mirror of
https://github.com/ldc-developers/ldc.git
synced 2025-04-30 15:10:59 +03:00

This commit fundamentally changes the way symbol emission in LDC works: Previously, whenever a declaration was used in some way, the compiler would check whether it actually needs to be defined in the currently processed module, based only on the symbol itself. This lack of contextual information proved to be a major problem in correctly handling emission of templates (see e.g. #454). Now, the DtoResolve…() family of functions and similar only ever declare the symbols, and definition is handled by doing a single pass over Module::members for the root module. This is the same strategy that DMD uses as well, which should also reduce the maintainance burden down the road (which is important as during the last few releases, there was pretty much always a symbol emission related problem slowing us down). Our old approach might have been a bit better tuned w.r.t. avoiding emission of unneeded template instances, but 2.064 will bring improvements here (DMD: FuncDeclaration::toObjFile). Barring such issues, the change shoud also marginally improve compile times because of declarations no longer being emitted when they are not needed. In the future, we should also consider refactoring the code so that it no longer directly accesses Dsymbol::ir but uses wrapper functions that ensure that the appropriate DtoResolve…() function has been called. GitHub: Fixes #454.
1241 lines
38 KiB
C++
1241 lines
38 KiB
C++
//===-- functions.cpp -----------------------------------------------------===//
|
||
//
|
||
// LDC – the LLVM D compiler
|
||
//
|
||
// This file is distributed under the BSD-style LDC license. See the LICENSE
|
||
// file for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "gen/functions.h"
|
||
#include "aggregate.h"
|
||
#include "declaration.h"
|
||
#include "id.h"
|
||
#include "init.h"
|
||
#include "module.h"
|
||
#include "mtype.h"
|
||
#include "statement.h"
|
||
#include "template.h"
|
||
#include "gen/abi.h"
|
||
#include "gen/arrays.h"
|
||
#include "gen/classes.h"
|
||
#include "gen/dvalue.h"
|
||
#include "gen/irstate.h"
|
||
#include "gen/llvm.h"
|
||
#include "gen/llvmhelpers.h"
|
||
#include "gen/logger.h"
|
||
#include "gen/nested.h"
|
||
#include "gen/pragma.h"
|
||
#include "gen/runtime.h"
|
||
#include "gen/tollvm.h"
|
||
#if LDC_LLVM_VER >= 303
|
||
#include "llvm/IR/Intrinsics.h"
|
||
#else
|
||
#include "llvm/Intrinsics.h"
|
||
#endif
|
||
#include "llvm/Support/CFG.h"
|
||
#include <iostream>
|
||
|
||
#if LDC_LLVM_VER < 302
|
||
using namespace llvm::Attribute;
|
||
#endif
|
||
|
||
llvm::FunctionType* DtoFunctionType(Type* type, IrFuncTy &irFty, Type* thistype, Type* nesttype, bool isMain, bool isCtor)
|
||
{
|
||
if (Logger::enabled())
|
||
Logger::println("DtoFunctionType(%s)", type->toChars());
|
||
LOG_SCOPE
|
||
|
||
// sanity check
|
||
assert(type->ty == Tfunction);
|
||
TypeFunction* f = static_cast<TypeFunction*>(type);
|
||
|
||
TargetABI* abi = (f->linkage == LINKintrinsic ? TargetABI::getIntrinsic() : gABI);
|
||
// Tell the ABI we're resolving a new function type
|
||
abi->newFunctionType(f);
|
||
|
||
// Do not modify irFty yet; this function may be called recursively if any
|
||
// of the argument types refer to this type.
|
||
IrFuncTy newIrFty;
|
||
|
||
// llvm idx counter
|
||
size_t lidx = 0;
|
||
|
||
// main needs a little special handling
|
||
if (isMain)
|
||
{
|
||
newIrFty.ret = new IrFuncTyArg(Type::tint32, false);
|
||
}
|
||
// sane return value
|
||
else
|
||
{
|
||
Type* rt = f->next;
|
||
#if LDC_LLVM_VER >= 302
|
||
llvm::AttrBuilder attrBuilder;
|
||
#else
|
||
llvm::Attributes a = None;
|
||
#endif
|
||
|
||
// sret return
|
||
if (abi->returnInArg(f))
|
||
{
|
||
#if LDC_LLVM_VER >= 302
|
||
#if LDC_LLVM_VER >= 303
|
||
newIrFty.arg_sret = new IrFuncTyArg(rt, true,
|
||
llvm::AttrBuilder().addAttribute(llvm::Attribute::StructRet)
|
||
.addAttribute(llvm::Attribute::NoAlias)
|
||
#else
|
||
newIrFty.arg_sret = new IrFuncTyArg(rt, true, llvm::Attributes::get(gIR->context(),
|
||
llvm::AttrBuilder().addAttribute(llvm::Attributes::StructRet)
|
||
.addAttribute(llvm::Attributes::NoAlias)
|
||
#endif
|
||
#if LDC_LLVM_VER == 302
|
||
)
|
||
#endif
|
||
);
|
||
#else
|
||
newIrFty.arg_sret = new IrFuncTyArg(rt, true, StructRet | NoAlias
|
||
);
|
||
#endif
|
||
rt = Type::tvoid;
|
||
lidx++;
|
||
}
|
||
// sext/zext return
|
||
else
|
||
{
|
||
Type *t = rt;
|
||
if (f->isref)
|
||
t = t->pointerTo();
|
||
#if LDC_LLVM_VER >= 303
|
||
if (llvm::Attribute::AttrKind a = DtoShouldExtend(t))
|
||
attrBuilder.addAttribute(a);
|
||
#elif LDC_LLVM_VER == 302
|
||
if (llvm::Attributes::AttrVal a = DtoShouldExtend(t))
|
||
attrBuilder.addAttribute(a);
|
||
#else
|
||
a = DtoShouldExtend(t);
|
||
#endif
|
||
}
|
||
#if LDC_LLVM_VER >= 303
|
||
llvm::AttrBuilder a = attrBuilder;
|
||
