ldc/gen/arrays.cpp

1170 lines
38 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- arrays.cpp --------------------------------------------------------===//
//
// LDC the LLVM D compiler
//
// This file is distributed under the BSD-style LDC license. See the LICENSE
// file for details.
//
//===----------------------------------------------------------------------===//
#include "gen/arrays.h"
#include "aggregate.h"
#include "declaration.h"
#include "dsymbol.h"
#include "init.h"
#include "module.h"
#include "mtype.h"
#include "gen/dvalue.h"
#include "gen/irstate.h"
#include "gen/llvm.h"
#include "gen/llvmhelpers.h"
#include "gen/logger.h"
#include "gen/runtime.h"
#include "gen/tollvm.h"
#include "ir/irmodule.h"
#include "ir/irtypestruct.h"
//////////////////////////////////////////////////////////////////////////////////////////
static LLValue *DtoSlice(DValue *dval)
{
LLValue *val = dval->getRVal();
if (dval->getType()->toBasetype()->ty == Tsarray) {
// Convert static array to slice
LLStructType *type = DtoArrayType(LLType::getInt8Ty(gIR->context()));
LLValue *array = DtoRawAlloca(type, 0, ".array");
DtoStore(DtoArrayLen(dval), DtoGEPi(array, 0, 0, ".len"));
DtoStore(DtoBitCast(val, getVoidPtrType()), DtoGEPi(array, 0, 1, ".ptr"));
val = DtoLoad(array);
}
return val;
}
//////////////////////////////////////////////////////////////////////////////////////////
static LLValue *DtoSlicePtr(DValue *dval)
{
Loc loc;
LLStructType *type = DtoArrayType(LLType::getInt8Ty(gIR->context()));
Type *vt = dval->getType()->toBasetype();
if (vt->ty == Tarray)
return makeLValue(loc, dval);
bool isStaticArray = vt->ty == Tsarray;
LLValue *val = isStaticArray ? dval->getRVal() : makeLValue(loc, dval);
LLValue *array = DtoRawAlloca(type, 0, ".array");
LLValue *len = isStaticArray ? DtoArrayLen(dval) : DtoConstSize_t(1);
DtoStore(len, DtoGEPi(array, 0, 0, ".len"));
DtoStore(DtoBitCast(val, getVoidPtrType()), DtoGEPi(array, 0, 1, ".ptr"));
return array;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLStructType* DtoArrayType(Type* arrayTy)
{
assert(arrayTy->nextOf());
LLType* elemty = DtoType(arrayTy->nextOf());
if (elemty == LLType::getVoidTy(gIR->context()))
elemty = LLType::getInt8Ty(gIR->context());
llvm::Type *elems[] = { DtoSize_t(), getPtrToType(elemty) };
return llvm::StructType::get(gIR->context(), elems, false);
}
LLStructType* DtoArrayType(LLType* t)
{
llvm::Type *elems[] = { DtoSize_t(), getPtrToType(t) };
return llvm::StructType::get(gIR->context(), elems, false);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLArrayType* DtoStaticArrayType(Type* t)
{
t = t->toBasetype();
assert(t->ty == Tsarray);
TypeSArray* tsa = static_cast<TypeSArray*>(t);
Type* tnext = tsa->nextOf();
LLType* elemty = DtoType(tnext);
if (elemty == LLType::getVoidTy(gIR->context()))
elemty = LLType::getInt8Ty(gIR->context());
return LLArrayType::get(elemty, tsa->dim->toUInteger());
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoSetArrayToNull(LLValue* v)
{
Logger::println("DtoSetArrayToNull");
LOG_SCOPE;
assert(isaPointer(v));
LLType* t = v->getType()->getContainedType(0);
DtoStore(LLConstant::getNullValue(t), v);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoArrayInit(Loc& loc, DValue* array, DValue* value, int op)
{
Logger::println("DtoArrayInit");
LOG_SCOPE;
if (op != -1 && op != TOKblit && arrayNeedsPostblit(array->type))
{
DtoArraySetAssign(loc, array, value, op);
return;
}
LLValue* dim = DtoArrayLen(array);
LLValue* ptr = DtoArrayPtr(array);
Type* arrayelemty = array->getType()->nextOf()->toBasetype();
// lets first optimize all zero initializations down to a memset.
// this simplifies codegen later on as llvm null's have no address!
