ldc/runtime/internal/lifetime.d
2009-01-30 07:51:50 +01:00

1142 lines
29 KiB
D

/**
* This module contains all functions related to an object's lifetime:
* allocation, resizing, deallocation, and finalization.
*
* Copyright: Copyright (C) 2004-2007 Digital Mars, www.digitalmars.com.
* All rights reserved.
* License:
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, in both source and binary form, subject to the following
* restrictions:
*
* o The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* o Altered source versions must be plainly marked as such, and must not
* be misrepresented as being the original software.
* o This notice may not be removed or altered from any source
* distribution.
* Authors: Walter Bright, Sean Kelly, Tomas Lindquist Olsen
*/
module lifetime;
//debug=PRINTF;
//debug=PRINTF2;
private
{
import tango.stdc.stdlib;
import tango.stdc.string;
import tango.stdc.stdarg;
debug(PRINTF) import tango.stdc.stdio;
else debug(PRINTF2) import tango.stdc.stdio;
}
private
{
enum BlkAttr : uint
{
FINALIZE = 0b0000_0001,
NO_SCAN = 0b0000_0010,
NO_MOVE = 0b0000_0100,
ALL_BITS = 0b1111_1111
}
struct BlkInfo
{
void* base;
size_t size;
uint attr;
}
extern (C) uint gc_getAttr( void* p );
extern (C) uint gc_setAttr( void* p, uint a );
extern (C) uint gc_clrAttr( void* p, uint a );
extern (C) void* gc_malloc( size_t sz, uint ba = 0 );
extern (C) void* gc_calloc( size_t sz, uint ba = 0 );
extern (C) size_t gc_extend( void* p, size_t mx, size_t sz );
extern (C) void gc_free( void* p );
extern (C) void* gc_addrOf( void* p );
extern (C) size_t gc_sizeOf( void* p );
extern (C) BlkInfo gc_query( void* p );
extern (C) bool onCollectResource( Object o );
extern (C) void onFinalizeError( ClassInfo c, Exception e );
extern (C) void onOutOfMemoryError();
extern (C) void _d_monitordelete(Object h, bool det = true);
enum
{
PAGESIZE = 4096
}
alias bool function(Object) CollectHandler;
CollectHandler collectHandler = null;
}
/**
*
*/
extern (C) Object _d_allocclass(ClassInfo ci)
{
void* p;
debug(PRINTF2) printf("_d_allocclass(ci = %p, %s)\n", ci, cast(char *)ci.name.ptr);
/+
if (ci.flags & 1) // if COM object
{ /* COM objects are not garbage collected, they are reference counted
* using AddRef() and Release(). They get free'd by C's free()
* function called by Release() when Release()'s reference count goes
* to zero.
*/
p = tango.stdc.stdlib.malloc(ci.init.length);
if (!p)
onOutOfMemoryError();
}
else
+/
{
p = gc_malloc(ci.init.length,
BlkAttr.FINALIZE | (ci.flags & 2 ? BlkAttr.NO_SCAN : 0));
debug(PRINTF2) printf(" p = %p\n", p);
}
debug(PRINTF2)
{
printf("p = %p\n", p);
printf("ci = %p, ci.init = %p, len = %d\n", ci, ci.init.ptr, ci.init.length);
printf("vptr = %p\n", *cast(void**) ci.init.ptr);
printf("vtbl[0] = %p\n", (*cast(void***) ci.init.ptr)[0]);
printf("vtbl[1] = %p\n", (*cast(void***) ci.init.ptr)[1]);
printf("init[0] = %p\n", (cast(uint**) ci.init.ptr)[0]);
printf("init[1] = %p\n", (cast(uint**) ci.init.ptr)[1]);
printf("init[2] = %p\n", (cast(uint**) ci.init.ptr)[2]);
printf("init[3] = %p\n", (cast(uint**) ci.init.ptr)[3]);
printf("init[4] = %p\n", (cast(uint**) ci.init.ptr)[4]);
}
// initialize it
// ldc does this inline
//(cast(byte*) p)[0 .. ci.init.length] = ci.init[];
debug(PRINTF) printf("initialization done\n");
return cast(Object) p;
}
/**
*
*/
extern (C) void _d_delinterface(void* p)
{
if (p)
{
Interface* pi = **cast(Interface ***)p;
Object o = cast(Object)(p - pi.offset);
_d_delclass(o);
//*p = null;
}
}
// used for deletion
private extern (D) alias void function(Object) fp_t;
/**
*
*/
extern (C) void _d_delclass(Object p)
{
if (p)
{
debug(PRINTF) printf("_d_delclass(%p)\n", p);
ClassInfo **pc = cast(ClassInfo **)p;
if (*pc)
{
ClassInfo c = **pc;
rt_finalize(cast(void*) p);
if (c.deallocator)
{
fp_t fp = cast(fp_t)c.deallocator;
(*fp)(p); // call deallocator
//*p = null;
return;
}
}
else
{
rt_finalize(cast(void*) p);
}
gc_free(cast(void*) p);
//*p = null;
}
}
/+
/**
*
*/
struct Array
{
size_t length;
void* data;
}
+/
/**
* Allocate a new array of length elements.