#elif LDC_LLVM_VER == 302
|
||
llvm::Attributes a = llvm::Attributes::get(gIR->context(), attrBuilder);
|
||
#endif
|
||
newIrFty.ret = new IrFuncTyArg(rt, f->isref, a);
|
||
}
|
||
lidx++;
|
||
|
||
// member functions
|
||
if (thistype)
|
||
{
|
||
#if LDC_LLVM_VER >= 303
|
||
llvm::AttrBuilder attrBuilder;
|
||
if (isCtor)
|
||
attrBuilder.addAttribute(llvm::Attribute::Returned);
|
||
#endif
|
||
newIrFty.arg_this = new IrFuncTyArg(thistype, thistype->toBasetype()->ty == Tstruct
|
||
#if LDC_LLVM_VER >= 303
|
||
, attrBuilder
|
||
#endif
|
||
);
|
||
lidx++;
|
||
}
|
||
|
||
// and nested functions
|
||
else if (nesttype)
|
||
{
|
||
newIrFty.arg_nest = new IrFuncTyArg(nesttype, false);
|
||
lidx++;
|
||
}
|
||
|
||
// vararg functions are special too
|
||
if (f->varargs)
|
||
{
|
||
if (f->linkage == LINKd)
|
||
{
|
||
// d style with hidden args
|
||
// 2 (array) is handled by the frontend
|
||
if (f->varargs == 1)
|
||
{
|
||
// _arguments
|
||
newIrFty.arg_arguments = new IrFuncTyArg(Type::typeinfo->type->arrayOf(), false);
|
||
lidx++;
|
||
// _argptr
|
||
#if LDC_LLVM_VER >= 303
|
||
newIrFty.arg_argptr = new IrFuncTyArg(Type::tvoid->pointerTo(), false,
|
||
llvm::AttrBuilder().addAttribute(llvm::Attribute::NoAlias)
|
||
.addAttribute(llvm::Attribute::NoCapture));
|
||
#elif LDC_LLVM_VER == 302
|
||
newIrFty.arg_argptr = new IrFuncTyArg(Type::tvoid->pointerTo(), false,
|
||
llvm::Attributes::get(gIR->context(), llvm::AttrBuilder().addAttribute(llvm::Attributes::NoAlias)
|
||
.addAttribute(llvm::Attributes::NoCapture)));
|
||
#else
|
||
newIrFty.arg_argptr = new IrFuncTyArg(Type::tvoid->pointerTo(), false, NoAlias | NoCapture);
|
||
#endif
|
||
lidx++;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
// Default to C-style varargs for non-extern(D) variadic functions.
|
||
// This seems to be what DMD does.
|
||
newIrFty.c_vararg = true;
|
||
}
|
||
}
|
||
|
||
// if this _Dmain() doesn't have an argument, we force it to have one
|
||
int nargs = Parameter::dim(f->parameters);
|
||
|
||
if (isMain && nargs == 0)
|
||
{
|
||
Type* mainargs = Type::tchar->arrayOf()->arrayOf();
|
||
newIrFty.args.push_back(new IrFuncTyArg(mainargs, false));
|
||
lidx++;
|
||
}
|
||
// add explicit parameters
|
||
else for (int i = 0; i < nargs; i++)
|
||
{
|
||
// get argument
|
||
Parameter* arg = Parameter::getNth(f->parameters, i);
|
||
|
||
// reference semantics? ref, out and d1 static arrays are
|
||
bool byref = arg->storageClass & (STCref|STCout);
|
||
|
||
Type* argtype = arg->type;
|
||
#if LDC_LLVM_VER >= 302
|
||
llvm::AttrBuilder attrBuilder;
|
||
#else
|
||
llvm::Attributes a = None;
|
||
#endif
|
||
|
||
// handle lazy args
|
||
if (arg->storageClass & STClazy)
|
||
{
|
||
Logger::println("lazy param");
|
||
TypeFunction *ltf = new TypeFunction(NULL, arg->type, 0, LINKd);
|
||
TypeDelegate *ltd = new TypeDelegate(ltf);
|
||
argtype = ltd;
|
||
}
|
||
// byval
|
||
else if (abi->passByVal(byref ? argtype->pointerTo() : argtype))
|
||
{
|
||
#if LDC_LLVM_VER >= 303
|
||
if (!byref) attrBuilder.addAttribute(llvm::Attribute::ByVal);
|
||
#elif LDC_LLVM_VER == 302
|
||
if (!byref) attrBuilder.addAttribute(llvm::Attributes::ByVal);
|
||
#else
|
||
if (!byref) a |= llvm::Attribute::ByVal;
|
||
#endif
|
||
// set byref, because byval requires a pointed LLVM type
|
||
byref = true;
|
||
}
|
||
// sext/zext
|
||
else if (!byref)
|
||
{
|
||
#if LDC_LLVM_VER >= 303
|
||
if (llvm::Attribute::AttrKind a = DtoShouldExtend(argtype))
|
||
attrBuilder.addAttribute(a);
|
||
#elif LDC_LLVM_VER == 302
|
||
if (llvm::Attributes::AttrVal a = DtoShouldExtend(argtype))
|
||
attrBuilder.addAttribute(a);
|
||
#else
|
||
a |= DtoShouldExtend(argtype);
|
||
#endif
|
||
}
|
||
#if LDC_LLVM_VER >= 303
|
||
llvm::AttrBuilder a = attrBuilder;
|
||
#elif LDC_LLVM_VER == 302
|
||
llvm::Attributes a = llvm::Attributes::get(gIR->context(), attrBuilder);
|
||
#endif
|
||
newIrFty.args.push_back(new IrFuncTyArg(argtype, byref, a));
|
||
lidx++;
|
||
}
|
||
|
||
// Now we can modify irFty safely.
|
||
irFty = newIrFty;
|
||
|
||
// let the abi rewrite the types as necesary
|
||
abi->rewriteFunctionType(f, irFty);
|
||
|
||
// Tell the ABI we're done with this function type
|
||
abi->doneWithFunctionType();
|
||
|
||
// build the function type
|
||
std::vector<LLType*> argtypes;
|
||
argtypes.reserve(lidx);
|
||
|
||
if (irFty.arg_sret) argtypes.push_back(irFty.arg_sret->ltype);
|
||
if (irFty.arg_this) argtypes.push_back(irFty.arg_this->ltype);
|
||
if (irFty.arg_nest) argtypes.push_back(irFty.arg_nest->ltype);
|
||
if (irFty.arg_arguments) argtypes.push_back(irFty.arg_arguments->ltype);
|
||
if (irFty.arg_argptr) argtypes.push_back(irFty.arg_argptr->ltype);
|
||
|
||
size_t beg = argtypes.size();
|
||
size_t nargs2 = irFty.args.size();
|
||
for (size_t i = 0; i < nargs2; i++)
|
||
{
|
||
argtypes.push_back(irFty.args[i]->ltype);
|
||
}
|
||
|
||
// reverse params?
