ldc/gen/statements.cpp
David Nadlinger 9d5bf5a707 gen: Keep case/default body IR blocks in lexical order [nfc]
This makes the IR slightly easier to read, in particular the
PGO lit tests.
2016-08-03 21:07:18 +01:00

1955 lines
64 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- statements.cpp ----------------------------------------------------===//
//
// LDC the LLVM D compiler
//
// This file is distributed under the BSD-style LDC license. See the LICENSE
// file for details.
//
//===----------------------------------------------------------------------===//
#include "init.h"
#include "mars.h"
#include "module.h"
#include "mtype.h"
#include "port.h"
#include "gen/abi.h"
#include "gen/arrays.h"
#include "gen/classes.h"
#include "gen/coverage.h"
#include "gen/dvalue.h"
#include "gen/funcgenstate.h"
#include "gen/irstate.h"
#include "gen/llvm.h"
#include "gen/llvmhelpers.h"
#include "gen/logger.h"
#include "gen/runtime.h"
#include "gen/tollvm.h"
#include "gen/ms-cxx-helper.h"
#include "ir/irfunction.h"
#include "ir/irmodule.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/InlineAsm.h"
#include <fstream>
#include <math.h>
#include <stdio.h>
// Need to include this after the other DMD includes because of missing
// dependencies.
#include "hdrgen.h"
//////////////////////////////////////////////////////////////////////////////
// FIXME: Integrate these functions
void AsmStatement_toIR(AsmStatement *stmt, IRState *irs);
void CompoundAsmStatement_toIR(CompoundAsmStatement *stmt, IRState *p);
//////////////////////////////////////////////////////////////////////////////
// For sorting string switch cases lexicographically.
namespace {
bool compareCaseStrings(CaseStatement *lhs, CaseStatement *rhs) {
return lhs->exp->compare(rhs->exp) < 0;
}
};
static LLValue *call_string_switch_runtime(llvm::Value *table, Expression *e) {
Type *dt = e->type->toBasetype();
Type *dtnext = dt->nextOf()->toBasetype();
TY ty = dtnext->ty;
const char *fname;
if (ty == Tchar) {
fname = "_d_switch_string";
} else if (ty == Twchar) {
fname = "_d_switch_ustring";
} else if (ty == Tdchar) {
fname = "_d_switch_dstring";
} else {
llvm_unreachable("not char/wchar/dchar");
}
llvm::Function *fn = getRuntimeFunction(e->loc, gIR->module, fname);
IF_LOG {
Logger::cout() << *table->getType() << '\n';
Logger::cout() << *fn->getFunctionType()->getParamType(0) << '\n';
}
assert(table->getType() == fn->getFunctionType()->getParamType(0));
DValue *val = toElemDtor(e);
LLValue *llval = DtoRVal(val);
assert(llval->getType() == fn->getFunctionType()->getParamType(1));
LLCallSite call = gIR->CreateCallOrInvoke(fn, table, llval);
return call.getInstruction();
}
//////////////////////////////////////////////////////////////////////////////
class ToIRVisitor : public Visitor {
IRState *irs;
public:
explicit ToIRVisitor(IRState *irs) : irs(irs) {}
//////////////////////////////////////////////////////////////////////////
// Import all functions from class Visitor
using Visitor::visit;
//////////////////////////////////////////////////////////////////////////
void visit(CompoundStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("CompoundStatement::toIR(): %s",
stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
for (auto s : *stmt->statements) {
if (s) {
s->accept(this);
}
}
}
//////////////////////////////////////////////////////////////////////////
void visit(ReturnStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("ReturnStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
// emit dwarf stop point
irs->DBuilder.EmitStopPoint(stmt->loc);
emitCoverageLinecountInc(stmt->loc);
// The LLVM value to return, or null for void returns.
LLValue *returnValue = nullptr;
auto &funcGen = irs->funcGen();
IrFunction *const f = &funcGen.irFunc;
FuncDeclaration *const fd = f->decl;
LLFunction *const llFunc = f->func;
// is there a return value expression?
if (stmt->exp || (!stmt->exp && (llFunc == irs->mainFunc))) {
// if the function's return type is void, it uses sret
if (llFunc->getReturnType() == LLType::getVoidTy(irs->context())) {
assert(!f->type->isref);
LLValue *sretPointer = getIrFunc(fd)->sretArg;
assert(sretPointer);
assert(!f->irFty.arg_sret->rewrite &&
"ABI shouldn't have to rewrite sret returns");
DLValue returnValue(f->type->next, sretPointer);
// try to construct the return value in-place
const auto initialCleanupScope = funcGen.scopes.currentCleanupScope();
const bool constructed = toInPlaceConstruction(&returnValue, stmt->exp);
if (constructed) {
// cleanup manually (otherwise done by toElemDtor())
if (funcGen.scopes.currentCleanupScope() != initialCleanupScope) {
auto endbb = llvm::BasicBlock::Create(
irs->context(), "inPlaceSretConstruct.success", llFunc);
funcGen.scopes.runCleanups(initialCleanupScope, endbb);
funcGen.scopes.popCleanups(initialCleanupScope);
irs->scope() = IRScope(endbb);
}
} else {
DValue *e = toElemDtor(stmt->exp);
// store the return value unless NRVO already used the sret pointer
if (!e->isLVal() || DtoLVal(e) != sretPointer) {
// call postblit if the expression is a D lvalue
// exceptions: NRVO and special __result variable (out contracts)
bool doPostblit = !(fd->nrvo_can && fd->nrvo_var);
if (doPostblit && stmt->exp->op == TOKvar) {
auto ve = static_cast<VarExp *>(stmt->exp);
if (ve->var->isResult())
doPostblit = false;
}
DtoAssign(stmt->loc, &returnValue, e, TOKblit);
if (doPostblit)
callPostblit(stmt->loc, stmt->exp, sretPointer);
}
}
} else {
// the return type is not void, so this is a normal "register" return
if (!stmt->exp && (llFunc == irs->mainFunc)) {
returnValue =
LLConstant::getNullValue(irs->mainFunc->getReturnType());
} else {
if (stmt->exp->op == TOKnull) {
stmt->exp->type = f->type->next;
}
DValue *dval = nullptr;
// call postblit if necessary
if (!f->type->isref) {
dval = toElemDtor(stmt->exp);
LLValue *vthis =
(DtoIsInMemoryOnly(dval->type) ? DtoLVal(dval) : DtoRVal(dval));
callPostblit(stmt->loc, stmt->exp, vthis);
} else {
Expression *ae = stmt->exp;
dval = toElemDtor(ae);
}
// do abi specific transformations on the return value
returnValue = getIrFunc(fd)->irFty.putRet(dval);
}
// Hack around LDC assuming structs and static arrays are in memory:
// If the function returns a struct or a static array, and the return
// value is a pointer to a struct or a static array, load from it
// before returning.
if (returnValue->getType() != llFunc->getReturnType() &&
DtoIsInMemoryOnly(f->type->next) &&
isaPointer(returnValue->getType())) {
Logger::println("Loading value for return");
returnValue = DtoLoad(returnValue);
}
// can happen for classes and void main
if (returnValue->getType() != llFunc->getReturnType()) {
// for the main function this only happens if it is declared as void
// and then contains a return (exp); statement. Since the actual
// return type remains i32, we just throw away the exp value
// and return 0 instead
// if we're not in main, just bitcast
if (llFunc == irs->mainFunc) {
returnValue =
LLConstant::getNullValue(irs->mainFunc->getReturnType());
} else {
returnValue =
irs->ir->CreateBitCast(returnValue, llFunc->getReturnType());
}
IF_LOG Logger::cout() << "return value after cast: " << *returnValue
<< '\n';
}
}
} else {
// no return value expression means it's a void function.
assert(llFunc->getReturnType() == LLType::getVoidTy(irs->context()));
}
// If there are no cleanups to run, we try to keep the IR simple and
// just directly emit the return instruction. If there are cleanups to run
// first, we need to store the return value to a stack slot, in which case
// we can use a shared return bb for all these cases.
