ldc/gen/classes.cpp
David Nadlinger 787c147986 Use Module::members -> Dsymbol::codegen to define symbols.
This commit fundamentally changes the way symbol emission in
LDC works: Previously, whenever a declaration was used in some
way, the compiler would check whether it actually needs to be
defined in the currently processed module, based only on the
symbol itself. This lack of contextual information proved to
be a major problem in correctly handling emission of templates
(see e.g. #454).

Now, the DtoResolve…() family of functions and similar only
ever declare the symbols, and definition is handled by doing
a single pass over Module::members for the root module. This
is the same strategy that DMD uses as well, which should
also reduce the maintainance burden down the road (which is
important as during the last few releases, there was pretty
much always a symbol emission related problem slowing us
down).

Our old approach might have been a bit better tuned w.r.t.
avoiding emission of unneeded template instances, but 2.064
will bring improvements here (DMD: FuncDeclaration::toObjFile).
Barring such issues, the change shoud also marginally improve
compile times because of declarations no longer being emitted
when they are not needed.

In the future, we should also consider refactoring the code
so that it no longer directly accesses Dsymbol::ir but uses
wrapper functions that ensure that the appropriate
DtoResolve…() function has been called.

GitHub: Fixes #454.
2013-10-13 19:18:24 +02:00

783 lines
24 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- classes.cpp -------------------------------------------------------===//
//
// LDC the LLVM D compiler
//
// This file is distributed under the BSD-style LDC license. See the LICENSE
// file for details.
//
//===----------------------------------------------------------------------===//
#include "gen/llvm.h"
#include "aggregate.h"
#include "declaration.h"
#include "init.h"
#include "mtype.h"
#include "target.h"
#include "gen/arrays.h"
#include "gen/classes.h"
#include "gen/dvalue.h"
#include "gen/functions.h"
#include "gen/irstate.h"
#include "gen/llvmhelpers.h"
#include "gen/logger.h"
#include "gen/nested.h"
#include "gen/rttibuilder.h"
#include "gen/runtime.h"
#include "gen/structs.h"
#include "gen/tollvm.h"
#include "gen/utils.h"
#include "ir/iraggr.h"
#include "ir/irtypeclass.h"
//////////////////////////////////////////////////////////////////////////////////////////
// FIXME: this needs to be cleaned up
void DtoResolveClass(ClassDeclaration* cd)
{
if (cd->ir.resolved) return;
cd->ir.resolved = true;
Logger::println("DtoResolveClass(%s): %s", cd->toPrettyChars(), cd->loc.toChars());
LOG_SCOPE;
// make sure the base classes are processed first
ArrayIter<BaseClass> base_iter(cd->baseclasses);
while (base_iter.more())
{
BaseClass* bc = base_iter.get();
DtoResolveClass(bc->base);
base_iter.next();
}
// make sure type exists
DtoType(cd->type);
// create IrAggr
assert(cd->ir.irAggr == NULL);
IrAggr* irAggr = new IrAggr(cd);
cd->ir.irAggr = irAggr;
// make sure all fields really get their ir field
ArrayIter<VarDeclaration> it(cd->fields);
for (; !it.done(); it.next())
{
VarDeclaration* vd = it.get();
if (vd->ir.irField == NULL) {
new IrField(vd);
} else {
IF_LOG Logger::println("class field already exists!!!");
}
}
// emit the interfaceInfosZ symbol if necessary
if (cd->vtblInterfaces && cd->vtblInterfaces->dim > 0)
irAggr->getInterfaceArraySymbol(); // initializer is applied when it's built
// interface only emit typeinfo and classinfo
if (cd->isInterfaceDeclaration())
{