|
||
if (irFty.reverseParams && nargs2 > 1)
|
||
{
|
||
std::reverse(argtypes.begin() + beg, argtypes.end());
|
||
}
|
||
|
||
LLFunctionType* functype = LLFunctionType::get(irFty.ret->ltype, argtypes, irFty.c_vararg);
|
||
|
||
Logger::cout() << "Final function type: " << *functype << "\n";
|
||
|
||
return functype;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
#include "llvm/Support/raw_ostream.h"
|
||
#include "llvm/Support/SourceMgr.h"
|
||
#include "llvm/Assembly/Parser.h"
|
||
|
||
LLFunction* DtoInlineIRFunction(FuncDeclaration* fdecl)
|
||
{
|
||
const char* mangled_name = fdecl->mangle();
|
||
TemplateInstance* tinst = fdecl->parent->isTemplateInstance();
|
||
assert(tinst);
|
||
|
||
Objects& objs = tinst->tdtypes;
|
||
assert(objs.dim == 3);
|
||
|
||
Expression* a0 = isExpression(objs[0]);
|
||
assert(a0);
|
||
StringExp* strexp = a0->toString();
|
||
assert(strexp);
|
||
assert(strexp->sz == 1);
|
||
std::string code(static_cast<char*>(strexp->string), strexp->len);
|
||
|
||
Type* ret = isType(objs[1]);
|
||
assert(ret);
|
||
|
||
Tuple* a2 = isTuple(objs[2]);
|
||
assert(a2);
|
||
Objects& arg_types = a2->objects;
|
||
|
||
std::string str;
|
||
llvm::raw_string_ostream stream(str);
|
||
stream << "define " << *DtoType(ret) << " @" << mangled_name << "(";
|
||
|
||
for(size_t i = 0; ;)
|
||
{
|
||
Type* ty = isType(arg_types[i]);
|
||
//assert(ty);
|
||
if(!ty)
|
||
{
|
||
error(tinst->loc,
|
||
"All parameters of a template defined with pragma llvm_inline_ir, except for the first one, should be types");
|
||
fatal();
|
||
}
|
||
stream << *DtoType(ty);
|
||
|
||
i++;
|
||
if(i >= arg_types.dim)
|
||
break;
|
||
|
||
stream << ", ";
|
||
}
|
||
|
||
if(ret->ty == Tvoid)
|
||
code.append("\nret void");
|
||
|
||
stream << ")\n{\n" << code << "\n}";
|
||
|
||
llvm::SMDiagnostic err;
|
||
llvm::ParseAssemblyString(stream.str().c_str(), gIR->module, err, gIR->context());
|
||
std::string errstr = err.getMessage();
|
||
if(errstr != "")
|
||
error(tinst->loc,
|
||
"can't parse inline LLVM IR:\n%s\n%s\n%s\nThe input string was: \n%s",
|
||
#if LDC_LLVM_VER >= 303
|
||
err.getLineContents().str().c_str(),
|
||
#else
|
||
err.getLineContents().c_str(),
|
||
#endif
|
||
(std::string(err.getColumnNo(), ' ') + '^').c_str(),
|
||
errstr.c_str(), stream.str().c_str());
|
||
|
||
LLFunction* fun = gIR->module->getFunction(mangled_name);
|
||
fun->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
|
||
#if LDC_LLVM_VER >= 303
|
||
fun->addFnAttr(llvm::Attribute::AlwaysInline);
|
||
#elif LDC_LLVM_VER == 302
|
||
fun->addFnAttr(llvm::Attributes::AlwaysInline);
|
||
#else
|
||
fun->addFnAttr(AlwaysInline);
|
||
#endif
|
||
return fun;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
static llvm::FunctionType* DtoVaFunctionType(FuncDeclaration* fdecl)
|
||
{
|
||
IrFuncTy &irFty = fdecl->irFty;
|
||
LLFunctionType* type = 0;
|
||
|
||
// create new ir funcTy
|
||
irFty.reset();
|
||
irFty.ret = new IrFuncTyArg(Type::tvoid, false);
|
||
|
||
irFty.args.push_back(new IrFuncTyArg(Type::tvoid->pointerTo(), false));
|
||
|
||
if (fdecl->llvmInternal == LLVMva_start)
|
||
type = GET_INTRINSIC_DECL(vastart)->getFunctionType();
|
||
else if (fdecl->llvmInternal == LLVMva_copy) {
|
||
type = GET_INTRINSIC_DECL(vacopy)->getFunctionType();
|
||
irFty.args.push_back(new IrFuncTyArg(Type::tvoid->pointerTo(), false));
|
||
}
|
||
else if (fdecl->llvmInternal == LLVMva_end)
|
||
type = GET_INTRINSIC_DECL(vaend)->getFunctionType();
|
||
assert(type);
|
||
|
||
return type;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
llvm::FunctionType* DtoFunctionType(FuncDeclaration* fdecl)
|
||
{
|
||
// handle for C vararg intrinsics
|
||
if (fdecl->isVaIntrinsic())
|
||
return DtoVaFunctionType(fdecl);
|
||
|
||
Type *dthis=0, *dnest=0;
|
||
|
||
if (fdecl->ident == Id::ensure || fdecl->ident == Id::require) {
|
||
FuncDeclaration *p = fdecl->parent->isFuncDeclaration();
|
||
assert(p);
|
||
AggregateDeclaration *ad = p->isMember2();
|
||
assert(ad);
|
||
dnest = Type::tvoid->pointerTo();
|
||
} else
|
||
if (fdecl->needThis()) {
|
||
if (AggregateDeclaration* ad = fdecl->isMember2()) {
|
||
Logger::println("isMember = this is: %s", ad->type->toChars());
|
||
dthis = ad->type;
|
||
LLType* thisty = DtoType(dthis);
|
||
//Logger::cout() << "this llvm type: " << *thisty << '\n';
|
||
if (ad->isStructDeclaration())
|
||
thisty = getPtrToType(thisty);
|
||
}
|
||
else {
|
||
Logger::println("chars: %s type: %s kind: %s", fdecl->toChars(), fdecl->type->toChars(), fdecl->kind());
|
||
llvm_unreachable("needThis, but invalid parent declaration.");
|
||
}
|
||
}
|
||
else if (fdecl->isNested()) {
|
||
dnest = Type::tvoid->pointerTo();
|
||
}
|
||
|
||
LLFunctionType* functype = DtoFunctionType(fdecl->type, fdecl->irFty, dthis, dnest, fdecl->isMain(), fdecl->isCtorDeclaration());
|
||
|
||