const bool useRetValSlot = funcGen.scopes.currentCleanupScope() != 0;
const bool sharedRetBlockExists = !!funcGen.retBlock;
if (useRetValSlot) {
if (!sharedRetBlockExists) {
funcGen.retBlock =
llvm::BasicBlock::Create(irs->context(), "return", llFunc);
if (returnValue) {
funcGen.retValSlot =
DtoRawAlloca(returnValue->getType(), 0, "return.slot");
}
}
// Create the store to the slot at the end of our current basic
// block, before we run the cleanups.
if (returnValue) {
irs->ir->CreateStore(returnValue, funcGen.retValSlot);
}
// Now run the cleanups.
funcGen.scopes.runAllCleanups(funcGen.retBlock);
irs->scope() = IRScope(funcGen.retBlock);
}
// If we need to emit the actual return instruction, do so.
if (!useRetValSlot || !sharedRetBlockExists) {
if (returnValue) {
// Hack: the frontend generates 'return 0;' as last statement of
// 'void main()'. But the debug location is missing. Use the end
// of function as debug location.
if (fd->isMain() && !stmt->loc.linnum) {
irs->DBuilder.EmitStopPoint(fd->endloc);
}
irs->ir->CreateRet(useRetValSlot ? DtoLoad(funcGen.retValSlot)
: returnValue);
} else {
irs->ir->CreateRetVoid();
}
}
// Finally, create a new predecessor-less dummy bb as the current IRScope
// to make sure we do not emit any extra instructions after the terminating
// instruction (ret or branch to return bb), which would be illegal IR.
irs->scope() = IRScope(
llvm::BasicBlock::Create(gIR->context(), "dummy.afterreturn", llFunc));
}
//////////////////////////////////////////////////////////////////////////
void visit(ExpStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("ExpStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
// emit dwarf stop point
irs->DBuilder.EmitStopPoint(stmt->loc);
emitCoverageLinecountInc(stmt->loc);
if (stmt->exp) {
elem *e;
// a cast(void) around the expression is allowed, but doesn't require any
// code
if (stmt->exp->op == TOKcast && stmt->exp->type == Type::tvoid) {
CastExp *cexp = static_cast<CastExp *>(stmt->exp);
e = toElemDtor(cexp->e1);
} else {
e = toElemDtor(stmt->exp);
}
delete e;
}
}
//////////////////////////////////////////////////////////////////////////
void visit(IfStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("IfStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
auto truecount = PGO.getRegionCount(stmt);
auto elsecount = PGO.getCurrentRegionCount() - truecount;
auto brweights = PGO.createProfileWeights(truecount, elsecount);
// start a dwarf lexical block
irs->DBuilder.EmitBlockStart(stmt->loc);
emitCoverageLinecountInc(stmt->loc);
if (stmt->match) {
DtoRawVarDeclaration(stmt->match);
}
DValue *cond_e = toElemDtor(stmt->condition);
LLValue *cond_val = DtoRVal(cond_e);
llvm::BasicBlock *ifbb =
llvm::BasicBlock::Create(irs->context(), "if", irs->topfunc());
llvm::BasicBlock *endbb =
llvm::BasicBlock::Create(irs->context(), "endif", irs->topfunc());
llvm::BasicBlock *elsebb =
stmt->elsebody ? llvm::BasicBlock::Create(irs->context(), "else",
irs->topfunc(), endbb)
: endbb;
if (cond_val->getType() != LLType::getInt1Ty(irs->context())) {
IF_LOG Logger::cout() << "if conditional: " << *cond_val << '\n';
cond_val = DtoRVal(DtoCast(stmt->loc, cond_e, Type::tbool));
}
auto brinstr =
llvm::BranchInst::Create(ifbb, elsebb, cond_val, irs->scopebb());
PGO.addBranchWeights(brinstr, brweights);
// replace current scope
irs->scope() = IRScope(ifbb);
// do scoped statements
if (stmt->ifbody) {
irs->DBuilder.EmitBlockStart(stmt->ifbody->loc);
PGO.emitCounterIncrement(stmt);
stmt->ifbody->accept(this);
irs->DBuilder.EmitBlockEnd();
}
if (!irs->scopereturned()) {
llvm::BranchInst::Create(endbb, irs->scopebb());
}
if (stmt->elsebody) {
irs->scope() = IRScope(elsebb);
irs->DBuilder.EmitBlockStart(stmt->elsebody->loc);
stmt->elsebody->accept(this);
if (!irs->scopereturned()) {
llvm::BranchInst::Create(endbb, irs->scopebb());
}
irs->DBuilder.EmitBlockEnd();
}
// end the dwarf lexical block
irs->DBuilder.EmitBlockEnd();
// rewrite the scope
irs->scope() = IRScope(endbb);
}
//////////////////////////////////////////////////////////////////////////
void visit(ScopeStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("ScopeStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
if (stmt->statement) {
irs->DBuilder.EmitBlockStart(stmt->statement->loc);
stmt->statement->accept(this);
irs->DBuilder.EmitBlockEnd();
}
}
//////////////////////////////////////////////////////////////////////////
void visit(WhileStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("WhileStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
// start a dwarf lexical block
irs->DBuilder.EmitBlockStart(stmt->loc);
// create while blocks
llvm::BasicBlock *whilebb =
llvm::BasicBlock::Create(irs->context(), "whilecond", irs->topfunc());
llvm::BasicBlock *whilebodybb =
llvm::BasicBlock::Create(irs->context(), "whilebody", irs->topfunc());
llvm::BasicBlock *endbb =
llvm::BasicBlock::Create(irs->context(), "endwhile", irs->topfunc());
// move into the while block
irs->ir->CreateBr(whilebb);
// replace current scope
irs->scope() = IRScope(whilebb);
// create the condition
emitCoverageLinecountInc(stmt->condition->loc);
DValue *cond_e = toElemDtor(stmt->condition);
LLValue *cond_val = DtoRVal(DtoCast(stmt->loc, cond_e, Type::tbool));
delete cond_e;
// conditional branch
auto branchinst =
llvm::BranchInst::Create(whilebodybb, endbb, cond_val, irs->scopebb());
{
auto loopcount = PGO.getRegionCount(stmt);
auto brweights =
PGO.createProfileWeightsWhileLoop(stmt->condition, loopcount);
PGO.addBranchWeights(branchinst, brweights);
}
// rewrite scope
irs->scope() = IRScope(whilebodybb);
// while body code
irs->funcGen().scopes.pushLoopTarget(stmt, whilebb, endbb);
PGO.emitCounterIncrement(stmt);
if (stmt->_body) {
stmt->_body->accept(this);
}
irs->funcGen().scopes.popLoopTarget();
// loop
if (!irs->scopereturned()) {
llvm::BranchInst::Create(whilebb, irs->scopebb());
}
// rewrite the scope
irs->scope() = IRScope(endbb);
// end the dwarf lexical block
irs->DBuilder.EmitBlockEnd();
}
//////////////////////////////////////////////////////////////////////////
void visit(DoStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("DoStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
auto entryCount = PGO.setCurrentStmt(stmt);
// start a dwarf lexical block
irs->DBuilder.EmitBlockStart(stmt->loc);
// create while blocks
llvm::BasicBlock *dowhilebb =
llvm::BasicBlock::Create(irs->context(), "dowhile", irs->topfunc());
llvm::BasicBlock *condbb =
llvm::BasicBlock::Create(irs->context(), "dowhilecond", irs->topfunc());
llvm::BasicBlock *endbb =
llvm::BasicBlock::Create(irs->context(), "enddowhile", irs->topfunc());
// move into the while block
assert(!irs->scopereturned());
llvm::BranchInst::Create(dowhilebb, irs->scopebb());
// replace current scope
irs->scope() = IRScope(dowhilebb);
// do-while body code
irs->funcGen().scopes.pushLoopTarget(stmt, condbb, endbb);
PGO.emitCounterIncrement(stmt);
if (stmt->_body) {
stmt->_body->accept(this);
}
irs->funcGen().scopes.popLoopTarget();
// branch to condition block
llvm::BranchInst::Create(condbb, irs->scopebb());
irs->scope() = IRScope(condbb);
// create the condition
emitCoverageLinecountInc(stmt->condition->loc);
DValue *cond_e = toElemDtor(stmt->condition);
LLValue *cond_val = DtoRVal(DtoCast(stmt->loc, cond_e, Type::tbool));
delete cond_e;
// conditional branch
auto branchinst =
llvm::BranchInst::Create(dowhilebb, endbb, cond_val, irs->scopebb());
{
// The region counter includes fallthrough from the previous statement.