* ti is the type of the resulting array, or pointer to element.
* The resulting array is initialized to 0
*/
extern (C) void* _d_newarrayT(TypeInfo ti, size_t length)
{
void* p;
auto size = ti.next.tsize(); // array element size
debug(PRINTF) printf("_d_newarrayT(length = %u, size = %d)\n", length, size);
if (length == 0 || size == 0)
return null;
version (D_InlineAsm_X86)
{
asm
{
mov EAX,size ;
mul EAX,length ;
mov size,EAX ;
jc Loverflow ;
}
}
else
size *= length;
p = gc_malloc(size + 1, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
debug(PRINTF) printf(" p = %p\n", p);
memset(p, 0, size);
return p;
Loverflow:
onOutOfMemoryError();
return null;
}
/**
* As _d_newarrayT, but
* for when the array has a non-zero initializer.
*/
extern (C) void* _d_newarrayiT(TypeInfo ti, size_t length)
{
void* result;
auto size = ti.next.tsize(); // array element size
debug(PRINTF) printf("_d_newarrayiT(length = %d, size = %d)\n", length, size);
if (length == 0 || size == 0)
result = null;
else
{
auto initializer = ti.next.init();
auto isize = initializer.length;
auto q = initializer.ptr;
version (D_InlineAsm_X86)
{
asm
{
mov EAX,size ;
mul EAX,length ;
mov size,EAX ;
jc Loverflow ;
}
}
else
size *= length;
auto p = gc_malloc(size + 1, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
debug(PRINTF) printf(" p = %p\n", p);
if (isize == 1)
memset(p, *cast(ubyte*)q, size);
else if (isize == int.sizeof)
{
int init = *cast(int*)q;
size /= int.sizeof;
for (size_t u = 0; u < size; u++)
{
(cast(int*)p)[u] = init;
}
}
else
{
for (size_t u = 0; u < size; u += isize)
{
memcpy(p + u, q, isize);
}
}
result = p;
}
return result;
Loverflow:
onOutOfMemoryError();
return null;
}
/**
* As _d_newarrayT, but without initialization
*/
extern (C) void* _d_newarrayvT(TypeInfo ti, size_t length)
{
void* p;
auto size = ti.next.tsize(); // array element size
debug(PRINTF) printf("_d_newarrayvT(length = %u, size = %d)\n", length, size);
if (length == 0 || size == 0)
return null;
version (D_InlineAsm_X86)
{
asm
{
mov EAX,size ;
mul EAX,length ;
mov size,EAX ;
jc Loverflow ;
}
}
else
size *= length;
p = gc_malloc(size + 1, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
debug(PRINTF) printf(" p = %p\n", p);
return p;
Loverflow:
onOutOfMemoryError();
return null;
}
/**
* Allocate a new array of arrays of arrays of arrays ...
* ti is the type of the resulting array.
* ndims is the number of nested arrays.