return functype;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
static llvm::Function* DtoDeclareVaFunction(FuncDeclaration* fdecl)
|
||
{
|
||
DtoVaFunctionType(fdecl);
|
||
llvm::Function* func = 0;
|
||
|
||
if (fdecl->llvmInternal == LLVMva_start)
|
||
func = GET_INTRINSIC_DECL(vastart);
|
||
else if (fdecl->llvmInternal == LLVMva_copy)
|
||
func = GET_INTRINSIC_DECL(vacopy);
|
||
else if (fdecl->llvmInternal == LLVMva_end)
|
||
func = GET_INTRINSIC_DECL(vaend);
|
||
assert(func);
|
||
|
||
fdecl->ir.irFunc->func = func;
|
||
return func;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void DtoResolveFunction(FuncDeclaration* fdecl)
|
||
{
|
||
if ((!global.params.useUnitTests || !fdecl->type) && fdecl->isUnitTestDeclaration()) {
|
||
Logger::println("Ignoring unittest %s", fdecl->toPrettyChars());
|
||
return; // ignore declaration completely
|
||
}
|
||
|
||
if (fdecl->ir.resolved) return;
|
||
fdecl->ir.resolved = true;
|
||
|
||
Type *type = fdecl->type;
|
||
// If errors occurred compiling it, such as bugzilla 6118
|
||
if (type && type->ty == Tfunction) {
|
||
Type *next = static_cast<TypeFunction *>(type)->next;
|
||
if (!next || next->ty == Terror)
|
||
return;
|
||
}
|
||
|
||
//printf("resolve function: %s\n", fdecl->toPrettyChars());
|
||
|
||
if (fdecl->parent)
|
||
if (TemplateInstance* tinst = fdecl->parent->isTemplateInstance())
|
||
{
|
||
TemplateDeclaration* tempdecl = tinst->tempdecl;
|
||
if (tempdecl->llvmInternal == LLVMva_arg)
|
||
{
|
||
Logger::println("magic va_arg found");
|
||
fdecl->llvmInternal = LLVMva_arg;
|
||
fdecl->ir.resolved = true;
|
||
fdecl->ir.declared = true;
|
||
fdecl->ir.initialized = true;
|
||
fdecl->ir.defined = true;
|
||
return; // this gets mapped to an instruction so a declaration makes no sence
|
||
}
|
||
else if (tempdecl->llvmInternal == LLVMva_start)
|
||
{
|
||
Logger::println("magic va_start found");
|
||
fdecl->llvmInternal = LLVMva_start;
|
||
}
|
||
else if (tempdecl->llvmInternal == LLVMintrinsic)
|
||
{
|
||
Logger::println("overloaded intrinsic found");
|
||
fdecl->llvmInternal = LLVMintrinsic;
|
||
DtoOverloadedIntrinsicName(tinst, tempdecl, fdecl->intrinsicName);
|
||
fdecl->linkage = LINKintrinsic;
|
||
static_cast<TypeFunction*>(fdecl->type)->linkage = LINKintrinsic;
|
||
}
|
||
else if (tempdecl->llvmInternal == LLVMinline_asm)
|
||
{
|
||
Logger::println("magic inline asm found");
|
||
TypeFunction* tf = static_cast<TypeFunction*>(fdecl->type);
|
||
if (tf->varargs != 1 || (fdecl->parameters && fdecl->parameters->dim != 0))
|
||
{
|
||
error("invalid __asm declaration, must be a D style variadic with no explicit parameters");
|
||
fatal();
|
||
}
|
||
fdecl->llvmInternal = LLVMinline_asm;
|
||
fdecl->ir.resolved = true;
|
||
fdecl->ir.declared = true;
|
||
fdecl->ir.initialized = true;
|
||
fdecl->ir.defined = true;
|
||
return; // this gets mapped to a special inline asm call, no point in going on.
|
||
}
|
||
else if (tempdecl->llvmInternal == LLVMinline_ir)
|
||
{
|
||
fdecl->llvmInternal = LLVMinline_ir;
|
||
fdecl->linkage = LINKc;
|
||
fdecl->ir.defined = true;
|
||
Type* type = fdecl->type;
|
||
assert(type->ty == Tfunction);
|
||
static_cast<TypeFunction*>(type)->linkage = LINKc;
|
||
}
|
||
}
|
||
|
||
DtoType(fdecl->type);
|
||
|
||
Logger::println("DtoResolveFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
|
||
LOG_SCOPE;
|
||
|
||
// queue declaration unless the function is abstract without body
|
||
if (!fdecl->isAbstract() || fdecl->fbody)
|
||
{
|
||
DtoDeclareFunction(fdecl);
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
#if LDC_LLVM_VER >= 303
|
||
static void set_param_attrs(TypeFunction* f, llvm::Function* func, FuncDeclaration* fdecl)
|
||
{
|
||
IrFuncTy &irFty = fdecl->irFty;
|
||
llvm::AttributeSet old = func->getAttributes();
|
||
llvm::AttributeSet existingAttrs[] = { old.getFnAttributes(), old.getRetAttributes() };
|
||
llvm::AttributeSet newAttrs = llvm::AttributeSet::get(gIR->context(), existingAttrs);
|
||
|
||
int idx = 0;
|
||
|
||
// handle implicit args
|
||
#define ADD_PA(X) \
|
||
if (irFty.X) { \
|
||
if (irFty.X->attrs.hasAttributes()) { \
|
||
llvm::AttributeSet a = llvm::AttributeSet::get(gIR->context(), idx, irFty.X->attrs); \
|
||
newAttrs = newAttrs.addAttributes(gIR->context(), idx, a); \
|
||
} \
|
||
idx++; \
|
||
}
|
||
|
||
ADD_PA(ret)
|
||
ADD_PA(arg_sret)
|
||
ADD_PA(arg_this)
|
||
ADD_PA(arg_nest)
|
||
ADD_PA(arg_arguments)
|
||
ADD_PA(arg_argptr)
|
||
|
||
#undef ADD_PA
|
||
|
||
// set attrs on the rest of the arguments
|
||
size_t n = Parameter::dim(f->parameters);
|
||
for (size_t k = 0; k < n; k++)
|
||
{
|
||
Parameter* fnarg = Parameter::getNth(f->parameters, k);
|
||
assert(fnarg);
|
||
|
||
llvm::AttrBuilder a = irFty.args[k]->attrs;
|
||
if (a.hasAttributes())
|
||
{
|
||
unsigned i = idx + (irFty.reverseParams ? n-k-1 : k);
|
||