// Subtract parent count to get the true branch count of the loop
// conditional.
auto loopcount = PGO.getRegionCount(stmt) - entryCount;
auto brweights =
PGO.createProfileWeightsWhileLoop(stmt->condition, loopcount);
PGO.addBranchWeights(branchinst, brweights);
}
// Order the blocks in a logical order in IR
condbb->moveAfter(&irs->topfunc()->back());
endbb->moveAfter(condbb);
// rewrite the scope
irs->scope() = IRScope(endbb);
// end the dwarf lexical block
irs->DBuilder.EmitBlockEnd();
}
//////////////////////////////////////////////////////////////////////////
void visit(ForStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("ForStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
// start new dwarf lexical block
irs->DBuilder.EmitBlockStart(stmt->loc);
// create for blocks
llvm::BasicBlock *forbb =
llvm::BasicBlock::Create(irs->context(), "forcond", irs->topfunc());
llvm::BasicBlock *forbodybb =
llvm::BasicBlock::Create(irs->context(), "forbody", irs->topfunc());
llvm::BasicBlock *forincbb =
llvm::BasicBlock::Create(irs->context(), "forinc", irs->topfunc());
llvm::BasicBlock *endbb =
llvm::BasicBlock::Create(irs->context(), "endfor", irs->topfunc());
// init
if (stmt->_init != nullptr) {
stmt->_init->accept(this);
}
// move into the for condition block, ie. start the loop
assert(!irs->scopereturned());
llvm::BranchInst::Create(forbb, irs->scopebb());
// In case of loops that have been rewritten to a composite statement
// containing the initializers and then the actual loop, we need to
// register the former as target scope start.
Statement *scopeStart = stmt->getRelatedLabeled();
while (ScopeStatement *scope = scopeStart->isScopeStatement()) {
scopeStart = scope->statement;
}
irs->funcGen().scopes.pushLoopTarget(scopeStart, forincbb, endbb);
// replace current scope
irs->scope() = IRScope(forbb);
// create the condition
llvm::Value *cond_val;
if (stmt->condition) {
emitCoverageLinecountInc(stmt->condition->loc);
DValue *cond_e = toElemDtor(stmt->condition);
cond_val = DtoRVal(DtoCast(stmt->loc, cond_e, Type::tbool));
delete cond_e;
} else {
cond_val = DtoConstBool(true);
}
// conditional branch
assert(!irs->scopereturned());
auto branchinst =
llvm::BranchInst::Create(forbodybb, endbb, cond_val, irs->scopebb());
{
auto brweights = PGO.createProfileWeightsForLoop(stmt);
PGO.addBranchWeights(branchinst, brweights);
}
// rewrite scope
irs->scope() = IRScope(forbodybb);
// do for body code
PGO.emitCounterIncrement(stmt);
if (stmt->_body) {
stmt->_body->accept(this);
}
// Order the blocks in a logical order in IR
forincbb->moveAfter(&irs->topfunc()->back());
endbb->moveAfter(forincbb);
// move into the for increment block
if (!irs->scopereturned()) {
llvm::BranchInst::Create(forincbb, irs->scopebb());
}
irs->scope() = IRScope(forincbb);
// increment
if (stmt->increment) {
emitCoverageLinecountInc(stmt->increment->loc);
DValue *inc = toElemDtor(stmt->increment);
delete inc;
}
// loop
if (!irs->scopereturned()) {
llvm::BranchInst::Create(forbb, irs->scopebb());
}
irs->funcGen().scopes.popLoopTarget();
// rewrite the scope
irs->scope() = IRScope(endbb);
// end the dwarf lexical block
irs->DBuilder.EmitBlockEnd();
}
//////////////////////////////////////////////////////////////////////////
void visit(BreakStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("BreakStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
// don't emit two terminators in a row
// happens just before DMD generated default statements if the last case
// terminates
if (irs->scopereturned()) {
return;
}
// emit dwarf stop point
irs->DBuilder.EmitStopPoint(stmt->loc);
emitCoverageLinecountInc(stmt->loc);
if (stmt->ident) {
IF_LOG Logger::println("ident = %s", stmt->ident->toChars());
// Get the loop or break statement the label refers to
Statement *targetStatement = stmt->target->statement;
ScopeStatement *tmp;
while ((tmp = targetStatement->isScopeStatement())) {
targetStatement = tmp->statement;
}
irs->funcGen().scopes.breakToStatement(targetStatement);
} else {
irs->funcGen().scopes.breakToClosest();
}
// the break terminated this basicblock, start a new one
llvm::BasicBlock *bb =
llvm::BasicBlock::Create(irs->context(), "afterbreak", irs->topfunc());
irs->scope() = IRScope(bb);
}
//////////////////////////////////////////////////////////////////////////
void visit(ContinueStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("ContinueStatement::toIR(): %s",
stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
// emit dwarf stop point
irs->DBuilder.EmitStopPoint(stmt->loc);
emitCoverageLinecountInc(stmt->loc);
if (stmt->ident) {
IF_LOG Logger::println("ident = %s", stmt->ident->toChars());
// get the loop statement the label refers to
Statement *targetLoopStatement = stmt->target->statement;
ScopeStatement *tmp;
while ((tmp = targetLoopStatement->isScopeStatement())) {
targetLoopStatement = tmp->statement;
}
irs->funcGen().scopes.continueWithLoop(targetLoopStatement);
} else {
irs->funcGen().scopes.continueWithClosest();
}
// the break terminated this basicblock, start a new one
llvm::BasicBlock *bb =
llvm::BasicBlock::Create(irs->context(), "afterbreak", irs->topfunc());
irs->scope() = IRScope(bb);
}
//////////////////////////////////////////////////////////////////////////
void visit(OnScopeStatement *stmt) LLVM_OVERRIDE {
stmt->error("Internal Compiler Error: OnScopeStatement should have been "
"lowered by frontend.");
fatal();
}
//////////////////////////////////////////////////////////////////////////
void visit(TryFinallyStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("TryFinallyStatement::toIR(): %s",
stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
/*auto entryCount = */ PGO.setCurrentStmt(stmt);
// emit dwarf stop point
irs->DBuilder.EmitStopPoint(stmt->loc);
// We only need to consider exception handling/cleanup issues if there
// is both a try and a finally block. If not, just directly emit what
// is present.
if (!stmt->_body || !stmt->finalbody) {
if (stmt->_body) {
irs->DBuilder.EmitBlockStart(stmt->_body->loc);
stmt->_body->accept(this);
irs->DBuilder.EmitBlockEnd();
} else if (stmt->finalbody) {
irs->DBuilder.EmitBlockStart(stmt->finalbody->loc);
stmt->finalbody->accept(this);
irs->DBuilder.EmitBlockEnd();
}
return;
}
// We'll append the "try" part to the current basic block later. No need
// for an extra one (we'd need to branch to it unconditionally anyway).
llvm::BasicBlock *trybb = irs->scopebb();
// Emit the finally block and set up the cleanup scope for it.