LLValue *val = value->getRVal();
if (isaConstant(val) && isaConstant(val)->isNullValue())
{
size_t X = getTypePaddedSize(val->getType());
LLValue* nbytes = gIR->ir->CreateMul(dim, DtoConstSize_t(X), ".nbytes");
DtoMemSetZero(ptr, nbytes);
return;
}
// create blocks
llvm::BasicBlock* oldend = gIR->scopeend();
llvm::BasicBlock* condbb = llvm::BasicBlock::Create(gIR->context(), "arrayinit.cond",
gIR->topfunc(), oldend);
llvm::BasicBlock* bodybb = llvm::BasicBlock::Create(gIR->context(), "arrayinit.body",
gIR->topfunc(), oldend);
llvm::BasicBlock* endbb = llvm::BasicBlock::Create(gIR->context(), "arrayinit.end",
gIR->topfunc(), oldend);
// initialize iterator
LLValue *itr = DtoAlloca(Type::tsize_t, "arrayinit.itr");
DtoStore(DtoConstSize_t(0), itr);
// move into the for condition block, ie. start the loop
assert(!gIR->scopereturned());
llvm::BranchInst::Create(condbb, gIR->scopebb());
// replace current scope
gIR->scope() = IRScope(condbb,bodybb);
// create the condition
LLValue* cond_val = gIR->ir->CreateICmpNE(DtoLoad(itr), dim, "arrayinit.condition");
// conditional branch
assert(!gIR->scopereturned());
llvm::BranchInst::Create(bodybb, endbb, cond_val, gIR->scopebb());
// rewrite scope
gIR->scope() = IRScope(bodybb, endbb);
// assign array element value
DValue *arrayelem = new DVarValue(arrayelemty, DtoGEP1(ptr, DtoLoad(itr), "arrayinit.arrayelem"));
DtoAssign(loc, arrayelem, value, op);
// increment iterator
DtoStore(gIR->ir->CreateAdd(DtoLoad(itr), DtoConstSize_t(1), "arrayinit.new_itr"), itr);
// loop
llvm::BranchInst::Create(condbb, gIR->scopebb());
// rewrite the scope
gIR->scope() = IRScope(endbb, oldend);
}
//////////////////////////////////////////////////////////////////////////////////////////
Type *DtoArrayElementType(Type *arrayType)
{
assert(arrayType->toBasetype()->nextOf());
Type *t = arrayType->toBasetype()->nextOf()->toBasetype();
while (t->ty == Tsarray)
t = t->nextOf()->toBasetype();
return t;
}
// Determine whether t is an array of structs that need a postblit.
bool arrayNeedsPostblit(Type *t)
{
t = DtoArrayElementType(t);
if (t->ty == Tstruct)
return static_cast<TypeStruct *>(t)->sym->postblit != 0;
return false;
}
// Does array assignment (or initialization) from another array of the same element type.
void DtoArrayAssign(DValue *array, DValue *value, int op)
{
Logger::println("DtoArrayAssign");
LOG_SCOPE;
assert(value && array);
assert(op != TOKblit);
// Use array->type instead of value->type so as to not accidentally pick
// up a superfluous const layer (TypeInfo_Const doesn't pass on postblit()).
Type *t = array->type->toBasetype();
assert(t->nextOf());
Type *elemType = t->nextOf()->toBasetype();
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, op == TOKconstruct ? "_d_arrayctor" : "_d_arrayassign");
LLValue* args[] = {
DtoTypeInfoOf(elemType),
DtoAggrPaint(DtoSlice(value), fn->getFunctionType()->getParamType(1)),
DtoAggrPaint(DtoSlice(array), fn->getFunctionType()->getParamType(2))
};
LLCallSite call = gIR->CreateCallOrInvoke(fn, args, ".array");
call.setCallingConv(llvm::CallingConv::C);
}
// If op is TOKconstruct, does construction of an array;
// otherwise, does assignment to an array.
void DtoArraySetAssign(Loc &loc, DValue *array, DValue *value, int op)
{
Logger::println("DtoArraySetAssign");
LOG_SCOPE;
assert(array && value);
assert(op != TOKblit);
LLValue *ptr = DtoArrayPtr(array);
LLValue *len = DtoArrayLen(array);
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, op == TOKconstruct ? "_d_arraysetctor" : "_d_arraysetassign");
LLValue* args[] = {
DtoBitCast(ptr, getVoidPtrType()),
DtoBitCast(makeLValue(loc, value), getVoidPtrType()),
len,
DtoTypeInfoOf(array->type->toBasetype()->nextOf()->toBasetype())
};
LLCallSite call = gIR->CreateCallOrInvoke(fn, args, ".newptr");
call.setCallingConv(llvm::CallingConv::C);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoSetArray(DValue* array, LLValue* dim, LLValue* ptr)
{
Logger::println("SetArray");
LLValue *arr = array->getLVal();
assert(isaStruct(arr->getType()->getContainedType(0)));
DtoStore(dim, DtoGEPi(arr,0,0));
DtoStore(ptr, DtoGEPi(arr,0,1));
}
//////////////////////////////////////////////////////////////////////////////////////////
// The function is almost identical copy of DtoConstArrayInitializer but it returns
// initializer type not the initializer itself.
// FIXME: is there any way to merge this next two functions?
