mirror of
https://github.com/ldc-developers/ldc.git
synced 2025-05-01 07:30:43 +03:00

Non-breaking build fix for LLVM r76533. Also fixes a context related bug in GarbageCollect2Stack.
645 lines
25 KiB
C++
645 lines
25 KiB
C++
//===- GarbageCollect2Stack - Optimize calls to the D garbage collector ---===//
|
|
//
|
|
// The LLVM D Compiler
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file attempts to turn allocations on the garbage-collected heap into
|
|
// stack allocations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "gen/metadata.h"
|
|
|
|
#define DEBUG_TYPE "dgc2stack"
|
|
|
|
#include "Passes.h"
|
|
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/IRBuilder.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumGcToStack, "Number of calls promoted to constant-size allocas");
|
|
STATISTIC(NumToDynSize, "Number of calls promoted to dynamically-sized allocas");
|
|
STATISTIC(NumDeleted, "Number of GC calls deleted because the return value was unused");
|
|
|
|
|
|
namespace {
|
|
struct Analysis {
|
|
TargetData& TD;
|
|
const Module& M;
|
|
CallGraph* CG;
|
|
CallGraphNode* CGNode;
|
|
|
|
const Type* getTypeFor(Value* typeinfo) const;
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void EmitMemSet(LLVMContext& Context, IRBuilder<>& B, Value* Dst, Value* Val,
|
|
Value* Len, const Analysis& A) {
|
|
Dst = B.CreateBitCast(Dst, PointerType::getUnqual(Type::Int8Ty));
|
|
|
|
Module *M = B.GetInsertBlock()->getParent()->getParent();
|
|
const Type* Tys[1];
|
|
Tys[0] = Len->getType();
|
|
Function *MemSet = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 1);
|
|
Value *Align = Context.getConstantInt(Type::Int32Ty, 1);
|
|
|
|
CallSite CS = B.CreateCall4(MemSet, Dst, Val, Len, Align);
|
|
if (A.CGNode)
|
|
A.CGNode->addCalledFunction(CS, A.CG->getOrInsertFunction(MemSet));
|
|
}
|
|
|
|
static void EmitMemZero(LLVMContext& Context, IRBuilder<>& B, Value* Dst,
|
|
Value* Len, const Analysis& A) {
|
|
EmitMemSet(Context, B, Dst, Context.getConstantInt(Type::Int8Ty, 0), Len, A);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helpers for specific types of GC calls.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class FunctionInfo {
|
|
protected:
|
|
const Type* Ty;
|
|
|
|
public:
|
|
unsigned TypeInfoArgNr;
|
|
bool SafeToDelete;
|
|
|
|
// Analyze the current call, filling in some fields. Returns true if
|
|
// this is an allocation we can stack-allocate.
|
|
virtual bool analyze(LLVMContext& context, CallSite CS, const Analysis& A) {
|
|
Value* TypeInfo = CS.getArgument(TypeInfoArgNr);
|
|
Ty = A.getTypeFor(TypeInfo);
|
|
return (Ty != NULL);
|
|
}
|
|
|
|
// Returns the alloca to replace this call.
|
|
// It will always be inserted before the call.
|
|
virtual AllocaInst* promote(LLVMContext& context, CallSite CS, IRBuilder<>& B, const Analysis& A) {
|
|
NumGcToStack++;
|
|
|
|
Instruction* Begin = CS.getCaller()->getEntryBlock().begin();
|
|
return new AllocaInst(Ty, ".nongc_mem", Begin); // FIXME: align?