llvm::BasicBlock *finallybb =
llvm::BasicBlock::Create(irs->context(), "finally", irs->topfunc());
irs->scope() = IRScope(finallybb);
irs->DBuilder.EmitBlockStart(stmt->finalbody->loc);
stmt->finalbody->accept(this);
irs->DBuilder.EmitBlockEnd();
CleanupCursor cleanupBefore = irs->funcGen().scopes.currentCleanupScope();
irs->funcGen().scopes.pushCleanup(finallybb, irs->scopebb());
// Emit the try block.
irs->scope() = IRScope(trybb);
assert(stmt->_body);
irs->DBuilder.EmitBlockStart(stmt->_body->loc);
stmt->_body->accept(this);
irs->DBuilder.EmitBlockEnd();
// Create a block to branch to after successfully running the try block
// and any cleanups.
if (!irs->scopereturned()) {
llvm::BasicBlock *successbb = llvm::BasicBlock::Create(
irs->context(), "try.success", irs->topfunc());
irs->funcGen().scopes.runCleanups(cleanupBefore, successbb);
irs->scope() = IRScope(successbb);
// PGO counter tracks the continuation of the try-finally statement
PGO.emitCounterIncrement(stmt);
}
irs->funcGen().scopes.popCleanups(cleanupBefore);
}
//////////////////////////////////////////////////////////////////////////
#if LDC_LLVM_VER >= 308
void emitBeginCatchMSVCEH(Catch *ctch, llvm::BasicBlock *endbb,
llvm::CatchSwitchInst *catchSwitchInst) {
VarDeclaration *var = ctch->var;
// The MSVC/x86 build uses C++ exception handling
// This needs a series of catch pads to match the exception
// and the catch handler must be terminated by a catch return instruction
LLValue *exnObj = nullptr;
LLValue *cpyObj = nullptr;
LLValue *typeDesc = nullptr;
LLValue *clssInfo = nullptr;
if (var) {
// alloca storage for the variable, it always needs a place on the stack
// do not initialize, this will be done by the C++ exception handler
var->_init = nullptr;
// redirect scope to avoid the generation of debug info before the
// catchpad
IRScope save = irs->scope();
irs->scope() = IRScope(gIR->topallocapoint()->getParent());
irs->scope().builder.SetInsertPoint(gIR->topallocapoint());
DtoDeclarationExp(var);
// catch handler will be outlined, so always treat as a nested reference
exnObj = getIrValue(var);
if (var->nestedrefs.dim) {
// if variable needed in a closure, use a stack temporary and copy it
// when caught
cpyObj = exnObj;
exnObj = DtoAlloca(var->type, "exnObj");
}
irs->scope() = save;
irs->DBuilder.EmitStopPoint(ctch->loc); // re-set debug loc after the
// SetInsertPoint(allocaInst) call
} else if (ctch->type) {
// catch without var
exnObj = DtoAlloca(ctch->type, "exnObj");
} else {
// catch all
exnObj = LLConstant::getNullValue(getVoidPtrType());
}
if (ctch->type) {
ClassDeclaration *cd = ctch->type->toBasetype()->isClassHandle();
typeDesc = getTypeDescriptor(*irs, cd);
clssInfo = getIrAggr(cd)->getClassInfoSymbol();
} else {
// catch all
typeDesc = LLConstant::getNullValue(getVoidPtrType());
clssInfo = LLConstant::getNullValue(DtoType(Type::typeinfoclass->type));
}
// "catchpad within %switch [TypeDescriptor, 0, &caughtObject]" must be
// first instruction
int flags = var ? 0 : 64; // just mimicking clang here
LLValue *args[] = {typeDesc, DtoConstUint(flags), exnObj};
auto catchpad = irs->ir->CreateCatchPad(
catchSwitchInst, llvm::ArrayRef<LLValue *>(args), "");
catchSwitchInst->addHandler(irs->scopebb());
if (cpyObj) {
// assign the caught exception to the location in the closure
auto val = irs->ir->CreateLoad(exnObj);
irs->ir->CreateStore(val, cpyObj);
exnObj = cpyObj;
}
// Exceptions are never rethrown by D code (but thrown again), so
// we can leave the catch handler right away and continue execution
// outside the catch funclet
llvm::BasicBlock *catchhandler = llvm::BasicBlock::Create(
irs->context(), "catchhandler", irs->topfunc());
llvm::CatchReturnInst::Create(catchpad, catchhandler, irs->scopebb());
irs->scope() = IRScope(catchhandler);
auto enterCatchFn =
getRuntimeFunction(Loc(), irs->module, "_d_eh_enter_catch");
irs->CreateCallOrInvoke(enterCatchFn, DtoBitCast(exnObj, getVoidPtrType()),
clssInfo);
}
#endif
void visit(TryCatchStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("TryCatchStatement::toIR(): %s",
stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
auto entryCount = PGO.setCurrentStmt(stmt);
// Emit dwarf stop point
irs->DBuilder.EmitStopPoint(stmt->loc);
// We'll append the "try" part to the current basic block later. No need
// for an extra one (we'd need to branch to it unconditionally anyway).
llvm::BasicBlock *trybb = irs->scopebb();
// Create a basic block to branch to after leaving the try or an
// associated catch block successfully.
llvm::BasicBlock *endbb = llvm::BasicBlock::Create(
irs->context(), "try.success.or.caught", irs->topfunc());
assert(stmt->catches);
struct CatchBlock {
ClassDeclaration *classdecl;
llvm::BasicBlock *BB;
uint64_t catchcount;
};
llvm::SmallVector<CatchBlock, 6> catchBlocks;
catchBlocks.reserve(stmt->catches->dim);
#if LDC_LLVM_VER >= 308
if (useMSVCEH()) {
auto &scopes = irs->funcGen().scopes;
auto catchSwitchBlock = llvm::BasicBlock::Create(
irs->context(), "catch.dispatch", irs->topfunc());
llvm::BasicBlock *unwindto =
scopes.currentCleanupScope() > 0 || scopes.currentCatchScope() > 0
? scopes.getLandingPad()
: nullptr;
auto funclet = scopes.getFunclet();
auto catchSwitchInst = llvm::CatchSwitchInst::Create(
funclet ? funclet : llvm::ConstantTokenNone::get(irs->context()),
unwindto, stmt->catches->dim, "", catchSwitchBlock);
for (auto it = stmt->catches->begin(), end = stmt->catches->end();
it != end; ++it) {
llvm::BasicBlock *catchBB = llvm::BasicBlock::Create(
irs->context(), llvm::Twine("catch.") + (*it)->type->toChars(),
irs->topfunc(), endbb);
irs->scope() = IRScope(catchBB);
irs->DBuilder.EmitBlockStart((*it)->loc);
PGO.emitCounterIncrement(*it);
emitBeginCatchMSVCEH(*it, endbb, catchSwitchInst);
// Emit handler, if there is one. The handler is zero, for instance,
// when building 'catch { debug foo(); }' in non-debug mode.
if ((*it)->handler) {
Statement_toIR((*it)->handler, irs);
}
if (!irs->scopereturned()) {
irs->ir->CreateBr(endbb);
}
irs->DBuilder.EmitBlockEnd();
}
// TODO: PGO has not yet been implemented for MSVC EH, set catchCount
// temporarily to 0
uint64_t catchCount = 0;
CatchBlock cb = {nullptr, catchSwitchBlock, catchCount};
catchBlocks.push_back(cb); // just for cleanup
scopes.pushCatch(nullptr, catchSwitchBlock);
// if no landing pad is created, the catch blocks are unused, but
// the verifier complains if there are catchpads without personality
// so we can just set it unconditionally
if (!irs->func()->func->hasPersonalityFn()) {
const char *personality = "__CxxFrameHandler3";
LLFunction *personalityFn =
getRuntimeFunction(Loc(), irs->module, personality);
irs->func()->func->setPersonalityFn(personalityFn);
}
} else
#endif
{
for (Catches::reverse_iterator it = stmt->catches->rbegin(),
end = stmt->catches->rend();
it != end; ++it) {
llvm::BasicBlock *catchBB = llvm::BasicBlock::Create(
irs->context(), llvm::Twine("catch.") + (*it)->type->toChars(),
irs->topfunc(), endbb);
irs->scope() = IRScope(catchBB);
irs->DBuilder.EmitBlockStart((*it)->loc);
PGO.emitCounterIncrement(*it);
const auto enterCatchFn =
getRuntimeFunction(Loc(), irs->module, "_d_eh_enter_catch");
auto ptr = DtoLoad(irs->funcGen().getOrCreateEhPtrSlot());
auto throwableObj = irs->ir->CreateCall(enterCatchFn, ptr);
// For catches that use the Throwable object, create storage for it.