LLType* DtoConstArrayInitializerType(ArrayInitializer* arrinit)
{
Type* arrty = arrinit->type->toBasetype();
if (arrty->ty != Tsarray)
return DtoType(arrinit->type);
TypeSArray* tsa = static_cast<TypeSArray*>(arrty);
size_t arrlen = static_cast<size_t>(tsa->dim->toInteger());
// get elem type
Type* elemty = arrty->nextOf();
LLType* llelemty = DtoTypeNotVoid(elemty);
// make sure the number of initializers is sane
if (arrinit->index.dim > arrlen || arrinit->dim > arrlen)
{
error(arrinit->loc, "too many initializers, %u, for array[%zu]", arrinit->index.dim, arrlen);
fatal();
}
// true if array elements differ in type, can happen with array of unions
bool mismatch = false;
// allocate room for types
std::vector<LLType*> types(arrlen, NULL);
// go through each initializer, they're not sorted by index by the frontend
size_t j = 0;
for (size_t i = 0; i < arrinit->index.dim; i++)
{
// get index
Expression* idx = static_cast<Expression*>(arrinit->index.data[i]);
// idx can be null, then it's just the next element
if (idx)
j = idx->toInteger();
assert(j < arrlen);
// get value
Initializer* val = static_cast<Initializer*>(arrinit->value.data[i]);
assert(val);
LLType* c = DtoConstInitializerType(elemty, val);
assert(c);
if (c != llelemty)
mismatch = true;
types[j] = c;
j++;
}
// fill out any null entries still left with default type
// element default types
LLType* deftype = DtoConstInitializerType(elemty, 0);
bool mismatch2 = (deftype != llelemty);
for (size_t i = 0; i < arrlen; i++)
{
if (types[i] != NULL)
continue;
types[i] = deftype;
if (mismatch2)
mismatch = true;
}
if (mismatch)
return LLStructType::get(gIR->context(), types); // FIXME should this pack?
else
return LLArrayType::get(deftype, arrlen);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* DtoConstArrayInitializer(ArrayInitializer* arrinit)
{
Logger::println("DtoConstArrayInitializer: %s | %s", arrinit->toChars(), arrinit->type->toChars());
LOG_SCOPE;
assert(arrinit->value.dim == arrinit->index.dim);
// get base array type
Type* arrty = arrinit->type->toBasetype();
size_t arrlen = arrinit->dim;
// for statis arrays, dmd does not include any trailing default
// initialized elements in the value/index lists
if (arrty->ty == Tsarray)
{
TypeSArray* tsa = static_cast<TypeSArray*>(arrty);
arrlen = static_cast<size_t>(tsa->dim->toInteger());
}
// make sure the number of initializers is sane
if (arrinit->index.dim > arrlen || arrinit->dim > arrlen)
{
error(arrinit->loc, "too many initializers, %u, for array[%zu]", arrinit->index.dim, arrlen);
fatal();
}
// get elem type
Type* elemty = arrty->nextOf();
LLType* llelemty = DtoTypeNotVoid(elemty);
// true if array elements differ in type, can happen with array of unions
bool mismatch = false;
// allocate room for initializers
std::vector<LLConstant*> initvals(arrlen, NULL);
// go through each initializer, they're not sorted by index by the frontend
size_t j = 0;
for (size_t i = 0; i < arrinit->index.dim; i++)
{
// get index
Expression* idx = static_cast<Expression*>(arrinit->index.data[i]);
// idx can be null, then it's just the next element
if (idx)
j = idx->toInteger();
assert(j < arrlen);
// get value
Initializer* val = static_cast<Initializer*>(arrinit->value.data[i]);
assert(val);
// error check from dmd
if (initvals[j] != NULL)
{
error(arrinit->loc, "duplicate initialization for index %zu", j);
}
LLConstant* c = DtoConstInitializer(val->loc, elemty, val);
assert(c);
if (c->getType() != llelemty)
mismatch = true;
initvals[j] = c;
j++;
}
// die now if there was errors
if (global.errors)
fatal();
// fill out any null entries still left with default values
// element default initializer
LLConstant* defelem = DtoConstExpInit(arrinit->loc, elemty, elemty->defaultInit(arrinit->loc));
bool mismatch2 = (defelem->getType() != llelemty);
for (size_t i = 0; i < arrlen; i++)
{
if (initvals[i] != NULL)
continue;
initvals[i] = defelem;
if (mismatch2)
mismatch = true;
}
LLConstant* constarr;
if (mismatch)
constarr = LLConstantStruct::getAnon(gIR->context(), initvals); // FIXME should this pack?
else
constarr = LLConstantArray::get(LLArrayType::get(llelemty, arrlen), initvals);
// std::cout << "constarr: " << *constarr << std::endl;
// if the type is a static array, we're done
if (arrty->ty == Tsarray)
return constarr;
// we need to make a global with the data, so we have a pointer to the array
// Important: don't make the gvar constant, since this const initializer might
// be used as an initializer for a static T[] - where modifying contents is allowed.