|
|
}
|
|
|
|
FunctionInfo(unsigned typeInfoArgNr, bool safeToDelete)
|
|
: TypeInfoArgNr(typeInfoArgNr), SafeToDelete(safeToDelete) {}
|
|
};
|
|
|
|
class ArrayFI : public FunctionInfo {
|
|
Value* arrSize;
|
|
int ArrSizeArgNr;
|
|
bool Initialized;
|
|
|
|
public:
|
|
ArrayFI(unsigned tiArgNr, bool safeToDelete,
|
|
bool initialized, unsigned arrSizeArgNr)
|
|
: FunctionInfo(tiArgNr, safeToDelete),
|
|
ArrSizeArgNr(arrSizeArgNr),
|
|
Initialized(initialized)
|
|
{}
|
|
|
|
virtual bool analyze(LLVMContext& context, CallSite CS, const Analysis& A) {
|
|
if (!FunctionInfo::analyze(context, CS, A))
|
|
return false;
|
|
|
|
arrSize = CS.getArgument(ArrSizeArgNr);
|
|
const IntegerType* SizeType =
|
|
dyn_cast<IntegerType>(arrSize->getType());
|
|
if (!SizeType)
|
|
return false;
|
|
unsigned bits = SizeType->getBitWidth();
|
|
if (bits > 32) {
|
|
// The array size of an alloca must be an i32, so make sure
|
|
// the conversion is safe.
|
|
APInt Mask = APInt::getHighBitsSet(bits, bits - 32);
|
|
APInt KnownZero(bits, 0), KnownOne(bits, 0);
|
|
ComputeMaskedBits(arrSize, Mask, KnownZero, KnownOne, &A.TD);
|
|
if ((KnownZero & Mask) != Mask)
|
|
return false;
|
|
}
|
|
// Extract the element type from the array type.
|
|
const StructType* ArrTy = dyn_cast<StructType>(Ty);
|
|
assert(ArrTy && "Dynamic array type not a struct?");
|
|
assert(isa<IntegerType>(ArrTy->getElementType(0)));
|
|
const PointerType* PtrTy =
|
|
cast<PointerType>(ArrTy->getElementType(1));
|
|
Ty = PtrTy->getElementType();
|
|
return true;
|
|
}
|
|
|
|
virtual AllocaInst* promote(LLVMContext& context, CallSite CS, IRBuilder<>& B, const Analysis& A) {
|
|
IRBuilder<> Builder = B;
|
|
// If the allocation is of constant size it's best to put it in the
|
|
// entry block, so do so if we're not already there.
|
|
// For dynamically-sized allocations it's best to avoid the overhead
|
|
// of allocating them if possible, so leave those where they are.
|
|
// While we're at it, update statistics too.
|
|
if (isa<Constant>(arrSize)) {
|
|
BasicBlock& Entry = CS.getCaller()->getEntryBlock();
|
|
if (Builder.GetInsertBlock() != &Entry)
|
|
Builder.SetInsertPoint(&Entry, Entry.begin());
|
|
NumGcToStack++;
|
|
} else {
|
|
NumToDynSize++;
|
|
}
|
|
|
|
// Convert array size to 32 bits if necessary
|
|
Value* count = Builder.CreateIntCast(arrSize, Type::Int32Ty, false);
|
|
AllocaInst* alloca = Builder.CreateAlloca(Ty, count, ".nongc_mem"); // FIXME: align?
|
|
|
|
if (Initialized) {
|
|
// For now, only zero-init is supported.
|
|
uint64_t size = A.TD.getTypeStoreSize(Ty);
|
|
Value* TypeSize = context.getConstantInt(arrSize->getType(), size);
|
|
// Use the original B to put initialization at the
|
|
// allocation site.
|
|
Value* Size = B.CreateMul(TypeSize, arrSize);
|
|
EmitMemZero(context, B, alloca, Size, A);
|
|
}
|
|
|
|
return alloca;
|
|
}
|
|
};
|
|
|
|
// FunctionInfo for _d_allocclass
|
|
class AllocClassFI : public FunctionInfo {
|
|
public:
|
|
virtual bool analyze(LLVMContext& context, CallSite CS, const Analysis& A) {
|
|
// This call contains no TypeInfo parameter, so don't call the
|
|
// base class implementation here...