// We will set it in the code that branches from the landing pads
// (there might be more than one) to catchBB.
auto var = (*it)->var;
if (var) {
// This will alloca if we haven't already and take care of nested refs
// if there are any.
DtoDeclarationExp(var);
// Copy the exception reference over from the _d_eh_enter_catch return
// value.
DtoStore(DtoBitCast(throwableObj, DtoType((*it)->var->type)),
getIrLocal(var)->value);
}
// Emit handler, if there is one. The handler is zero, for instance,
// when building 'catch { debug foo(); }' in non-debug mode.
if ((*it)->handler) {
Statement_toIR((*it)->handler, irs);
}
if (!irs->scopereturned()) {
irs->ir->CreateBr(endbb);
}
irs->DBuilder.EmitBlockEnd();
// PGO information, currently unused
auto catchCount = PGO.getRegionCount(*it);
CatchBlock cb = {(*it)->type->toBasetype()->isClassHandle(), catchBB,
catchCount};
catchBlocks.push_back(cb);
}
// Total number of uncaught exceptions is equal to the execution count at
// the start of the try block minus the one after the continuation.
// uncaughtCount keeps track of the exception type mismatch count while
// iterating through the catchBlocks list.
auto uncaughtCount = entryCount - PGO.getRegionCount(stmt);
// Only after emitting all the catch bodies, register the catch scopes.
// This is so that (re)throwing inside a catch does not match later
// catches.
for (const auto &cb : catchBlocks) {
auto matchWeights =
PGO.createProfileWeights(cb.catchcount, uncaughtCount);
// Add this exception type's match count to the uncaughtCount, because
// these failed to match the exception types of the remaining
// iterations.
uncaughtCount += cb.catchcount;
DtoResolveClass(cb.classdecl);
irs->funcGen().scopes.pushCatch(
getIrAggr(cb.classdecl)->getClassInfoSymbol(), cb.BB, matchWeights);
}
}
// Emit the try block.
irs->scope() = IRScope(trybb);
assert(stmt->_body);
irs->DBuilder.EmitBlockStart(stmt->_body->loc);
stmt->_body->accept(this);
irs->DBuilder.EmitBlockEnd();
if (!irs->scopereturned()) {
llvm::BranchInst::Create(endbb, irs->scopebb());
}
// Now that we have done the try block, remove the catches and continue
// codegen in the end block the try and all the catches branch to.
for (size_t i = 0; i < catchBlocks.size(); ++i) {
irs->funcGen().scopes.popCatch();
}
// Move end block after all generated blocks
endbb->moveAfter(&irs->topfunc()->back());
irs->scope() = IRScope(endbb);
// PGO counter tracks the continuation of the try statement
PGO.emitCounterIncrement(stmt);
}
//////////////////////////////////////////////////////////////////////////
void visit(ThrowStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("ThrowStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
// emit dwarf stop point
irs->DBuilder.EmitStopPoint(stmt->loc);
emitCoverageLinecountInc(stmt->loc);
assert(stmt->exp);
DValue *e = toElemDtor(stmt->exp);
llvm::Function *fn =
getRuntimeFunction(stmt->loc, irs->module, "_d_throw_exception");
LLValue *arg =
DtoBitCast(DtoRVal(e), fn->getFunctionType()->getParamType(0));
irs->CreateCallOrInvoke(fn, arg);
irs->ir->CreateUnreachable();
// TODO: Should not be needed.
llvm::BasicBlock *bb =
llvm::BasicBlock::Create(irs->context(), "afterthrow", irs->topfunc());
irs->scope() = IRScope(bb);
}
//////////////////////////////////////////////////////////////////////////
void visit(SwitchStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("SwitchStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &funcGen = irs->funcGen();
auto &PGO = funcGen.pgo;
PGO.setCurrentStmt(stmt);
const auto incomingPGORegionCount = PGO.getCurrentRegionCount();
irs->DBuilder.EmitStopPoint(stmt->loc);
emitCoverageLinecountInc(stmt->loc);
llvm::BasicBlock *const oldbb = irs->scopebb();
// The cases of the switch statement, in codegen order. For string switches,
// we reorder them lexicographically later to match what the _d_switch_*
// druntime dispatch functions expect.
auto cases = stmt->cases;
const auto caseCount = cases->dim;
// llvm::Values for the case indices. Might not be llvm::Constants for
// runtime-initialised immutable globals as case indices, in which case we
// need to emit a `br` chain instead of `switch`.
llvm::SmallVector<llvm::Value *, 16> indices;
indices.reserve(caseCount);
bool useSwitchInst = true;
// For string switches, sort the cases and emit the table data.
llvm::Value *stringTableSlice = nullptr;
const bool isStringSwitch = !stmt->condition->type->isintegral();
if (isStringSwitch) {
Logger::println("is string switch");
// Sort the cases, taking care not to modify the original AST.
cases = cases->copy();
std::sort(cases->begin(), cases->end(), compareCaseStrings);
// Emit constants for the case values.
llvm::SmallVector<llvm::Constant *, 16> stringConsts;
stringConsts.reserve(caseCount);
for (size_t i = 0; i < caseCount; ++i) {
stringConsts.push_back(toConstElem((*cases)[i]->exp, irs));
indices.push_back(DtoConstUint(i));
}
// Create internal global with the data table.
const auto elemTy = DtoType(stmt->condition->type);
const auto arrTy = llvm::ArrayType::get(elemTy, stringConsts.size());
const auto arrInit = LLConstantArray::get(arrTy, stringConsts);
const auto arr = new llvm::GlobalVariable(
irs->module, arrTy, true, llvm::GlobalValue::InternalLinkage, arrInit,
".string_switch_table_data");
// Create D slice to pass to runtime later.
const auto arrPtr =
llvm::ConstantExpr::getBitCast(arr, getPtrToType(elemTy));
const auto arrLen = DtoConstSize_t(stringConsts.size());
stringTableSlice = DtoConstSlice(arrLen, arrPtr);
} else {
for (auto cs : *cases) {
if (cs->exp->op == TOKvar) {
const auto vd =
static_cast<VarExp *>(cs->exp)->var->isVarDeclaration();
if (vd && (!vd->_init || !vd->isConst())) {
indices.push_back(DtoRVal(toElemDtor(cs->exp)));
useSwitchInst = false;
continue;
}
}
indices.push_back(toConstElem(cs->exp, irs));
}
}
assert(indices.size() == caseCount);
// body block.
// FIXME: that block is never used
llvm::BasicBlock *bodybb =
llvm::BasicBlock::Create(irs->context(), "switchbody", irs->topfunc());
// end (break point)
llvm::BasicBlock *endbb =
llvm::BasicBlock::Create(irs->context(), "switchend", irs->topfunc());
// PGO counter tracks exit point of switch statement:
{
irs->scope() = IRScope(endbb);
PGO.emitCounterIncrement(stmt);
}
// default
auto defaultTargetBB = endbb;
if (stmt->sdefault) {
Logger::println("has default");
defaultTargetBB =
funcGen.switchTargets.getOrCreate(stmt->sdefault, "default");
}
// do switch body
assert(stmt->_body);
irs->scope() = IRScope(bodybb);
funcGen.scopes.pushBreakTarget(stmt, endbb);
stmt->_body->accept(this);
funcGen.scopes.popBreakTarget();
if (!irs->scopereturned()) {
llvm::BranchInst::Create(endbb, irs->scopebb());
}
irs->scope() = IRScope(oldbb);
if (useSwitchInst) {
// The case index value.
