mirror of
https://github.com/ldc-developers/ldc.git
synced 2025-05-06 02:45:25 +03:00

Returning null will crash just about any other glue layer code. Ideally, we'd catch those during semantic analysis (glue layer errors are always to be avoided due to speculative compilation), but this at least avoids the segfaults.
3522 lines
114 KiB
C++
3522 lines
114 KiB
C++
//===-- toir.cpp ----------------------------------------------------------===//
|
||
//
|
||
// LDC – the LLVM D compiler
|
||
//
|
||
// This file is distributed under the BSD-style LDC license. See the LICENSE
|
||
// file for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "attrib.h"
|
||
#include "enum.h"
|
||
#include "hdrgen.h"
|
||
#include "id.h"
|
||
#include "init.h"
|
||
#include "mtype.h"
|
||
#include "module.h"
|
||
#include "port.h"
|
||
#include "rmem.h"
|
||
#include "template.h"
|
||
#include "gen/aa.h"
|
||
#include "gen/abi.h"
|
||
#include "gen/arrays.h"
|
||
#include "gen/classes.h"
|
||
#include "gen/complex.h"
|
||
#include "gen/dvalue.h"
|
||
#include "gen/functions.h"
|
||
#include "gen/irstate.h"
|
||
#include "gen/llvm.h"
|
||
#include "gen/llvmhelpers.h"
|
||
#include "gen/logger.h"
|
||
#include "gen/nested.h"
|
||
#include "gen/optimizer.h"
|
||
#include "gen/pragma.h"
|
||
#include "gen/runtime.h"
|
||
#include "gen/structs.h"
|
||
#include "gen/tollvm.h"
|
||
#include "gen/typeinf.h"
|
||
#include "gen/utils.h"
|
||
#include "gen/warnings.h"
|
||
#include "ir/irtypeclass.h"
|
||
#include "ir/irtypestruct.h"
|
||
#include "ir/irlandingpad.h"
|
||
#include "llvm/Support/CommandLine.h"
|
||
#include "llvm/Support/ManagedStatic.h"
|
||
#include <fstream>
|
||
#include <math.h>
|
||
#include <stack>
|
||
#include <stdio.h>
|
||
|
||
// Needs other includes.
|
||
#include "ctfe.h"
|
||
|
||
llvm::cl::opt<bool> checkPrintf("check-printf-calls",
|
||
llvm::cl::desc("Validate printf call format strings against arguments"),
|
||
llvm::cl::ZeroOrMore);
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void Expression::cacheLvalue(IRState* irs)
|
||
{
|
||
error("expression %s does not mask any l-value", toChars());
|
||
fatal();
|
||
}
|
||
|
||
/*******************************************
|
||
* Evaluate Expression, then call destructors on any temporaries in it.
|
||
*/
|
||
|
||
DValue *Expression::toElemDtor(IRState *p)
|
||
{
|
||
Logger::println("Expression::toElemDtor(): %s", toChars());
|
||
LOG_SCOPE
|
||
|
||
class CallDestructors : public IRLandingPadCatchFinallyInfo {
|
||
public:
|
||
CallDestructors(const std::vector<Expression*> &edtors_)
|
||
: edtors(edtors_)
|
||
{}
|
||
|
||
const std::vector<Expression*> &edtors;
|
||
|
||
void toIR(LLValue */*eh_ptr*/ = 0)
|
||
{
|
||
std::vector<Expression*>::const_reverse_iterator itr, end = edtors.rend();
|
||
for (itr = edtors.rbegin(); itr != end; ++itr)
|
||
(*itr)->toElem(gIR);
|
||
}
|
||
|
||
static int searchVarsWithDesctructors(Expression *exp, void *edtors)
|
||
{
|
||
if (exp->op == TOKdeclaration) {
|
||
DeclarationExp *de = (DeclarationExp*)exp;
|
||
if (VarDeclaration *vd = de->declaration->isVarDeclaration()) {
|
||
while (vd->aliassym) {
|
||
vd = vd->aliassym->isVarDeclaration();
|
||
if (!vd)
|
||
return 0;
|
||
}
|
||
|
||
if (vd->init) {
|
||
if (ExpInitializer *ex = vd->init->isExpInitializer())
|
||
ex->exp->apply(&searchVarsWithDesctructors, edtors);
|
||
}
|
||
|
||
if (!vd->isDataseg() && vd->edtor && !vd->noscope)
|
||
static_cast<std::vector<Expression*>*>(edtors)->push_back(vd->edtor);
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
};
|
||
|
||
|
||
// find destructors that must be called
|
||
std::vector<Expression*> edtors;
|
||