irAggr->initializeInterface();
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoNewClass(Loc loc, TypeClass* tc, NewExp* newexp)
{
// resolve type
DtoResolveClass(tc->sym);
// allocate
LLValue* mem;
if (newexp->onstack)
{
// FIXME align scope class to its largest member
mem = DtoRawAlloca(DtoType(tc)->getContainedType(0), 0, ".newclass_alloca");
}
// custom allocator
else if (newexp->allocator)
{
DtoResolveDsymbol(newexp->allocator);
DFuncValue dfn(newexp->allocator, newexp->allocator->ir.irFunc->func);
DValue* res = DtoCallFunction(newexp->loc, NULL, &dfn, newexp->newargs);
mem = DtoBitCast(res->getRVal(), DtoType(tc), ".newclass_custom");
}
// default allocator
else
{
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, _d_allocclass);
LLConstant* ci = DtoBitCast(tc->sym->ir.irAggr->getClassInfoSymbol(), DtoType(ClassDeclaration::classinfo->type));
mem = gIR->CreateCallOrInvoke(fn, ci, ".newclass_gc_alloc").getInstruction();
mem = DtoBitCast(mem, DtoType(tc), ".newclass_gc");
}
// init
DtoInitClass(tc, mem);
// init inner-class outer reference
if (newexp->thisexp)
{
Logger::println("Resolving outer class");
LOG_SCOPE;
DValue* thisval = newexp->thisexp->toElem(gIR);
size_t idx = tc->sym->vthis->ir.irField->index;
LLValue* src = thisval->getRVal();
LLValue* dst = DtoGEPi(mem,0,idx,"tmp");
if (Logger::enabled())
Logger::cout() << "dst: " << *dst << "\nsrc: " << *src << '\n';
DtoStore(src, DtoBitCast(dst, getPtrToType(src->getType())));
}
// set the context for nested classes
else if (tc->sym->isNested() && tc->sym->vthis)
{
DtoResolveNestedContext(loc, tc->sym, mem);
}
// call constructor
if (newexp->member)
{
Logger::println("Calling constructor");
assert(newexp->arguments != NULL);
DtoResolveDsymbol(newexp->member);
DFuncValue dfn(newexp->member, newexp->member->ir.irFunc->func, mem);
return DtoCallFunction(newexp->loc, tc, &dfn, newexp->arguments);
}
// return default constructed class
return new DImValue(tc, mem);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoInitClass(TypeClass* tc, LLValue* dst)
{
DtoResolveClass(tc->sym);
uint64_t n = tc->sym->structsize - Target::ptrsize * 2;
// set vtable field seperately, this might give better optimization
LLValue* tmp = DtoGEPi(dst,0,0,"vtbl");
LLValue* val = DtoBitCast(tc->sym->ir.irAggr->getVtblSymbol(), tmp->getType()->getContainedType(0));
DtoStore(val, tmp);
// monitor always defaults to zero
tmp = DtoGEPi(dst,0,1,"monitor");
val = LLConstant::getNullValue(tmp->getType()->getContainedType(0));
DtoStore(val, tmp);
// done?
if (n == 0)
return;
// copy the rest from the static initializer
LLValue* dstarr = DtoGEPi(dst,0,2,"tmp");
// init symbols might not have valid types
LLValue* initsym = tc->sym->ir.irAggr->getInitSymbol();
initsym = DtoBitCast(initsym, DtoType(tc));
LLValue* srcarr = DtoGEPi(initsym,0,2,"tmp");
DtoMemCpy(dstarr, srcarr, DtoConstSize_t(n));
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoFinalizeClass(LLValue* inst)
{
// get runtime function
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_callfinalizer");
// build args
LLValue* arg[] = {
DtoBitCast(inst, fn->getFunctionType()->getParamType(0), ".tmp")
};
// call
gIR->CreateCallOrInvoke(fn, arg, "");
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoCastClass(DValue* val, Type* _to)
{
Logger::println("DtoCastClass(%s, %s)", val->getType()->toChars(), _to->toChars());
LOG_SCOPE;
Type* to = _to->toBasetype();
// class -> pointer
if (to->ty == Tpointer) {
IF_LOG Logger::println("to pointer");
LLType* tolltype = DtoType(_to);
LLValue* rval = DtoBitCast(val->getRVal(), tolltype);
return new DImValue(_to, rval);
