ldc/gen/toir.cpp

2677 lines
80 KiB
C++

// Backend stubs
/* DMDFE backend stubs
* This file contains the implementations of the backend routines.
* For dmdfe these do nothing but print a message saying the module
* has been parsed. Substitute your own behaviors for these routimes.
*/
#include <stdio.h>
#include <math.h>
#include <fstream>
#include "gen/llvm.h"
#include "llvm/Support/CommandLine.h"
#include "attrib.h"
#include "init.h"
#include "mtype.h"
#include "template.h"
#include "hdrgen.h"
#include "port.h"
#include "rmem.h"
#include "id.h"
#include "enum.h"
#include "gen/irstate.h"
#include "gen/logger.h"
#include "gen/tollvm.h"
#include "gen/llvmhelpers.h"
#include "gen/runtime.h"
#include "gen/arrays.h"
#include "gen/structs.h"
#include "gen/classes.h"
#include "gen/typeinf.h"
#include "gen/complex.h"
#include "gen/dvalue.h"
#include "gen/aa.h"
#include "gen/functions.h"
#include "gen/todebug.h"
#include "gen/nested.h"
#include "gen/utils.h"
#include "gen/warnings.h"
#include "llvm/Support/ManagedStatic.h"
llvm::cl::opt<bool> checkPrintf("check-printf-calls",
llvm::cl::desc("Validate printf call format strings against arguments"),
llvm::cl::ZeroOrMore);
//////////////////////////////////////////////////////////////////////////////////////////
void Expression::cacheLvalue(IRState* irs)
{
error("expression %s does not mask any l-value", toChars());
fatal();
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DeclarationExp::toElem(IRState* p)
{
Logger::print("DeclarationExp::toElem: %s | T=%s\n", toChars(), type->toChars());
LOG_SCOPE;
return DtoDeclarationExp(declaration);
}
//////////////////////////////////////////////////////////////////////////////////////////
void VarExp::cacheLvalue(IRState* p)
{
Logger::println("Caching l-value of %s", toChars());
LOG_SCOPE;
cachedLvalue = toElem(p)->getLVal();
}
DValue* VarExp::toElem(IRState* p)
{
Logger::print("VarExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(var);
if (cachedLvalue)
{
LLValue* V = cachedLvalue;
cachedLvalue = NULL;
return new DVarValue(type, V);
}
if (VarDeclaration* vd = var->isVarDeclaration())
{
Logger::println("VarDeclaration ' %s ' of type ' %s '", vd->toChars(), vd->type->toChars());
// this is an error! must be accessed with DotVarExp
if (var->needThis())
{
error("need 'this' to access member %s", toChars());
fatal();
}
// _arguments
if (vd->ident == Id::_arguments && p->func()->_arguments)
{
Logger::println("Id::_arguments");
LLValue* v = p->func()->_arguments;
return new DVarValue(type, vd, v);
}
// _argptr
else if (vd->ident == Id::_argptr && p->func()->_argptr)
{
Logger::println("Id::_argptr");
LLValue* v = p->func()->_argptr;
return new DVarValue(type, vd, v);
}
// _dollar
else if (vd->ident == Id::dollar)
{
Logger::println("Id::dollar");
assert(!p->arrays.empty());
LLValue* tmp = DtoArrayLen(p->arrays.back());
return new DImValue(type, tmp);
}
// typeinfo
else if (TypeInfoDeclaration* tid = vd->isTypeInfoDeclaration())
{
Logger::println("TypeInfoDeclaration");
tid->codegen(Type::sir);
assert(tid->ir.getIrValue());
const LLType* vartype = DtoType(type);
LLValue* m = tid->ir.getIrValue();
if (m->getType() != getPtrToType(vartype))
m = p->ir->CreateBitCast(m, vartype, "tmp");
return new DImValue(type, m);
}
// classinfo
else if (ClassInfoDeclaration* cid = vd->isClassInfoDeclaration())
{
Logger::println("ClassInfoDeclaration: %s", cid->cd->toChars());
cid->cd->codegen(Type::sir);;
return new DVarValue(type, vd, cid->cd->ir.irStruct->getClassInfoSymbol());
}
// nested variable
#if DMDV2
else if (vd->nestedrefs.dim) {
#else
else if (vd->nestedref) {
#endif
Logger::println("nested variable");
return DtoNestedVariable(loc, type, vd);
}
// function parameter
else if (vd->isParameter()) {
Logger::println("function param");
Logger::println("type: %s", vd->type->toChars());
FuncDeclaration* fd = vd->toParent2()->isFuncDeclaration();
if (fd && fd != p->func()->decl) {
Logger::println("nested parameter");
return DtoNestedVariable(loc, type, vd);
}
else if (vd->storage_class & STClazy) {
Logger::println("lazy parameter");
assert(type->ty == Tdelegate);
return new DVarValue(type, vd->ir.getIrValue());
}
else if (vd->isRef() || vd->isOut() || DtoIsPassedByRef(vd->type) || llvm::isa<llvm::AllocaInst>(vd->ir.getIrValue())) {
return new DVarValue(type, vd, vd->ir.getIrValue());
}
else if (llvm::isa<llvm::Argument>(vd->ir.getIrValue())) {
return new DImValue(type, vd->ir.getIrValue());
}
else assert(0);
}
else {
Logger::println("a normal variable");
// take care of forward references of global variables
if (vd->isDataseg() || (vd->storage_class & STCextern)) {
vd->codegen(Type::sir);
}
LLValue* val;
if (!vd->ir.isSet() || !(val = vd->ir.getIrValue())) {
// FIXME: this error is bad!
// We should be VERY careful about adding errors in general, as they have
// a tendency to "mask" out the underlying problems ...
error("variable %s not resolved", vd->toChars());
if (Logger::enabled())
Logger::cout() << "unresolved variable had type: " << *DtoType(vd->type) << '\n';
fatal();
}
if (vd->isDataseg() || (vd->storage_class & STCextern)) {
DtoConstInitGlobal(vd);
val = DtoBitCast(val, DtoType(type->pointerTo()));
}
return new DVarValue(type, vd, val);
}
}
else if (FuncDeclaration* fdecl = var->isFuncDeclaration())
{
Logger::println("FuncDeclaration");
LLValue* func = 0;
if (fdecl->llvmInternal == LLVMinline_asm) {
error("special ldc inline asm is not a normal function");
fatal();
}
else if (fdecl->llvmInternal != LLVMva_arg) {
fdecl->codegen(Type::sir);
func = fdecl->ir.irFunc->func;
}
return new DFuncValue(fdecl, func);
}
else if (StaticStructInitDeclaration* sdecl = var->isStaticStructInitDeclaration())
{
// this seems to be the static initialiser for structs
Type* sdecltype = sdecl->type->toBasetype();
Logger::print("Sym: type=%s\n", sdecltype->toChars());
assert(sdecltype->ty == Tstruct);
TypeStruct* ts = (TypeStruct*)sdecltype;
assert(ts->sym);
ts->sym->codegen(Type::sir);
LLValue* initsym = ts->sym->ir.irStruct->getInitSymbol();
initsym = DtoBitCast(initsym, DtoType(ts->pointerTo()));
return new DVarValue(type, initsym);
}
else
{
assert(0 && "Unimplemented VarExp type");
}
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* VarExp::toConstElem(IRState* p)
{
Logger::print("VarExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
if (StaticStructInitDeclaration* sdecl = var->isStaticStructInitDeclaration())
{
// this seems to be the static initialiser for structs
Type* sdecltype = sdecl->type->toBasetype();
Logger::print("Sym: type=%s\n", sdecltype->toChars());
assert(sdecltype->ty == Tstruct);
TypeStruct* ts = (TypeStruct*)sdecltype;
ts->sym->codegen(Type::sir);
return ts->sym->ir.irStruct->getDefaultInit();
}
if (TypeInfoDeclaration* ti = var->isTypeInfoDeclaration())
{
const LLType* vartype = DtoType(type);
LLConstant* m = DtoTypeInfoOf(ti->tinfo, false);
if (m->getType() != getPtrToType(vartype))
m = llvm::ConstantExpr::getBitCast(m, vartype);
return m;
}
VarDeclaration* vd = var->isVarDeclaration();
if (vd && vd->isConst() && vd->init)
{
if (vd->inuse)
{
error("recursive reference %s", toChars());
return llvm::UndefValue::get(DtoType(type));
}
vd->inuse++;
LLConstant* ret = DtoConstInitializer(loc, type, vd->init);
vd->inuse--;
// return the initializer
return ret;
}
// fail
error("non-constant expression %s", toChars());
return llvm::UndefValue::get(DtoType(type));
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* IntegerExp::toElem(IRState* p)