apply(&CallDestructors::searchVarsWithDesctructors, &edtors);
|
||
|
||
if (!edtors.empty()) {
|
||
if (op == TOKcall) {
|
||
// create finally block that calls destructors on temporaries
|
||
CallDestructors *callDestructors = new CallDestructors(edtors);
|
||
|
||
// create landing pad
|
||
llvm::BasicBlock *oldend = p->scopeend();
|
||
llvm::BasicBlock *landingpadbb = llvm::BasicBlock::Create(gIR->context(), "landingpad", p->topfunc(), oldend);
|
||
|
||
// set up the landing pad
|
||
IRLandingPad &pad = gIR->func()->gen->landingPadInfo;
|
||
pad.addFinally(callDestructors);
|
||
pad.push(landingpadbb);
|
||
|
||
// evaluate the expression
|
||
DValue *val = toElem(p);
|
||
|
||
// build the landing pad
|
||
llvm::BasicBlock *oldbb = p->scopebb();
|
||
pad.pop();
|
||
|
||
// call the destructors
|
||
gIR->scope() = IRScope(oldbb, oldend);
|
||
callDestructors->toIR();
|
||
delete callDestructors;
|
||
return val;
|
||
} else {
|
||
DValue *val = toElem(p);
|
||
CallDestructors(edtors).toIR();
|
||
return val;
|
||
}
|
||
}
|
||
|
||
return toElem(p);
|
||
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* DeclarationExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("DeclarationExp::toElem: %s | T=%s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
return DtoDeclarationExp(declaration);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void VarExp::cacheLvalue(IRState* p)
|
||
{
|
||
Logger::println("Caching l-value of %s", toChars());
|
||
LOG_SCOPE;
|
||
cachedLvalue = toElem(p)->getLVal();
|
||
}
|
||
|
||
DValue* VarExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("VarExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
assert(var);
|
||
|
||
if (cachedLvalue)
|
||
{
|
||
LLValue* V = cachedLvalue;
|
||
return new DVarValue(type, V);
|
||
}
|
||
|
||
return DtoSymbolAddress(loc, type, var);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
LLConstant* VarExp::toConstElem(IRState* p)
|
||
{
|
||
Logger::print("VarExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (SymbolDeclaration* sdecl = var->isSymbolDeclaration())
|
||
{
|
||
// this seems to be the static initialiser for structs
|
||
Type* sdecltype = sdecl->type->toBasetype();
|
||
Logger::print("Sym: type=%s\n", sdecltype->toChars());
|
||
assert(sdecltype->ty == Tstruct);
|
||
TypeStruct* ts = static_cast<TypeStruct*>(sdecltype);
|
||
DtoResolveStruct(ts->sym);
|
||
return ts->sym->ir.irAggr->getDefaultInit();
|
||
}
|
||
|
||
if (TypeInfoDeclaration* ti = var->isTypeInfoDeclaration())
|
||
{
|
||
LLType* vartype = DtoType(type);
|
||
LLConstant* m = DtoTypeInfoOf(ti->tinfo, false);
|
||
if (m->getType() != getPtrToType(vartype))
|
||
m = llvm::ConstantExpr::getBitCast(m, vartype);
|
||
return m;
|
||
}
|
||
|
||
VarDeclaration* vd = var->isVarDeclaration();
|
||
if (vd && vd->isConst() && vd->init)
|
||
{
|
||
if (vd->inuse)
|
||
{
|
||
error("recursive reference %s", toChars());
|
||
return llvm::UndefValue::get(DtoType(type));
|
||
}
|
||
vd->inuse++;
|
||
LLConstant* ret = DtoConstInitializer(loc, type, vd->init);
|
||
vd->inuse--;
|
||
// return the initializer
|
||
return ret;
|
||
}
|
||
|
||
// fail
|
||
error("non-constant expression %s", toChars());
|
||
return llvm::UndefValue::get(DtoType(type));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* IntegerExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("IntegerExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
LLConstant* c = toConstElem(p);
|
||
return new DConstValue(type, c);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
LLConstant* IntegerExp::toConstElem(IRState* p)
|
||
{
|
||
Logger::print("IntegerExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