}
// class -> bool
else if (to->ty == Tbool) {
IF_LOG Logger::println("to bool");
LLValue* llval = val->getRVal();
LLValue* zero = LLConstant::getNullValue(llval->getType());
return new DImValue(_to, gIR->ir->CreateICmpNE(llval, zero, "tmp"));
}
// class -> integer
else if (to->isintegral()) {
IF_LOG Logger::println("to %s", to->toChars());
// get class ptr
LLValue* v = val->getRVal();
// cast to size_t
v = gIR->ir->CreatePtrToInt(v, DtoSize_t(), "");
// cast to the final int type
DImValue im(Type::tsize_t, v);
Loc loc;
return DtoCastInt(loc, &im, _to);
}
// must be class/interface
assert(to->ty == Tclass);
TypeClass* tc = static_cast<TypeClass*>(to);
// from type
Type* from = val->getType()->toBasetype();
TypeClass* fc = static_cast<TypeClass*>(from);
// x -> interface
if (InterfaceDeclaration* it = tc->sym->isInterfaceDeclaration()) {
Logger::println("to interface");
// interface -> interface
if (fc->sym->isInterfaceDeclaration()) {
Logger::println("from interface");
return DtoDynamicCastInterface(val, _to);
}
// class -> interface - static cast
else if (it->isBaseOf(fc->sym,NULL)) {
Logger::println("static down cast");
// get the from class
ClassDeclaration* cd = fc->sym->isClassDeclaration();
DtoResolveClass(cd); // add this
IrTypeClass* typeclass = stripModifiers(fc)->irtype->isClass();
// find interface impl
size_t i_index = typeclass->getInterfaceIndex(it);
assert(i_index != ~0UL && "requesting interface that is not implemented by this class");
// offset pointer
LLValue* v = val->getRVal();
LLValue* orig = v;
v = DtoGEPi(v, 0, i_index);
LLType* ifType = DtoType(_to);
if (Logger::enabled())
{
Logger::cout() << "V = " << *v << std::endl;
Logger::cout() << "T = " << *ifType << std::endl;
}
v = DtoBitCast(v, ifType);
// Check whether the original value was null, and return null if so.
// Sure we could have jumped over the code above in this case, but
// it's just a GEP and (maybe) a pointer-to-pointer BitCast, so it
// should be pretty cheap and perfectly safe even if the original was null.
LLValue* isNull = gIR->ir->CreateICmpEQ(orig, LLConstant::getNullValue(orig->getType()), ".nullcheck");
v = gIR->ir->CreateSelect(isNull, LLConstant::getNullValue(ifType), v, ".interface");
// return r-value
return new DImValue(_to, v);
}
// class -> interface
else {
Logger::println("from object");
return DtoDynamicCastObject(val, _to);
}
}
// x -> class
else {
Logger::println("to class");
// interface -> class
if (fc->sym->isInterfaceDeclaration()) {
Logger::println("interface cast");
return DtoDynamicCastInterface(val, _to);
}
// class -> class - static down cast
else if (tc->sym->isBaseOf(fc->sym,NULL)) {
Logger::println("static down cast");
LLType* tolltype = DtoType(_to);
LLValue* rval = DtoBitCast(val->getRVal(), tolltype);
return new DImValue(_to, rval);
}
// class -> class - dynamic up cast
else {
Logger::println("dynamic up cast");
return DtoDynamicCastObject(val, _to);
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoDynamicCastObject(DValue* val, Type* _to)
{
// call:
// Object _d_dynamic_cast(Object o, ClassInfo c)
DtoResolveClass(ClassDeclaration::object);
DtoResolveClass(ClassDeclaration::classinfo);
llvm::Function* func = LLVM_D_GetRuntimeFunction(gIR->module, "_d_dynamic_cast");
LLFunctionType* funcTy = func->getFunctionType();
// Object o
LLValue* obj = val->getRVal();
obj = DtoBitCast(obj, funcTy->getParamType(0));
assert(funcTy->getParamType(0) == obj->getType());
// ClassInfo c
TypeClass* to = static_cast<TypeClass*>(_to->toBasetype());
DtoResolveClass(to->sym);
LLValue* cinfo = to->sym->ir.irAggr->getClassInfoSymbol();
