mirror of
https://github.com/ldc-developers/ldc.git
synced 2025-05-09 20:37:25 +03:00
74 lines
2.2 KiB
C
74 lines
2.2 KiB
C
|
|
// Compiler implementation of the D programming language
|
|
// Copyright (c) 1999-2006 by Digital Mars
|
|
// All Rights Reserved
|
|
// written by Walter Bright and Burton Radons
|
|
// http://www.digitalmars.com
|
|
// License for redistribution is by either the Artistic License
|
|
// in artistic.txt, or the GNU General Public License in gnu.txt.
|
|
// See the included readme.txt for details.
|
|
|
|
#ifndef DMD_COMPLEX_T_H
|
|
#define DMD_COMPLEX_T_H
|
|
|
|
/* Roll our own complex type for compilers that don't support complex
|
|
*/
|
|
|
|
struct complex_t
|
|
{
|
|
long double re;
|
|
long double im;
|
|
|
|
complex_t() { this->re = 0; this->im = 0; }
|
|
complex_t(long double re) { this->re = re; this->im = 0; }
|
|
complex_t(long double re, long double im) { this->re = re; this->im = im; }
|
|
|
|
complex_t operator + (complex_t y) { complex_t r; r.re = re + y.re; r.im = im + y.im; return r; }
|
|
complex_t operator - (complex_t y) { complex_t r; r.re = re - y.re; r.im = im - y.im; return r; }
|
|
complex_t operator - () { complex_t r; r.re = -re; r.im = -im; return r; }
|
|
complex_t operator * (complex_t y) { return complex_t(re * y.re - im * y.im, im * y.re + re * y.im); }
|
|
|
|
complex_t operator / (complex_t y)
|
|
{
|
|
long double abs_y_re = y.re < 0 ? -y.re : y.re;
|
|
long double abs_y_im = y.im < 0 ? -y.im : y.im;
|
|
long double r, den;
|
|
|
|
if (abs_y_re < abs_y_im)
|
|
{
|
|
r = y.re / y.im;
|
|
den = y.im + r * y.re;
|
|
return complex_t((re * r + im) / den,
|
|
(im * r - re) / den);
|
|
}
|
|
else
|
|
{
|
|
r = y.im / y.re;
|
|
den = y.re + r * y.im;
|
|
return complex_t((re + r * im) / den,
|
|
(im - r * re) / den);
|
|
}
|
|
}
|
|
|
|
operator bool () { return re || im; }
|
|
|
|
int operator == (complex_t y) { return re == y.re && im == y.im; }
|
|
int operator != (complex_t y) { return re != y.re || im != y.im; }
|
|
};
|
|
|
|
inline complex_t operator * (long double x, complex_t y) { return complex_t(x) * y; }
|
|
inline complex_t operator * (complex_t x, long double y) { return x * complex_t(y); }
|
|
inline complex_t operator / (complex_t x, long double y) { return x / complex_t(y); }
|
|
|
|
|
|
inline long double creall(complex_t x)
|
|
{
|
|
return x.re;
|
|
}
|
|
|
|
inline long double cimagl(complex_t x)
|
|
{
|
|
return x.im;
|
|
}
|
|
|
|
#endif
|