{
Logger::print("IntegerExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
LLConstant* c = toConstElem(p);
return new DConstValue(type, c);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* IntegerExp::toConstElem(IRState* p)
{
Logger::print("IntegerExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
const LLType* t = DtoType(type);
if (isaPointer(t)) {
Logger::println("pointer");
LLConstant* i = LLConstantInt::get(DtoSize_t(),(uint64_t)value,false);
return llvm::ConstantExpr::getIntToPtr(i, t);
}
assert(llvm::isa<LLIntegerType>(t));
LLConstant* c = LLConstantInt::get(t,(uint64_t)value,!type->isunsigned());
assert(c);
if (Logger::enabled())
Logger::cout() << "value = " << *c << '\n';
return c;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* RealExp::toElem(IRState* p)
{
Logger::print("RealExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
LLConstant* c = toConstElem(p);
return new DConstValue(type, c);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* RealExp::toConstElem(IRState* p)
{
Logger::print("RealExp::toConstElem: %s @ %s | %La\n", toChars(), type->toChars(), value);
LOG_SCOPE;
Type* t = type->toBasetype();
return DtoConstFP(t, value);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* NullExp::toElem(IRState* p)
{
Logger::print("NullExp::toElem(type=%s): %s\n", type->toChars(),toChars());
LOG_SCOPE;
LLConstant* c = toConstElem(p);
return new DNullValue(type, c);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* NullExp::toConstElem(IRState* p)
{
Logger::print("NullExp::toConstElem(type=%s): %s\n", type->toChars(),toChars());
LOG_SCOPE;
const LLType* t = DtoType(type);
if (type->ty == Tarray) {
assert(isaStruct(t));
return llvm::ConstantAggregateZero::get(t);
}
else {
return LLConstant::getNullValue(t);
}
assert(0);
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ComplexExp::toElem(IRState* p)
{
Logger::print("ComplexExp::toElem(): %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
LLConstant* c = toConstElem(p);
LLValue* res;
if (c->isNullValue()) {
Type* t = type->toBasetype();
if (t->ty == Tcomplex32)
c = DtoConstFP(Type::tfloat32, 0);
else if (t->ty == Tcomplex64)
c = DtoConstFP(Type::tfloat64, 0);
else if (t->ty == Tcomplex80)
c = DtoConstFP(Type::tfloat80, 0);
else
assert(0);
res = DtoAggrPair(DtoType(type), c, c);
}
else {
res = DtoAggrPair(DtoType(type), c->getOperand(0), c->getOperand(1));
}
return new DImValue(type, res);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* ComplexExp::toConstElem(IRState* p)
{
Logger::print("ComplexExp::toConstElem(): %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
return DtoConstComplex(type, value.re, value.im);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* StringExp::toElem(IRState* p)
{
Logger::print("StringExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* dtype = type->toBasetype();
Type* cty = dtype->nextOf()->toBasetype();
const LLType* ct = DtoTypeNotVoid(cty);
//printf("ct = %s\n", type->nextOf()->toChars());
const LLArrayType* at = LLArrayType::get(ct,len+1);
LLConstant* _init;
if (cty->size() == 1) {
uint8_t* str = (uint8_t*)string;
llvm::StringRef cont((char*)str, len);
_init = LLConstantArray::get(p->context(), cont, true);
}
else if (cty->size() == 2) {
uint16_t* str = (uint16_t*)string;
std::vector<LLConstant*> vals;
vals.reserve(len+1);
for(size_t i=0; i<len; ++i) {
vals.push_back(LLConstantInt::get(ct, str[i], false));;
}
vals.push_back(LLConstantInt::get(ct, 0, false));
_init = LLConstantArray::get(at,vals);
}
else if (cty->size() == 4) {
uint32_t* str = (uint32_t*)string;
std::vector<LLConstant*> vals;
vals.reserve(len+1);
for(size_t i=0; i<len; ++i) {
vals.push_back(LLConstantInt::get(ct, str[i], false));;
}
vals.push_back(LLConstantInt::get(ct, 0, false));
_init = LLConstantArray::get(at,vals);
}
else
assert(0);
llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;
if (Logger::enabled())
Logger::cout() << "type: " << *at << "\ninit: " << *_init << '\n';
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(*gIR->module,at,true,_linkage,_init,".str");
llvm::ConstantInt* zero = LLConstantInt::get(LLType::getInt32Ty(gIR->context()), 0, false);
LLConstant* idxs[2] = { zero, zero };
LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar,idxs,2);
if (dtype->ty == Tarray) {
LLConstant* clen = LLConstantInt::get(DtoSize_t(),len,false);
return new DImValue(type, DtoConstSlice(clen, arrptr));
}
else if (dtype->ty == Tsarray) {
const LLType* dstType = getPtrToType(LLArrayType::get(ct, len));
LLValue* emem = (gvar->getType() == dstType) ? gvar : DtoBitCast(gvar, dstType);
return new DVarValue(type, emem);
}
else if (dtype->ty == Tpointer) {
return new DImValue(type, arrptr);
}
assert(0);
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* StringExp::toConstElem(IRState* p)
{
Logger::print("StringExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* t = type->toBasetype();
Type* cty = t->nextOf()->toBasetype();
bool nullterm = (t->ty != Tsarray);
size_t endlen = nullterm ? len+1 : len;
const LLType* ct = DtoTypeNotVoid(cty);
const LLArrayType* at = LLArrayType::get(ct,endlen);
LLConstant* _init;
if (cty->size() == 1) {
uint8_t* str = (uint8_t*)string;
llvm::StringRef cont((char*)str, len);
_init = LLConstantArray::get(p->context(), cont, nullterm);
}
else if (cty->size() == 2) {
uint16_t* str = (uint16_t*)string;
std::vector<LLConstant*> vals;
vals.reserve(len+1);
for(size_t i=0; i<len; ++i) {
vals.push_back(LLConstantInt::get(ct, str[i], false));;
}
if (nullterm)
vals.push_back(LLConstantInt::get(ct, 0, false));
_init = LLConstantArray::get(at,vals);
}
else if (cty->size() == 4) {
uint32_t* str = (uint32_t*)string;
std::vector<LLConstant*> vals;
vals.reserve(len+1);
for(size_t i=0; i<len; ++i) {
vals.push_back(LLConstantInt::get(ct, str[i], false));;
}
if (nullterm)
vals.push_back(LLConstantInt::get(ct, 0, false));
_init = LLConstantArray::get(at,vals);
}
else
assert(0);
if (t->ty == Tsarray)
{
return _init;
}
llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(*gIR->module,_init->getType(),true,_linkage,_init,".str");
llvm::ConstantInt* zero = LLConstantInt::get(LLType::getInt32Ty(gIR->context()), 0, false);
LLConstant* idxs[2] = { zero, zero };
LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar,idxs,2);
if (t->ty == Tpointer) {
return arrptr;
}
else if (t->ty == Tarray) {
LLConstant* clen = LLConstantInt::get(DtoSize_t(),len,false);
return DtoConstSlice(clen, arrptr);
}
assert(0);
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AssignExp::toElem(IRState* p)
{
Logger::print("AssignExp::toElem: %s | (%s)(%s = %s)\n", toChars(), type->toChars(), e1->type->toChars(), e2->type ? e2->type->toChars() : 0);
LOG_SCOPE;
if (e1->op == TOKarraylength)
{
Logger::println("performing array.length assignment");
ArrayLengthExp *ale = (ArrayLengthExp *)e1;
DValue* arr = ale->e1->toElem(p);
DVarValue arrval(ale->e1->type, arr->getLVal());
DValue* newlen = e2->toElem(p);
DSliceValue* slice = DtoResizeDynArray(arrval.getType(), &arrval, newlen);
DtoAssign(loc, &arrval, slice);
return newlen;
}
Logger::println("performing normal assignment");
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
DtoAssign(loc, l, r);
if (l->isSlice())
return l;
return r;
}
//////////////////////////////////////////////////////////////////////////////////////////
/// Finds the proper lvalue for a binassign expressions.
/// Makes sure the given LHS expression is only evaluated once.