// unfortunately this is needed as the implementation of object differs somehow from the declaration
// this could happen in user code as well :/
cinfo = DtoBitCast(cinfo, funcTy->getParamType(1));
assert(funcTy->getParamType(1) == cinfo->getType());
// call it
LLValue* ret = gIR->CreateCallOrInvoke2(func, obj, cinfo, "tmp").getInstruction();
// cast return value
ret = DtoBitCast(ret, DtoType(_to));
return new DImValue(_to, ret);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoCastInterfaceToObject(DValue* val, Type* to)
{
// call:
// Object _d_toObject(void* p)
llvm::Function* func = LLVM_D_GetRuntimeFunction(gIR->module, "_d_toObject");
LLFunctionType* funcTy = func->getFunctionType();
// void* p
LLValue* tmp = val->getRVal();
tmp = DtoBitCast(tmp, funcTy->getParamType(0));
// call it
LLValue* ret = gIR->CreateCallOrInvoke(func, tmp, "tmp").getInstruction();
// cast return value
if (to != NULL)
ret = DtoBitCast(ret, DtoType(to));
else
to = ClassDeclaration::object->type;
return new DImValue(to, ret);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoDynamicCastInterface(DValue* val, Type* _to)
{
// call:
// Object _d_interface_cast(void* p, ClassInfo c)
DtoResolveClass(ClassDeclaration::object);
DtoResolveClass(ClassDeclaration::classinfo);
llvm::Function* func = LLVM_D_GetRuntimeFunction(gIR->module, "_d_interface_cast");
LLFunctionType* funcTy = func->getFunctionType();
// void* p
LLValue* ptr = val->getRVal();
ptr = DtoBitCast(ptr, funcTy->getParamType(0));
// ClassInfo c
TypeClass* to = static_cast<TypeClass*>(_to->toBasetype());
DtoResolveClass(to->sym);
LLValue* cinfo = to->sym->ir.irAggr->getClassInfoSymbol();
// unfortunately this is needed as the implementation of object differs somehow from the declaration
// this could happen in user code as well :/
cinfo = DtoBitCast(cinfo, funcTy->getParamType(1));
// call it
LLValue* ret = gIR->CreateCallOrInvoke2(func, ptr, cinfo, "tmp").getInstruction();
// cast return value
ret = DtoBitCast(ret, DtoType(_to));
return new DImValue(_to, ret);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLValue* DtoIndexClass(LLValue* src, ClassDeclaration* cd, VarDeclaration* vd)
{
Logger::println("indexing class field %s:", vd->toPrettyChars());
LOG_SCOPE;
if (Logger::enabled())
Logger::cout() << "src: " << *src << '\n';
// make sure class is resolved
DtoResolveClass(cd);
// vd must be a field
IrField* field = vd->ir.irField;
assert(field);
// get the start pointer
LLType* st = DtoType(cd->type);
// cast to the struct type
src = DtoBitCast(src, st);
// gep to the index
#if 0
if (Logger::enabled())
{
Logger::cout() << "src2: " << *src << '\n';
Logger::cout() << "index: " << field->index << '\n';
Logger::cout() << "srctype: " << *src->getType() << '\n';
}
#endif
LLValue* val = DtoGEPi(src, 0, field->index);
// do we need to offset further? (union area)
if (field->unionOffset)
{
// cast to void*
val = DtoBitCast(val, getVoidPtrType());
// offset
val = DtoGEPi1(val, field->unionOffset);
}
// cast it to the right type
val = DtoBitCast(val, getPtrToType(i1ToI8(DtoType(vd->type))));
if (Logger::enabled())
Logger::cout() << "value: " << *val << '\n';
return val;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLValue* DtoVirtualFunctionPointer(DValue* inst, FuncDeclaration* fdecl, char* name)
{
// sanity checks
assert(fdecl->isVirtual());
assert(!fdecl->isFinal());
assert(inst->getType()->toBasetype()->ty == Tclass);
// 0 is always ClassInfo/Interface* unless it is a CPP interface
assert(fdecl->vtblIndex > 0 || (fdecl->vtblIndex == 0 && fdecl->linkage == LINKcpp));
// get instance