llvm::AttributeSet as = llvm::AttributeSet::get(gIR->context(), i, a);
|
||
newAttrs = newAttrs.addAttributes(gIR->context(), i, as);
|
||
}
|
||
}
|
||
|
||
// Store the final attribute set
|
||
func->setAttributes(newAttrs);
|
||
}
|
||
#else
|
||
static void set_param_attrs(TypeFunction* f, llvm::Function* func, FuncDeclaration* fdecl)
|
||
{
|
||
IrFuncTy &irFty = fdecl->irFty;
|
||
LLSmallVector<llvm::AttributeWithIndex, 9> attrs;
|
||
|
||
int idx = 0;
|
||
|
||
// handle implicit args
|
||
#define ADD_PA(X) \
|
||
if (irFty.X) { \
|
||
if (HAS_ATTRIBUTES(irFty.X->attrs)) { \
|
||
attrs.push_back(llvm::AttributeWithIndex::get(idx, irFty.X->attrs)); \
|
||
} \
|
||
idx++; \
|
||
}
|
||
|
||
ADD_PA(ret)
|
||
ADD_PA(arg_sret)
|
||
ADD_PA(arg_this)
|
||
ADD_PA(arg_nest)
|
||
ADD_PA(arg_arguments)
|
||
ADD_PA(arg_argptr)
|
||
|
||
#undef ADD_PA
|
||
|
||
// set attrs on the rest of the arguments
|
||
size_t n = Parameter::dim(f->parameters);
|
||
#if LDC_LLVM_VER == 302
|
||
LLSmallVector<llvm::Attributes, 8> attrptr(n, llvm::Attributes());
|
||
#else
|
||
LLSmallVector<llvm::Attributes, 8> attrptr(n, None);
|
||
#endif
|
||
|
||
for (size_t k = 0; k < n; ++k)
|
||
{
|
||
Parameter* fnarg = Parameter::getNth(f->parameters, k);
|
||
assert(fnarg);
|
||
|
||
attrptr[k] = irFty.args[k]->attrs;
|
||
}
|
||
|
||
// reverse params?
|
||
if (irFty.reverseParams)
|
||
{
|
||
std::reverse(attrptr.begin(), attrptr.end());
|
||
}
|
||
|
||
// build rest of attrs list
|
||
for (size_t i = 0; i < n; i++)
|
||
{
|
||
if (HAS_ATTRIBUTES(attrptr[i]))
|
||
{
|
||
attrs.push_back(llvm::AttributeWithIndex::get(idx + i, attrptr[i]));
|
||
}
|
||
}
|
||
|
||
// Merge in any old attributes (attributes for the function itself are
|
||
// also stored in a list slot).
|
||
const size_t newSize = attrs.size();
|
||
llvm::AttrListPtr oldAttrs = func->getAttributes();
|
||
for (size_t i = 0; i < oldAttrs.getNumSlots(); ++i) {
|
||
llvm::AttributeWithIndex curr = oldAttrs.getSlot(i);
|
||
|
||
bool found = false;
|
||
for (size_t j = 0; j < newSize; ++j) {
|
||
if (attrs[j].Index == curr.Index) {
|
||
#if LDC_LLVM_VER == 302
|
||
attrs[j].Attrs = llvm::Attributes::get(
|
||
gIR->context(),
|
||
llvm::AttrBuilder(attrs[j].Attrs).addAttributes(curr.Attrs));
|
||
#else
|
||
attrs[j].Attrs |= curr.Attrs;
|
||
#endif
|
||
found = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!found) {
|
||
attrs.push_back(curr);
|
||
}
|
||
}
|
||
|
||
#if LDC_LLVM_VER >= 302
|
||
llvm::AttrListPtr attrlist = llvm::AttrListPtr::get(gIR->context(),
|
||
llvm::ArrayRef<llvm::AttributeWithIndex>(attrs));
|
||
#else
|
||
llvm::AttrListPtr attrlist = llvm::AttrListPtr::get(attrs.begin(), attrs.end());
|
||
#endif
|
||
func->setAttributes(attrlist);
|
||
}
|
||
#endif
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void DtoDeclareFunction(FuncDeclaration* fdecl)
|
||
{
|
||
DtoResolveFunction(fdecl);
|
||
|
||
if (fdecl->ir.declared) return;
|
||
fdecl->ir.declared = true;
|
||
|
||
Logger::println("DtoDeclareFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (fdecl->isUnitTestDeclaration() && !global.params.useUnitTests)
|
||
{
|
||
Logger::println("unit tests not enabled");
|
||
return;
|
||
}
|
||
|
||
//printf("declare function: %s\n", fdecl->toPrettyChars());
|
||
|
||
// intrinsic sanity check
|
||
if (fdecl->llvmInternal == LLVMintrinsic && fdecl->fbody) {
|
||
error(fdecl->loc, "intrinsics cannot have function bodies");
|
||
fatal();
|
||
}
|
||
|
||
// get TypeFunction*
|
||
Type* t = fdecl->type->toBasetype();
|
||
TypeFunction* f = static_cast<TypeFunction*>(t);
|
||
|
||
IrFuncTy &irFty = fdecl->irFty;
|
||
|
||
if (!fdecl->ir.irFunc) {
|
||
fdecl->ir.irFunc = new IrFunction(fdecl);
|
||
}
|
||
|
||
LLFunction* vafunc = 0;
|
||
if (fdecl->isVaIntrinsic())
|
||
vafunc = DtoDeclareVaFunction(fdecl);
|
||
|
||
// calling convention
|
||
LINK link = f->linkage;
|
||
if (vafunc || fdecl->llvmInternal == LLVMintrinsic
|
||
// DMD treats _Dmain as having C calling convention and this has been
|
||
// hardcoded into druntime, even if the frontend type has D linkage.
|
||
// See Bugzilla issue 9028.
|
||
|| fdecl->isMain()
|
||
)
|
||
{
|
||
link = LINKc;
|
||
}
|
||
|
||
// mangled name
|
||
std::string mangledName;
|
||
if (fdecl->llvmInternal == LLVMintrinsic)
|
||
mangledName = fdecl->intrinsicName;
|
||
else
|
||
mangledName = fdecl->mangle();
|
||
mangledName = gABI->mangleForLLVM(mangledName, link);
|
||
|
||
// construct function
|
||
LLFunctionType* functype = DtoFunctionType(fdecl);
|
||
LLFunction* func = vafunc ? vafunc : gIR->module->getFunction(mangledName);
|
||
if (!func) {
|
||
if(fdecl->llvmInternal == LLVMinline_ir)
|
||
{
|
||
func = DtoInlineIRFunction(fdecl);
|
||
}
|
||
else
|
||
{
|
||
// All function declarations are "external" - any other linkage type
|
||
// is set when actually defining the function.
