs, Expression *rhs) {
|
||
if (!basetypesAreEqualWithoutModifiers(lhs->type, rhs->type))
|
||
return false;
|
||
|
||
// skip over rhs casts only emitted because of differing constness
|
||
if (rhs->op == TOKcast) {
|
||
auto castSource = static_cast<CastExp *>(rhs)->e1;
|
||
if (basetypesAreEqualWithoutModifiers(lhs->type, castSource->type))
|
||
rhs = castSource;
|
||
}
|
||
|
||
if (rhs->op == TOKcall) {
|
||
auto ce = static_cast<CallExp *>(rhs);
|
||
|
||
// Direct construction by rhs call via sret?
|
||
// E.g., `T v = foo();` if the callee `T foo()` uses sret.
|
||
// In this case, pass `&v` as hidden sret argument, i.e., let `foo()`
|
||
// construct the return value directly into the lhs lvalue.
|
||
if (DtoIsReturnInArg(ce)) {
|
||
ToElemVisitor::call(gIR, ce, DtoLVal(lhs));
|
||
return true;
|
||
}
|
||
|
||
// DMD issue 17457: detect structliteral.ctor(args)
|
||
if (ce->e1->op == TOKdotvar) {
|
||
auto dve = static_cast<DotVarExp *>(ce->e1);
|
||
auto fd = dve->var->isFuncDeclaration();
|
||
if (fd && fd->isCtorDeclaration() && dve->e1->op == TOKstructliteral) {
|
||
// emit the struct literal directly into the lhs lvalue...
|
||
auto sle = static_cast<StructLiteralExp *>(dve->e1);
|
||
auto lval = DtoLVal(lhs);
|
||
ToElemVisitor::emitStructLiteral(sle, lval);
|
||
// ... and invoke the ctor directly on it
|
||
DtoDeclareFunction(fd);
|
||
auto fnval = new DFuncValue(fd, DtoCallee(fd), lval);
|
||
DtoCallFunction(ce->loc, ce->type, fnval, ce->arguments);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
// emit struct literals directly into the lhs lvalue
|
||
if (rhs->op == TOKstructliteral) {
|
||
auto sle = static_cast<StructLiteralExp *>(rhs);
|
||
ToElemVisitor::emitStructLiteral(sle, DtoLVal(lhs));
|
||
return true;
|
||
}
|
||
|
||
// static array literals too
|
||
Type *lhsBasetype = lhs->type->toBasetype();
|
||
if (rhs->op == TOKarrayliteral && lhsBasetype->ty == Tsarray) {
|
||
auto al = static_cast<ArrayLiteralExp *>(rhs);
|
||
initializeArrayLiteral(gIR, al, DtoLVal(lhs));
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
// FIXME: Implement & place in right module
|
||
Symbol *toModuleAssert(Module *m) { return nullptr; }
|
||
|
||
// FIXME: Implement & place in right module
|
||
Symbol *toModuleUnittest(Module *m) { return nullptr; }
|
||
|
||
// FIXME: Implement & place in right module
|
||
Symbol *toModuleArray(Module *m) { return nullptr; }
|