LLValue *condVal;
if (isStringSwitch) {
condVal = call_string_switch_runtime(stringTableSlice, stmt->condition);
} else {
condVal = DtoRVal(toElemDtor(stmt->condition));
}
// Create switch and add the cases.
// For PGO instrumentation, we need to add counters /before/ the case
// statement bodies, because the counters should only count the jumps
// directly from the switch statement and not "goto default", etc.
llvm::SwitchInst *si;
if (!global.params.genInstrProf) {
si = llvm::SwitchInst::Create(condVal, defaultTargetBB, caseCount,
irs->scopebb());
for (size_t i = 0; i < caseCount; ++i) {
si->addCase(isaConstantInt(indices[i]),
funcGen.switchTargets.get((*cases)[i]));
}
} else {
auto switchbb = irs->scopebb();
// Add PGO instrumentation.
// Create "default" counter bb.
{
llvm::BasicBlock *defaultcntr = llvm::BasicBlock::Create(
irs->context(), "defaultcntr", irs->topfunc());
irs->scope() = IRScope(defaultcntr);
PGO.emitCounterIncrement(stmt->sdefault);
llvm::BranchInst::Create(defaultTargetBB, irs->scopebb());
defaultcntr->moveBefore(defaultTargetBB);
// Create switch
si = llvm::SwitchInst::Create(condVal, defaultcntr, caseCount,
switchbb);
}
// Create and add case counter bbs.
for (size_t i = 0; i < caseCount; ++i) {
const auto cs = (*cases)[i];
auto incrCaseCounter = llvm::BasicBlock::Create(
irs->context(), "incrCaseCounter", irs->topfunc());
irs->scope() = IRScope(incrCaseCounter);
PGO.emitCounterIncrement(cs);
const auto body = funcGen.switchTargets.get(cs);
llvm::BranchInst::Create(body, irs->scopebb());
incrCaseCounter->moveBefore(body);
si->addCase(isaConstantInt(indices[i]), incrCaseCounter);
}
}
// Put the switchend block after the last block, for a more logical IR
// layout.
endbb->moveAfter(&irs->topfunc()->back());
// Apply PGO switch branch weights:
{
// Get case statements execution counts from profile data.
std::vector<uint64_t> case_prof_counts;
case_prof_counts.push_back(
stmt->sdefault ? PGO.getRegionCount(stmt->sdefault) : 0);
for (auto cs : *cases) {
auto w = PGO.getRegionCount(cs);
case_prof_counts.push_back(w);
}
auto brweights = PGO.createProfileWeights(case_prof_counts);
PGO.addBranchWeights(si, brweights);
}
} else {
// We can't use switch, so we will use a bunch of br instructions
// instead.
DValue *cond = toElemDtor(stmt->condition);
LLValue *condVal = DtoRVal(cond);
llvm::BasicBlock *nextbb =
llvm::BasicBlock::Create(irs->context(), "checkcase", irs->topfunc());
llvm::BranchInst::Create(nextbb, irs->scopebb());
if (global.params.genInstrProf) {
// Prepend extra BB to "default:" to increment profiling counter.
llvm::BasicBlock *defaultcntr = llvm::BasicBlock::Create(
irs->context(), "defaultcntr", irs->topfunc());
irs->scope() = IRScope(defaultcntr);
PGO.emitCounterIncrement(stmt->sdefault);
llvm::BranchInst::Create(defaultTargetBB, irs->scopebb());
defaultcntr->moveBefore(defaultTargetBB);
defaultTargetBB = defaultcntr;
}
irs->scope() = IRScope(nextbb);
auto failedCompareCount = incomingPGORegionCount;
for (size_t i = 0; i < caseCount; ++i) {
LLValue *cmp = irs->ir->CreateICmp(llvm::ICmpInst::ICMP_EQ, indices[i],
condVal, "checkcase");
nextbb = llvm::BasicBlock::Create(irs->context(), "checkcase",
irs->topfunc());
// Add case counters for PGO in front of case body
const auto cs = (*cases)[i];
auto casejumptargetbb = funcGen.switchTargets.get(cs);
if (global.params.genInstrProf) {
llvm::BasicBlock *casecntr = llvm::BasicBlock::Create(
irs->context(), "casecntr", irs->topfunc());
auto savedbb = irs->scope();
irs->scope() = IRScope(casecntr);
PGO.emitCounterIncrement(cs);
llvm::BranchInst::Create(casejumptargetbb, irs->scopebb());
casecntr->moveBefore(casejumptargetbb);
irs->scope() = savedbb;
casejumptargetbb = casecntr;
}
// Create the comparison branch for this case
auto branchinst = llvm::BranchInst::Create(casejumptargetbb, nextbb,
cmp, irs->scopebb());
// Calculate and apply PGO branch weights
{
auto trueCount = PGO.getRegionCount(cs);
assert(trueCount <= failedCompareCount &&
"Higher branch count than switch incoming count!");
failedCompareCount -= trueCount;
auto brweights =
PGO.createProfileWeights(trueCount, failedCompareCount);
PGO.addBranchWeights(branchinst, brweights);
}
irs->scope() = IRScope(nextbb);
}
llvm::BranchInst::Create(defaultTargetBB, irs->scopebb());
endbb->moveAfter(nextbb);
}
irs->scope() = IRScope(endbb);
}
//////////////////////////////////////////////////////////////////////////
void visit(CaseStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("CaseStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &funcGen = irs->funcGen();
auto &PGO = funcGen.pgo;
PGO.setCurrentStmt(stmt);
const auto body = funcGen.switchTargets.getOrCreate(stmt, "case");
body->moveAfter(irs->scopebb());
if (!irs->scopereturned()) {
llvm::BranchInst::Create(body, irs->scopebb());
}
irs->scope() = IRScope(body);
assert(stmt->statement);
irs->DBuilder.EmitBlockStart(stmt->statement->loc);
emitCoverageLinecountInc(stmt->loc);
if (stmt->gototarget) {
PGO.emitCounterIncrement(PGO.getCounterPtr(stmt, 1));
}
stmt->statement->accept(this);
irs->DBuilder.EmitBlockEnd();
}
//////////////////////////////////////////////////////////////////////////
void visit(DefaultStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("DefaultStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &funcGen = irs->funcGen();
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
const auto body = funcGen.switchTargets.getOrCreate(stmt, "default");
body->moveAfter(irs->scopebb());
if (!irs->scopereturned()) {
llvm::BranchInst::Create(body, irs->scopebb());
}
irs->scope() = IRScope(body);
assert(stmt->statement);
irs->DBuilder.EmitBlockStart(stmt->statement->loc);
emitCoverageLinecountInc(stmt->loc);
if (stmt->gototarget) {
PGO.emitCounterIncrement(PGO.getCounterPtr(stmt, 1));
}
stmt->statement->accept(this);
irs->DBuilder.EmitBlockEnd();
}
//////////////////////////////////////////////////////////////////////////
void visit(UnrolledLoopStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("UnrolledLoopStatement::toIR(): %s",
stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
// if no statements, there's nothing to do
if (!stmt->statements || !stmt->statements->dim) {
return;
}
// start a dwarf lexical block
irs->DBuilder.EmitBlockStart(stmt->loc);
// DMD doesn't fold stuff like continue/break, and since this isn't really a
// loop we have to keep track of each statement and jump to the next/end
// on continue/break
// create a block for each statement
size_t nstmt = stmt->statements->dim;
llvm::SmallVector<llvm::BasicBlock *, 4> blocks(nstmt, nullptr);
for (size_t i = 0; i < nstmt; i++) {
blocks[i] = llvm::BasicBlock::Create(irs->context(), "unrolledstmt",
irs->topfunc());
}
// create end block
llvm::BasicBlock *endbb =
llvm::BasicBlock::Create(irs->context(), "unrolledend", irs->topfunc());
// enter first stmt
if (!irs->scopereturned()) {
irs->ir->CreateBr(blocks[0]);
}
// do statements
Statement **stmts = static_cast<Statement **>(stmt->statements->data);
for (size_t i = 0; i < nstmt; i++) {
Statement *s = stmts[i];
// get blocks
llvm::BasicBlock *thisbb = blocks[i];
llvm::BasicBlock *nextbb = (i + 1 == nstmt) ? endbb : blocks[i + 1];
// update scope
irs->scope() = IRScope(thisbb);
// push loop scope
// continue goes to next statement, break goes to end
irs->funcGen().scopes.pushLoopTarget(stmt, nextbb, endbb);
// do statement
s->accept(this);
// pop loop scope
irs->funcGen().scopes.popLoopTarget();
// next stmt
if (!irs->scopereturned()) {
irs->ir->CreateBr(nextbb);
}
}
// finish scope
if (!irs->scopereturned()) {
irs->ir->CreateBr(endbb);
}
irs->scope() = IRScope(endbb);
// end the dwarf lexical block
irs->DBuilder.EmitBlockEnd();
}
//////////////////////////////////////////////////////////////////////////
void visit(ForeachStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("ForeachStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
// start a dwarf lexical block
irs->DBuilder.EmitBlockStart(stmt->loc);
// assert(arguments->dim == 1);
assert(stmt->value != 0);
assert(stmt->aggr != 0);
assert(stmt->func != 0);
// Argument* arg = static_cast<Argument*>(arguments->data[0]);
// Logger::println("Argument is %s", arg->toChars());
IF_LOG Logger::println("aggr = %s", stmt->aggr->toChars());
// key
LLType *keytype = stmt->key ? DtoType(stmt->key->type) : DtoSize_t();
LLValue *keyvar;
if (stmt->key) {
keyvar = DtoRawVarDeclaration(stmt->key);
} else {
keyvar = DtoRawAlloca(keytype, 0, "foreachkey");
}
LLValue *zerokey = LLConstantInt::get(keytype, 0, false);
// value
IF_LOG Logger::println("value = %s", stmt->value->toPrettyChars());
LLValue *valvar = nullptr;
if (!stmt->value->isRef() && !stmt->value->isOut()) {
// Create a local variable to serve as the value.