LLType* t = DtoType(type);
|
||
if (isaPointer(t)) {
|
||
Logger::println("pointer");
|
||
LLConstant* i = LLConstantInt::get(DtoSize_t(),(uint64_t)value,false);
|
||
return llvm::ConstantExpr::getIntToPtr(i, t);
|
||
}
|
||
assert(llvm::isa<LLIntegerType>(t));
|
||
LLConstant* c = LLConstantInt::get(t,(uint64_t)value,!type->isunsigned());
|
||
assert(c);
|
||
if (Logger::enabled())
|
||
Logger::cout() << "value = " << *c << '\n';
|
||
return c;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* RealExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("RealExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
LLConstant* c = toConstElem(p);
|
||
return new DConstValue(type, c);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
LLConstant* RealExp::toConstElem(IRState* p)
|
||
{
|
||
Logger::print("RealExp::toConstElem: %s @ %s | %La\n", toChars(), type->toChars(), value);
|
||
LOG_SCOPE;
|
||
Type* t = type->toBasetype();
|
||
return DtoConstFP(t, value);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* NullExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("NullExp::toElem(type=%s): %s\n", type->toChars(),toChars());
|
||
LOG_SCOPE;
|
||
LLConstant* c = toConstElem(p);
|
||
return new DNullValue(type, c);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
LLConstant* NullExp::toConstElem(IRState* p)
|
||
{
|
||
Logger::print("NullExp::toConstElem(type=%s): %s\n", type->toChars(),toChars());
|
||
LOG_SCOPE;
|
||
LLType* t = DtoType(type);
|
||
if (type->ty == Tarray) {
|
||
assert(isaStruct(t));
|
||
return llvm::ConstantAggregateZero::get(t);
|
||
}
|
||
else {
|
||
return LLConstant::getNullValue(t);
|
||
}
|
||
|
||
llvm_unreachable("Unknown type for null constant.");
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* ComplexExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("ComplexExp::toElem(): %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
LLConstant* c = toConstElem(p);
|
||
LLValue* res;
|
||
|
||
if (c->isNullValue()) {
|
||
switch (type->toBasetype()->ty) {
|
||
default: llvm_unreachable("Unexpected complex floating point type");
|
||
case Tcomplex32: c = DtoConstFP(Type::tfloat32, ldouble(0)); break;
|
||
case Tcomplex64: c = DtoConstFP(Type::tfloat64, ldouble(0)); break;
|
||
case Tcomplex80: c = DtoConstFP(Type::tfloat80, ldouble(0)); break;
|
||
}
|
||
res = DtoAggrPair(DtoType(type), c, c);
|
||
}
|
||
else {
|
||
res = DtoAggrPair(DtoType(type), c->getOperand(0), c->getOperand(1));
|
||
}
|
||
|
||
return new DImValue(type, res);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
LLConstant* ComplexExp::toConstElem(IRState* p)
|
||
{
|
||
Logger::print("ComplexExp::toConstElem(): %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
return DtoConstComplex(type, value.re, value.im);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* StringExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("StringExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
Type* dtype = type->toBasetype();
|
||
Type* cty = dtype->nextOf()->toBasetype();
|
||
|
||
LLType* ct = voidToI8(DtoType(cty));
|
||
//printf("ct = %s\n", type->nextOf()->toChars());
|
||
LLArrayType* at = LLArrayType::get(ct,len+1);
|
||
|
||
LLConstant* _init;
|
||
switch (cty->size())
|
||
{
|
||
default:
|
||
llvm_unreachable("Unknown char type");
|
||
case 1:
|
||
_init = toConstantArray(ct, at, static_cast<uint8_t *>(string), len);
|
||
break;
|
||
case 2:
|
||
_init = toConstantArray(ct, at, static_cast<uint16_t *>(string), len);
|
||
break;
|
||
case 4:
|
||
_init = toConstantArray(ct, at, static_cast<uint32_t *>(string), len);
|
||
break;
|
||
}
|
||
|
||
llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;
