mirror of
https://github.com/ldc-developers/ldc.git
synced 2025-05-11 21:37:17 +03:00
750 lines
17 KiB
C
750 lines
17 KiB
C
|
|
// Compiler implementation of the D programming language
|
|
// Copyright (c) 1999-2007 by Digital Mars
|
|
// All Rights Reserved
|
|
// written by Walter Bright
|
|
// http://www.digitalmars.com
|
|
// License for redistribution is by either the Artistic License
|
|
// in artistic.txt, or the GNU General Public License in gnu.txt.
|
|
// See the included readme.txt for details.
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
#include <assert.h>
|
|
#if _MSC_VER
|
|
#include <complex>
|
|
#else
|
|
#endif
|
|
|
|
#ifdef __APPLE__
|
|
#define integer_t dmd_integer_t
|
|
#endif
|
|
|
|
#if IN_GCC || IN_LLVM
|
|
#include "mem.h"
|
|
#elif POSIX
|
|
#include "../root/mem.h"
|
|
#elif _WIN32
|
|
#include "..\root\mem.h"
|
|
#endif
|
|
|
|
//#include "port.h"
|
|
#include "mtype.h"
|
|
#include "init.h"
|
|
#include "expression.h"
|
|
#include "id.h"
|
|
#include "declaration.h"
|
|
#include "aggregate.h"
|
|
#include "template.h"
|
|
|
|
static void inferApplyArgTypesX(FuncDeclaration *fstart, Arguments *arguments);
|
|
static void inferApplyArgTypesZ(TemplateDeclaration *tstart, Arguments *arguments);
|
|
static int inferApplyArgTypesY(TypeFunction *tf, Arguments *arguments);
|
|
static void templateResolve(Match *m, TemplateDeclaration *td, Scope *sc, Loc loc, Objects *targsi, Expression *ethis, Expressions *arguments);
|
|
|
|
/******************************** Expression **************************/
|
|
|
|
|
|
/***********************************
|
|
* Determine if operands of binary op can be reversed
|
|
* to fit operator overload.
|
|
*/
|
|
|
|
int Expression::isCommutative()
|
|
{
|
|
return FALSE; // default is no reverse
|
|
}
|
|
|
|
/***********************************
|
|
* Get Identifier for operator overload.
|
|
*/
|
|
|
|
Identifier *Expression::opId()
|
|
{
|
|
assert(0);
|
|
return NULL;
|
|
}
|
|
|
|
/***********************************
|
|
* Get Identifier for reverse operator overload,
|
|
* NULL if not supported for this operator.
|
|
*/
|
|
|
|
Identifier *Expression::opId_r()
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
/************************* Operators *****************************/
|
|
|
|
Identifier *UAddExp::opId() { return Id::uadd; }
|
|
|
|
Identifier *NegExp::opId() { return Id::neg; }
|
|
|
|
Identifier *ComExp::opId() { return Id::com; }
|
|
|
|
Identifier *CastExp::opId() { return Id::cast; }
|
|
|
|
Identifier *InExp::opId() { return Id::opIn; }
|
|
Identifier *InExp::opId_r() { return Id::opIn_r; }
|
|
|
|
Identifier *PostExp::opId() { return (op == TOKplusplus)
|
|
? Id::postinc
|
|
: Id::postdec; }
|
|
|
|
int AddExp::isCommutative() { return TRUE; }
|
|
Identifier *AddExp::opId() { return Id::add; }
|
|
Identifier *AddExp::opId_r() { return Id::add_r; }
|
|
|
|
Identifier *MinExp::opId() { return Id::sub; }
|
|
Identifier *MinExp::opId_r() { return Id::sub_r; }
|
|
|
|
int MulExp::isCommutative() { return TRUE; }
|
|
Identifier *MulExp::opId() { return Id::mul; }
|
|
Identifier *MulExp::opId_r() { return Id::mul_r; }
|
|
|
|
Identifier *DivExp::opId() { return Id::div; }
|
|
Identifier *DivExp::opId_r() { return Id::div_r; }
|
|
|
|
Identifier *ModExp::opId() { return Id::mod; }
|
|
Identifier *ModExp::opId_r() { return Id::mod_r; }
|
|
|
|
Identifier *ShlExp::opId() { return Id::shl; }
|
|
Identifier *ShlExp::opId_r() { return Id::shl_r; }
|
|
|
|
Identifier *ShrExp::opId() { return Id::shr; }
|
|
Identifier *ShrExp::opId_r() { return Id::shr_r; }
|
|
|
|
Identifier *UshrExp::opId() { return Id::ushr; }
|
|
Identifier *UshrExp::opId_r() { return Id::ushr_r; }
|
|
|
|