DtoRawVarDeclaration(stmt->value);
valvar = getIrLocal(stmt->value)->value;
}
// what to iterate
DValue *aggrval = toElemDtor(stmt->aggr);
// get length and pointer
LLValue *niters = DtoArrayLen(aggrval);
LLValue *val = DtoArrayPtr(aggrval);
if (niters->getType() != keytype) {
size_t sz1 = getTypeBitSize(niters->getType());
size_t sz2 = getTypeBitSize(keytype);
if (sz1 < sz2) {
niters = irs->ir->CreateZExt(niters, keytype, "foreachtrunckey");
} else if (sz1 > sz2) {
niters = irs->ir->CreateTrunc(niters, keytype, "foreachtrunckey");
} else {
niters = irs->ir->CreateBitCast(niters, keytype, "foreachtrunckey");
}
}
if (stmt->op == TOKforeach) {
new llvm::StoreInst(zerokey, keyvar, irs->scopebb());
} else {
new llvm::StoreInst(niters, keyvar, irs->scopebb());
}
llvm::BasicBlock *condbb =
llvm::BasicBlock::Create(irs->context(), "foreachcond", irs->topfunc());
llvm::BasicBlock *bodybb =
llvm::BasicBlock::Create(irs->context(), "foreachbody", irs->topfunc());
llvm::BasicBlock *nextbb =
llvm::BasicBlock::Create(irs->context(), "foreachnext", irs->topfunc());
llvm::BasicBlock *endbb =
llvm::BasicBlock::Create(irs->context(), "foreachend", irs->topfunc());
llvm::BranchInst::Create(condbb, irs->scopebb());
// condition
irs->scope() = IRScope(condbb);
LLValue *done = nullptr;
LLValue *load = DtoLoad(keyvar);
if (stmt->op == TOKforeach) {
done = irs->ir->CreateICmpULT(load, niters);
} else if (stmt->op == TOKforeach_reverse) {
done = irs->ir->CreateICmpUGT(load, zerokey);
load = irs->ir->CreateSub(load, LLConstantInt::get(keytype, 1, false));
DtoStore(load, keyvar);
}
auto branchinst =
llvm::BranchInst::Create(bodybb, endbb, done, irs->scopebb());
{
auto brweights = PGO.createProfileWeightsForeach(stmt);
PGO.addBranchWeights(branchinst, brweights);
}
// init body
irs->scope() = IRScope(bodybb);
PGO.emitCounterIncrement(stmt);
// get value for this iteration
LLValue *loadedKey = irs->ir->CreateLoad(keyvar);
LLValue *gep = DtoGEP1(val, loadedKey, true);
if (!stmt->value->isRef() && !stmt->value->isOut()) {
// Copy value to local variable, and use it as the value variable.
DLValue dst(stmt->value->type, valvar);
DLValue src(stmt->value->type, gep);
DtoAssign(stmt->loc, &dst, &src, TOKassign);
getIrLocal(stmt->value)->value = valvar;
} else {
// Use the GEP as the address of the value variable.
DtoRawVarDeclaration(stmt->value, gep);
}
// emit body
irs->funcGen().scopes.pushLoopTarget(stmt, nextbb, endbb);
if (stmt->_body) {
stmt->_body->accept(this);
}
irs->funcGen().scopes.popLoopTarget();
if (!irs->scopereturned()) {
llvm::BranchInst::Create(nextbb, irs->scopebb());
}
// next
irs->scope() = IRScope(nextbb);
if (stmt->op == TOKforeach) {
LLValue *load = DtoLoad(keyvar);
load = irs->ir->CreateAdd(load, LLConstantInt::get(keytype, 1, false));
DtoStore(load, keyvar);
}
llvm::BranchInst::Create(condbb, irs->scopebb());
// end the dwarf lexical block
irs->DBuilder.EmitBlockEnd();
// end
irs->scope() = IRScope(endbb);
}
//////////////////////////////////////////////////////////////////////////
void visit(ForeachRangeStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("ForeachRangeStatement::toIR(): %s",
stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
// start a dwarf lexical block
irs->DBuilder.EmitBlockStart(stmt->loc);
// evaluate lwr/upr
assert(stmt->lwr->type->isintegral());
LLValue *lower = DtoRVal(toElemDtor(stmt->lwr));
assert(stmt->upr->type->isintegral());
LLValue *upper = DtoRVal(toElemDtor(stmt->upr));
// handle key
assert(stmt->key->type->isintegral());
LLValue *keyval = DtoRawVarDeclaration(stmt->key);
// store initial value in key
if (stmt->op == TOKforeach) {
DtoStore(lower, keyval);
} else {
DtoStore(upper, keyval);
}
// set up the block we'll need
llvm::BasicBlock *condbb = llvm::BasicBlock::Create(
irs->context(), "foreachrange_cond", irs->topfunc());
llvm::BasicBlock *bodybb = llvm::BasicBlock::Create(
irs->context(), "foreachrange_body", irs->topfunc());
llvm::BasicBlock *nextbb = llvm::BasicBlock::Create(
irs->context(), "foreachrange_next", irs->topfunc());
llvm::BasicBlock *endbb = llvm::BasicBlock::Create(
irs->context(), "foreachrange_end", irs->topfunc());
// jump to condition
llvm::BranchInst::Create(condbb, irs->scopebb());
// CONDITION
irs->scope() = IRScope(condbb);
// first we test that lwr < upr
lower = DtoLoad(keyval);
assert(lower->getType() == upper->getType());
llvm::ICmpInst::Predicate cmpop;
if (isLLVMUnsigned(stmt->key->type)) {
cmpop = (stmt->op == TOKforeach) ? llvm::ICmpInst::ICMP_ULT
: llvm::ICmpInst::ICMP_UGT;
} else {
cmpop = (stmt->op == TOKforeach) ? llvm::ICmpInst::ICMP_SLT
: llvm::ICmpInst::ICMP_SGT;
}
LLValue *cond = irs->ir->CreateICmp(cmpop, lower, upper);
// jump to the body if range is ok, to the end if not
auto branchinst =
llvm::BranchInst::Create(bodybb, endbb, cond, irs->scopebb());
{
auto brweights = PGO.createProfileWeightsForeachRange(stmt);
PGO.addBranchWeights(branchinst, brweights);
}
// BODY
irs->scope() = IRScope(bodybb);
PGO.emitCounterIncrement(stmt);
// reverse foreach decrements here
if (stmt->op == TOKforeach_reverse) {
LLValue *v = DtoLoad(keyval);
LLValue *one = LLConstantInt::get(v->getType(), 1, false);
v = irs->ir->CreateSub(v, one);
DtoStore(v, keyval);
}
// emit body
irs->funcGen().scopes.pushLoopTarget(stmt, nextbb, endbb);
if (stmt->_body) {
stmt->_body->accept(this);
}
irs->funcGen().scopes.popLoopTarget();
// jump to next iteration
if (!irs->scopereturned()) {
llvm::BranchInst::Create(nextbb, irs->scopebb());
}
// NEXT
irs->scope() = IRScope(nextbb);
// forward foreach increments here
if (stmt->op == TOKforeach) {
LLValue *v = DtoLoad(keyval);