|
||
if (Logger::enabled())
|
||
{
|
||
Logger::cout() << "type: " << *at << '\n';
|
||
Logger::cout() << "init: " << *_init << '\n';
|
||
}
|
||
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(*gIR->module, at, true, _linkage, _init, ".str");
|
||
gvar->setUnnamedAddr(true);
|
||
|
||
llvm::ConstantInt* zero = LLConstantInt::get(LLType::getInt32Ty(gIR->context()), 0, false);
|
||
LLConstant* idxs[2] = { zero, zero };
|
||
LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar, idxs, true);
|
||
|
||
if (dtype->ty == Tarray) {
|
||
LLConstant* clen = LLConstantInt::get(DtoSize_t(),len,false);
|
||
return new DImValue(type, DtoConstSlice(clen, arrptr, dtype));
|
||
}
|
||
else if (dtype->ty == Tsarray) {
|
||
LLType* dstType = getPtrToType(LLArrayType::get(ct, len));
|
||
LLValue* emem = (gvar->getType() == dstType) ? gvar : DtoBitCast(gvar, dstType);
|
||
return new DVarValue(type, emem);
|
||
}
|
||
else if (dtype->ty == Tpointer) {
|
||
return new DImValue(type, arrptr);
|
||
}
|
||
|
||
llvm_unreachable("Unknown type for StringExp.");
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
LLConstant* StringExp::toConstElem(IRState* p)
|
||
{
|
||
Logger::print("StringExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
Type* t = type->toBasetype();
|
||
Type* cty = t->nextOf()->toBasetype();
|
||
|
||
bool nullterm = (t->ty != Tsarray);
|
||
size_t endlen = nullterm ? len+1 : len;
|
||
|
||
LLType* ct = voidToI8(DtoType(cty));
|
||
LLArrayType* at = LLArrayType::get(ct,endlen);
|
||
|
||
LLConstant* _init;
|
||
switch (cty->size())
|
||
{
|
||
default:
|
||
llvm_unreachable("Unknown char type");
|
||
case 1:
|
||
_init = toConstantArray(ct, at, static_cast<uint8_t *>(string), len, nullterm);
|
||
break;
|
||
case 2:
|
||
_init = toConstantArray(ct, at, static_cast<uint16_t *>(string), len, nullterm);
|
||
break;
|
||
case 4:
|
||
_init = toConstantArray(ct, at, static_cast<uint32_t *>(string), len, nullterm);
|
||
break;
|
||
}
|
||
|
||
if (t->ty == Tsarray)
|
||
{
|
||
return _init;
|
||
}
|
||
|
||
llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;
|
||
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(*gIR->module, _init->getType(), true, _linkage, _init, ".str");
|
||
gvar->setUnnamedAddr(true);
|
||
|
||
llvm::ConstantInt* zero = LLConstantInt::get(LLType::getInt32Ty(gIR->context()), 0, false);
|
||
LLConstant* idxs[2] = { zero, zero };
|
||
LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar, idxs, true);
|
||
|
||
if (t->ty == Tpointer) {
|
||
return arrptr;
|
||
}
|
||
else if (t->ty == Tarray) {
|
||
LLConstant* clen = LLConstantInt::get(DtoSize_t(),len,false);
|
||
return DtoConstSlice(clen, arrptr, type);
|
||
}
|
||
|
||
llvm_unreachable("Unknown type for StringExp.");
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* AssignExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("AssignExp::toElem: %s | (%s)(%s = %s)\n", toChars(), type->toChars(), e1->type->toChars(), e2->type ? e2->type->toChars() : 0);
|
||
LOG_SCOPE;
|
||
|
||
if (e1->op == TOKarraylength)
|
||
{
|
||
Logger::println("performing array.length assignment");
|
||
ArrayLengthExp *ale = static_cast<ArrayLengthExp *>(e1);
|
||
DValue* arr = ale->e1->toElem(p);
|
||
DVarValue arrval(ale->e1->type, arr->getLVal());
|
||
DValue* newlen = e2->toElem(p);
|
||
DSliceValue* slice = DtoResizeDynArray(arrval.getType(), &arrval, newlen->getRVal());
|
||
DtoAssign(loc, &arrval, slice);
|
||
return newlen;
|
||
}
|
||
|
||
// Can't just override ConstructExp::toElem because not all TOKconstruct
|
||
// operations are actually instances of ConstructExp... Long live the DMD
|
||
// coding style!