* dims it the array of dimensions, its size is ndims.
* The resulting array is initialized to 0
*/
extern (C) void* _d_newarraymT(TypeInfo ti, int ndims, size_t* dims)
{
void* result;
debug(PRINTF) printf("_d_newarraymT(ndims = %d)\n", ndims);
if (ndims == 0)
result = null;
else
{
static void[] foo(TypeInfo ti, size_t* pdim, int ndims)
{
size_t dim = *pdim;
void[] p;
debug(PRINTF) printf("foo(ti = %p, ti.next = %p, dim = %d, ndims = %d\n", ti, ti.next, dim, ndims);
if (ndims == 1)
{
auto r = _d_newarrayT(ti, dim);
return r[0 .. dim];
}
else
{
p = gc_malloc(dim * (void[]).sizeof + 1)[0 .. dim];
for (int i = 0; i < dim; i++)
{
(cast(void[]*)p.ptr)[i] = foo(ti.next, pdim + 1, ndims - 1);
}
}
return p;
}
result = foo(ti, dims, ndims).ptr;
debug(PRINTF) printf("result = %p\n", result);
version (none)
{
for (int i = 0; i < ndims; i++)
{
printf("index %d: %d\n", i, *dims++);
}
}
}
return result;
}
/**
* As _d_newarraymT, but
* for when the array has a non-zero initializer.
*/
extern (C) void* _d_newarraymiT(TypeInfo ti, int ndims, size_t* dims)
{
void* result;
debug(PRINTF) printf("_d_newarraymiT(ndims = %d)\n", ndims);
if (ndims == 0)
result = null;
else
{
static void[] foo(TypeInfo ti, size_t* pdim, int ndims)
{
size_t dim = *pdim;
void[] p;
if (ndims == 1)
{
auto r = _d_newarrayiT(ti, dim);
p = r[0 .. dim];
}
else
{
p = gc_malloc(dim * (void[]).sizeof + 1)[0 .. dim];
for (int i = 0; i < dim; i++)
{
(cast(void[]*)p.ptr)[i] = foo(ti.next, pdim + 1, ndims - 1);
}
}
return p;
}
result = foo(ti, dims, ndims).ptr;
debug(PRINTF) printf("result = %p\n", result);
version (none)
{
for (int i = 0; i < ndims; i++)
{
printf("index %d: %d\n", i, *dims++);
printf("init = %d\n", *dims++);
}
}
}
return result;
}
/**
* As _d_newarraymT, but without initialization
*/
extern (C) void* _d_newarraymvT(TypeInfo ti, int ndims, size_t* dims)
{
void* result;
debug(PRINTF) printf("_d_newarraymvT(ndims = %d)\n", ndims);
if (ndims == 0)
result = null;
else
{
static void[] foo(TypeInfo ti, size_t* pdim, int ndims)
{
size_t dim = *pdim;
void[] p;
debug(PRINTF) printf("foo(ti = %p, ti.next = %p, dim = %d, ndims = %d\n", ti, ti.next, dim, ndims);
if (ndims == 1)
{
auto r = _d_newarrayvT(ti, dim);
return r[0 .. dim];
}
else
{
p = gc_malloc(dim * (void[]).sizeof + 1)[0 .. dim];
for (int i = 0; i < dim; i++)
{
(cast(void[]*)p.ptr)[i] = foo(ti.next, pdim + 1, ndims - 1);
}
}
return p;
}
result = foo(ti, dims, ndims).ptr;
debug(PRINTF) printf("result = %p\n", result);
version (none)
{
for (int i = 0; i < ndims; i++)
{
printf("index %d: %d\n", i, *dims++);
}
}
}
return result;
}
/+
/**
*
*/
void* _d_allocmemory(size_t nbytes)
{
return gc_malloc(nbytes);
}
+/
/**
* for allocating a single POD value
*/
extern (C) void* _d_allocmemoryT(TypeInfo ti)
{
return gc_malloc(ti.tsize(), !(ti.flags() & 1) ? BlkAttr.NO_SCAN : 0);
}
/**
*
*/
extern (C) void _d_delarray(size_t plength, void* pdata)
{
// if (p)
// {
// This assert on array consistency may fail with casts or in unions.