|
|
if (CS.arg_size() != 1)
|
|
return false;
|
|
Value* arg = CS.getArgument(0)->stripPointerCasts();
|
|
GlobalVariable* ClassInfo = dyn_cast<GlobalVariable>(arg);
|
|
if (!ClassInfo)
|
|
return false;
|
|
|
|
std::string metaname = CD_PREFIX;
|
|
metaname.append(ClassInfo->getNameStart(), ClassInfo->getNameEnd());
|
|
|
|
GlobalVariable* global = A.M.getGlobalVariable(metaname);
|
|
if (!global || !global->hasInitializer())
|
|
return false;
|
|
|
|
MDNode* node = dyn_cast<MDNode>(global->getInitializer());
|
|
if (!node || MD_GetNumElements(node) != CD_NumFields)
|
|
return false;
|
|
|
|
// Inserting destructor calls is not implemented yet, so classes
|
|
// with destructors are ignored for now.
|
|
Constant* hasDestructor = dyn_cast<Constant>(MD_GetElement(node, CD_Finalize));
|
|
// We can't stack-allocate if the class has a custom deallocator
|
|
// (Custom allocators don't get turned into this runtime call, so
|
|
// those can be ignored)
|
|
Constant* hasCustomDelete = dyn_cast<Constant>(MD_GetElement(node, CD_CustomDelete));
|
|
if (hasDestructor == NULL || hasCustomDelete == NULL)
|
|
return false;
|
|
|
|
if (context.getConstantExprOr(hasDestructor, hasCustomDelete)
|
|
!= context.getConstantIntFalse())
|
|
return false;
|
|
|
|
Ty = MD_GetElement(node, CD_BodyType)->getType();
|
|
return true;
|
|
}
|
|
|
|
// The default promote() should be fine.
|
|
|
|
AllocClassFI() : FunctionInfo(~0u, true) {}
|
|
};
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GarbageCollect2Stack Pass Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This pass replaces GC calls with alloca's
|
|
///
|
|
class VISIBILITY_HIDDEN GarbageCollect2Stack : public FunctionPass {
|
|
StringMap<FunctionInfo*> KnownFunctions;
|
|
Module* M;
|
|
|
|
FunctionInfo AllocMemoryT;
|
|
ArrayFI NewArrayVT;
|
|
ArrayFI NewArrayT;
|
|
AllocClassFI AllocClass;
|
|
|
|
public:
|
|
static char ID; // Pass identification
|
|
GarbageCollect2Stack();
|
|
|
|
bool doInitialization(Module &M) {
|
|
Context = &M.getContext();
|
|
this->M = &M;
|
|
return false;
|
|
}
|
|
|
|
bool runOnFunction(Function &F);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<TargetData>();
|
|
AU.addRequired<DominatorTree>();
|
|
|
|
AU.addPreserved<CallGraph>();
|
|
AU.addPreserved<DominatorTree>();
|
|
}
|
|
};
|
|
char GarbageCollect2Stack::ID = 0;
|
|
} // end anonymous namespace.
|
|
|
|
static RegisterPass<GarbageCollect2Stack>
|
|
X("dgc2stack", "Promote (GC'ed) heap allocations to stack");
|
|
|
|
// Public interface to the pass.
|
|
FunctionPass *createGarbageCollect2Stack() {
|
|
return new GarbageCollect2Stack();
|
|
}
|
|
|
|
GarbageCollect2Stack::GarbageCollect2Stack()
|
|
: FunctionPass(&ID),
|
|
AllocMemoryT(0, true),
|
|
NewArrayVT(0, true, false, 1),
|
|
NewArrayT(0, true, true, 1)
|
|
{
|
|
KnownFunctions["_d_allocmemoryT"] = &AllocMemoryT;
|
|
KnownFunctions["_d_newarrayvT"] = &NewArrayVT;
|
|
KnownFunctions["_d_newarrayT"] = &NewArrayT;
|
|
KnownFunctions["_d_allocclass"] = &AllocClass;
|
|
}
|
|
|
|
static void RemoveCall(LLVMContext& context, CallSite CS, const Analysis& A) {
|
|
if (CS.isInvoke()) {
|
|
InvokeInst* Invoke = cast<InvokeInst>(CS.getInstruction());
|
|
// If this was an invoke instruction, we need to do some extra
|
|
// work to preserve the control flow.