static Expression* findLvalue(IRState* irs, Expression* exp)
{
Expression* e = exp;
// skip past any casts
while(e->op == TOKcast)
e = ((CastExp*)e)->e1;
// cache lvalue and return
e->cacheLvalue(irs);
return e;
}
#define BIN_ASSIGN(X) \
DValue* X##AssignExp::toElem(IRState* p) \
{ \
Logger::print(#X"AssignExp::toElem: %s @ %s\n", toChars(), type->toChars()); \
LOG_SCOPE; \
X##Exp e3(loc, e1, e2); \
e3.type = e1->type; \
DValue* dst = findLvalue(p, e1)->toElem(p); \
DValue* res = e3.toElem(p); \
DValue* stval = DtoCast(loc, res, dst->getType()); \
DtoAssign(loc, dst, stval); \
return DtoCast(loc, res, type); \
}
BIN_ASSIGN(Add)
BIN_ASSIGN(Min)
BIN_ASSIGN(Mul)
BIN_ASSIGN(Div)
BIN_ASSIGN(Mod)
BIN_ASSIGN(And)
BIN_ASSIGN(Or)
BIN_ASSIGN(Xor)
BIN_ASSIGN(Shl)
BIN_ASSIGN(Shr)
BIN_ASSIGN(Ushr)
#undef BIN_ASSIGN
//////////////////////////////////////////////////////////////////////////////////////////
static void errorOnIllegalArrayOp(Expression* base, Expression* e1, Expression* e2)
{
Type* t1 = e1->type->toBasetype();
Type* t2 = e2->type->toBasetype();
// valid array ops would have been transformed by optimize
if ((t1->ty == Tarray || t1->ty == Tsarray) &&
(t2->ty == Tarray || t2->ty == Tsarray)
)
{
base->error("Array operation %s not recognized", base->toChars());
fatal();
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AddExp::toElem(IRState* p)
{
Logger::print("AddExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = type->toBasetype();
Type* e1type = e1->type->toBasetype();
Type* e1next = e1type->nextOf() ? e1type->nextOf()->toBasetype() : NULL;
Type* e2type = e2->type->toBasetype();
errorOnIllegalArrayOp(this, e1, e2);
if (e1type != e2type) {
if (e1type->ty == Tpointer) {
Logger::println("add to pointer");
if (DConstValue* cv = r->isConst()) {
if (cv->c->isNullValue()) {
Logger::println("is zero");
return new DImValue(type, l->getRVal());
}
}
LLValue* v = llvm::GetElementPtrInst::Create(l->getRVal(), r->getRVal(), "tmp", p->scopebb());
return new DImValue(type, v);
}
else if (t->iscomplex()) {
return DtoComplexAdd(loc, type, l, r);
}
assert(0);
}
else if (t->iscomplex()) {
return DtoComplexAdd(loc, type, l, r);
}
else {
return DtoBinAdd(l,r);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* MinExp::toElem(IRState* p)
{
Logger::print("MinExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = type->toBasetype();
Type* t1 = e1->type->toBasetype();
Type* t2 = e2->type->toBasetype();
errorOnIllegalArrayOp(this, e1, e2);
if (t1->ty == Tpointer && t2->ty == Tpointer) {
LLValue* lv = l->getRVal();
LLValue* rv = r->getRVal();
if (Logger::enabled())
Logger::cout() << "lv: " << *lv << " rv: " << *rv << '\n';
lv = p->ir->CreatePtrToInt(lv, DtoSize_t(), "tmp");
rv = p->ir->CreatePtrToInt(rv, DtoSize_t(), "tmp");
LLValue* diff = p->ir->CreateSub(lv,rv,"tmp");
if (diff->getType() != DtoType(type))
diff = p->ir->CreateIntToPtr(diff, DtoType(type), "tmp");
return new DImValue(type, diff);
}
else if (t1->ty == Tpointer) {
LLValue* idx = p->ir->CreateNeg(r->getRVal(), "tmp");
LLValue* v = llvm::GetElementPtrInst::Create(l->getRVal(), idx, "tmp", p->scopebb());
return new DImValue(type, v);
}
else if (t->iscomplex()) {
return DtoComplexSub(loc, type, l, r);
}
else {
return DtoBinSub(l,r);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* MulExp::toElem(IRState* p)
{
Logger::print("MulExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
errorOnIllegalArrayOp(this, e1, e2);
if (type->iscomplex()) {
return DtoComplexMul(loc, type, l, r);
}
return DtoBinMul(type, l, r);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DivExp::toElem(IRState* p)
{
Logger::print("DivExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
errorOnIllegalArrayOp(this, e1, e2);
if (type->iscomplex()) {
return DtoComplexDiv(loc, type, l, r);
}
return DtoBinDiv(type, l, r);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ModExp::toElem(IRState* p)
{
Logger::print("ModExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
errorOnIllegalArrayOp(this, e1, e2);
return DtoBinRem(type, l, r);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CallExp::toElem(IRState* p)
{
Logger::print("CallExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
// handle magic inline asm
if (e1->op == TOKvar)
{
VarExp* ve = (VarExp*)e1;
if (FuncDeclaration* fd = ve->var->isFuncDeclaration())
{
if (fd->llvmInternal == LLVMinline_asm)
{
return DtoInlineAsmExpr(loc, fd, arguments);
}
}
}
// get the callee value
DValue* fnval = e1->toElem(p);
// get func value if any
DFuncValue* dfnval = fnval->isFunc();
// handle magic intrinsics (mapping to instructions)
bool va_intrinsic = false;
if (dfnval && dfnval->func)
{
FuncDeclaration* fndecl = dfnval->func;
// as requested by bearophile, see if it's a C printf call and that it's valid.
if (global.params.warnings && checkPrintf)
{
if (fndecl->linkage == LINKc && strcmp(fndecl->ident->string, "printf") == 0)
{
warnInvalidPrintfCall(loc, (Expression*)arguments->data[0], arguments->dim);
}
}
// va_start instruction
if (fndecl->llvmInternal == LLVMva_start) {
// llvm doesn't need the second param hence the override
Expression* exp = (Expression*)arguments->data[0];
DValue* expv = exp->toElem(p);
LLValue* arg = DtoBitCast(expv->getLVal(), getVoidPtrType());
return new DImValue(type, gIR->ir->CreateCall(GET_INTRINSIC_DECL(vastart), arg, ""));
}
// va_arg instruction
else if (fndecl->llvmInternal == LLVMva_arg) {
return DtoVaArg(loc, type, (Expression*)arguments->data[0]);
}
// C alloca
else if (fndecl->llvmInternal == LLVMalloca) {
Expression* exp = (Expression*)arguments->data[0];
DValue* expv = exp->toElem(p);
if (expv->getType()->toBasetype()->ty != Tint32)
expv = DtoCast(loc, expv, Type::tint32);
return new DImValue(type, p->ir->CreateAlloca(LLType::getInt8Ty(gIR->context()), expv->getRVal(), ".alloca"));
}
}
return DtoCallFunction(loc, type, fnval, arguments);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CastExp::toElem(IRState* p)
{
Logger::print("CastExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
// get the value to cast
DValue* u = e1->toElem(p);
// cast it to the 'to' type, if necessary
DValue* v = u;
if (!to->equals(e1->type))
v = DtoCast(loc, u, to);
// paint the type, if necessary
if (!type->equals(to))
v = DtoPaintType(loc, v, type);
// return the new rvalue
return v;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* CastExp::toConstElem(IRState* p)
{
Logger::print("CastExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
LLConstant* res;
const LLType* lltype = DtoType(type);
Type* tb = to->toBasetype();
// string literal to dyn array:
// reinterpret the string data as an array, calculate the length
if (e1->op == TOKstring && tb->ty == Tarray) {
/* StringExp *strexp = (StringExp*)e1;
size_t datalen = strexp->sz * strexp->len;
Type* eltype = tb->nextOf()->toBasetype();
if (datalen % eltype->size() != 0) {
error("the sizes don't line up");
return e1->toConstElem(p);
}
size_t arrlen = datalen / eltype->size();*/
error("ct cast of string to dynamic array not fully implemented");
return e1->toConstElem(p);
}
// pointer to pointer
else if (tb->ty == Tpointer && e1->type->toBasetype()->ty == Tpointer) {
res = llvm::ConstantExpr::getBitCast(e1->toConstElem(p), lltype);
}
else {
error("can not cast %s to %s at compile time", e1->type->toChars(), type->toChars());
return e1->toConstElem(p);
}
return res;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* SymOffExp::toElem(IRState* p)
{
Logger::print("SymOffExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(0 && "SymOffExp::toElem should no longer be called :/");
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AddrExp::toElem(IRState* p)
{
Logger::println("AddrExp::toElem: %s @ %s", toChars(), type->toChars());
LOG_SCOPE;
DValue* v = e1->toElem(p);
if (v->isField()) {
Logger::println("is field");
return v;
}
else if (DFuncValue* fv = v->isFunc()) {
Logger::println("is func");
//Logger::println("FuncDeclaration");
FuncDeclaration* fd = fv->func;
assert(fd);
fd->codegen(Type::sir);
return new DFuncValue(fd, fd->ir.irFunc->func);
}
else if (DImValue* im = v->isIm()) {
Logger::println("is immediate");
return v;
}
Logger::println("is nothing special");
// we special case here, since apparently taking the address of a slice is ok
LLValue* lval;
if (v->isLVal())
lval = v->getLVal();
else
{
assert(v->isSlice());
LLValue* rval = v->getRVal();
lval = DtoRawAlloca(rval->getType(), 0, ".tmp_slice_storage");
DtoStore(rval, lval);