// This function still does something sensible even if plength && !pdata.
// assert(!plength || pdata);
if (pdata)
gc_free(pdata);
// p.data = null;
// p.length = 0;
// }
}
/**
*
*/
extern (C) void _d_delmemory(void* p)
{
if (p)
{
gc_free(p);
//*p = null;
}
}
/**
*
*/
extern (C) void _d_callinterfacefinalizer(void *p)
{
if (p)
{
Interface *pi = **cast(Interface ***)p;
Object o = cast(Object)(p - pi.offset);
rt_finalize(cast(void*)o);
}
}
/**
*
*/
extern (C) void _d_callfinalizer(void* p)
{
rt_finalize( p );
}
/**
*
*/
extern (C) void rt_setCollectHandler(CollectHandler h)
{
collectHandler = h;
}
/**
*
*/
extern (C) void rt_finalize(void* p, bool det = true)
{
debug(PRINTF) printf("rt_finalize(p = %p)\n", p);
if (p) // not necessary if called from gc
{
ClassInfo** pc = cast(ClassInfo**)p;
if (*pc)
{
ClassInfo c = **pc;
try
{
if (det || collectHandler is null || collectHandler(cast(Object)p))
{
do
{
if (c.destructor)
{
debug(PRINTF) printf("calling dtor of %.*s\n", c.name.length, c.name.ptr);
fp_t fp = cast(fp_t)c.destructor;
(*fp)(cast(Object)p); // call destructor
}
c = c.base;
} while (c);
}
if ((cast(void**)p)[1]) // if monitor is not null
_d_monitordelete(cast(Object)p, det);
}
catch (Exception e)
{
onFinalizeError(**pc, e);
}
finally
{
*pc = null; // zero vptr
}
}
}
}
/**
* Resize dynamic arrays with 0 initializers.
*/
extern (C) byte* _d_arraysetlengthT(TypeInfo ti, size_t newlength, size_t plength, byte* pdata)
in
{
assert(ti);
// This assert on array consistency may fail with casts or in unions.
// This function still does something sensible even if plength && !pdata.
// assert(!plength || pdata);
}
body
{
byte* newdata;
size_t sizeelem = ti.next.tsize();
debug(PRINTF)
{
printf("_d_arraysetlengthT(sizeelem = %d, newlength = %d)\n", sizeelem, newlength);
printf("\tp.data = %p, p.length = %d\n", pdata, plength);
}
if (newlength)
{
version (D_InlineAsm_X86)
{
size_t newsize = void;
asm
{
mov EAX, newlength;
mul EAX, sizeelem;
mov newsize, EAX;
jc Loverflow;
}
}
else
{
size_t newsize = sizeelem * newlength;
if (newsize / newlength != sizeelem)
goto Loverflow;
}
debug(PRINTF) printf("newsize = %x, newlength = %x\n", newsize, newlength);
if (pdata)
{
newdata = pdata;
if (newlength > plength)
{
size_t size = plength * sizeelem;
auto info = gc_query(pdata);
if (info.size <= newsize || info.base != pdata)
{
if (info.size >= PAGESIZE && info.base == pdata)
{ // Try to extend in-place
auto u = gc_extend(pdata, (newsize + 1) - info.size, (newsize + 1) - info.size);
if (u)
{
goto L1;
}
}
newdata = cast(byte *)gc_malloc(newsize + 1, info.attr);
newdata[0 .. size] = pdata[0 .. size];
}
L1:
newdata[size .. newsize] = 0;
}
}
else
{
newdata = cast(byte *)gc_calloc(newsize + 1, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
}
}
else
{
newdata = pdata;
}
return newdata;
Loverflow:
onOutOfMemoryError();
return null;
}
/**
* Resize arrays for non-zero initializers.