LLGlobalVariable* gvar = new LLGlobalVariable(*gIR->module, constarr->getType(), false, LLGlobalValue::InternalLinkage, constarr, ".constarray");
if (arrty->ty == Tpointer)
// we need to return pointer to the static array.
return DtoBitCast(gvar, DtoType(arrty));
LLConstant* idxs[2] = { DtoConstUint(0), DtoConstUint(0) };
LLConstant* gep = llvm::ConstantExpr::getGetElementPtr(gvar, idxs, true);
gep = llvm::ConstantExpr::getBitCast(gvar, getPtrToType(llelemty));
return DtoConstSlice(DtoConstSize_t(arrlen), gep, arrty);
}
//////////////////////////////////////////////////////////////////////////////////////////
static LLValue* get_slice_ptr(DSliceValue* e, LLValue*& sz)
{
assert(e->len != 0);
LLType* t = e->ptr->getType()->getContainedType(0);
sz = gIR->ir->CreateMul(DtoConstSize_t(getTypePaddedSize(t)), e->len, "tmp");
return DtoBitCast(e->ptr, getVoidPtrType());
}
void DtoArrayCopySlices(DSliceValue* dst, DSliceValue* src)
{
Logger::println("ArrayCopySlices");
LLValue *sz1,*sz2;
LLValue* dstarr = get_slice_ptr(dst,sz1);
LLValue* srcarr = get_slice_ptr(src,sz2);
if (global.params.useAssert || global.params.useArrayBounds)
{
LLValue* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_array_slice_copy");
gIR->CreateCallOrInvoke4(fn, dstarr, sz1, srcarr, sz2);
}
else
{
DtoMemCpy(dstarr, srcarr, sz1);
}
}
void DtoArrayCopyToSlice(DSliceValue* dst, DValue* src)
{
Logger::println("ArrayCopyToSlice");
LLValue* sz1;
LLValue* dstarr = get_slice_ptr(dst,sz1);
LLValue* srcarr = DtoBitCast(DtoArrayPtr(src), getVoidPtrType());
LLType* arrayelemty = DtoTypeNotVoid(src->getType()->nextOf()->toBasetype());
LLValue* sz2 = gIR->ir->CreateMul(DtoConstSize_t(getTypePaddedSize(arrayelemty)), DtoArrayLen(src), "tmp");
if (global.params.useAssert || global.params.useArrayBounds)
{
LLValue* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_array_slice_copy");
gIR->CreateCallOrInvoke4(fn, dstarr, sz1, srcarr, sz2);
}
else
{
DtoMemCpy(dstarr, srcarr, sz1);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoStaticArrayCopy(LLValue* dst, LLValue* src)
{
Logger::println("StaticArrayCopy");
size_t n = getTypePaddedSize(dst->getType()->getContainedType(0));
DtoMemCpy(dst, src, DtoConstSize_t(n));
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* DtoConstSlice(LLConstant* dim, LLConstant* ptr, Type *type)
{
LLConstant* values[2] = { dim, ptr };
llvm::ArrayRef<LLConstant*> valuesRef = llvm::makeArrayRef(values, 2);
LLStructType *lltype = type ?
isaStruct(DtoType(type)) :
LLConstantStruct::getTypeForElements(gIR->context(), valuesRef);
return LLConstantStruct::get(lltype, valuesRef);
}
//////////////////////////////////////////////////////////////////////////////////////////
static bool isInitialized(Type* et) {
// Strip static array types from element type
Type* bt = et->toBasetype();
while (bt->ty == Tsarray) {
et = bt->nextOf();
bt = et->toBasetype();
}
// If it's a typedef with "= void" initializer then don't initialize.
if (et->ty == Ttypedef) {
Logger::println("Typedef: %s", et->toChars());
TypedefDeclaration* tdd = static_cast<TypeTypedef*>(et)->sym;
if (tdd && tdd->init && tdd->init->isVoidInitializer())
return false;
}
// Otherwise, it's always initialized.
return true;
}
//////////////////////////////////////////////////////////////////////////////////////////
static DSliceValue *getSlice(Type *arrayType, LLValue *array)
{
// Get ptr and length of the array
LLValue* arrayLen = DtoExtractValue(array, 0, ".len");
LLValue* newptr = DtoExtractValue(array, 1, ".ptr");
// cast pointer to wanted type
LLType* dstType = DtoType(arrayType)->getContainedType(1);
if (newptr->getType() != dstType)
newptr = DtoBitCast(newptr, dstType, ".gc_mem");
return new DSliceValue(arrayType, arrayLen, newptr);
}
//////////////////////////////////////////////////////////////////////////////////////////
DSliceValue* DtoNewDynArray(Loc& loc, Type* arrayType, DValue* dim, bool defaultInit)
{
Logger::println("DtoNewDynArray : %s", arrayType->toChars());
LOG_SCOPE;
// typeinfo arg
LLValue* arrayTypeInfo = DtoTypeInfoOf(arrayType);
// dim arg
assert(DtoType(dim->getType()) == DtoSize_t());
LLValue* arrayLen = dim->getRVal();
// get runtime function
Type* eltType = arrayType->toBasetype()->nextOf();
if (defaultInit && !isInitialized(eltType))