|
||
func = LLFunction::Create(functype,
|
||
llvm::GlobalValue::ExternalLinkage, mangledName, gIR->module);
|
||
}
|
||
} else if (func->getFunctionType() != functype) {
|
||
error(fdecl->loc, "Function type does not match previously declared function with the same mangled name: %s", fdecl->mangle());
|
||
}
|
||
|
||
func->setCallingConv(gABI->callingConv(link));
|
||
|
||
if (Logger::enabled())
|
||
Logger::cout() << "func = " << *func << std::endl;
|
||
|
||
// add func to IRFunc
|
||
fdecl->ir.irFunc->func = func;
|
||
|
||
// parameter attributes
|
||
if (!fdecl->isIntrinsic()) {
|
||
set_param_attrs(f, func, fdecl);
|
||
if (global.params.disableRedZone) {
|
||
#if LDC_LLVM_VER >= 303
|
||
func->addFnAttr(llvm::Attribute::NoRedZone);
|
||
#elif LDC_LLVM_VER == 302
|
||
func->addFnAttr(llvm::Attributes::NoRedZone);
|
||
#else
|
||
func->addFnAttr(NoRedZone);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
// main
|
||
if (fdecl->isMain()) {
|
||
// Detect multiple main functions, which is disallowed. DMD checks this
|
||
// in the glue code, so we need to do it here as well.
|
||
if (gIR->mainFunc) {
|
||
error(fdecl->loc, "only one main function allowed");
|
||
}
|
||
gIR->mainFunc = func;
|
||
}
|
||
|
||
if (fdecl->neverInline)
|
||
{
|
||
fdecl->ir.irFunc->setNeverInline();
|
||
}
|
||
|
||
if (fdecl->llvmInternal == LLVMglobal_crt_ctor || fdecl->llvmInternal == LLVMglobal_crt_dtor)
|
||
{
|
||
AppendFunctionToLLVMGlobalCtorsDtors(func, fdecl->priority, fdecl->llvmInternal == LLVMglobal_crt_ctor);
|
||
}
|
||
|
||
// we never reference parameters of function prototypes
|
||
std::string str;
|
||
// if (!declareOnly)
|
||
{
|
||
// name parameters
|
||
llvm::Function::arg_iterator iarg = func->arg_begin();
|
||
|
||
if (irFty.arg_sret) {
|
||
iarg->setName(".sret_arg");
|
||
fdecl->ir.irFunc->retArg = iarg;
|
||
++iarg;
|
||
}
|
||
|
||
if (irFty.arg_this) {
|
||
iarg->setName(".this_arg");
|
||
fdecl->ir.irFunc->thisArg = iarg;
|
||
|
||
VarDeclaration* v = fdecl->vthis;
|
||
if (v) {
|
||
// We already build the this argument here if we will need it
|
||
// later for codegen'ing the function, just as normal
|
||
// parameters below, because it can be referred to in nested
|
||
// context types. Will be given storage in DtoDefineFunction.
|
||
assert(!v->ir.irParam);
|
||
IrParameter* p = new IrParameter(v);
|
||
p->isVthis = true;
|
||
p->value = iarg;
|
||
p->arg = irFty.arg_this;
|
||
|
||
v->ir.irParam = p;
|
||
}
|
||
|
||
++iarg;
|
||
}
|
||
else if (irFty.arg_nest) {
|
||
iarg->setName(".nest_arg");
|
||
fdecl->ir.irFunc->nestArg = iarg;
|
||
assert(fdecl->ir.irFunc->nestArg);
|
||
++iarg;
|
||
}
|
||
|
||
if (irFty.arg_argptr) {
|
||
iarg->setName("._arguments");
|
||
fdecl->ir.irFunc->_arguments = iarg;
|
||
++iarg;
|
||
iarg->setName("._argptr");
|
||
fdecl->ir.irFunc->_argptr = iarg;
|
||
++iarg;
|
||
}
|
||
|
||
unsigned int k = 0;
|
||
|
||
for (; iarg != func->arg_end(); ++iarg)
|
||
{
|
||
if (fdecl->parameters && fdecl->parameters->dim > k)
|
||
{
|
||
int paramIndex = irFty.reverseParams ? fdecl->parameters->dim-k-1 : k;
|
||
Dsymbol* argsym = static_cast<Dsymbol*>(fdecl->parameters->data[paramIndex]);
|
||
|
||
VarDeclaration* argvd = argsym->isVarDeclaration();
|
||
assert(argvd);
|
||
assert(!argvd->ir.irLocal);
|
||
argvd->ir.irParam = new IrParameter(argvd);
|
||
argvd->ir.irParam->value = iarg;
|
||
argvd->ir.irParam->arg = irFty.args[paramIndex];
|
||
|
||
str = argvd->ident->toChars();
|
||
str.append("_arg");
|
||
iarg->setName(str);
|
||
|
||
k++;
|
||
}
|
||
else
|
||
{
|
||
iarg->setName("unnamed");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
// FIXME: this isn't too pretty!
|
||
|
||
void DtoDefineFunction(FuncDeclaration* fd)
|
||
{
|
||
DtoDeclareFunction(fd);
|
||
|
||
assert(fd->ir.declared);
|
||
|
||
if (Logger::enabled())
|
||
Logger::println("DtoDefineFunction(%s): %s", fd->toPrettyChars(), fd->loc.toChars());
|
||
LOG_SCOPE;
|
||
|
||
// Be sure to call DtoDeclareFunction first, as LDC_inline_asm functions are
|
||
// "defined" there. TODO: Clean this up.
|
||
if (fd->ir.defined) return;
|
||
fd->ir.defined = true;
|
||
|
||
if (fd->isUnitTestDeclaration()) {
|
||
if (global.params.useUnitTests)
|
||
gIR->unitTests.push_back(fd);
|
||
else
|
||
return;
|
||
} else if (fd->isSharedStaticCtorDeclaration()) {
|
||
gIR->sharedCtors.push_back(fd);
|
||
} else if (StaticDtorDeclaration *dtorDecl = fd->isSharedStaticDtorDeclaration()) {
|
||
gIR->sharedDtors.push_front(fd);
|
||
if (dtorDecl->vgate)
|
||
gIR->sharedGates.push_front(dtorDecl->vgate);
|
||
} else if (fd->isStaticCtorDeclaration()) {
|
||
gIR->ctors.push_back(fd);
|
||
} else if (StaticDtorDeclaration *dtorDecl = fd->isStaticDtorDeclaration()) {
|
||
gIR->dtors.push_front(fd);
|
||
if (dtorDecl->vgate)
|
||
gIR->gates.push_front(dtorDecl->vgate);
|
||
}
|
||
|
||
|
||
// if this function is naked, we take over right away! no standard processing!