* p pointer to array lvalue to be updated
* newlength new .length property of array
* sizeelem size of each element of array
* initsize size of initializer
* ... initializer
*/
extern (C) byte* _d_arraysetlengthiT(TypeInfo ti, size_t newlength, size_t plength, byte* pdata)
in
{
// This assert on array consistency may fail with casts or in unions.
// This function still does something sensible even if plength && !pdata.
// assert(!plength || pdata);
}
body
{
byte* newdata;
TypeInfo tinext = ti.next;
size_t sizeelem = tinext.tsize();
void[] initializer = tinext.init();
size_t initsize = initializer.length;
assert(sizeelem);
assert(initsize);
assert(initsize <= sizeelem);
assert((sizeelem / initsize) * initsize == sizeelem);
debug(PRINTF)
{
printf("_d_arraysetlengthiT(sizeelem = %d, newlength = %d, initsize = %d)\n", sizeelem, newlength, initsize);
printf("\tp.data = %p, p.length = %d\n", pdata, plength);
}
if (newlength)
{
version (D_InlineAsm_X86)
{
size_t newsize = void;
asm
{
mov EAX,newlength ;
mul EAX,sizeelem ;
mov newsize,EAX ;
jc Loverflow ;
}
}
else
{
size_t newsize = sizeelem * newlength;
if (newsize / newlength != sizeelem)
goto Loverflow;
}
debug(PRINTF) printf("newsize = %x, newlength = %x\n", newsize, newlength);
size_t size = plength * sizeelem;
if (pdata)
{
newdata = pdata;
if (newlength > plength)
{
auto info = gc_query(pdata);
if (info.size <= newsize || info.base != pdata)
{
if (info.size >= PAGESIZE && info.base == pdata)
{ // Try to extend in-place
auto u = gc_extend(pdata, (newsize + 1) - info.size, (newsize + 1) - info.size);
if (u)
{
goto L1;
}
}
newdata = cast(byte *)gc_malloc(newsize + 1, info.attr);
newdata[0 .. size] = pdata[0 .. size];
L1: ;
}
}
}
else
{
newdata = cast(byte *)gc_malloc(newsize + 1, !(tinext.flags() & 1) ? BlkAttr.NO_SCAN : 0);
}
auto q = initializer.ptr; // pointer to initializer
if (newsize > size)
{
if (initsize == 1)
{
debug(PRINTF) printf("newdata = %p, size = %d, newsize = %d, *q = %d\n", newdata, size, newsize, *cast(byte*)q);
newdata[size .. newsize] = *(cast(byte*)q);
}
else
{
for (size_t u = size; u < newsize; u += initsize)
{
memcpy(newdata + u, q, initsize);
}
}
}
}
else
{
newdata = pdata;
}
return newdata;
Loverflow:
onOutOfMemoryError();
return null;
}
/+
/**
* Append y[] to array x[].
* size is size of each array element.
*/
extern (C) long _d_arrayappendT(TypeInfo ti, Array *px, byte[] y)
{
auto sizeelem = ti.next.tsize(); // array element size
auto info = gc_query(px.data);
auto length = px.length;
auto newlength = length + y.length;
auto newsize = newlength * sizeelem;
if (info.size < newsize || info.base != px.data)
{ byte* newdata;
if (info.size >= PAGESIZE && info.base == px.data)
{ // Try to extend in-place
auto u = gc_extend(px.data, (newsize + 1) - info.size, (newsize + 1) - info.size);
if (u)
{
goto L1;
}
}
newdata = cast(byte *)gc_malloc(newCapacity(newlength, sizeelem) + 1, info.attr);
memcpy(newdata, px.data, length * sizeelem);
px.data = newdata;
}
L1:
px.length = newlength;
memcpy(px.data + length * sizeelem, y.ptr, y.length * sizeelem);
return *cast(long*)px;
}
/**
*
*/
size_t newCapacity(size_t newlength, size_t size)
{
version(none)
{
size_t newcap = newlength * size;
}
else
{
/*
* Better version by Dave Fladebo:
* This uses an inverse logorithmic algorithm to pre-allocate a bit more
* space for larger arrays.