|
|
|
|
// Create a "conditional" branch that -simplifycfg can clean up, so we
|
|
// can keep using the DominatorTree without updating it.
|
|
BranchInst::Create(Invoke->getNormalDest(), Invoke->getUnwindDest(),
|
|
context.getConstantIntTrue(), Invoke->getParent());
|
|
}
|
|
// Remove the runtime call.
|
|
if (A.CGNode)
|
|
A.CGNode->removeCallEdgeFor(CS);
|
|
CS.getInstruction()->eraseFromParent();
|
|
}
|
|
|
|
static bool isSafeToStackAllocate(Instruction* Alloc, DominatorTree& DT);
|
|
|
|
/// runOnFunction - Top level algorithm.
|
|
///
|
|
bool GarbageCollect2Stack::runOnFunction(Function &F) {
|
|
DEBUG(DOUT << "\nRunning -dgc2stack on function " << F.getName() << '\n');
|
|
|
|
TargetData& TD = getAnalysis<TargetData>();
|
|
DominatorTree& DT = getAnalysis<DominatorTree>();
|
|
CallGraph* CG = getAnalysisIfAvailable<CallGraph>();
|
|
CallGraphNode* CGNode = CG ? (*CG)[&F] : NULL;
|
|
|
|
Analysis A = { TD, *M, CG, CGNode };
|
|
|
|
BasicBlock& Entry = F.getEntryBlock();
|
|
|
|
IRBuilder<> AllocaBuilder(&Entry, Entry.begin());
|
|
|
|
bool Changed = false;
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
|
|
// Ignore non-calls.
|
|
Instruction* Inst = I++;
|
|
CallSite CS = CallSite::get(Inst);
|
|
if (!CS.getInstruction())
|
|
continue;
|
|
|
|
// Ignore indirect calls and calls to non-external functions.
|
|
Function *Callee = CS.getCalledFunction();
|
|
if (Callee == 0 || !Callee->isDeclaration() ||
|
|
!(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
|
|
continue;
|
|
|
|
// Ignore unknown calls.
|
|
const char *CalleeName = Callee->getNameStart();
|
|
StringMap<FunctionInfo*>::iterator OMI =
|
|
KnownFunctions.find(CalleeName, CalleeName+Callee->getNameLen());
|
|
if (OMI == KnownFunctions.end()) continue;
|
|
|
|
assert(isa<PointerType>(Inst->getType())
|
|
&& "GC function doesn't return a pointer?");
|
|
|
|
FunctionInfo* info = OMI->getValue();
|
|
|
|
if (Inst->use_empty() && info->SafeToDelete) {
|
|
Changed = true;
|
|
NumDeleted++;
|
|
RemoveCall(*Context, CS, A);
|
|
continue;
|
|
}
|
|
|
|
DEBUG(DOUT << "GarbageCollect2Stack inspecting: " << *Inst);
|
|
|
|
if (!info->analyze(*Context, CS, A) || !isSafeToStackAllocate(Inst, DT))
|
|
continue;
|
|
|
|
// Let's alloca this!
|
|
Changed = true;
|
|
|
|
IRBuilder<> Builder(BB, Inst);
|
|
Value* newVal = info->promote(*Context, CS, Builder, A);
|
|
|
|
DEBUG(DOUT << "Promoted to: " << *newVal);
|
|
|
|
// Make sure the type is the same as it was before, and replace all
|
|
// uses of the runtime call with the alloca.