int AndExp::isCommutative() { return TRUE; }
|
|
Identifier *AndExp::opId() { return Id::iand; }
|
|
Identifier *AndExp::opId_r() { return Id::iand_r; }
|
|
|
|
int OrExp::isCommutative() { return TRUE; }
|
|
Identifier *OrExp::opId() { return Id::ior; }
|
|
Identifier *OrExp::opId_r() { return Id::ior_r; }
|
|
|
|
int XorExp::isCommutative() { return TRUE; }
|
|
Identifier *XorExp::opId() { return Id::ixor; }
|
|
Identifier *XorExp::opId_r() { return Id::ixor_r; }
|
|
|
|
Identifier *CatExp::opId() { return Id::cat; }
|
|
Identifier *CatExp::opId_r() { return Id::cat_r; }
|
|
|
|
Identifier * AssignExp::opId() { return Id::assign; }
|
|
Identifier * AddAssignExp::opId() { return Id::addass; }
|
|
Identifier * MinAssignExp::opId() { return Id::subass; }
|
|
Identifier * MulAssignExp::opId() { return Id::mulass; }
|
|
Identifier * DivAssignExp::opId() { return Id::divass; }
|
|
Identifier * ModAssignExp::opId() { return Id::modass; }
|
|
Identifier * AndAssignExp::opId() { return Id::andass; }
|
|
Identifier * OrAssignExp::opId() { return Id::orass; }
|
|
Identifier * XorAssignExp::opId() { return Id::xorass; }
|
|
Identifier * ShlAssignExp::opId() { return Id::shlass; }
|
|
Identifier * ShrAssignExp::opId() { return Id::shrass; }
|
|
Identifier *UshrAssignExp::opId() { return Id::ushrass; }
|
|
Identifier * CatAssignExp::opId() { return Id::catass; }
|
|
|
|
int EqualExp::isCommutative() { return TRUE; }
|
|
Identifier *EqualExp::opId() { return Id::eq; }
|
|
|
|
int CmpExp::isCommutative() { return TRUE; }
|
|
Identifier *CmpExp::opId() { return Id::cmp; }
|
|
|
|
Identifier *ArrayExp::opId() { return Id::index; }
|
|
Identifier *PtrExp::opId() { return Id::opStar; }
|
|
|
|
/************************************
|
|
* Operator overload.
|
|
* Check for operator overload, if so, replace
|
|
* with function call.
|
|
* Return NULL if not an operator overload.
|
|
*/
|
|
|
|
Expression *UnaExp::op_overload(Scope *sc)
|
|
{
|
|
AggregateDeclaration *ad;
|
|
Dsymbol *fd;
|
|
Type *t1 = e1->type->toBasetype();
|
|
|
|
if (t1->ty == Tclass)
|
|
{
|
|
ad = ((TypeClass *)t1)->sym;
|
|
goto L1;
|
|
}
|
|
else if (t1->ty == Tstruct)
|
|
{
|
|
ad = ((TypeStruct *)t1)->sym;
|
|
|
|
L1:
|
|
fd = search_function(ad, opId());
|
|
if (fd)
|
|
{
|
|
if (op == TOKarray)
|
|
{
|
|
Expression *e;
|
|
ArrayExp *ae = (ArrayExp *)this;
|
|
|
|
e = new DotIdExp(loc, e1, fd->ident);
|
|
e = new CallExp(loc, e, ae->arguments);
|
|
e = e->semantic(sc);
|
|
return e;
|
|
}
|
|
else
|
|
{
|
|
// Rewrite +e1 as e1.add()
|
|
return build_overload(loc, sc, e1, NULL, fd->ident);
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
Expression *BinExp::op_overload(Scope *sc)
|
|
{
|
|
//printf("BinExp::op_overload() (%s)\n", toChars());
|
|
|
|
AggregateDeclaration *ad;
|
|
Type *t1 = e1->type->toBasetype();
|
|
Type *t2 = e2->type->toBasetype();
|
|
Identifier *id = opId();
|
|
Identifier *id_r = opId_r();
|
|
|
|
Match m;
|
|
Expressions args1;
|
|
Expressions args2;
|
|
int argsset = 0;
|
|
|
|
AggregateDeclaration *ad1;
|
|
if (t1->ty == Tclass)
|
|
ad1 = ((TypeClass *)t1)->sym;
|
|
else if (t1->ty == Tstruct)
|
|
ad1 = ((TypeStruct *)t1)->sym;
|
|
else
|
|
ad1 = NULL;
|
|
|
|
AggregateDeclaration *ad2;
|
|
if (t2->ty == Tclass)
|
|
ad2 = ((TypeClass *)t2)->sym;
|
|
else if (t2->ty == Tstruct)
|
|
ad2 = ((TypeStruct *)t2)->sym;
|
|
else
|
|
ad2 = NULL;
|
|
|
|
Dsymbol *s = NULL;
|
|
Dsymbol *s_r = NULL;
|
|
FuncDeclaration *fd = NULL;
|
|
TemplateDeclaration *td = NULL;
|
|
if (ad1 && id)
|
|
{
|
|
s = search_function(ad1, id);
|
|
}
|
|
if (ad2 && id_r)
|
|
{
|
|
s_r = search_function(ad2, id_r);
|
|
}
|
|
|
|
if (s || s_r)
|
|
{
|
|
/* Try:
|
|
* a.opfunc(b)
|
|
* b.opfunc_r(a)
|
|
* and see which is better.