|
||
if (fd->naked)
|
||
{
|
||
DtoDefineNakedFunction(fd);
|
||
return;
|
||
}
|
||
|
||
IrFuncTy &irFty = fd->irFty;
|
||
|
||
// debug info
|
||
fd->ir.irFunc->diSubprogram = gIR->DBuilder.EmitSubProgram(fd);
|
||
|
||
Type* t = fd->type->toBasetype();
|
||
TypeFunction* f = static_cast<TypeFunction*>(t);
|
||
// assert(f->irtype);
|
||
|
||
llvm::Function* func = fd->ir.irFunc->func;
|
||
|
||
// set module owner
|
||
fd->ir.DModule = gIR->dmodule;
|
||
|
||
// is there a body?
|
||
if (fd->fbody == NULL)
|
||
return;
|
||
|
||
Logger::println("Doing function body for: %s", fd->toChars());
|
||
assert(fd->ir.irFunc);
|
||
IrFunction* irfunction = fd->ir.irFunc;
|
||
gIR->functions.push_back(irfunction);
|
||
|
||
if (fd->isMain())
|
||
gIR->emitMain = true;
|
||
|
||
func->setLinkage(DtoLinkage(fd));
|
||
|
||
// On x86_64, always set 'uwtable' for System V ABI compatibility.
|
||
// TODO: Find a better place for this.
|
||
if (global.params.targetTriple.getArch() == llvm::Triple::x86_64)
|
||
{
|
||
#if LDC_LLVM_VER >= 303
|
||
func->addFnAttr(llvm::Attribute::UWTable);
|
||
#elif LDC_LLVM_VER == 302
|
||
func->addFnAttr(llvm::Attributes::UWTable);
|
||
#else
|
||
func->addFnAttr(UWTable);
|
||
#endif
|
||
}
|
||
|
||
std::string entryname("entry");
|
||
|
||
llvm::BasicBlock* beginbb = llvm::BasicBlock::Create(gIR->context(), entryname,func);
|
||
llvm::BasicBlock* endbb = llvm::BasicBlock::Create(gIR->context(), "endentry",func);
|
||
|
||
//assert(gIR->scopes.empty());
|
||
gIR->scopes.push_back(IRScope(beginbb, endbb));
|
||
|
||
// create alloca point
|
||
// this gets erased when the function is complete, so alignment etc does not matter at all
|
||
llvm::Instruction* allocaPoint = new llvm::AllocaInst(LLType::getInt32Ty(gIR->context()), "alloca point", beginbb);
|
||
irfunction->allocapoint = allocaPoint;
|
||
|
||
// debug info - after all allocas, but before any llvm.dbg.declare etc
|
||
gIR->DBuilder.EmitFuncStart(fd);
|
||
|
||
// this hack makes sure the frame pointer elimination optimization is disabled.
|
||
// this this eliminates a bunch of inline asm related issues.
|
||
if (fd->hasReturnExp & 8) // has inline asm
|
||
{
|
||
// emit a call to llvm_eh_unwind_init
|
||
LLFunction* hack = GET_INTRINSIC_DECL(eh_unwind_init);
|
||
gIR->ir->CreateCall(hack, "");
|
||
}
|
||
|
||
// give the 'this' argument storage and debug info
|
||
if (irFty.arg_this)
|
||
{
|
||
LLValue* thisvar = irfunction->thisArg;
|
||
assert(thisvar);
|
||
|
||
LLValue* thismem = thisvar;
|
||
if (!irFty.arg_this->byref)
|
||
{
|
||
thismem = DtoRawAlloca(thisvar->getType(), 0, "this"); // FIXME: align?
|
||
DtoStore(thisvar, thismem);
|
||
irfunction->thisArg = thismem;
|
||
}
|
||
|
||
assert(fd->vthis->ir.irParam->value == thisvar);
|
||
fd->vthis->ir.irParam->value = thismem;
|
||
|
||
gIR->DBuilder.EmitLocalVariable(thismem, fd->vthis);
|
||
}
|
||
|
||
// give the 'nestArg' storage
|
||
if (irFty.arg_nest)
|
||
{
|
||
LLValue *nestArg = irfunction->nestArg;
|
||
LLValue *val = DtoRawAlloca(nestArg->getType(), 0, "nestedFrame");
|
||
DtoStore(nestArg, val);
|
||
irfunction->nestArg = val;
|
||
}
|
||
|
||
// give arguments storage
|
||
// and debug info
|
||
if (fd->parameters)
|
||
{
|
||
size_t n = irFty.args.size();
|
||
assert(n == fd->parameters->dim);
|
||
for (size_t i=0; i < n; ++i)
|
||
{
|
||
Dsymbol* argsym = static_cast<Dsymbol*>(fd->parameters->data[i]);
|
||
VarDeclaration* vd = argsym->isVarDeclaration();
|
||
assert(vd);
|
||
|
||
IrParameter* irparam = vd->ir.irParam;
|
||
assert(irparam);
|
||
|
||
bool refout = vd->storage_class & (STCref | STCout);
|
||
bool lazy = vd->storage_class & STClazy;
|
||
if (!refout && (!irparam->arg->byref || lazy))
|
||
{
|
||
// alloca a stack slot for this first class value arg
|
||
LLType* argt;
|
||
if (lazy)
|
||
argt = irparam->value->getType();
|
||
else
|
||
argt = i1ToI8(DtoType(vd->type));
|
||
LLValue* mem = DtoRawAlloca(argt, 0, vd->ident->toChars());
|
||
|
||
// let the abi transform the argument back first
|
||
DImValue arg_dval(vd->type, irparam->value);
|
||
irFty.getParam(vd->type, i, &arg_dval, mem);
|
||
|
||
// set the arg var value to the alloca
|
||
irparam->value = mem;
|
||
}
|
||
|
||
if (global.params.symdebug && !(isaArgument(irparam->value) && isaArgument(irparam->value)->hasByValAttr()) && !refout)
|
||
gIR->DBuilder.EmitLocalVariable(irparam->value, vd);
|
||
}
|
||
}
|
||
|
||
FuncGen fg;
|
||
irfunction->gen = &fg;
|
||
|
||
DtoCreateNestedContext(fd);
|
||
|
||
if (fd->vresult && !