}
if (Logger::enabled())
Logger::cout() << "lval: " << *lval << '\n';
return new DImValue(type, DtoBitCast(lval, DtoType(type)));
}
LLConstant* AddrExp::toConstElem(IRState* p)
{
// FIXME: this should probably be generalized more so we don't
// need to have a case for each thing we can take the address of
// address of global variable
if (e1->op == TOKvar)
{
VarExp* vexp = (VarExp*)e1;
// make sure 'this' isn't needed
if (vexp->var->needThis())
{
error("need 'this' to access %s", vexp->var->toChars());
fatal();
}
// global variable
if (VarDeclaration* vd = vexp->var->isVarDeclaration())
{
vd->codegen(Type::sir);
LLConstant* llc = llvm::dyn_cast<LLConstant>(vd->ir.getIrValue());
assert(llc);
return llc;
}
// static function
else if (FuncDeclaration* fd = vexp->var->isFuncDeclaration())
{
fd->codegen(Type::sir);
IrFunction* irfunc = fd->ir.irFunc;
return irfunc->func;
}
// something else
else
{
// fail
goto Lerr;
}
}
// address of indexExp
else if (e1->op == TOKindex)
{
IndexExp* iexp = (IndexExp*)e1;
// indexee must be global static array var
assert(iexp->e1->op == TOKvar);
VarExp* vexp = (VarExp*)iexp->e1;
VarDeclaration* vd = vexp->var->isVarDeclaration();
assert(vd);
assert(vd->type->toBasetype()->ty == Tsarray);
vd->codegen(Type::sir);
assert(vd->ir.irGlobal);
// get index
LLConstant* index = iexp->e2->toConstElem(p);
assert(index->getType() == DtoSize_t());
// gep
LLConstant* idxs[2] = { DtoConstSize_t(0), index };
LLConstant* gep = llvm::ConstantExpr::getGetElementPtr(isaConstant(vd->ir.irGlobal->value), idxs, 2);
// bitcast to requested type
assert(type->toBasetype()->ty == Tpointer);
return DtoBitCast(gep, DtoType(type));
}
else if (
e1->op == TOKstructliteral ||
e1->op == TOKslice)
{
error("non-constant expression '%s'", toChars());
fatal();
}
// not yet supported
else
{
Lerr:
error("constant expression '%s' not yet implemented", toChars());
fatal();
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void PtrExp::cacheLvalue(IRState* p)
{
Logger::println("Caching l-value of %s", toChars());
LOG_SCOPE;
cachedLvalue = e1->toElem(p)->getRVal();
}
DValue* PtrExp::toElem(IRState* p)
{
Logger::println("PtrExp::toElem: %s @ %s", toChars(), type->toChars());
LOG_SCOPE;
// function pointers are special
if (type->toBasetype()->ty == Tfunction)
{
assert(!cachedLvalue);
return new DImValue(type, e1->toElem(p)->getRVal());
}
// get the rvalue and return it as an lvalue
LLValue* V;
if (cachedLvalue)
{
V = cachedLvalue;
cachedLvalue = NULL;
}
else
{
V = e1->toElem(p)->getRVal();
}
return new DVarValue(type, V);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DotVarExp::cacheLvalue(IRState* p)
{
Logger::println("Caching l-value of %s", toChars());
LOG_SCOPE;
cachedLvalue = toElem(p)->getLVal();
}
DValue* DotVarExp::toElem(IRState* p)
{
Logger::print("DotVarExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
if (cachedLvalue)
{
Logger::println("using cached lvalue");
LLValue *V = cachedLvalue;
cachedLvalue = NULL;
VarDeclaration* vd = var->isVarDeclaration();
assert(vd);
return new DVarValue(type, vd, V);
}
DValue* l = e1->toElem(p);
Type* t = type->toBasetype();
Type* e1type = e1->type->toBasetype();
//Logger::println("e1type=%s", e1type->toChars());
//Logger::cout() << *DtoType(e1type) << '\n';
if (VarDeclaration* vd = var->isVarDeclaration()) {
LLValue* arrptr;
// indexing struct pointer
if (e1type->ty == Tpointer) {
assert(e1type->nextOf()->ty == Tstruct);
TypeStruct* ts = (TypeStruct*)e1type->nextOf();
arrptr = DtoIndexStruct(l->getRVal(), ts->sym, vd);
}
// indexing normal struct
else if (e1type->ty == Tstruct) {
TypeStruct* ts = (TypeStruct*)e1type;
arrptr = DtoIndexStruct(l->getRVal(), ts->sym, vd);
}
// indexing class
else if (e1type->ty == Tclass) {
TypeClass* tc = (TypeClass*)e1type;
arrptr = DtoIndexClass(l->getRVal(), tc->sym, vd);
}
else
assert(0);
//Logger::cout() << "mem: " << *arrptr << '\n';
return new DVarValue(type, vd, arrptr);
}
else if (FuncDeclaration* fdecl = var->isFuncDeclaration())
{
DtoResolveDsymbol(fdecl);
LLValue* funcval;
LLValue* vthis2 = 0;
if (e1type->ty == Tclass) {
TypeClass* tc = (TypeClass*)e1type;
if (tc->sym->isInterfaceDeclaration()) {
vthis2 = DtoCastInterfaceToObject(l, NULL)->getRVal();
}
}
LLValue* vthis = l->getRVal();
if (!vthis2) vthis2 = vthis;
//
// decide whether this function needs to be looked up in the vtable
//
bool vtbllookup = fdecl->isAbstract() || (!fdecl->isFinal() && fdecl->isVirtual());
// even virtual functions are looked up directly if super or DotTypeExp
// are used, thus we need to walk through the this expression and check
Expression* e = e1;
while (e && vtbllookup) {
if (e->op == TOKsuper || e->op == TOKdottype)
vtbllookup = false;
else if (e->op == TOKcast)
e = ((CastExp*)e)->e1;
else
break;
}
//
// look up function
//
if (!vtbllookup) {
fdecl->codegen(Type::sir);
funcval = fdecl->ir.irFunc->func;
assert(funcval);
}
else {
DImValue vthis3(e1type, vthis);
funcval = DtoVirtualFunctionPointer(&vthis3, fdecl, toChars());
}
return new DFuncValue(fdecl, funcval, vthis2);
}
else {
printf("unsupported dotvarexp: %s\n", var->toChars());
}
assert(0);
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ThisExp::toElem(IRState* p)
{
Logger::print("ThisExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
// regular this expr
if (VarDeclaration* vd = var->isVarDeclaration()) {
LLValue* v;
if (vd->toParent2() != p->func()->decl) {
Logger::println("nested this exp");
return DtoNestedVariable(loc, type, vd);
}
else {
Logger::println("normal this exp");
v = p->func()->thisArg;
}
return new DVarValue(type, vd, v);
}
// anything we're not yet handling ?
assert(0 && "no var in ThisExp");
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
void IndexExp::cacheLvalue(IRState* p)
{
Logger::println("Caching l-value of %s", toChars());
LOG_SCOPE;
cachedLvalue = toElem(p)->getLVal();
}
DValue* IndexExp::toElem(IRState* p)
{
Logger::print("IndexExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
if (cachedLvalue)
{
LLValue* V = cachedLvalue;
cachedLvalue = NULL;
return new DVarValue(type, V);
}
DValue* l = e1->toElem(p);
Type* e1type = e1->type->toBasetype();
p->arrays.push_back(l); // if $ is used it must be an array so this is fine.
DValue* r = e2->toElem(p);
p->arrays.pop_back();
LLValue* zero = DtoConstUint(0);
LLValue* one = DtoConstUint(1);
LLValue* arrptr = 0;
if (e1type->ty == Tpointer) {
arrptr = DtoGEP1(l->getRVal(),r->getRVal());
}
else if (e1type->ty == Tsarray) {
if(global.params.useArrayBounds)
DtoArrayBoundsCheck(loc, l, r, false);
arrptr = DtoGEP(l->getRVal(), zero, r->getRVal());
}
else if (e1type->ty == Tarray) {
if(global.params.useArrayBounds)
DtoArrayBoundsCheck(loc, l, r, false);
arrptr = DtoArrayPtr(l);
arrptr = DtoGEP1(arrptr,r->getRVal());
}
else if (e1type->ty == Taarray) {
return DtoAAIndex(loc, type, l, r, modifiable);
}
else {
Logger::println("invalid index exp! e1type: %s", e1type->toChars());
assert(0);
}
return new DVarValue(type, arrptr);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* SliceExp::toElem(IRState* p)
{
Logger::print("SliceExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
// this is the new slicing code, it's different in that a full slice will no longer retain the original pointer.
// but this was broken if there *was* no original pointer, ie. a slice of a slice...
// now all slices have *both* the 'len' and 'ptr' fields set to != null.
// value being sliced
LLValue* elen;
LLValue* eptr;
DValue* e = e1->toElem(p);
// handle pointer slicing
Type* etype = e1->type->toBasetype();
if (etype->ty == Tpointer)
{
assert(lwr);
eptr = e->getRVal();
}
// array slice
else
{
eptr = DtoArrayPtr(e);
}
// has lower bound, pointer needs adjustment
if (lwr)
{
// must have upper bound too then
assert(upr);
// get bounds (make sure $ works)
p->arrays.push_back(e);
DValue* lo = lwr->toElem(p);
DValue* up = upr->toElem(p);
p->arrays.pop_back();
LLValue* vlo = lo->getRVal();
LLValue* vup = up->getRVal();
if(global.params.useArrayBounds && (etype->ty == Tsarray || etype->ty == Tarray))
DtoArrayBoundsCheck(loc, e, up, true);
// offset by lower
eptr = DtoGEP1(eptr, vlo);
// adjust length
elen = p->ir->CreateSub(vup, vlo, "tmp");
}
// no bounds or full slice -> just convert to slice
else
{
assert(e1->type->toBasetype()->ty != Tpointer);
// if the sliceee is a static array, we use the length of that as DMD seems
// to give contrary inconsistent sizesin some multidimensional static array cases.