|
|
*/
|
|
Expression *e;
|
|
FuncDeclaration *lastf;
|
|
|
|
args1.setDim(1);
|
|
args1.data[0] = (void*) e1;
|
|
args2.setDim(1);
|
|
args2.data[0] = (void*) e2;
|
|
argsset = 1;
|
|
|
|
memset(&m, 0, sizeof(m));
|
|
m.last = MATCHnomatch;
|
|
|
|
if (s)
|
|
{
|
|
fd = s->isFuncDeclaration();
|
|
if (fd)
|
|
{
|
|
overloadResolveX(&m, fd, NULL, &args2);
|
|
}
|
|
else
|
|
{ td = s->isTemplateDeclaration();
|
|
templateResolve(&m, td, sc, loc, NULL, NULL, &args2);
|
|
}
|
|
}
|
|
|
|
lastf = m.lastf;
|
|
|
|
if (s_r)
|
|
{
|
|
fd = s_r->isFuncDeclaration();
|
|
if (fd)
|
|
{
|
|
overloadResolveX(&m, fd, NULL, &args1);
|
|
}
|
|
else
|
|
{ td = s_r->isTemplateDeclaration();
|
|
templateResolve(&m, td, sc, loc, NULL, NULL, &args1);
|
|
}
|
|
}
|
|
|
|
if (m.count > 1)
|
|
{
|
|
// Error, ambiguous
|
|
error("overloads %s and %s both match argument list for %s",
|
|
m.lastf->type->toChars(),
|
|
m.nextf->type->toChars(),
|
|
m.lastf->toChars());
|
|
}
|
|
else if (m.last == MATCHnomatch)
|
|
{
|
|
m.lastf = m.anyf;
|
|
}
|
|
|
|
if (op == TOKplusplus || op == TOKminusminus)
|
|
// Kludge because operator overloading regards e++ and e--
|
|
// as unary, but it's implemented as a binary.
|
|
// Rewrite (e1 ++ e2) as e1.postinc()
|
|
// Rewrite (e1 -- e2) as e1.postdec()
|
|
e = build_overload(loc, sc, e1, NULL, id);
|
|
else if (lastf && m.lastf == lastf || m.last == MATCHnomatch)
|
|
// Rewrite (e1 op e2) as e1.opfunc(e2)
|
|
e = build_overload(loc, sc, e1, e2, id);
|
|
else
|
|
// Rewrite (e1 op e2) as e2.opfunc_r(e1)
|
|
e = build_overload(loc, sc, e2, e1, id_r);
|
|
return e;
|
|
}
|
|
|
|
if (isCommutative())
|
|
{
|
|
s = NULL;
|
|
s_r = NULL;
|
|
if (ad1 && id_r)
|
|
{
|
|
s_r = search_function(ad1, id_r);
|
|
}
|
|
if (ad2 && id)
|
|
{
|
|
s = search_function(ad2, id);
|
|
}
|
|
|
|
if (s || s_r)
|
|
{
|
|
/* Try:
|
|
* a.opfunc_r(b)
|
|
* b.opfunc(a)
|
|
* and see which is better.