LLValue* vthis = inst->getRVal();
if (Logger::enabled())
Logger::cout() << "vthis: " << *vthis << '\n';
LLValue* funcval = vthis;
// get the vtbl for objects
funcval = DtoGEPi(funcval, 0, 0, "tmp");
// load vtbl ptr
funcval = DtoLoad(funcval);
// index vtbl
std::string vtblname = name;
vtblname.append("@vtbl");
funcval = DtoGEPi(funcval, 0, fdecl->vtblIndex, vtblname.c_str());
// load funcptr
funcval = DtoAlignedLoad(funcval);
if (Logger::enabled())
Logger::cout() << "funcval: " << *funcval << '\n';
// cast to final funcptr type
funcval = DtoBitCast(funcval, getPtrToType(DtoFunctionType(fdecl)));
// postpone naming until after casting to get the name in call instructions
funcval->setName(name);
if (Logger::enabled())
Logger::cout() << "funcval casted: " << *funcval << '\n';
return funcval;
}
//////////////////////////////////////////////////////////////////////////////////////////
#if GENERATE_OFFTI
// build a single element for the OffsetInfo[] of ClassInfo
static LLConstant* build_offti_entry(ClassDeclaration* cd, VarDeclaration* vd)
{
std::vector<LLConstant*> inits(2);
// size_t offset;
//
assert(vd->ir.irField);
// grab the offset from llvm and the formal class type
size_t offset = gDataLayout->getStructLayout(isaStruct(cd->type->ir.type->get()))->getElementOffset(vd->ir.irField->index);
// offset nested struct/union fields
offset += vd->ir.irField->unionOffset;
// assert that it matches DMD
Logger::println("offsets: %lu vs %u", offset, vd->offset);
assert(offset == vd->offset);
inits[0] = DtoConstSize_t(offset);
// TypeInfo ti;
inits[1] = DtoTypeInfoOf(vd->type, true);
// done
return llvm::ConstantStruct::get(inits);
}
static LLConstant* build_offti_array(ClassDeclaration* cd, LLType* arrayT)
{
IrAggr* iraggr = cd->ir.irAggr;
size_t nvars = iraggr->varDecls.size();
std::vector<LLConstant*> arrayInits(nvars);
for (size_t i=0; i<nvars; i++)
{
arrayInits[i] = build_offti_entry(cd, iraggr->varDecls[i]);
}
LLConstant* size = DtoConstSize_t(nvars);
LLConstant* ptr;
if (nvars == 0)
return LLConstant::getNullValue( arrayT );
// array type
LLArrayType* arrTy = llvm::ArrayType::get(arrayInits[0]->getType(), nvars);
LLConstant* arrInit = LLConstantArray::get(arrTy, arrayInits);
// mangle
std::string name(cd->type->vtinfo->toChars());
name.append("__OffsetTypeInfos");
// create symbol
llvm::GlobalVariable* gvar = getOrCreateGlobal(cd->loc, *gIR->module, arrTy,
true,DtoInternalLinkage(cd),arrInit,name);
ptr = DtoBitCast(gvar, getPtrToType(arrTy->getElementType()));
return DtoConstSlice(size, ptr);
}
#endif // GENERATE_OFFTI
static LLConstant* build_class_dtor(ClassDeclaration* cd)
{
FuncDeclaration* dtor = cd->dtor;
// if no destructor emit a null
if (!dtor)
return getNullPtr(getVoidPtrType());
DtoResolveDsymbol(dtor);
return llvm::ConstantExpr::getBitCast(dtor->ir.irFunc->func, getPtrToType(LLType::getInt8Ty(gIR->context())));
}
static unsigned build_classinfo_flags(ClassDeclaration* cd)
{
// adapted from original dmd code
unsigned flags = 0;
flags |= cd->isCOMclass(); // IUnknown
bool hasOffTi = false;
if (cd->ctor)
flags |= 8;
if (cd->isabstract)
flags |= 64;
for (ClassDeclaration *cd2 = cd; cd2; cd2 = cd2->baseClass)
{
if (!cd2->members)
continue;
for (size_t i = 0; i < cd2->members->dim; i++)
{
Dsymbol *sm = static_cast<Dsymbol *>(cd2->members->data[i]);
if (sm->isVarDeclaration() && !sm->isVarDeclaration()->isDataseg()) // is this enough?
hasOffTi = true;
//printf("sm = %s %s\n", sm->kind(), sm->toChars());
if (sm->hasPointers())
goto L2;
}
}
flags |= 2; // no pointers
L2:
if (hasOffTi)
flags |= 4;
// always define the typeinfo field.