defaultInit = false;
bool zeroInit = eltType->isZeroInit();
const char* fnname = zeroInit ? "_d_newarrayT" : "_d_newarrayiT";
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, fnname);
// call allocator
LLValue* newArray = gIR->CreateCallOrInvoke2(fn, arrayTypeInfo, arrayLen, ".gc_mem").getInstruction();
return getSlice(arrayType, newArray);
}
//////////////////////////////////////////////////////////////////////////////////////////
DSliceValue* DtoNewMulDimDynArray(Loc& loc, Type* arrayType, DValue** dims, size_t ndims, bool defaultInit)
{
Logger::println("DtoNewMulDimDynArray : %s", arrayType->toChars());
LOG_SCOPE;
// typeinfo arg
LLValue* arrayTypeInfo = DtoTypeInfoOf(arrayType);
// get value type
Type* vtype = arrayType->toBasetype();
for (size_t i=0; i<ndims; ++i)
vtype = vtype->nextOf();
// get runtime function
bool zeroInit = vtype->isZeroInit();
if (defaultInit && !isInitialized(vtype))
defaultInit = false;
const char* fnname = zeroInit ? "_d_newarraymT" : "_d_newarraymiT";
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, fnname);
std::vector<LLValue*> args;
args.reserve(ndims+2);
args.push_back(arrayTypeInfo);
args.push_back(DtoConstSize_t(ndims));
// build dims
for (size_t i=0; i<ndims; ++i)
args.push_back(dims[i]->getRVal());
// call allocator
LLValue* newptr = gIR->CreateCallOrInvoke(fn, args, ".gc_mem").getInstruction();
if (Logger::enabled())
Logger::cout() << "final ptr = " << *newptr << '\n';
return getSlice(arrayType, newptr);
}
//////////////////////////////////////////////////////////////////////////////////////////
DSliceValue* DtoResizeDynArray(Type* arrayType, DValue* array, LLValue* newdim)
{
Logger::println("DtoResizeDynArray : %s", arrayType->toChars());
LOG_SCOPE;
assert(array);
assert(newdim);
assert(arrayType);
assert(arrayType->toBasetype()->ty == Tarray);
// decide on what runtime function to call based on whether the type is zero initialized
bool zeroInit = arrayType->toBasetype()->nextOf()->isZeroInit();
// call runtime
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, zeroInit ? "_d_arraysetlengthT" : "_d_arraysetlengthiT" );
LLValue* args[] = {
DtoTypeInfoOf(arrayType),
newdim,
DtoBitCast(array->getLVal(), fn->getFunctionType()->getParamType(2))
};
LLValue* newArray = gIR->CreateCallOrInvoke(fn, args, ".gc_mem").getInstruction();
return getSlice(arrayType, newArray);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoCatAssignElement(Loc& loc, Type* arrayType, DValue* array, Expression* exp)
{
Logger::println("DtoCatAssignElement");
LOG_SCOPE;
assert(array);
LLValue *oldLength = DtoArrayLen(array);
// Do not move exp->toElem call after creating _d_arrayappendcTX,
// otherwise a ~= a[$-i] won't work correctly
DValue *expVal = exp->toElem(gIR);
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_arrayappendcTX");
LLValue* args[] = {
DtoTypeInfoOf(arrayType),
DtoBitCast(array->getLVal(), fn->getFunctionType()->getParamType(1)),
DtoConstSize_t(1)
};
LLValue* appendedArray = gIR->CreateCallOrInvoke(fn, args, ".appendedArray").getInstruction();
appendedArray = DtoAggrPaint(appendedArray, DtoType(arrayType));
LLValue* val = DtoArrayPtr(array);
val = DtoGEP1(val, oldLength, "lastElem");
DtoAssign(loc, new DVarValue(arrayType->nextOf(), val), expVal);
callPostblit(loc, exp, val);
}
//////////////////////////////////////////////////////////////////////////////////////////
DSliceValue* DtoCatAssignArray(DValue* arr, Expression* exp)
{
Logger::println("DtoCatAssignArray");
LOG_SCOPE;
Type *arrayType = arr->getType();
// Prepare arguments
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_arrayappendT");
LLSmallVector<LLValue*,3> args;
// TypeInfo ti
args.push_back(DtoTypeInfoOf(arrayType));
// byte[] *px
args.push_back(DtoBitCast(arr->getLVal(), fn->getFunctionType()->getParamType(1)));
// byte[] y
LLValue *y = DtoSlice(exp->toElem(gIR));
y = DtoAggrPaint(y, fn->getFunctionType()->getParamType(2));
args.push_back(y);
// Call _d_arrayappendT
LLValue* newArray = gIR->CreateCallOrInvoke(fn, args, ".appendedArray").getInstruction();
return getSlice(arrayType, newArray);
}
//////////////////////////////////////////////////////////////////////////////////////////
DSliceValue* DtoCatArrays(Type* arrayType, Expression* exp1, Expression* exp2)