|
|
*/
|
|
Expression *e;
|
|
FuncDeclaration *lastf;
|
|
|
|
if (!argsset)
|
|
{ args1.setDim(1);
|
|
args1.data[0] = (void*) e1;
|
|
args2.setDim(1);
|
|
args2.data[0] = (void*) e2;
|
|
}
|
|
|
|
memset(&m, 0, sizeof(m));
|
|
m.last = MATCHnomatch;
|
|
|
|
if (s_r)
|
|
{
|
|
fd = s_r->isFuncDeclaration();
|
|
if (fd)
|
|
{
|
|
overloadResolveX(&m, fd, NULL, &args2);
|
|
}
|
|
else
|
|
{ td = s_r->isTemplateDeclaration();
|
|
templateResolve(&m, td, sc, loc, NULL, NULL, &args2);
|
|
}
|
|
}
|
|
lastf = m.lastf;
|
|
|
|
if (s)
|
|
{
|
|
fd = s->isFuncDeclaration();
|
|
if (fd)
|
|
{
|
|
overloadResolveX(&m, fd, NULL, &args1);
|
|
}
|
|
else
|
|
{ td = s->isTemplateDeclaration();
|
|
templateResolve(&m, td, sc, loc, NULL, NULL, &args1);
|
|
}
|
|
}
|
|
|
|
if (m.count > 1)
|
|
{
|
|
// Error, ambiguous
|
|
error("overloads %s and %s both match argument list for %s",
|
|
m.lastf->type->toChars(),
|
|
m.nextf->type->toChars(),
|
|
m.lastf->toChars());
|
|
}
|
|
else if (m.last == MATCHnomatch)
|
|
{
|
|
m.lastf = m.anyf;
|
|
}
|
|
|
|
if (lastf && m.lastf == lastf ||
|
|
id_r && m.last == MATCHnomatch)
|
|
// Rewrite (e1 op e2) as e1.opfunc_r(e2)
|
|
e = build_overload(loc, sc, e1, e2, id_r);
|
|
else
|
|
// Rewrite (e1 op e2) as e2.opfunc(e1)
|
|
e = build_overload(loc, sc, e2, e1, id);
|
|
|
|
// When reversing operands of comparison operators,
|
|
// need to reverse the sense of the op
|
|
switch (op)
|
|
{
|
|
case TOKlt: op = TOKgt; break;
|
|
case TOKgt: op = TOKlt; break;
|
|
case TOKle: op = TOKge; break;
|
|
case TOKge: op = TOKle; break;
|
|
|
|
// Floating point compares
|
|
case TOKule: op = TOKuge; break;
|
|
case TOKul: op = TOKug; break;
|
|
case TOKuge: op = TOKule; break;
|
|
case TOKug: op = TOKul; break;
|
|
|
|
// These are symmetric
|
|
case TOKunord:
|
|
case TOKlg:
|
|
case TOKleg:
|
|
case TOKue:
|
|
break;
|
|
}
|
|
|
|
return e;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/***********************************
|
|
* Utility to build a function call out of this reference and argument.
|
|
*/
|
|
|
|
Expression *build_overload(Loc loc, Scope *sc, Expression *ethis, Expression *earg, Identifier *id)
|
|
{
|
|
Expression *e;
|
|
|
|
//printf("build_overload(id = '%s')\n", id->toChars());
|
|
//earg->print();
|
|
//earg->type->print();
|
|
e = new DotIdExp(loc, ethis, id);
|
|
|
|
if (earg)
|
|
e = new CallExp(loc, e, earg);
|
|
else
|
|
e = new CallExp(loc, e);
|
|
|
|
e = e->semantic(sc);
|
|
return e;
|
|
}
|
|
|
|
/***************************************
|
|
* Search for function funcid in aggregate ad.
|
|
*/
|
|
|
|
Dsymbol *search_function(ScopeDsymbol *ad, Identifier *funcid)
|
|
{
|
|
Dsymbol *s;
|
|
FuncDeclaration *fd;
|
|
TemplateDeclaration *td;
|
|
|
|
s = ad->search(0, funcid, 0);
|
|
if (s)
|
|
{ Dsymbol *s2;
|
|
|
|
//printf("search_function: s = '%s'\n", s->kind());
|
|
s2 = s->toAlias();
|
|
//printf("search_function: s2 = '%s'\n", s2->kind());
|
|
fd = s2->isFuncDeclaration();
|
|
if (fd && fd->type->ty == Tfunction)
|
|
return fd;
|
|
|
|
td = s2->isTemplateDeclaration();
|
|
if (td)
|
|
return td;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*****************************************
|
|
* Given array of arguments and an aggregate type,
|
|
* if any of the argument types are missing, attempt to infer
|
|
* them from the aggregate type.