|
||
if (op == TOKconstruct)
|
||
{
|
||
if (e1->op == TOKvar)
|
||
{
|
||
VarExp* ve = (VarExp*)e1;
|
||
if (ve->var->storage_class & STCref)
|
||
{
|
||
Logger::println("performing ref variable initialization");
|
||
// Note that the variable value is accessed directly (instead
|
||
// of via getLVal(), which would perform a load from the
|
||
// uninitialized location), and that rhs is stored as an l-value!
|
||
DVarValue* lhs = e1->toElem(p)->isVar();
|
||
assert(lhs);
|
||
DValue* rhs = e2->toElem(p);
|
||
|
||
// We shouldn't really need makeLValue() here, but the 2.063
|
||
// frontend generates ref variables initialized from function
|
||
// calls.
|
||
DtoStore(makeLValue(loc, rhs), lhs->getRefStorage());
|
||
|
||
return rhs;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (e1->op == TOKslice)
|
||
{
|
||
// Check if this is an initialization of a static array with an array
|
||
// literal that the frontend has foolishly rewritten into an
|
||
// assignment of a dynamic array literal to a slice.
|
||
Logger::println("performing static array literal assignment");
|
||
SliceExp * const se = static_cast<SliceExp *>(e1);
|
||
Type * const t2 = e2->type->toBasetype();
|
||
Type * const ta = se->e1->type->toBasetype();
|
||
|
||
if (se->lwr == NULL && ta->ty == Tsarray &&
|
||
e2->op == TOKarrayliteral &&
|
||
t2->nextOf()->mutableOf()->implicitConvTo(ta->nextOf()))
|
||
{
|
||
ArrayLiteralExp * const ale = static_cast<ArrayLiteralExp *>(e2);
|
||
initializeArrayLiteral(p, ale, se->e1->toElem(p)->getLVal());
|
||
return e1->toElem(p);
|
||
}
|
||
}
|
||
|
||
DValue* l = e1->toElem(p);
|
||
DValue* r = e2->toElem(p);
|
||
|
||
if (e1->type->toBasetype()->ty == Tstruct && e2->op == TOKint64)
|
||
{
|
||
Logger::println("performing aggregate zero initialization");
|
||
assert(e2->toInteger() == 0);
|
||
DtoAggrZeroInit(l->getLVal());
|
||
TypeStruct *ts = static_cast<TypeStruct*>(e1->type);
|
||
if (ts->sym->isNested() && ts->sym->vthis)
|
||
DtoResolveNestedContext(loc, ts->sym, l->getLVal());
|
||
// Return value should be irrelevant.
|
||
return r;
|
||
}
|
||
|
||
bool canSkipPostblit = false;
|
||
if (!(e2->op == TOKslice && ((UnaExp *)e2)->e1->isLvalue()) &&
|
||
!(e2->op == TOKcast && ((UnaExp *)e2)->e1->isLvalue()) &&
|
||
(e2->op == TOKslice || !e2->isLvalue()))
|
||
{
|
||
canSkipPostblit = true;
|
||
}
|
||
|
||
Logger::println("performing normal assignment (canSkipPostblit = %d)", canSkipPostblit);
|
||
DtoAssign(loc, l, r, op, canSkipPostblit);
|
||
|
||
if (l->isSlice())
|
||
return l;
|
||
|
||
return r;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
/// Finds the proper lvalue for a binassign expressions.
|
||
/// Makes sure the given LHS expression is only evaluated once.