* - Arrays smaller than PAGESIZE bytes are left as-is, so for the most
* common cases, memory allocation is 1 to 1. The small overhead added
* doesn't affect small array perf. (it's virtually the same as
* current).
* - Larger arrays have some space pre-allocated.
* - As the arrays grow, the relative pre-allocated space shrinks.
* - The logorithmic algorithm allocates relatively more space for
* mid-size arrays, making it very fast for medium arrays (for
* mid-to-large arrays, this turns out to be quite a bit faster than the
* equivalent realloc() code in C, on Linux at least. Small arrays are
* just as fast as GCC).
* - Perhaps most importantly, overall memory usage and stress on the GC
* is decreased significantly for demanding environments.
*/
size_t newcap = newlength * size;
size_t newext = 0;
if (newcap > PAGESIZE)
{
//double mult2 = 1.0 + (size / log10(pow(newcap * 2.0,2.0)));
// redo above line using only integer math
static int log2plus1(size_t c)
{ int i;
if (c == 0)
i = -1;
else
for (i = 1; c >>= 1; i++)
{
}
return i;
}
/* The following setting for mult sets how much bigger
* the new size will be over what is actually needed.
* 100 means the same size, more means proportionally more.
* More means faster but more memory consumption.
*/
//long mult = 100 + (1000L * size) / (6 * log2plus1(newcap));
long mult = 100 + (1000L * size) / log2plus1(newcap);
// testing shows 1.02 for large arrays is about the point of diminishing return
if (mult < 102)
mult = 102;
newext = cast(size_t)((newcap * mult) / 100);
newext -= newext % size;
debug(PRINTF) printf("mult: %2.2f, alloc: %2.2f\n",mult/100.0,newext / cast(double)size);
}
newcap = newext > newcap ? newext : newcap;
debug(PRINTF) printf("newcap = %d, newlength = %d, size = %d\n", newcap, newlength, size);
}
return newcap;
}
/**
*
*/
extern (C) byte[] _d_arrayappendcT(TypeInfo ti, inout byte[] x, ...)
{
auto sizeelem = ti.next.tsize(); // array element size
auto info = gc_query(x.ptr);
auto length = x.length;
auto newlength = length + 1;
auto newsize = newlength * sizeelem;
assert(info.size == 0 || length * sizeelem <= info.size);
debug(PRINTF) printf("_d_arrayappendcT(sizeelem = %d, ptr = %p, length = %d, cap = %d)\n", sizeelem, x.ptr, x.length, info.size);
if (info.size <= newsize || info.base != x.ptr)
{ byte* newdata;
if (info.size >= PAGESIZE && info.base == x.ptr)
{ // Try to extend in-place
auto u = gc_extend(x.ptr, (newsize + 1) - info.size, (newsize + 1) - info.size);
if (u)
{
goto L1;
}
}
debug(PRINTF) printf("_d_arrayappendcT(length = %d, newlength = %d, cap = %d)\n", length, newlength, info.size);
auto newcap = newCapacity(newlength, sizeelem);
assert(newcap >= newlength * sizeelem);
newdata = cast(byte *)gc_malloc(newcap + 1, info.attr);
memcpy(newdata, x.ptr, length * sizeelem);
(cast(void**)(&x))[1] = newdata;
}
L1:
byte *argp = cast(byte *)(&ti + 2);
*cast(size_t *)&x = newlength;
x.ptr[length * sizeelem .. newsize] = argp[0 .. sizeelem];
assert((cast(size_t)x.ptr & 15) == 0);
assert(gc_sizeOf(x.ptr) > x.length * sizeelem);
return x;
}
/**
*
*/
extern (C) byte[] _d_arraycatT(TypeInfo ti, byte[] x, byte[] y)
out (result)
{
auto sizeelem = ti.next.tsize(); // array element size
debug(PRINTF) printf("_d_arraycatT(%d,%p ~ %d,%p sizeelem = %d => %d,%p)\n", x.length, x.ptr, y.length, y.ptr, sizeelem, result.length, result.ptr);
assert(result.length == x.length + y.length);
for (size_t i = 0; i < x.length * sizeelem; i++)
assert((cast(byte*)result)[i] == (cast(byte*)x)[i]);
for (size_t i = 0; i < y.length * sizeelem; i++)
assert((cast(byte*)result)[x.length * sizeelem + i] == (cast(byte*)y)[i]);
size_t cap = gc_sizeOf(result.ptr);
assert(!cap || cap > result.length * sizeelem);
}
body
{
version (none)
{
/* Cannot use this optimization because:
* char[] a, b;
* char c = 'a';
* b = a ~ c;
* c = 'b';
* will change the contents of b.