|
|
*/
|
|
|
|
void inferApplyArgTypes(enum TOK op, Arguments *arguments, Expression *aggr)
|
|
{
|
|
if (!arguments || !arguments->dim)
|
|
return;
|
|
|
|
/* Return if no arguments need types.
|
|
*/
|
|
for (size_t u = 0; 1; u++)
|
|
{ if (u == arguments->dim)
|
|
return;
|
|
Argument *arg = (Argument *)arguments->data[u];
|
|
if (!arg->type)
|
|
break;
|
|
}
|
|
|
|
AggregateDeclaration *ad;
|
|
|
|
Argument *arg = (Argument *)arguments->data[0];
|
|
Type *taggr = aggr->type;
|
|
if (!taggr)
|
|
return;
|
|
Type *tab = taggr->toBasetype();
|
|
switch (tab->ty)
|
|
{
|
|
case Tarray:
|
|
case Tsarray:
|
|
case Ttuple:
|
|
if (arguments->dim == 2)
|
|
{
|
|
if (!arg->type)
|
|
arg->type = Type::tsize_t; // key type
|
|
arg = (Argument *)arguments->data[1];
|
|
}
|
|
if (!arg->type && tab->ty != Ttuple)
|
|
arg->type = tab->nextOf(); // value type
|
|
break;
|
|
|
|
case Taarray:
|
|
{ TypeAArray *taa = (TypeAArray *)tab;
|
|
|
|
if (arguments->dim == 2)
|
|
{
|
|
if (!arg->type)
|
|
arg->type = taa->index; // key type
|
|
arg = (Argument *)arguments->data[1];
|
|
}
|
|
if (!arg->type)
|
|
arg->type = taa->next; // value type
|
|
break;
|
|
}
|
|
|
|
case Tclass:
|
|
ad = ((TypeClass *)tab)->sym;
|
|
goto Laggr;
|
|
|
|
case Tstruct:
|
|
ad = ((TypeStruct *)tab)->sym;
|
|
goto Laggr;
|
|
|
|
Laggr:
|
|
if (arguments->dim == 1)
|
|
{
|
|
if (!arg->type)
|
|
{
|
|
/* Look for a head() or rear() overload
|
|
*/
|
|
Identifier *id = (op == TOKforeach) ? Id::Fhead : Id::Ftoe;
|
|
Dsymbol *s = search_function(ad, id);
|
|
FuncDeclaration *fd = s ? s->isFuncDeclaration() : NULL;
|
|
if (!fd)
|
|
{ if (s && s->isTemplateDeclaration())
|
|
break;
|
|
goto Lapply;
|
|
}
|
|
arg->type = fd->type->nextOf();
|
|
}
|
|
break;
|
|
}
|
|
|
|
Lapply:
|
|
{ /* Look for an
|
|
* int opApply(int delegate(ref Type [, ...]) dg);
|
|
* overload
|
|
*/
|
|
Dsymbol *s = search_function(ad,
|
|
(op == TOKforeach_reverse) ? Id::applyReverse
|
|
: Id::apply);
|
|
if (s)
|
|
{
|
|
FuncDeclaration *fd = s->isFuncDeclaration();
|
|
if (fd)
|
|
{ inferApplyArgTypesX(fd, arguments);
|
|
break;
|
|
}
|
|
#if 0
|
|
TemplateDeclaration *td = s->isTemplateDeclaration();
|
|
if (td)
|
|
{ inferApplyArgTypesZ(td, arguments);
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Tdelegate:
|
|
{
|
|
if (0 && aggr->op == TOKdelegate)
|
|
{ DelegateExp *de = (DelegateExp *)aggr;
|
|
|
|
FuncDeclaration *fd = de->func->isFuncDeclaration();
|
|
if (fd)
|
|
inferApplyArgTypesX(fd, arguments);
|
|
}
|
|
else
|
|
{
|
|
inferApplyArgTypesY((TypeFunction *)tab->nextOf(), arguments);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break; // ignore error, caught later
|
|
}
|
|
}
|
|
|
|
/********************************
|
|
* Recursive helper function,
|
|
* analogous to func.overloadResolveX().