{
Logger::println("DtoCatAssignArray");
LOG_SCOPE;
std::vector<LLValue*> args;
LLFunction* fn = 0;
if (exp1->op == TOKcat)
{ // handle multiple concat
fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_arraycatnT");
args.push_back(DtoSlicePtr(exp2->toElem(gIR)));
CatExp *ce = static_cast<CatExp*>(exp1);
do
{
args.push_back(DtoSlicePtr(ce->e2->toElem(gIR)));
ce = static_cast<CatExp *>(ce->e1);
} while (ce->op == TOKcat);
args.push_back(DtoSlicePtr(ce->toElem(gIR)));
// uint n
args.push_back(DtoConstUint(args.size()));
// TypeInfo ti
args.push_back(DtoTypeInfoOf(arrayType));
std::reverse(args.begin(), args.end());
}
else
{
fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_arraycatT");
// TypeInfo ti
args.push_back(DtoTypeInfoOf(arrayType));
// byte[] x
LLValue *val = DtoLoad(DtoSlicePtr(exp1->toElem(gIR)));
val = DtoAggrPaint(val, fn->getFunctionType()->getParamType(1));
args.push_back(val);
// byte[] y
val = DtoLoad(DtoSlicePtr(exp2->toElem(gIR)));
val = DtoAggrPaint(val, fn->getFunctionType()->getParamType(2));
args.push_back(val);
}
LLValue *newArray = gIR->CreateCallOrInvoke(fn, args, ".appendedArray").getInstruction();
return getSlice(arrayType, newArray);
}
//////////////////////////////////////////////////////////////////////////////////////////
DSliceValue* DtoAppendDChar(DValue* arr, Expression* exp, const char *func)
{
Type *arrayType = arr->getType();
DValue* valueToAppend = exp->toElem(gIR);
// Prepare arguments
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, func);
LLValue* args[] = {
// ref string x
DtoBitCast(arr->getLVal(), fn->getFunctionType()->getParamType(0)),
// dchar c
DtoBitCast(valueToAppend->getRVal(), fn->getFunctionType()->getParamType(1))
};
// Call function
LLValue* newArray = gIR->CreateCallOrInvoke(fn, args, ".appendedArray").getInstruction();
return getSlice(arrayType, newArray);
}
//////////////////////////////////////////////////////////////////////////////////////////
DSliceValue* DtoAppendDCharToString(DValue* arr, Expression* exp)
{
Logger::println("DtoAppendDCharToString");
LOG_SCOPE;
return DtoAppendDChar(arr, exp, "_d_arrayappendcd");
}
//////////////////////////////////////////////////////////////////////////////////////////
DSliceValue* DtoAppendDCharToUnicodeString(DValue* arr, Expression* exp)
{
Logger::println("DtoAppendDCharToUnicodeString");
LOG_SCOPE;
return DtoAppendDChar(arr, exp, "_d_arrayappendwd");
}
//////////////////////////////////////////////////////////////////////////////////////////
// helper for eq and cmp
static LLValue* DtoArrayEqCmp_impl(Loc& loc, const char* func, DValue* l, DValue* r, bool useti)
{
Logger::println("comparing arrays");
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, func);
assert(fn);
// find common dynamic array type
Type* commonType = l->getType()->toBasetype()->nextOf()->arrayOf();
// cast static arrays to dynamic ones, this turns them into DSliceValues
Logger::println("casting to dynamic arrays");
l = DtoCastArray(loc, l, commonType);
r = DtoCastArray(loc, r, commonType);
LLSmallVector<LLValue*, 3> args;
// get values, reinterpret cast to void[]
args.push_back(DtoAggrPaint(l->getRVal(), DtoArrayType(LLType::getInt8Ty(gIR->context()))));
args.push_back(DtoAggrPaint(r->getRVal(), DtoArrayType(LLType::getInt8Ty(gIR->context()))));
// pass array typeinfo ?
if (useti) {
Type* t = l->getType();
LLValue* tival = DtoTypeInfoOf(t);
// DtoTypeInfoOf only does declare, not enough in this case :/
t->vtinfo->codegen(Type::sir);
#if 0
if (Logger::enabled())
Logger::cout() << "typeinfo decl: " << *tival << '\n';
#endif
args.push_back(DtoBitCast(tival, fn->getFunctionType()->getParamType(2)));
}
LLCallSite call = gIR->CreateCallOrInvoke(fn, args, "tmp");
return call.getInstruction();
}
//////////////////////////////////////////////////////////////////////////////////////////
LLValue* DtoArrayEquals(Loc& loc, TOK op, DValue* l, DValue* r)
{
LLValue* res = DtoArrayEqCmp_impl(loc, _adEq, l, r, true);
res = gIR->ir->CreateICmpNE(res, DtoConstInt(0), "tmp");
if (op == TOKnotequal)
res = gIR->ir->CreateNot(res, "tmp");
return res;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLValue* DtoArrayCompare(Loc& loc, TOK op, DValue* l, DValue* r)
{
LLValue* res = 0;