|
|
if (newVal->getType() != Inst->getType())
|
|
newVal = Builder.CreateBitCast(newVal, Inst->getType());
|
|
Inst->replaceAllUsesWith(newVal);
|
|
|
|
RemoveCall(*Context, CS, A);
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
const Type* Analysis::getTypeFor(Value* typeinfo) const {
|
|
GlobalVariable* ti_global = dyn_cast<GlobalVariable>(typeinfo->stripPointerCasts());
|
|
if (!ti_global)
|
|
return NULL;
|
|
|
|
std::string metaname = TD_PREFIX;
|
|
metaname.append(ti_global->getNameStart(), ti_global->getNameEnd());
|
|
|
|
GlobalVariable* global = M.getGlobalVariable(metaname);
|
|
if (!global || !global->hasInitializer())
|
|
return NULL;
|
|
|
|
MDNode* node = dyn_cast<MDNode>(global->getInitializer());
|
|
if (!node)
|
|
return NULL;
|
|
|
|
if (MD_GetNumElements(node) != TD_NumFields)
|
|
return NULL;
|
|
if (TD_Confirm >= 0 && (!MD_GetElement(node, TD_Confirm) ||
|
|
MD_GetElement(node, TD_Confirm)->stripPointerCasts() != ti_global))
|
|
return NULL;
|
|
|
|
return MD_GetElement(node, TD_Type)->getType();
|
|
}
|
|
|
|
/// Returns whether Def is used by any instruction that is reachable from Alloc
|
|
/// (without executing Def again).
|
|
static bool mayBeUsedAfterRealloc(Instruction* Def, Instruction* Alloc, DominatorTree& DT) {
|
|
DOUT << "### mayBeUsedAfterRealloc()\n" << *Def << *Alloc;
|
|
|
|
// If the definition isn't used it obviously won't be used after the
|
|
// allocation.
|
|
// If it does not dominate the allocation, there's no way for it to be used
|
|
// without going through Def again first, since the definition couldn't
|
|
// dominate the user either.
|
|
if (Def->use_empty() || !DT.dominates(Def, Alloc)) {
|
|
DOUT << "### No uses or does not dominate allocation\n";
|
|
return false;
|
|
}
|
|
|
|
DOUT << "### Def dominates Alloc\n";
|
|
|
|
BasicBlock* DefBlock = Def->getParent();
|
|
BasicBlock* AllocBlock = Alloc->getParent();
|
|
|
|
// Create a set of users and one of blocks containing users.
|
|
SmallSet<User*, 16> Users;
|
|
SmallSet<BasicBlock*, 16> UserBlocks;
|
|
for (Instruction::use_iterator UI = Def->use_begin(), UE = Def->use_end();
|
|
UI != UE; ++UI) {
|
|
Instruction* User = cast<Instruction>(*UI);
|
|
DOUT << "USER: " << *User;
|
|
BasicBlock* UserBlock = User->getParent();
|
|
|
|
// This dominance check is not performed if they're in the same block
|
|
// because it will just walk the instruction list to figure it out.
|
|
// We will instead do that ourselves in the first iteration (for all
|
|
// users at once).
|
|
if (AllocBlock != UserBlock && DT.dominates(AllocBlock, UserBlock)) {
|
|
// There's definitely a path from alloc to this user that does not
|
|
// go through Def, namely any path that ends up in that user.
|
|
DOUT << "### Alloc dominates user " << *User;
|
|
return true;
|
|
}
|
|
|
|
// Phi nodes are checked separately, so no need to enter them here.
|
|
if (!isa<PHINode>(User)) {
|
|
Users.insert(User);
|
|
UserBlocks.insert(UserBlock);
|
|
}
|
|
}
|
|
|
|
// Contains first instruction of block to inspect.
|
|
typedef std::pair<BasicBlock*, BasicBlock::iterator> StartPoint;
|
|
SmallVector<StartPoint, 16> Worklist;
|
|
// Keeps track of successors that have been added to the work list.