|
||
static Expression* findLvalue(IRState* irs, Expression* exp)
|
||
{
|
||
Expression* e = exp;
|
||
|
||
// skip past any casts
|
||
while(e->op == TOKcast)
|
||
e = static_cast<CastExp*>(e)->e1;
|
||
|
||
// cache lvalue and return
|
||
e->cacheLvalue(irs);
|
||
return e;
|
||
}
|
||
|
||
#define BIN_ASSIGN(X) \
|
||
DValue* X##AssignExp::toElem(IRState* p) \
|
||
{ \
|
||
Logger::print(#X"AssignExp::toElem: %s @ %s\n", toChars(), type->toChars()); \
|
||
LOG_SCOPE; \
|
||
X##Exp e3(loc, e1, e2); \
|
||
e3.type = e1->type; \
|
||
DValue* dst = findLvalue(p, e1)->toElem(p); \
|
||
DValue* res = e3.toElem(p); \
|
||
/* Now that we are done with the expression, clear the cached lvalue. */ \
|
||
Expression* e = e1; \
|
||
while(e->op == TOKcast) \
|
||
e = static_cast<CastExp*>(e)->e1; \
|
||
e->cachedLvalue = NULL; \
|
||
/* Assign the (casted) value and return it. */ \
|
||
DValue* stval = DtoCast(loc, res, dst->getType()); \
|
||
DtoAssign(loc, dst, stval); \
|
||
return DtoCast(loc, res, type); \
|
||
}
|
||
|
||
BIN_ASSIGN(Add)
|
||
BIN_ASSIGN(Min)
|
||
BIN_ASSIGN(Mul)
|
||
BIN_ASSIGN(Div)
|
||
BIN_ASSIGN(Mod)
|
||
BIN_ASSIGN(And)
|
||
BIN_ASSIGN(Or)
|
||
BIN_ASSIGN(Xor)
|
||
BIN_ASSIGN(Shl)
|
||
BIN_ASSIGN(Shr)
|
||
BIN_ASSIGN(Ushr)
|
||
|
||
#undef BIN_ASSIGN
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
static void errorOnIllegalArrayOp(Expression* base, Expression* e1, Expression* e2)
|
||
{
|
||
Type* t1 = e1->type->toBasetype();
|
||
Type* t2 = e2->type->toBasetype();
|
||
|
||
// valid array ops would have been transformed by optimize
|
||
if ((t1->ty == Tarray || t1->ty == Tsarray) &&
|
||
(t2->ty == Tarray || t2->ty == Tsarray)
|
||
)
|
||
{
|
||
base->error("Array operation %s not recognized", base->toChars());
|
||
fatal();
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
static dinteger_t undoStrideMul(const Loc& loc, Type* t, dinteger_t offset)
|
||
{
|
||
assert(t->ty == Tpointer);
|
||
d_uns64 elemSize = t->nextOf()->size(loc);
|
||
assert((offset % elemSize) == 0 &&
|
||
"Expected offset by an integer amount of elements");
|
||
|
||
return offset / elemSize;
|
||
}
|
||
|
||
LLConstant* AddExp::toConstElem(IRState* p)
|
||
{
|
||
// add to pointer
|
||
Type* t1b = e1->type->toBasetype();
|
||
if (t1b->ty == Tpointer && e2->type->isintegral()) {
|
||
llvm::Constant* ptr = e1->toConstElem(p);
|
||
dinteger_t idx = undoStrideMul(loc, t1b, e2->toInteger());
|
||
return llvm::ConstantExpr::getGetElementPtr(ptr, DtoConstSize_t(idx));
|
||
}
|
||
|
||
error("expression '%s' is not a constant", toChars());
|
||
fatal();
|
||
return NULL;
|
||
}
|
||
|
||
/// Tries to remove a MulExp by a constant value of baseSize from e. Returns
|
||
/// NULL if not possible.
|
||
static Expression* extractNoStrideInc(Expression* e, d_uns64 baseSize, bool& negate)
|
||
{
|
||
MulExp* mul;
|
||
while (true)
|
||
{
|
||
if (e->op == TOKneg)
|
||
{
|
||
negate = !negate;
|
||
e = static_cast<NegExp*>(e)->e1;
|
||
continue;
|
||
}
|
||
|
||
if (e->op == TOKmul)
|
||
{
|
||
mul = static_cast<MulExp*>(e);
|
||
break;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
if (!mul->e2->isConst()) return NULL;
|
||
dinteger_t stride = mul->e2->toInteger();
|
||
|
||
if (stride != baseSize) return NULL;
|
||
|
||
return mul->e1;
|
||
}
|
||
|
||
static DValue* emitPointerOffset(IRState* p, Loc loc, DValue* base,
|
||
Expression* offset, bool negateOffset, Type* resultType)
|
||
{
|
||
// The operand emitted by the frontend is in units of bytes, and not
|
||
// pointer elements. We try to undo this before resorting to
|
||
// temporarily bitcasting the pointer to i8.