// why would ever not do this?
flags |= 32;
return flags;
}
LLConstant* DtoDefineClassInfo(ClassDeclaration* cd)
{
// The layout is:
// {
// void **vptr;
// monitor_t monitor;
// byte[] initializer; // static initialization data
// char[] name; // class name
// void *[] vtbl;
// Interface[] interfaces;
// ClassInfo *base; // base class
// void *destructor;
// void *invariant; // class invariant
// uint flags;
// void *deallocator;
// OffsetTypeInfo[] offTi;
// void *defaultConstructor;
// version(D_Version2)
// immutable(void)* m_RTInfo;
// else
// TypeInfo typeinfo; // since dmd 1.045
// }
Logger::println("DtoDefineClassInfo(%s)", cd->toChars());
LOG_SCOPE;
assert(cd->type->ty == Tclass);
TypeClass* cdty = static_cast<TypeClass*>(cd->type);
IrAggr* ir = cd->ir.irAggr;
assert(ir);
ClassDeclaration* cinfo = ClassDeclaration::classinfo;
if (cinfo->fields.dim != 12)
{
error("object.d ClassInfo class is incorrect");
fatal();
}
// use the rtti builder
RTTIBuilder b(ClassDeclaration::classinfo);
LLConstant* c;
LLType* voidPtr = getVoidPtrType();
LLType* voidPtrPtr = getPtrToType(voidPtr);
// byte[] init
if (cd->isInterfaceDeclaration())
{
b.push_null_void_array();
}
else
{
LLType* cd_type = cdty->irtype->isClass()->getMemoryLLType();
size_t initsz = getTypePaddedSize(cd_type);
b.push_void_array(initsz, ir->getInitSymbol());
}
// class name
// code from dmd
const char *name = cd->ident->toChars();
size_t namelen = strlen(name);
if (!(namelen > 9 && memcmp(name, "TypeInfo_", 9) == 0))
{
name = cd->toPrettyChars();
namelen = strlen(name);
}
b.push_string(name);
// vtbl array
if (cd->isInterfaceDeclaration())
{
b.push_array(0, getNullValue(voidPtrPtr));
}
else
{
c = DtoBitCast(ir->getVtblSymbol(), voidPtrPtr);
b.push_array(cd->vtbl.dim, c);
}
// interfaces array
b.push(ir->getClassInfoInterfaces());
// base classinfo
// interfaces never get a base , just the interfaces[]
if (cd->baseClass && !cd->isInterfaceDeclaration())
b.push_classinfo(cd->baseClass);
else
b.push_null(cinfo->type);
// destructor
if (cd->isInterfaceDeclaration())
b.push_null_vp();
else
b.push(build_class_dtor(cd));
// invariant
VarDeclaration* invVar = static_cast<VarDeclaration*>(cinfo->fields.data[6]);
b.push_funcptr(cd->inv, invVar->type);
// uint flags
unsigned flags;
if (cd->isInterfaceDeclaration())
flags = 4 | cd->isCOMinterface() | 32;
else
flags = build_classinfo_flags(cd);
b.push_uint(flags);
// deallocator
b.push_funcptr(cd->aggDelete, Type::tvoid->pointerTo());
// offset typeinfo
VarDeclaration* offTiVar = static_cast<VarDeclaration*>(cinfo->fields.data[9]);
#if GENERATE_OFFTI
if (cd->isInterfaceDeclaration())
b.push_null(offTiVar->type);
else
b.push(build_offti_array(cd, DtoType(offTiVar->type)));
#else // GENERATE_OFFTI
b.push_null(offTiVar->type);
#endif // GENERATE_OFFTI
// default constructor
VarDeclaration* defConstructorVar = static_cast<VarDeclaration*>(cinfo->fields.data[10]);
b.push_funcptr(cd->defaultCtor, defConstructorVar->type);
// immutable(void)* m_RTInfo;
// The cases where getRTInfo is null are not quite here, but the code is
// modelled after what DMD does.
if (cd->getRTInfo)
b.push(cd->getRTInfo->toConstElem(gIR));
else if (flags & 2)
b.push_size_as_vp(0); // no pointers
else
b.push_size_as_vp(1); // has pointers
/*size_t n = inits.size();
for (size_t i=0; i<n; ++i)
{
Logger::cout() << "inits[" << i << "]: " << *inits[i] << '\n';
}*/
// build the initializer
LLType *initType = ir->classInfo->getType()->getContainedType(0);
LLConstant* finalinit = b.get_constant(isaStruct(initType));
//Logger::cout() << "built the classinfo initializer:\n" << *finalinit <<'\n';
ir->constClassInfo = finalinit;
// sanity check
assert(finalinit->getType() == initType &&
"__ClassZ initializer does not match the ClassInfo type");
// return initializer
return finalinit;
}