|
||
fd->vresult->nestedrefs.dim // FIXME: not sure here :/
|
||
)
|
||
{
|
||
DtoVarDeclaration(fd->vresult);
|
||
}
|
||
|
||
// copy _argptr and _arguments to a memory location
|
||
if (f->linkage == LINKd && f->varargs == 1)
|
||
{
|
||
// _argptr
|
||
LLValue* argptrmem = DtoRawAlloca(fd->ir.irFunc->_argptr->getType(), 0, "_argptr_mem");
|
||
new llvm::StoreInst(fd->ir.irFunc->_argptr, argptrmem, gIR->scopebb());
|
||
fd->ir.irFunc->_argptr = argptrmem;
|
||
|
||
// _arguments
|
||
LLValue* argumentsmem = DtoRawAlloca(fd->ir.irFunc->_arguments->getType(), 0, "_arguments_mem");
|
||
new llvm::StoreInst(fd->ir.irFunc->_arguments, argumentsmem, gIR->scopebb());
|
||
fd->ir.irFunc->_arguments = argumentsmem;
|
||
}
|
||
|
||
// output function body
|
||
fd->fbody->toIR(gIR);
|
||
irfunction->gen = 0;
|
||
|
||
// TODO: clean up this mess
|
||
|
||
// std::cout << *func << std::endl;
|
||
|
||
llvm::BasicBlock* bb = gIR->scopebb();
|
||
if (pred_begin(bb) == pred_end(bb) && bb != &bb->getParent()->getEntryBlock()) {
|
||
// This block is trivially unreachable, so just delete it.
|
||
// (This is a common case because it happens when 'return'
|
||
// is the last statement in a function)
|
||
bb->eraseFromParent();
|
||
} else if (!gIR->scopereturned()) {
|
||
// llvm requires all basic blocks to end with a TerminatorInst but DMD does not put a return statement
|
||
// in automatically, so we do it here.
|
||
|
||
// pass the previous block into this block
|
||
gIR->DBuilder.EmitFuncEnd(fd);
|
||
if (func->getReturnType() == LLType::getVoidTy(gIR->context())) {
|
||
llvm::ReturnInst::Create(gIR->context(), gIR->scopebb());
|
||
}
|
||
else if (!fd->isMain()) {
|
||
AsmBlockStatement* asmb = fd->fbody->endsWithAsm();
|
||
if (asmb) {
|
||
assert(asmb->abiret);
|
||
llvm::ReturnInst::Create(gIR->context(), asmb->abiret, bb);
|
||
}
|
||
else {
|
||
llvm::ReturnInst::Create(gIR->context(), llvm::UndefValue::get(func->getReturnType()), bb);
|
||
}
|
||
}
|
||
else
|
||
llvm::ReturnInst::Create(gIR->context(), LLConstant::getNullValue(func->getReturnType()), bb);
|
||
}
|
||
|
||
// std::cout << *func << std::endl;
|
||
|
||
// erase alloca point
|
||
if (allocaPoint->getParent())
|
||
allocaPoint->eraseFromParent();
|
||
allocaPoint = 0;
|
||
gIR->func()->allocapoint = 0;
|
||
|
||
gIR->scopes.pop_back();
|
||
|
||
// get rid of the endentry block, it's never used
|
||
assert(!func->getBasicBlockList().empty());
|
||
func->getBasicBlockList().pop_back();
|
||
|
||
gIR->functions.pop_back();
|
||
|
||
// std::cout << *func << std::endl;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
llvm::FunctionType* DtoBaseFunctionType(FuncDeclaration* fdecl)
|
||
{
|
||
Dsymbol* parent = fdecl->toParent();
|
||
ClassDeclaration* cd = parent->isClassDeclaration();
|
||
assert(cd);
|
||
|
||
FuncDeclaration* f = fdecl;
|
||
|
||
while (cd)
|
||
{
|
||
ClassDeclaration* base = cd->baseClass;
|
||
if (!base)
|
||
break;
|
||
FuncDeclaration* f2 = base->findFunc(fdecl->ident, static_cast<TypeFunction*>(fdecl->type));
|
||
if (f2) {
|
||
f = f2;
|
||
cd = base;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
DtoResolveDsymbol(f);
|
||
return llvm::cast<llvm::FunctionType>(DtoType(f->type));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* DtoArgument(Parameter* fnarg, Expression* argexp)
|
||
{
|
||
Logger::println("DtoArgument");
|
||
LOG_SCOPE;
|
||
|
||
DValue* arg = argexp->toElem(gIR);
|
||
|
||
// ref/out arg
|
||
if (fnarg && (fnarg->storageClass & (STCref | STCout)))
|
||
{
|
||
Loc loc;
|
||
arg = new DImValue(argexp->type, makeLValue(loc, arg));
|
||
}
|
||
// lazy arg
|
||
else if (fnarg && (fnarg->storageClass & STClazy))
|
||
{
|
||
assert(argexp->type->toBasetype()->ty == Tdelegate);
|
||
assert(!arg->isLVal());
|
||
return arg;
|
||
}
|
||
// byval arg, but expr has no storage yet
|
||
else if (DtoIsPassedByRef(argexp->type) && (arg->isSlice() || arg->isNull()))
|
||
{
|
||
LLValue* alloc = DtoAlloca(argexp->type, ".tmp_arg");
|
||
DVarValue* vv = new DVarValue(argexp->type, alloc);
|
||
DtoAssign(argexp->loc, vv, arg);
|
||
arg = vv;
|
||
}
|
||
|
||
return arg;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void DtoVariadicArgument(Expression* argexp, LLValue* dst)
|
||
{
|
||
Logger::println("DtoVariadicArgument");
|
||
LOG_SCOPE;
|
||
DVarValue vv(argexp->type, dst);
|
||
DtoAssign(argexp->loc, &vv, argexp->toElem(gIR));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
bool FuncDeclaration::isIntrinsic()
|
||
{
|
||
return (llvmInternal == LLVMintrinsic || isVaIntrinsic());
|
||
}
|
||
|
||
bool FuncDeclaration::isVaIntrinsic()
|
||
{
|
||
return (llvmInternal == LLVMva_start ||
|
||
llvmInternal == LLVMva_copy ||
|
||
llvmInternal == LLVMva_end);
|
||
}
|