// (namely default initialization, int[16][16] arr; -> int[256] arr = 0;)
if (etype->ty == Tsarray)
{
TypeSArray* tsa = (TypeSArray*)etype;
elen = DtoConstSize_t(tsa->dim->toUInteger());
// in this case, we also need to make sure the pointer is cast to the innermost element type
eptr = DtoBitCast(eptr, DtoType(tsa->nextOf()->pointerTo()));
}
// for normal code the actual array length is what we want!
else
{
elen = DtoArrayLen(e);
}
}
return new DSliceValue(type, elen, eptr);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CmpExp::toElem(IRState* p)
{
Logger::print("CmpExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = e1->type->toBasetype();
Type* e2t = e2->type->toBasetype();
LLValue* eval = 0;
if (t->isintegral() || t->ty == Tpointer)
{
llvm::ICmpInst::Predicate cmpop;
bool skip = false;
// pointers don't report as being unsigned
bool uns = (t->isunsigned() || t->ty == Tpointer);
switch(op)
{
case TOKlt:
case TOKul:
cmpop = uns ? llvm::ICmpInst::ICMP_ULT : llvm::ICmpInst::ICMP_SLT;
break;
case TOKle:
case TOKule:
cmpop = uns ? llvm::ICmpInst::ICMP_ULE : llvm::ICmpInst::ICMP_SLE;
break;
case TOKgt:
case TOKug:
cmpop = uns ? llvm::ICmpInst::ICMP_UGT : llvm::ICmpInst::ICMP_SGT;
break;
case TOKge:
case TOKuge:
cmpop = uns ? llvm::ICmpInst::ICMP_UGE : llvm::ICmpInst::ICMP_SGE;
break;
case TOKue:
cmpop = llvm::ICmpInst::ICMP_EQ;
break;
case TOKlg:
cmpop = llvm::ICmpInst::ICMP_NE;
break;
case TOKleg:
skip = true;
eval = LLConstantInt::getTrue(gIR->context());
break;
case TOKunord:
skip = true;
eval = LLConstantInt::getFalse(gIR->context());
break;
default:
assert(0);
}
if (!skip)
{
LLValue* a = l->getRVal();
LLValue* b = r->getRVal();
if (Logger::enabled())
{
Logger::cout() << "type 1: " << *a << '\n';
Logger::cout() << "type 2: " << *b << '\n';
}
if (a->getType() != b->getType())
b = DtoBitCast(b, a->getType());
eval = p->ir->CreateICmp(cmpop, a, b, "tmp");
}
}
else if (t->isfloating())
{
llvm::FCmpInst::Predicate cmpop;
switch(op)
{
case TOKlt:
cmpop = llvm::FCmpInst::FCMP_OLT;break;
case TOKle:
cmpop = llvm::FCmpInst::FCMP_OLE;break;
case TOKgt:
cmpop = llvm::FCmpInst::FCMP_OGT;break;
case TOKge:
cmpop = llvm::FCmpInst::FCMP_OGE;break;
case TOKunord:
cmpop = llvm::FCmpInst::FCMP_UNO;break;
case TOKule:
cmpop = llvm::FCmpInst::FCMP_ULE;break;
case TOKul:
cmpop = llvm::FCmpInst::FCMP_ULT;break;
case TOKuge:
cmpop = llvm::FCmpInst::FCMP_UGE;break;
case TOKug:
cmpop = llvm::FCmpInst::FCMP_UGT;break;
case TOKue:
cmpop = llvm::FCmpInst::FCMP_UEQ;break;
case TOKlg:
cmpop = llvm::FCmpInst::FCMP_ONE;break;
case TOKleg:
cmpop = llvm::FCmpInst::FCMP_ORD;break;
default:
assert(0);
}
eval = p->ir->CreateFCmp(cmpop, l->getRVal(), r->getRVal(), "tmp");
}
else if (t->ty == Tsarray || t->ty == Tarray)
{
Logger::println("static or dynamic array");
eval = DtoArrayCompare(loc,op,l,r);
}
else
{
assert(0 && "Unsupported CmpExp type");
}
return new DImValue(type, eval);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* EqualExp::toElem(IRState* p)
{
Logger::print("EqualExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
LLValue* lv = l->getRVal();
LLValue* rv = r->getRVal();
Type* t = e1->type->toBasetype();
Type* e2t = e2->type->toBasetype();
//assert(t == e2t);
LLValue* eval = 0;
// the Tclass catches interface comparisons, regular
// class equality should be rewritten as a.opEquals(b) by this time
if (t->isintegral() || t->ty == Tpointer || t->ty == Tclass)
{
Logger::println("integral or pointer or interface");
llvm::ICmpInst::Predicate cmpop;
switch(op)
{
case TOKequal:
cmpop = llvm::ICmpInst::ICMP_EQ;
break;
case TOKnotequal:
cmpop = llvm::ICmpInst::ICMP_NE;
break;
default:
assert(0);
}
if (rv->getType() != lv->getType()) {
rv = DtoBitCast(rv, lv->getType());
}
if (Logger::enabled())
{
Logger::cout() << "lv: " << *lv << '\n';
Logger::cout() << "rv: " << *rv << '\n';
}
eval = p->ir->CreateICmp(cmpop, lv, rv, "tmp");
}
else if (t->isfloating()) // includes iscomplex
{
eval = DtoBinNumericEquals(loc, l, r, op);
}
else if (t->ty == Tsarray || t->ty == Tarray)
{
Logger::println("static or dynamic array");
eval = DtoArrayEquals(loc,op,l,r);
}
else if (t->ty == Taarray)
{
Logger::println("associative array");
eval = DtoAAEquals(loc,op,l,r);
}
else if (t->ty == Tdelegate)
{
Logger::println("delegate");
eval = DtoDelegateEquals(op,l->getRVal(),r->getRVal());
}
else if (t->ty == Tstruct)
{
Logger::println("struct");
// when this is reached it means there is no opEquals overload.
eval = DtoStructEquals(op,l,r);
}
else
{
assert(0 && "Unsupported EqualExp type");
}
return new DImValue(type, eval);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* PostExp::toElem(IRState* p)
{
Logger::print("PostExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
LLValue* val = l->getRVal();
LLValue* post = 0;
Type* e1type = e1->type->toBasetype();
Type* e2type = e2->type->toBasetype();
if (e1type->isintegral())
{
assert(e2type->isintegral());
LLValue* one = LLConstantInt::get(val->getType(), 1, !e2type->isunsigned());
if (op == TOKplusplus) {
post = llvm::BinaryOperator::CreateAdd(val,one,"tmp",p->scopebb());
}
else if (op == TOKminusminus) {
post = llvm::BinaryOperator::CreateSub(val,one,"tmp",p->scopebb());
}
}
else if (e1type->ty == Tpointer)
{
assert(e2type->isintegral());
LLConstant* minusone = LLConstantInt::get(DtoSize_t(),(uint64_t)-1,true);
LLConstant* plusone = LLConstantInt::get(DtoSize_t(),(uint64_t)1,false);
LLConstant* whichone = (op == TOKplusplus) ? plusone : minusone;
post = llvm::GetElementPtrInst::Create(val, whichone, "tmp", p->scopebb());
}
else if (e1type->isfloating())
{
assert(e2type->isfloating());
LLValue* one = DtoConstFP(e1type, 1.0);
if (op == TOKplusplus) {
post = llvm::BinaryOperator::CreateAdd(val,one,"tmp",p->scopebb());
}
else if (op == TOKminusminus) {
post = llvm::BinaryOperator::CreateSub(val,one,"tmp",p->scopebb());
}
}
else
assert(post);
DtoStore(post,l->getLVal());
return new DImValue(type,val);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* NewExp::toElem(IRState* p)
{
Logger::print("NewExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(newtype);
Type* ntype = newtype->toBasetype();
// new class
if (ntype->ty == Tclass) {
Logger::println("new class");
return DtoNewClass(loc, (TypeClass*)ntype, this);
}
// new dynamic array
else if (ntype->ty == Tarray)
{
Logger::println("new dynamic array: %s", newtype->toChars());
// get dim
assert(arguments);
assert(arguments->dim >= 1);
if (arguments->dim == 1)
{
DValue* sz = ((Expression*)arguments->data[0])->toElem(p);
// allocate & init
return DtoNewDynArray(loc, newtype, sz, true);
}
else
{
size_t ndims = arguments->dim;
std::vector<DValue*> dims(ndims);
for (size_t i=0; i<ndims; ++i)
dims[i] = ((Expression*)arguments->data[i])->toElem(p);
return DtoNewMulDimDynArray(loc, newtype, &dims[0], ndims, true);
}
}
// new static array
else if (ntype->ty == Tsarray)
{
assert(0);
}
// new struct
else if (ntype->ty == Tstruct)
{
Logger::println("new struct on heap: %s\n", newtype->toChars());
// allocate
LLValue* mem = DtoNew(newtype);
// init
TypeStruct* ts = (TypeStruct*)ntype;
if (ts->isZeroInit(ts->sym->loc)) {
DtoAggrZeroInit(mem);
}
else {
assert(ts->sym);
ts->sym->codegen(Type::sir);
DtoAggrCopy(mem, ts->sym->ir.irStruct->getInitSymbol());
}
return new DImValue(type, mem);
}
// new basic type
else
{
// allocate
LLValue* mem = DtoNew(newtype);
DVarValue tmpvar(newtype, mem);
// default initialize
// static arrays never appear here, so using the defaultInit is ok!