|
|
*/
|
|
|
|
int fp3(void *param, FuncDeclaration *f)
|
|
{
|
|
Arguments *arguments = (Arguments *)param;
|
|
TypeFunction *tf = (TypeFunction *)f->type;
|
|
if (inferApplyArgTypesY(tf, arguments) == 1)
|
|
return 0;
|
|
if (arguments->dim == 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void inferApplyArgTypesX(FuncDeclaration *fstart, Arguments *arguments)
|
|
{
|
|
overloadApply(fstart, &fp3, arguments);
|
|
}
|
|
|
|
/******************************
|
|
* Infer arguments from type of function.
|
|
* Returns:
|
|
* 0 match for this function
|
|
* 1 no match for this function
|
|
*/
|
|
|
|
static int inferApplyArgTypesY(TypeFunction *tf, Arguments *arguments)
|
|
{ size_t nparams;
|
|
Argument *p;
|
|
|
|
if (Argument::dim(tf->parameters) != 1)
|
|
goto Lnomatch;
|
|
p = Argument::getNth(tf->parameters, 0);
|
|
if (p->type->ty != Tdelegate)
|
|
goto Lnomatch;
|
|
tf = (TypeFunction *)p->type->nextOf();
|
|
assert(tf->ty == Tfunction);
|
|
|
|
/* We now have tf, the type of the delegate. Match it against
|
|
* the arguments, filling in missing argument types.
|
|
*/
|
|
nparams = Argument::dim(tf->parameters);
|
|
if (nparams == 0 || tf->varargs)
|
|
goto Lnomatch; // not enough parameters
|
|
if (arguments->dim != nparams)
|
|
goto Lnomatch; // not enough parameters
|
|
|
|
for (size_t u = 0; u < nparams; u++)
|
|
{
|
|
Argument *arg = (Argument *)arguments->data[u];
|
|
Argument *param = Argument::getNth(tf->parameters, u);
|
|
if (arg->type)
|
|
{ if (!arg->type->equals(param->type))
|
|
{
|
|
/* Cannot resolve argument types. Indicate an
|
|
* error by setting the number of arguments to 0.
|
|
*/
|
|
arguments->dim = 0;
|
|
goto Lmatch;
|
|
}
|
|
continue;
|
|
}
|
|
arg->type = param->type;
|
|
}
|
|
Lmatch:
|
|
return 0;
|
|
|
|
Lnomatch:
|
|
return 1;
|
|
}
|
|
|
|
/*******************************************
|
|
* Infer foreach arg types from a template function opApply which looks like:
|
|
* int opApply(alias int func(ref uint))() { ... }
|
|
*/
|
|
|
|
#if 0
|
|
void inferApplyArgTypesZ(TemplateDeclaration *tstart, Arguments *arguments)
|
|
{
|
|
for (TemplateDeclaration *td = tstart; td; td = td->overnext)
|
|
{
|
|
if (!td->scope)
|
|
{
|
|
error("forward reference to template %s", td->toChars());
|
|
return;
|
|
}
|
|
if (!td->onemember || !td->onemember->toAlias()->isFuncDeclaration())
|
|
{
|
|
error("is not a function template");
|
|
return;
|
|
}
|
|
if (!td->parameters || td->parameters->dim != 1)
|
|
continue;
|
|
TemplateParameter *tp = (TemplateParameter *)td->parameters->data[0];
|
|
TemplateAliasParameter *tap = tp->isTemplateAliasParameter();
|
|
if (!tap || !tap->specType || tap->specType->ty != Tfunction)
|
|
continue;
|
|
TypeFunction *tf = (TypeFunction *)tap->specType;
|
|
if (inferApplyArgTypesY(tf, arguments) == 0) // found it
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**************************************
|
|
*/
|
|
|
|
static void templateResolve(Match *m, TemplateDeclaration *td, Scope *sc, Loc loc, Objects *targsi, Expression *ethis, Expressions *arguments)
|
|
{
|
|
FuncDeclaration *fd;
|
|
|
|
assert(td);
|
|
fd = td->deduceFunctionTemplate(sc, loc, targsi, ethis, arguments);
|
|
if (!fd)
|
|
return;
|
|
m->anyf = fd;
|
|
if (m->last >= MATCHexact)
|
|
{
|
|
m->nextf = fd;
|
|
m->count++;
|
|
}
|
|
else
|
|
{
|
|
m->last = MATCHexact;
|
|
m->lastf = fd;
|
|
m->count = 1;
|
|
}
|
|
}
|
|
|