llvm::ICmpInst::Predicate cmpop;
tokToIcmpPred(op, false, &cmpop, &res);
if (!res)
{
Type* t = l->getType()->toBasetype()->nextOf()->toBasetype();
if (t->ty == Tchar)
res = DtoArrayEqCmp_impl(loc, "_adCmpChar", l, r, false);
else
res = DtoArrayEqCmp_impl(loc, _adCmp, l, r, true);
res = gIR->ir->CreateICmp(cmpop, res, DtoConstInt(0), "tmp");
}
assert(res);
return res;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLValue* DtoArrayCastLength(LLValue* len, LLType* elemty, LLType* newelemty)
{
Logger::println("DtoArrayCastLength");
LOG_SCOPE;
assert(len);
assert(elemty);
assert(newelemty);
size_t esz = getTypePaddedSize(elemty);
size_t nsz = getTypePaddedSize(newelemty);
if (esz == nsz)
return len;
LLValue* args[] = {
len,
LLConstantInt::get(DtoSize_t(), esz, false),
LLConstantInt::get(DtoSize_t(), nsz, false)
};
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_array_cast_len");
return gIR->CreateCallOrInvoke(fn, args, "tmp").getInstruction();
}
//////////////////////////////////////////////////////////////////////////////////////////
LLValue* DtoDynArrayIs(TOK op, DValue* l, DValue* r)
{
LLValue *len1, *ptr1, *len2, *ptr2;
assert(l);
assert(r);
// compare lengths
len1 = DtoArrayLen(l);
len2 = DtoArrayLen(r);
LLValue* b1 = gIR->ir->CreateICmpEQ(len1,len2,"tmp");
// compare pointers
ptr1 = DtoArrayPtr(l);
ptr2 = DtoArrayPtr(r);
LLValue* b2 = gIR->ir->CreateICmpEQ(ptr1,ptr2,"tmp");
// combine
LLValue* res = gIR->ir->CreateAnd(b1,b2,"tmp");
// return result
return (op == TOKnotidentity) ? gIR->ir->CreateNot(res) : res;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLValue* DtoArrayLen(DValue* v)
{
Logger::println("DtoArrayLen");
LOG_SCOPE;
Type* t = v->getType()->toBasetype();
if (t->ty == Tarray) {
if (DSliceValue* s = v->isSlice())
return s->len;
else if (v->isNull())
return DtoConstSize_t(0);
else if (v->isLVal())
return DtoLoad(DtoGEPi(v->getLVal(), 0,0), ".len");
return gIR->ir->CreateExtractValue(v->getRVal(), 0, ".len");
}
else if (t->ty == Tsarray) {
assert(!v->isSlice());
assert(!v->isNull());
assert(v->type->toBasetype()->ty == Tsarray);
TypeSArray *sarray = static_cast<TypeSArray*>(v->type->toBasetype());
return DtoConstSize_t(sarray->dim->toUInteger());
}
llvm_unreachable("unsupported array for len");
}
//////////////////////////////////////////////////////////////////////////////////////////
LLValue* DtoArrayPtr(DValue* v)
{
Logger::println("DtoArrayPtr");
LOG_SCOPE;
Type* t = v->getType()->toBasetype();
if (t->ty == Tarray) {
if (DSliceValue* s = v->isSlice())
return s->ptr;
else if (v->isNull())
return getNullPtr(getPtrToType(DtoType(t->nextOf())));
else if (v->isLVal())
return DtoLoad(DtoGEPi(v->getLVal(), 0,1), ".ptr");
return gIR->ir->CreateExtractValue(v->getRVal(), 1, ".ptr");
}
else if (t->ty == Tsarray) {
assert(!v->isSlice());
assert(!v->isNull());
return DtoGEPi(v->getRVal(), 0,0);
}
llvm_unreachable("Unexpected array type.");
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoCastArray(Loc& loc, DValue* u, Type* to)
{
Logger::println("DtoCastArray");
LOG_SCOPE;
LLType* tolltype = DtoType(to);
Type* totype = to->toBasetype();
Type* fromtype = u->getType()->toBasetype();
if (fromtype->ty != Tarray && fromtype->ty != Tsarray) {
error(loc, "can't cast %s to %s", u->getType()->toChars(), to->toChars());
fatal();
}
LLValue* rval;
LLValue* rval2;
bool isslice = false;
if (Logger::enabled())
Logger::cout() << "from array or sarray" << '\n';
if (totype->ty == Tpointer) {
if (Logger::enabled())
Logger::cout() << "to pointer" << '\n';
rval = DtoArrayPtr(u);
if (rval->getType() != tolltype)
rval = gIR->ir->CreateBitCast(rval, tolltype, "tmp");
}
else if (totype->ty == Tarray) {
if (Logger::enabled())
Logger::cout() << "to array" << '\n';
LLType* ptrty = DtoArrayType(totype)->getContainedType(1);
LLType* ety = DtoTypeNotVoid(fromtype->nextOf());
if (fromtype->ty == Tsarray) {
LLValue* uval = u->getRVal();
if (Logger::enabled())
Logger::cout() << "uvalTy = " << *uval->getType() << '\n';
assert(isaPointer(uval->getType()));
LLArrayType* arrty = isaArray(uval->getType()->getContainedType(0));
if(arrty->getNumElements()*fromtype->nextOf()->size() % totype->nextOf()->size() != 0)
{
error(loc, "invalid cast from '%s' to '%s', the element sizes don't line up", fromtype->toChars(), totype->toChars());