Expression* exp = newtype->defaultInit(loc);
DValue* iv = exp->toElem(gIR);
DtoAssign(loc, &tmpvar, iv);
// return as pointer-to
return new DImValue(type, mem);
}
assert(0);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DeleteExp::toElem(IRState* p)
{
Logger::print("DeleteExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* dval = e1->toElem(p);
Type* et = e1->type->toBasetype();
// simple pointer
if (et->ty == Tpointer)
{
LLValue* rval = dval->getRVal();
DtoDeleteMemory(rval);
if (dval->isVar())
DtoStore(LLConstant::getNullValue(rval->getType()), dval->getLVal());
}
// class
else if (et->ty == Tclass)
{
bool onstack = false;
TypeClass* tc = (TypeClass*)et;
if (tc->sym->isInterfaceDeclaration())
{
DtoDeleteInterface(dval->getRVal());
onstack = true;
}
else if (DVarValue* vv = dval->isVar()) {
if (vv->var && vv->var->onstack) {
DtoFinalizeClass(dval->getRVal());
onstack = true;
}
}
if (!onstack) {
LLValue* rval = dval->getRVal();
DtoDeleteClass(rval);
}
if (dval->isVar()) {
LLValue* lval = dval->getLVal();
DtoStore(LLConstant::getNullValue(lval->getType()->getContainedType(0)), lval);
}
}
// dyn array
else if (et->ty == Tarray)
{
DtoDeleteArray(dval);
if (dval->isLVal())
DtoSetArrayToNull(dval->getLVal());
}
// unknown/invalid
else
{
assert(0 && "invalid delete");
}
// no value to return
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ArrayLengthExp::toElem(IRState* p)
{
Logger::print("ArrayLengthExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
return new DImValue(type, DtoArrayLen(u));
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AssertExp::toElem(IRState* p)
{
Logger::print("AssertExp::toElem: %s\n", toChars());
LOG_SCOPE;
if(!global.params.useAssert)
return NULL;
// condition
DValue* cond;
Type* condty;
// special case for dmd generated assert(this); when not in -release mode
if (e1->op == TOKthis && ((ThisExp*)e1)->var == NULL)
{
LLValue* thisarg = p->func()->thisArg;
assert(thisarg && "null thisarg, but we're in assert(this) exp;");
LLValue* thisptr = DtoLoad(p->func()->thisArg);
condty = e1->type->toBasetype();
cond = new DImValue(condty, thisptr);
}
else
{
cond = e1->toElem(p);
condty = e1->type->toBasetype();
}
InvariantDeclaration* invdecl;
// class invariants
if(
global.params.useInvariants &&
condty->ty == Tclass &&
!((TypeClass*)condty)->sym->isInterfaceDeclaration())
{
Logger::println("calling class invariant");
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_invariant");
LLValue* arg = DtoBitCast(cond->getRVal(), fn->getFunctionType()->getParamType(0));
gIR->CreateCallOrInvoke(fn, arg);
}
// struct invariants
else if(
global.params.useInvariants &&
condty->ty == Tpointer && condty->nextOf()->ty == Tstruct &&
(invdecl = ((TypeStruct*)condty->nextOf())->sym->inv) != NULL)
{
Logger::print("calling struct invariant");
DFuncValue invfunc(invdecl, invdecl->ir.irFunc->func, cond->getRVal());
DtoCallFunction(loc, NULL, &invfunc, NULL);
}
else
{
// create basic blocks
llvm::BasicBlock* oldend = p->scopeend();
llvm::BasicBlock* assertbb = llvm::BasicBlock::Create(gIR->context(), "assert", p->topfunc(), oldend);
llvm::BasicBlock* endbb = llvm::BasicBlock::Create(gIR->context(), "noassert", p->topfunc(), oldend);
// test condition
LLValue* condval = DtoCast(loc, cond, Type::tbool)->getRVal();
// branch
llvm::BranchInst::Create(endbb, assertbb, condval, p->scopebb());
// call assert runtime functions
p->scope() = IRScope(assertbb,endbb);
DtoAssert(p->func()->decl->getModule(), loc, msg ? msg->toElem(p) : NULL);
// rewrite the scope
p->scope() = IRScope(endbb,oldend);
}
// no meaningful return value
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* NotExp::toElem(IRState* p)
{
Logger::print("NotExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
LLValue* b = DtoCast(loc, u, Type::tbool)->getRVal();
LLConstant* zero = DtoConstBool(false);
b = p->ir->CreateICmpEQ(b,zero);
return new DImValue(type, b);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AndAndExp::toElem(IRState* p)
{
Logger::print("AndAndExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
llvm::BasicBlock* oldend = p->scopeend();
llvm::BasicBlock* andand = llvm::BasicBlock::Create(gIR->context(), "andand", gIR->topfunc(), oldend);
llvm::BasicBlock* andandend = llvm::BasicBlock::Create(gIR->context(), "andandend", gIR->topfunc(), oldend);
LLValue* ubool = DtoCast(loc, u, Type::tbool)->getRVal();
llvm::BasicBlock* oldblock = p->scopebb();
llvm::BranchInst::Create(andand,andandend,ubool,p->scopebb());
p->scope() = IRScope(andand, andandend);
DValue* v = e2->toElem(p);
LLValue* vbool = 0;
if (!v->isFunc() && v->getType() != Type::tvoid)
{
vbool = DtoCast(loc, v, Type::tbool)->getRVal();
}
llvm::BasicBlock* newblock = p->scopebb();
llvm::BranchInst::Create(andandend,p->scopebb());
p->scope() = IRScope(andandend, oldend);
LLValue* resval = 0;
if (ubool == vbool || !vbool) {
// No need to create a PHI node.
resval = ubool;
} else {
llvm::PHINode* phi = p->ir->CreatePHI(LLType::getInt1Ty(gIR->context()), "andandval");
// If we jumped over evaluation of the right-hand side,
// the result is false. Otherwise it's the value of the right-hand side.
phi->addIncoming(LLConstantInt::getFalse(gIR->context()), oldblock);
phi->addIncoming(vbool, newblock);
resval = phi;
}
return new DImValue(type, resval);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* OrOrExp::toElem(IRState* p)
{
Logger::print("OrOrExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
llvm::BasicBlock* oldend = p->scopeend();
llvm::BasicBlock* oror = llvm::BasicBlock::Create(gIR->context(), "oror", gIR->topfunc(), oldend);
llvm::BasicBlock* ororend = llvm::BasicBlock::Create(gIR->context(), "ororend", gIR->topfunc(), oldend);
LLValue* ubool = DtoCast(loc, u, Type::tbool)->getRVal();
llvm::BasicBlock* oldblock = p->scopebb();
llvm::BranchInst::Create(ororend,oror,ubool,p->scopebb());
p->scope() = IRScope(oror, ororend);
DValue* v = e2->toElem(p);
LLValue* vbool = 0;
if (!v->isFunc() && v->getType() != Type::tvoid)
{
vbool = DtoCast(loc, v, Type::tbool)->getRVal();
}
llvm::BasicBlock* newblock = p->scopebb();
llvm::BranchInst::Create(ororend,p->scopebb());
p->scope() = IRScope(ororend, oldend);
LLValue* resval = 0;
if (ubool == vbool || !vbool) {
// No need to create a PHI node.
resval = ubool;
} else {
llvm::PHINode* phi = p->ir->CreatePHI(LLType::getInt1Ty(gIR->context()), "ororval");
// If we jumped over evaluation of the right-hand side,
// the result is true. Otherwise, it's the value of the right-hand side.
phi->addIncoming(LLConstantInt::getTrue(gIR->context()), oldblock);
phi->addIncoming(vbool, newblock);
resval = phi;
}
return new DImValue(type, resval);
}
//////////////////////////////////////////////////////////////////////////////////////////
#define BinBitExp(X,Y) \
DValue* X##Exp::toElem(IRState* p) \
{ \
Logger::print("%sExp::toElem: %s @ %s\n", #X, toChars(), type->toChars()); \
LOG_SCOPE; \
DValue* u = e1->toElem(p); \
DValue* v = e2->toElem(p); \
errorOnIllegalArrayOp(this, e1, e2); \
LLValue* x = llvm::BinaryOperator::Create(llvm::Instruction::Y, u->getRVal(), v->getRVal(), "tmp", p->scopebb()); \
return new DImValue(type, x); \
}
BinBitExp(And,And);
BinBitExp(Or,Or);
BinBitExp(Xor,Xor);
BinBitExp(Shl,Shl);
BinBitExp(Ushr,LShr);
DValue* ShrExp::toElem(IRState* p)
{
Logger::print("ShrExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
DValue* v = e2->toElem(p);
LLValue* x;
if (e1->type->isunsigned())
x = p->ir->CreateLShr(u->getRVal(), v->getRVal(), "tmp");
else
x = p->ir->CreateAShr(u->getRVal(), v->getRVal(), "tmp");
return new DImValue(type, x);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* HaltExp::toElem(IRState* p)
{
Logger::print("HaltExp::toElem: %s\n", toChars());
LOG_SCOPE;
// FIXME: DMD inserts a trap here... we probably should as well !?!