*/
if (!y.length)
return x;
if (!x.length)
return y;
}
debug(PRINTF) printf("_d_arraycatT(%d,%p ~ %d,%p)\n", x.length, x.ptr, y.length, y.ptr);
auto sizeelem = ti.next.tsize(); // array element size
debug(PRINTF) printf("_d_arraycatT(%d,%p ~ %d,%p sizeelem = %d)\n", x.length, x.ptr, y.length, y.ptr, sizeelem);
size_t xlen = x.length * sizeelem;
size_t ylen = y.length * sizeelem;
size_t len = xlen + ylen;
if (!len)
return null;
byte* p = cast(byte*)gc_malloc(len + 1, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
memcpy(p, x.ptr, xlen);
memcpy(p + xlen, y.ptr, ylen);
p[len] = 0;
return p[0 .. x.length + y.length];
}
/**
*
*/
extern (C) byte[] _d_arraycatnT(TypeInfo ti, uint n, ...)
{ void* a;
size_t length;
byte[]* p;
uint i;
byte[] b;
auto size = ti.next.tsize(); // array element size
p = cast(byte[]*)(&n + 1);
for (i = 0; i < n; i++)
{
b = *p++;
length += b.length;
}
if (!length)
return null;
a = gc_malloc(length * size, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
p = cast(byte[]*)(&n + 1);
uint j = 0;
for (i = 0; i < n; i++)
{
b = *p++;
if (b.length)
{
memcpy(a + j, b.ptr, b.length * size);
j += b.length * size;
}
}
byte[] result;
*cast(int *)&result = length; // jam length
(cast(void **)&result)[1] = a; // jam ptr
return result;
}
/**
*
*/
extern (C) void* _d_arrayliteralT(TypeInfo ti, size_t length, ...)
{
auto sizeelem = ti.next.tsize(); // array element size
void* result;
debug(PRINTF) printf("_d_arrayliteralT(sizeelem = %d, length = %d)\n", sizeelem, length);
if (length == 0 || sizeelem == 0)
result = null;
else
{
result = gc_malloc(length * sizeelem, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
va_list q;
va_start!(size_t)(q, length);
size_t stacksize = (sizeelem + int.sizeof - 1) & ~(int.sizeof - 1);
if (stacksize == sizeelem)
{
memcpy(result, q, length * sizeelem);
}
else
{
for (size_t i = 0; i < length; i++)
{
memcpy(result + i * sizeelem, q, sizeelem);
q += stacksize;
}
}
va_end(q);
}
return result;
}
+/
/**
* Support for array.dup property.
* The actual type is painted on the return value by the frontend
* Given length is number of elements
* Returned length is number of elements
*/
/**
*
*/
extern (C) void[] _adDupT(TypeInfo ti, void[] a)
out (result)
{
auto sizeelem = ti.next.tsize(); // array element size
assert(memcmp(result.ptr, a.ptr, a.length * sizeelem) == 0);
}
body
{
void* ptr;
if (a.length)
{
auto sizeelem = ti.next.tsize(); // array element size
auto size = a.length * sizeelem;
ptr = gc_malloc(size, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
memcpy(ptr, a.ptr, size);
}
return ptr[0 .. a.length];
}
unittest
{
int[] a;
int[] b;
int i;
a = new int[3];
a[0] = 1; a[1] = 2; a[2] = 3;
b = a.dup;
assert(b.length == 3);
for (i = 0; i < 3; i++)
assert(b[i] == i + 1);
}