|
|
SmallSet<BasicBlock*, 16> Visited;
|
|
|
|
// Start just after the allocation.
|
|
// Note that we don't insert AllocBlock into the Visited set here so the
|
|
// start of the block will get inspected if it's reachable.
|
|
BasicBlock::iterator Start = Alloc;
|
|
++Start;
|
|
Worklist.push_back(StartPoint(AllocBlock, Start));
|
|
|
|
while (!Worklist.empty()) {
|
|
StartPoint sp = Worklist.pop_back_val();
|
|
BasicBlock* B = sp.first;
|
|
BasicBlock::iterator BBI = sp.second;
|
|
// BBI is either just after the allocation (in the first iteration)
|
|
// or just after the last phi node in B (in subsequent iterations) here.
|
|
|
|
// This whole 'if' is just a way to avoid performing the inner 'for'
|
|
// loop when it can be determined not to be necessary, avoiding
|
|
// potentially expensive walks of the instruction list.
|
|
// It should be equivalent to just doing the loop.
|
|
if (UserBlocks.count(B)) {
|
|
if (B != DefBlock && B != AllocBlock) {
|
|
// This block does not contain the definition or the allocation,
|
|
// so any user in this block is definitely reachable without
|
|
// finding either the definition or the allocation.
|
|
DOUT << "### Block " << B->getName()
|
|
<< " contains a reachable user\n";
|
|
return true;
|
|
}
|
|
// We need to walk the instructions in the block to see whether we
|
|
// reach a user before we reach the definition or the allocation.
|
|
for (BasicBlock::iterator E = B->end(); BBI != E; ++BBI) {
|
|
if (&*BBI == Alloc || &*BBI == Def)
|
|
break;
|
|
if (Users.count(BBI)) {
|
|
DOUT << "### Problematic user: " << *BBI;
|
|
return true;
|
|
}
|
|
}
|
|
} else if (B == DefBlock || (B == AllocBlock && BBI != Start)) {
|
|
// There are no users in the block so the def or the allocation
|
|
// will be encountered before any users though this path.
|
|
// Skip to the next item on the worklist.
|
|
continue;
|
|
} else {
|
|
// No users and no definition or allocation after the start point,
|
|
// so just keep going.
|
|
}
|
|
|
|
// All instructions after the starting point in this block have been
|
|
// accounted for. Look for successors to add to the work list.
|
|
TerminatorInst* Term = B->getTerminator();
|
|
unsigned SuccCount = Term->getNumSuccessors();
|
|
for (unsigned i = 0; i < SuccCount; i++) {
|
|
BasicBlock* Succ = Term->getSuccessor(i);
|
|
BBI = Succ->begin();
|
|
// Check phi nodes here because we only care about the operand
|
|
// coming in from this block.
|
|
bool SeenDef = false;
|
|
while (isa<PHINode>(BBI)) {
|
|
if (Def == cast<PHINode>(BBI)->getIncomingValueForBlock(B)) {
|
|
DOUT << "### Problematic phi user: " << *BBI;
|
|
return true;
|
|
}
|
|
SeenDef |= (Def == &*BBI);
|
|
++BBI;
|
|
}
|
|
// If none of the phis we just looked at were the definition, we
|
|
// haven't seen this block yet, and it's dominated by the def
|
|
// (meaning paths through it could lead to users), add the block and
|
|
// the first non-phi to the worklist.
|
|
if (!SeenDef && Visited.insert(Succ) && DT.dominates(DefBlock, Succ))
|
|
Worklist.push_back(StartPoint(Succ, BBI));
|
|
}
|
|
}
|
|
// No users found in any block reachable from Alloc
|
|
// without going through the definition again.