#if 1
DtoAssert(p->func()->decl->getModule(), loc, NULL);
#else
// call the new (?) trap intrinsic
p->ir->CreateCall(GET_INTRINSIC_DECL(trap),"");
new llvm::UnreachableInst(p->scopebb());
#endif
// this terminated the basicblock, start a new one
// this is sensible, since someone might goto behind the assert
// and prevents compiler errors if a terminator follows the assert
llvm::BasicBlock* oldend = gIR->scopeend();
llvm::BasicBlock* bb = llvm::BasicBlock::Create(gIR->context(), "afterhalt", p->topfunc(), oldend);
p->scope() = IRScope(bb,oldend);
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DelegateExp::toElem(IRState* p)
{
Logger::print("DelegateExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
if(func->isStatic())
error("can't take delegate of static function %s, it does not require a context ptr", func->toChars());
const LLPointerType* int8ptrty = getPtrToType(LLType::getInt8Ty(gIR->context()));
assert(type->toBasetype()->ty == Tdelegate);
const LLType* dgty = DtoType(type);
DValue* u = e1->toElem(p);
LLValue* uval;
if (DFuncValue* f = u->isFunc()) {
assert(f->func);
LLValue* contextptr = DtoNestedContext(loc, f->func);
uval = DtoBitCast(contextptr, getVoidPtrType());
}
else {
DValue* src = u;
if (ClassDeclaration* cd = u->getType()->isClassHandle())
{
Logger::println("context type is class handle");
if (cd->isInterfaceDeclaration())
{
Logger::println("context type is interface");
src = DtoCastInterfaceToObject(u, ClassDeclaration::object->type);
}
}
uval = src->getRVal();
}
if (Logger::enabled())
Logger::cout() << "context = " << *uval << '\n';
LLValue* castcontext = DtoBitCast(uval, int8ptrty);
Logger::println("func: '%s'", func->toPrettyChars());
LLValue* castfptr;
if (func->isVirtual() && !func->isFinal())
castfptr = DtoVirtualFunctionPointer(u, func, toChars());
else if (func->isAbstract())
assert(0 && "TODO delegate to abstract method");
else if (func->toParent()->isInterfaceDeclaration())
assert(0 && "TODO delegate to interface method");
else
{
func->codegen(Type::sir);
castfptr = func->ir.irFunc->func;
}
castfptr = DtoBitCast(castfptr, dgty->getContainedType(1));
return new DImValue(type, DtoAggrPair(castcontext, castfptr, ".dg"));
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* IdentityExp::toElem(IRState* p)
{
Logger::print("IdentityExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
LLValue* lv = l->getRVal();
LLValue* rv = r->getRVal();
Type* t1 = e1->type->toBasetype();
// handle dynarray specially
if (t1->ty == Tarray)
return new DImValue(type, DtoDynArrayIs(op,l,r));
// also structs
else if (t1->ty == Tstruct)
return new DImValue(type, DtoStructEquals(op,l,r));
// FIXME this stuff isn't pretty
LLValue* eval = 0;
if (t1->ty == Tdelegate) {
if (r->isNull()) {
rv = NULL;
}
else {
assert(lv->getType() == rv->getType());
}
eval = DtoDelegateEquals(op,lv,rv);
}
else if (t1->isfloating()) // includes iscomplex
{
eval = DtoBinNumericEquals(loc, l, r, op);
}
else if (t1->ty == Tpointer || t1->ty == Tclass)
{
if (lv->getType() != rv->getType()) {
if (r->isNull())
rv = llvm::ConstantPointerNull::get(isaPointer(lv->getType()));
else
rv = DtoBitCast(rv, lv->getType());
}
eval = (op == TOKidentity)
? p->ir->CreateICmpEQ(lv,rv,"tmp")
: p->ir->CreateICmpNE(lv,rv,"tmp");
}
else {
assert(lv->getType() == rv->getType());
eval = (op == TOKidentity)
? p->ir->CreateICmpEQ(lv,rv,"tmp")
: p->ir->CreateICmpNE(lv,rv,"tmp");
}
return new DImValue(type, eval);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CommaExp::toElem(IRState* p)
{
Logger::print("CommaExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
DValue* v = e2->toElem(p);
assert(e2->type == type);
return v;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CondExp::toElem(IRState* p)
{
Logger::print("CondExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* dtype = type->toBasetype();
DValue* dvv;
// voids returns will need no storage
if (dtype->ty != Tvoid) {
// allocate a temporary for the final result. failed to come up with a better way :/
LLValue* resval = DtoAlloca(dtype,"condtmp");
dvv = new DVarValue(type, resval);
} else {
dvv = new DConstValue(type, getNullValue(DtoTypeNotVoid(dtype)));
}
llvm::BasicBlock* oldend = p->scopeend();
llvm::BasicBlock* condtrue = llvm::BasicBlock::Create(gIR->context(), "condtrue", gIR->topfunc(), oldend);
llvm::BasicBlock* condfalse = llvm::BasicBlock::Create(gIR->context(), "condfalse", gIR->topfunc(), oldend);
llvm::BasicBlock* condend = llvm::BasicBlock::Create(gIR->context(), "condend", gIR->topfunc(), oldend);
DValue* c = econd->toElem(p);
LLValue* cond_val = DtoCast(loc, c, Type::tbool)->getRVal();
llvm::BranchInst::Create(condtrue,condfalse,cond_val,p->scopebb());
p->scope() = IRScope(condtrue, condfalse);
DValue* u = e1->toElem(p);
if (dtype->ty != Tvoid)
DtoAssign(loc, dvv, u);
llvm::BranchInst::Create(condend,p->scopebb());
p->scope() = IRScope(condfalse, condend);
DValue* v = e2->toElem(p);
if (dtype->ty != Tvoid)
DtoAssign(loc, dvv, v);
llvm::BranchInst::Create(condend,p->scopebb());
p->scope() = IRScope(condend, oldend);
return dvv;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ComExp::toElem(IRState* p)
{
Logger::print("ComExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
LLValue* value = u->getRVal();
LLValue* minusone = LLConstantInt::get(value->getType(), (uint64_t)-1, true);
value = llvm::BinaryOperator::Create(llvm::Instruction::Xor, value, minusone, "tmp", p->scopebb());
return new DImValue(type, value);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* NegExp::toElem(IRState* p)
{
Logger::print("NegExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
if (type->iscomplex()) {
return DtoComplexNeg(loc, type, l);
}
LLValue* val = l->getRVal();
val = gIR->ir->CreateNeg(val,"negval");
return new DImValue(type, val);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CatExp::toElem(IRState* p)
{
Logger::print("CatExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* t = type->toBasetype();
bool arrNarr = e1->type->toBasetype() == e2->type->toBasetype();
// array ~ array
if (arrNarr)
{
return DtoCatArrays(type, e1, e2);
}
// array ~ element
// element ~ array
else
{
return DtoCatArrayElement(type, e1, e2);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CatAssignExp::toElem(IRState* p)
{
Logger::print("CatAssignExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
Type* e1type = e1->type->toBasetype();
Type* elemtype = e1type->nextOf()->toBasetype();
Type* e2type = e2->type->toBasetype();
if (e2type == elemtype) {
DtoCatAssignElement(loc, e1type, l, e2);
}
else if (e1type == e2type) {
DSliceValue* slice = DtoCatAssignArray(l,e2);
DtoAssign(loc, l, slice);
}
else
assert(0 && "only one element at a time right now");
return l;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* FuncExp::toElem(IRState* p)
{
Logger::print("FuncExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(fd);
if (fd->isNested()) Logger::println("nested");
Logger::println("kind = %s\n", fd->kind());
fd->codegen(Type::sir);
assert(fd->ir.irFunc->func);
if(fd->tok == TOKdelegate) {
const LLType* dgty = DtoType(type);
LLValue* cval;
IrFunction* irfn = p->func();
if (irfn->nestedVar)
cval = irfn->nestedVar;
else if (irfn->nestArg)
cval = irfn->nestArg;
else
cval = getNullPtr(getVoidPtrType());
cval = DtoBitCast(cval, dgty->getContainedType(0));
LLValue* castfptr = DtoBitCast(fd->ir.irFunc->func, dgty->getContainedType(1));
return new DImValue(type, DtoAggrPair(cval, castfptr, ".func"));
} else if(fd->tok == TOKfunction) {
return new DImValue(type, fd->ir.irFunc->func);
}
assert(0 && "fd->tok must be TOKfunction or TOKdelegate");
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* FuncExp::toConstElem(IRState* p)
{
Logger::print("FuncExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(fd);
if (fd->tok != TOKfunction)
{
assert(fd->tok == TOKdelegate);
error("delegate literals as constant expressions are not yet allowed");
}
fd->codegen(Type::sir);
assert(fd->ir.irFunc->func);
return fd->ir.irFunc->func;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ArrayLiteralExp::toElem(IRState* p)
{
Logger::print("ArrayLiteralExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
// D types
Type* arrayType = type->toBasetype();
Type* elemType = arrayType->nextOf()->toBasetype();
// is dynamic ?
bool dyn = (arrayType->ty == Tarray);
// length
size_t len = elements->dim;
// llvm target type
const LLType* llType = DtoType(arrayType);
if (Logger::enabled())
Logger::cout() << (dyn?"dynamic":"static") << " array literal with length " << len << " of D type: '" << arrayType->toChars() << "' has llvm type: '" << *llType << "'\n";
// llvm storage type
const LLType* llElemType = DtoTypeNotVoid(elemType);
const LLType* llStoType = LLArrayType::get(llElemType, len);
if (Logger::enabled())
Logger::cout() << "llvm storage type: '" << *llStoType << "'\n";
// don't allocate storage for zero length dynamic array literals
if (dyn && len == 0)
{
// dmd seems to just make them null...