fatal();
}
uinteger_t len = static_cast<TypeSArray*>(fromtype)->dim->toUInteger();
rval2 = LLConstantInt::get(DtoSize_t(), len, false);
if (fromtype->nextOf()->size() != totype->nextOf()->size())
rval2 = DtoArrayCastLength(rval2, ety, ptrty->getContainedType(0));
rval = DtoBitCast(uval, ptrty);
}
else {
rval2 = DtoArrayLen(u);
if (fromtype->nextOf()->size() != totype->nextOf()->size())
rval2 = DtoArrayCastLength(rval2, ety, ptrty->getContainedType(0));
rval = DtoArrayPtr(u);
rval = DtoBitCast(rval, ptrty);
}
isslice = true;
}
else if (totype->ty == Tsarray) {
if (Logger::enabled())
Logger::cout() << "to sarray" << '\n';
size_t tosize = static_cast<TypeSArray*>(totype)->dim->toInteger();
if (fromtype->ty == Tsarray) {
LLValue* uval = u->getRVal();
if (Logger::enabled())
Logger::cout() << "uvalTy = " << *uval->getType() << '\n';
assert(isaPointer(uval->getType()));
/*LLArrayType* arrty = isaArray(uval->getType()->getContainedType(0));
if(arrty->getNumElements()*fromtype->nextOf()->size() != tosize*totype->nextOf()->size())
{
error(loc, "invalid cast from '%s' to '%s', the sizes are not the same", fromtype->toChars(), totype->toChars());
fatal();
}*/
rval = DtoBitCast(uval, getPtrToType(tolltype));
}
else {
size_t i = (tosize * totype->nextOf()->size() - 1) / fromtype->nextOf()->size();
DConstValue index(Type::tsize_t, DtoConstSize_t(i));
DtoArrayBoundsCheck(loc, u, &index);
rval = DtoArrayPtr(u);
rval = DtoBitCast(rval, getPtrToType(tolltype));
}
}
else if (totype->ty == Tbool) {
// return (arr.ptr !is null)
LLValue* ptr = DtoArrayPtr(u);
LLConstant* nul = getNullPtr(ptr->getType());
rval = gIR->ir->CreateICmpNE(ptr, nul, "tmp");
}
else {
rval = DtoArrayPtr(u);
rval = DtoBitCast(rval, getPtrToType(tolltype));
if (totype->ty != Tstruct)
rval = DtoLoad(rval);
}
if (isslice) {
Logger::println("isslice");
return new DSliceValue(to, rval2, rval);
}
return new DImValue(to, rval);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoArrayBoundsCheck(Loc& loc, DValue* arr, DValue* index, DValue* lowerBound)
{
Type* arrty = arr->getType()->toBasetype();
assert((arrty->ty == Tsarray || arrty->ty == Tarray || arrty->ty == Tpointer) &&
"Can only array bounds check for static or dynamic arrays");
// static arrays could get static checks for static indices
// but shouldn't since it might be generic code that's never executed
// runtime check
bool lengthUnknown = arrty->ty == Tpointer;
llvm::BasicBlock* oldend = gIR->scopeend();
llvm::BasicBlock* failbb = llvm::BasicBlock::Create(gIR->context(), "arrayboundscheckfail", gIR->topfunc(), oldend);
llvm::BasicBlock* okbb = llvm::BasicBlock::Create(gIR->context(), "arrayboundsok", gIR->topfunc(), oldend);
LLValue* cond = 0;
if (!lengthUnknown) {
// if lowerBound is not NULL, we're checking slice
llvm::ICmpInst::Predicate cmpop = lowerBound ? llvm::ICmpInst::ICMP_ULE : llvm::ICmpInst::ICMP_ULT;
// check for upper bound
cond = gIR->ir->CreateICmp(cmpop, index->getRVal(), DtoArrayLen(arr), "boundscheck");
}
if (!lowerBound) {
assert(cond);
gIR->ir->CreateCondBr(cond, okbb, failbb);
} else {
if (!lengthUnknown) {
llvm::BasicBlock* locheckbb = llvm::BasicBlock::Create(gIR->context(), "arrayboundschecklowerbound", gIR->topfunc(), oldend);
gIR->ir->CreateCondBr(cond, locheckbb, failbb);
gIR->scope() = IRScope(locheckbb, failbb);
}
// check for lower bound
cond = gIR->ir->CreateICmp(llvm::ICmpInst::ICMP_ULE, lowerBound->getRVal(), index->getRVal(), "boundscheck");
gIR->ir->CreateCondBr(cond, okbb, failbb);
}
// set up failbb to call the array bounds error runtime function
gIR->scope() = IRScope(failbb, okbb);
std::vector<LLValue*> args;
Module* funcmodule = gIR->func()->decl->getModule();
// module param
LLValue *moduleInfoSymbol = funcmodule->moduleInfoSymbol();
LLType *moduleInfoType = DtoType(Module::moduleinfo->type);
args.push_back(DtoBitCast(moduleInfoSymbol, getPtrToType(moduleInfoType)));
// line param
LLConstant* c = DtoConstUint(loc.linnum);
args.push_back(c);
// call
llvm::Function* errorfn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_array_bounds");
gIR->CreateCallOrInvoke(errorfn, args);
// the function does not return
gIR->ir->CreateUnreachable();
// if ok, proceed in okbb
gIR->scope() = IRScope(okbb, oldend);
}