|
|
return false;
|
|
}
|
|
|
|
|
|
/// isSafeToStackAllocate - Return true if the GC call passed in is safe to turn
|
|
/// into a stack allocation. This requires that the return value does not
|
|
/// escape from the function and no derived pointers are live at the call site
|
|
/// (i.e. if it's in a loop then the function can't use any pointer returned
|
|
/// from an earlier call after a new call has been made)
|
|
///
|
|
/// This is currently conservative where loops are involved: it can handle
|
|
/// simple loops, but returns false if any derived pointer is used in a
|
|
/// subsequent iteration.
|
|
///
|
|
/// Based on LLVM's PointerMayBeCaptured(), which only does escape analysis but
|
|
/// doesn't care about loops.
|
|
bool isSafeToStackAllocate(Instruction* Alloc, DominatorTree& DT) {
|
|
assert(isa<PointerType>(Alloc->getType()) && "Allocation is not a pointer?");
|
|
Value* V = Alloc;
|
|
|
|
SmallVector<Use*, 16> Worklist;
|
|
SmallSet<Use*, 16> Visited;
|
|
|
|
for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
|
|
UI != UE; ++UI) {
|
|
Use *U = &UI.getUse();
|
|
Visited.insert(U);
|
|
Worklist.push_back(U);
|
|
}
|
|
|
|
while (!Worklist.empty()) {
|
|
Use *U = Worklist.pop_back_val();
|
|
Instruction *I = cast<Instruction>(U->getUser());
|
|
V = U->get();
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Call:
|
|
case Instruction::Invoke: {
|
|
CallSite CS = CallSite::get(I);
|
|
// Not captured if the callee is readonly, doesn't return a copy through
|
|
// its return value and doesn't unwind (a readonly function can leak bits
|
|
// by throwing an exception or not depending on the input value).
|
|
if (CS.onlyReadsMemory() && CS.doesNotThrow() &&
|
|
I->getType() == Type::VoidTy)
|
|
break;
|
|
|
|
// Not captured if only passed via 'nocapture' arguments. Note that
|
|
// calling a function pointer does not in itself cause the pointer to
|
|
// be captured. This is a subtle point considering that (for example)
|
|
// the callee might return its own address. It is analogous to saying
|
|
// that loading a value from a pointer does not cause the pointer to be
|
|
// captured, even though the loaded value might be the pointer itself
|
|
// (think of self-referential objects).
|
|
CallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end();
|
|
for (CallSite::arg_iterator A = B; A != E; ++A)
|
|
if (A->get() == V && !CS.paramHasAttr(A - B + 1, Attribute::NoCapture))
|
|
// The parameter is not marked 'nocapture' - captured.
|
|
return false;
|
|
// Only passed via 'nocapture' arguments, or is the called function - not
|
|
// captured.
|
|
break;
|
|
}
|
|
case Instruction::Free:
|
|
// Freeing a pointer does not cause it to be captured.
|
|
break;
|
|
case Instruction::Load:
|
|
// Loading from a pointer does not cause it to be captured.
|
|
break;
|
|
case Instruction::Store:
|
|
if (V == I->getOperand(0))
|
|
// Stored the pointer - it may be captured.
|
|
return false;
|
|
// Storing to the pointee does not cause the pointer to be captured.
|
|
break;
|
|
case Instruction::BitCast:
|
|
case Instruction::GetElementPtr:
|
|
case Instruction::PHI:
|
|
case Instruction::Select:
|
|
// It's not safe to stack-allocate if this derived pointer is live across
|
|
// the original allocation.
|
|
if (mayBeUsedAfterRealloc(I, Alloc, DT))
|
|
return false;
|
|
|
|
// The original value is not captured via this if the new value isn't.
|
|
for (Instruction::use_iterator UI = I->use_begin(), UE = I->use_end();
|
|
UI != UE; ++UI) {
|
|
Use *U = &UI.getUse();
|
|
if (Visited.insert(U))
|
|
Worklist.push_back(U);
|
|
}
|
|
break;
|
|
default:
|
|
// Something else - be conservative and say it is captured.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// All uses examined - not captured or live across original allocation.
|
|
return true;
|
|
}
|