return new DSliceValue(type, DtoConstSize_t(0), getNullPtr(getPtrToType(llElemType)));
}
// dst pointer
LLValue* dstMem;
DSliceValue* dynSlice = NULL;
if(dyn)
{
dynSlice = DtoNewDynArray(loc, arrayType, new DConstValue(Type::tsize_t, DtoConstSize_t(len)), false);
dstMem = dynSlice->ptr;
}
else
dstMem = DtoRawAlloca(llStoType, 0, "arrayliteral");
// store elements
for (size_t i=0; i<len; ++i)
{
Expression* expr = (Expression*)elements->data[i];
LLValue* elemAddr;
if(dyn)
elemAddr = DtoGEPi1(dstMem, i, "tmp", p->scopebb());
else
elemAddr = DtoGEPi(dstMem,0,i,"tmp",p->scopebb());
// emulate assignment
DVarValue* vv = new DVarValue(expr->type, elemAddr);
DValue* e = expr->toElem(p);
DtoAssign(loc, vv, e);
}
// return storage directly ?
if (!dyn)
return new DImValue(type, dstMem);
// return slice
return dynSlice;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* ArrayLiteralExp::toConstElem(IRState* p)
{
Logger::print("ArrayLiteralExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
// extract D types
Type* bt = type->toBasetype();
Type* elemt = bt->nextOf();
// build llvm array type
const LLArrayType* arrtype = LLArrayType::get(DtoTypeNotVoid(elemt), elements->dim);
// dynamic arrays can occur here as well ...
bool dyn = (bt->ty == Tarray);
// build the initializer
std::vector<LLConstant*> vals(elements->dim, NULL);
for (unsigned i=0; i<elements->dim; ++i)
{
Expression* expr = (Expression*)elements->data[i];
vals[i] = expr->toConstElem(p);
}
// build the constant array initializer
LLConstant* initval = LLConstantArray::get(arrtype, vals);
// if static array, we're done
if (!dyn)
return initval;
// for dynamic arrays we need to put the initializer in a global, and build a constant dynamic array reference with the .ptr field pointing into this global
// Important: don't make the global constant, since this const initializer might
// be used as an initializer for a static T[] - where modifying contents is allowed.
LLConstant* globalstore = new LLGlobalVariable(*gIR->module, arrtype, false, LLGlobalValue::InternalLinkage, initval, ".dynarrayStorage");
LLConstant* idxs[2] = { DtoConstUint(0), DtoConstUint(0) };
LLConstant* globalstorePtr = llvm::ConstantExpr::getGetElementPtr(globalstore, idxs, 2);
return DtoConstSlice(DtoConstSize_t(elements->dim), globalstorePtr);
}
//////////////////////////////////////////////////////////////////////////////////////////
extern LLConstant* get_default_initializer(VarDeclaration* vd, Initializer* init);
static LLValue* write_zeroes(LLValue* mem, unsigned start, unsigned end) {
mem = DtoBitCast(mem, getVoidPtrType());
LLValue* gep = DtoGEPi1(mem, start, ".padding");
DtoMemSetZero(gep, DtoConstSize_t(end - start));
return mem;
}
DValue* StructLiteralExp::toElem(IRState* p)
{
Logger::print("StructLiteralExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
// make sure the struct is fully resolved
sd->codegen(Type::sir);
// alloca a stack slot
LLValue* mem = DtoRawAlloca(DtoType(type), 0, ".structliteral");
// ready elements data
assert(elements && "struct literal has null elements");
size_t nexprs = elements->dim;
Expression** exprs = (Expression**)elements->data;
LLValue* voidptr = mem;
unsigned offset = 0;
// go through fields
ArrayIter<VarDeclaration> it(sd->fields);
for (; !it.done(); it.next())
{
VarDeclaration* vd = it.get();
// don't re-initialize unions
if (vd->offset < offset)
{
IF_LOG Logger::println("skipping field: %s %s (+%u)", vd->type->toChars(), vd->toChars(), vd->offset);
continue;
}
// initialize any padding so struct comparisons work
if (vd->offset != offset)
voidptr = write_zeroes(voidptr, offset, vd->offset);
offset = vd->offset + vd->type->size();
IF_LOG Logger::println("initializing field: %s %s (+%u)", vd->type->toChars(), vd->toChars(), vd->offset);
// get initializer
Expression* expr = (it.index < nexprs) ? exprs[it.index] : NULL;
IF_LOG Logger::println("expr: %p", expr);
DValue* val;
DConstValue cv(vd->type, NULL); // Only used in one branch; value is set beforehand
if (expr)
{
IF_LOG Logger::println("expr %zu = %s", it.index, expr->toChars());
val = expr->toElem(gIR);
}
else
{
IF_LOG Logger::println("using default initializer");
cv.c = get_default_initializer(vd, NULL);
val = &cv;
}
// get a pointer to this field
DVarValue field(vd->type, vd, DtoIndexStruct(mem, sd, vd));
// store the initializer there
DtoAssign(loc, &field, val);
}
// initialize trailing padding
if (sd->structsize != offset)
write_zeroes(voidptr, offset, sd->structsize);
// return as a var
return new DVarValue(type, mem);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* StructLiteralExp::toConstElem(IRState* p)
{
Logger::print("StructLiteralExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
// make sure the struct is resolved
sd->codegen(Type::sir);
// get inits
std::vector<LLValue*> inits(sd->fields.dim, NULL);
size_t nexprs = elements->dim;;
Expression** exprs = (Expression**)elements->data;
for (size_t i = 0; i < nexprs; i++)
if (exprs[i])
inits[i] = exprs[i]->toConstElem(p);
// vector of values to build aggregate from
std::vector<LLValue*> values = DtoStructLiteralValues(sd, inits);
// we know those values are constants.. cast them
std::vector<LLConstant*> constvals(values.size(), NULL);
for (size_t i = 0; i < values.size(); ++i)
constvals[i] = llvm::cast<LLConstant>(values[i]);
// return constant struct
return LLConstantStruct::get(gIR->context(), constvals, sd->ir.irStruct->packed);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* InExp::toElem(IRState* p)
{
Logger::print("InExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* key = e1->toElem(p);
DValue* aa = e2->toElem(p);
return DtoAAIn(loc, type, aa, key);
}
DValue* RemoveExp::toElem(IRState* p)
{
Logger::print("RemoveExp::toElem: %s\n", toChars());
LOG_SCOPE;
DValue* aa = e1->toElem(p);
DValue* key = e2->toElem(p);
DtoAARemove(loc, aa, key);
return NULL; // does not produce anything useful
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AssocArrayLiteralExp::toElem(IRState* p)
{
Logger::print("AssocArrayLiteralExp::toElem: %s @ %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(keys);
assert(values);
assert(keys->dim == values->dim);
Type* aatype = type->toBasetype();
Type* vtype = aatype->nextOf();
// it should be possible to avoid the temporary in some cases
LLValue* tmp = DtoAlloca(type,"aaliteral");
DValue* aa = new DVarValue(type, tmp);
DtoStore(LLConstant::getNullValue(DtoType(type)), tmp);
const size_t n = keys->dim;
for (size_t i=0; i<n; ++i)
{
Expression* ekey = (Expression*)keys->data[i];
Expression* eval = (Expression*)values->data[i];
Logger::println("(%zu) aa[%s] = %s", i, ekey->toChars(), eval->toChars());
// index
DValue* key = ekey->toElem(p);
DValue* mem = DtoAAIndex(loc, vtype, aa, key, true);
// store
DValue* val = eval->toElem(p);
DtoAssign(loc, mem, val);
}
return aa;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* GEPExp::toElem(IRState* p)
{
// this should be good enough for now!
DValue* val = e1->toElem(p);
assert(val->isLVal());
LLValue* v = DtoGEPi(val->getLVal(), 0, index);
return new DVarValue(type, DtoBitCast(v, getPtrToType(DtoType(type))));
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* BoolExp::toElem(IRState* p)
{
return new DImValue(type, DtoCast(loc, e1->toElem(p), Type::tbool)->getRVal());
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DotTypeExp::toElem(IRState* p)
{
Type* t = sym->getType();
assert(t);
return e1->toElem(p);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* TypeExp::toElem(IRState *p)
{
error("type %s is not an expression", toChars());
//TODO: Improve error handling. DMD just returns some value here and hopes
// some more sensible error messages will be triggered.
fatal();
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
#define STUB(x) DValue *x::toElem(IRState * p) {error("Exp type "#x" not implemented: %s", toChars()); fatal(); return 0; }
STUB(Expression);
STUB(ScopeExp);
STUB(TupleExp);
#if DMDV2
STUB(SymbolExp);
#endif
#define CONSTSTUB(x) LLConstant* x::toConstElem(IRState * p) { \
error("expression '%s' is not a constant", toChars()); \
fatal(); \
return NULL; \
}
CONSTSTUB(Expression);
CONSTSTUB(GEPExp);
CONSTSTUB(SliceExp);
CONSTSTUB(IndexExp);
CONSTSTUB(AssocArrayLiteralExp);
//////////////////////////////////////////////////////////////////////////////////////////
void obj_includelib(const char* lib)
{
size_t n = strlen(lib)+3;
char *arg = (char *)mem.malloc(n);
strcpy(arg, "-l");
strncat(arg, lib, n);
global.params.linkswitches->push(arg);
}
void backend_init()
{
// LLVM_D_InitRuntime is done in Module::genLLVMModule
// since it requires the semantic pass to be done
}
void backend_term()
{
LLVM_D_FreeRuntime();
llvm::llvm_shutdown();
}