LLValue *one = LLConstantInt::get(v->getType(), 1, false);
v = irs->ir->CreateAdd(v, one);
DtoStore(v, keyval);
}
// jump to condition
llvm::BranchInst::Create(condbb, irs->scopebb());
// end the dwarf lexical block
irs->DBuilder.EmitBlockEnd();
// END
irs->scope() = IRScope(endbb);
}
//////////////////////////////////////////////////////////////////////////
void visit(LabelStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("LabelStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
// if it's an inline asm label, we don't create a basicblock, just emit it
// in the asm
if (irs->asmBlock) {
auto a = new IRAsmStmt;
std::stringstream label;
printLabelName(label, mangleExact(irs->func()->decl),
stmt->ident->toChars());
label << ":";
a->code = label.str();
irs->asmBlock->s.push_back(a);
irs->asmBlock->internalLabels.push_back(stmt->ident);
// disable inlining
irs->func()->setNeverInline();
} else {
llvm::BasicBlock *labelBB = llvm::BasicBlock::Create(
irs->context(), llvm::Twine("label.") + stmt->ident->toChars(),
irs->topfunc());
irs->funcGen().scopes.addLabelTarget(stmt->ident, labelBB);
if (!irs->scopereturned()) {
llvm::BranchInst::Create(labelBB, irs->scopebb());
}
irs->scope() = IRScope(labelBB);
}
PGO.emitCounterIncrement(stmt);
// statement == nullptr when the label is at the end of function
if (stmt->statement) {
stmt->statement->accept(this);
}
}
//////////////////////////////////////////////////////////////////////////
void visit(GotoStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("GotoStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
irs->DBuilder.EmitStopPoint(stmt->loc);
emitCoverageLinecountInc(stmt->loc);
DtoGoto(stmt->loc, stmt->label);
// TODO: Should not be needed.
llvm::BasicBlock *bb =
llvm::BasicBlock::Create(irs->context(), "aftergoto", irs->topfunc());
irs->scope() = IRScope(bb);
}
//////////////////////////////////////////////////////////////////////////
void visit(GotoDefaultStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("GotoDefaultStatement::toIR(): %s",
stmt->loc.toChars());
LOG_SCOPE;
auto &funcGen = irs->funcGen();
auto &PGO = funcGen.pgo;
PGO.setCurrentStmt(stmt);
irs->DBuilder.EmitStopPoint(stmt->loc);
emitCoverageLinecountInc(stmt->loc);
assert(!irs->scopereturned());
const auto defaultBB = funcGen.switchTargets.get(stmt->sw->sdefault);
llvm::BranchInst::Create(defaultBB, irs->scopebb());
// TODO: Should not be needed.
llvm::BasicBlock *bb = llvm::BasicBlock::Create(
irs->context(), "aftergotodefault", irs->topfunc());
irs->scope() = IRScope(bb);
}
//////////////////////////////////////////////////////////////////////////
void visit(GotoCaseStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("GotoCaseStatement::toIR(): %s",
stmt->loc.toChars());
LOG_SCOPE;
auto &funcGen = irs->funcGen();
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
irs->DBuilder.EmitStopPoint(stmt->loc);
emitCoverageLinecountInc(stmt->loc);
assert(!irs->scopereturned());
const auto caseBB =
funcGen.switchTargets.getOrCreate(stmt->cs, "goto_case");
llvm::BranchInst::Create(caseBB, irs->scopebb());
// TODO: Should not be needed.
llvm::BasicBlock *bb = llvm::BasicBlock::Create(
irs->context(), "aftergotocase", irs->topfunc());
irs->scope() = IRScope(bb);
}
//////////////////////////////////////////////////////////////////////////
void visit(WithStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("WithStatement::toIR(): %s", stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
irs->DBuilder.EmitBlockStart(stmt->loc);
assert(stmt->exp);
// with(..) can either be used with expressions or with symbols
// wthis == null indicates the symbol form
if (stmt->wthis) {
LLValue *mem = DtoRawVarDeclaration(stmt->wthis);
DValue *e = toElemDtor(stmt->exp);
LLValue *val = (DtoIsInMemoryOnly(e->type) ? DtoLVal(e) : DtoRVal(e));
DtoStore(val, mem);
}
if (stmt->_body) {
stmt->_body->accept(this);
}
irs->DBuilder.EmitBlockEnd();
}
//////////////////////////////////////////////////////////////////////////
void visit(SwitchErrorStatement *stmt) LLVM_OVERRIDE {
IF_LOG Logger::println("SwitchErrorStatement::toIR(): %s",
stmt->loc.toChars());
LOG_SCOPE;
auto &PGO = irs->funcGen().pgo;
PGO.setCurrentStmt(stmt);
llvm::Function *fn =
getRuntimeFunction(stmt->loc, irs->module, "_d_switch_error");
LLValue *moduleInfoSymbol =
getIrModule(irs->func()->decl->getModule())->moduleInfoSymbol();
LLType *moduleInfoType = DtoType(Module::moduleinfo->type);
LLCallSite call = irs->CreateCallOrInvoke(
fn, DtoBitCast(moduleInfoSymbol, getPtrToType(moduleInfoType)),
DtoConstUint(stmt->loc.linnum));
call.setDoesNotReturn();
}
//////////////////////////////////////////////////////////////////////////
void visit(AsmStatement *stmt) LLVM_OVERRIDE { AsmStatement_toIR(stmt, irs); }
//////////////////////////////////////////////////////////////////////////
void visit(CompoundAsmStatement *stmt) LLVM_OVERRIDE {
CompoundAsmStatement_toIR(stmt, irs);
}
//////////////////////////////////////////////////////////////////////////
void visit(ImportStatement *stmt) LLVM_OVERRIDE {
// Empty.
}
//////////////////////////////////////////////////////////////////////////
void visit(Statement *stmt) LLVM_OVERRIDE {
error(stmt->loc, "Statement type Statement not implemented: %s",
stmt->toChars());
fatal();
}
//////////////////////////////////////////////////////////////////////////
void visit(PragmaStatement *stmt) LLVM_OVERRIDE {
error(stmt->loc, "Statement type PragmaStatement not implemented: %s",
stmt->toChars());
fatal();
}
};
//////////////////////////////////////////////////////////////////////////////
void Statement_toIR(Statement *s, IRState *irs) {
ToIRVisitor v(irs);
s->accept(&v);
}