|
||
|
||
llvm::Value* noStrideInc = NULL;
|
||
if (offset->isConst())
|
||
{
|
||
dinteger_t byteOffset = offset->toInteger();
|
||
if (byteOffset == 0)
|
||
{
|
||
Logger::println("offset is zero");
|
||
return base;
|
||
}
|
||
noStrideInc = DtoConstSize_t(undoStrideMul(loc, base->type, byteOffset));
|
||
}
|
||
else if (Expression* inc = extractNoStrideInc(offset,
|
||
base->type->nextOf()->size(loc), negateOffset))
|
||
{
|
||
noStrideInc = inc->toElem(p)->getRVal();
|
||
}
|
||
|
||
if (noStrideInc)
|
||
{
|
||
if (negateOffset) noStrideInc = p->ir->CreateNeg(noStrideInc);
|
||
return new DImValue(base->type,
|
||
DtoGEP1(base->getRVal(), noStrideInc, 0, p->scopebb()));
|
||
}
|
||
|
||
// This might not actually be generated by the frontend, just to be
|
||
// safe.
|
||
llvm::Value* inc = offset->toElem(p)->getRVal();
|
||
if (negateOffset) inc = p->ir->CreateNeg(inc);
|
||
llvm::Value* bytePtr = DtoBitCast(base->getRVal(), getVoidPtrType());
|
||
DValue* result = new DImValue(Type::tvoidptr, DtoGEP1(bytePtr, inc));
|
||
return DtoCast(loc, result, resultType);
|
||
}
|
||
|
||
|
||
DValue* AddExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("AddExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = e1->toElem(p);
|
||
|
||
Type* t = type->toBasetype();
|
||
Type* e1type = e1->type->toBasetype();
|
||
Type* e2type = e2->type->toBasetype();
|
||
|
||
errorOnIllegalArrayOp(this, e1, e2);
|
||
|
||
if (e1type != e2type && e1type->ty == Tpointer && e2type->isintegral())
|
||
{
|
||
Logger::println("Adding integer to pointer");
|
||
return emitPointerOffset(p, loc, l, e2, false, type);
|
||
}
|
||
else if (t->iscomplex()) {
|
||
return DtoComplexAdd(loc, type, l, e2->toElem(p));
|
||
}
|
||
else {
|
||
return DtoBinAdd(l, e2->toElem(p));
|
||
}
|
||
}
|
||
|
||
LLConstant* MinExp::toConstElem(IRState* p)
|
||
{
|
||
Type* t1b = e1->type->toBasetype();
|
||
if (t1b->ty == Tpointer && e2->type->isintegral()) {
|
||
llvm::Constant* ptr = e1->toConstElem(p);
|
||
dinteger_t idx = undoStrideMul(loc, t1b, e2->toInteger());
|
||
|
||
llvm::Constant* negIdx = llvm::ConstantExpr::getNeg(DtoConstSize_t(idx));
|
||
return llvm::ConstantExpr::getGetElementPtr(ptr, negIdx);
|
||
}
|
||
|
||
error("expression '%s' is not a constant", toChars());
|
||
fatal();
|
||
return NULL;
|
||
}
|
||
|
||
DValue* MinExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("MinExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = e1->toElem(p);
|
||
|
||
Type* t = type->toBasetype();
|
||
Type* t1 = e1->type->toBasetype();
|
||
Type* t2 = e2->type->toBasetype();
|
||
|
||
errorOnIllegalArrayOp(this, e1, e2);
|
||
|
||
if (t1->ty == Tpointer && t2->ty == Tpointer) {
|
||
LLValue* lv = l->getRVal();
|
||
LLValue* rv = e2->toElem(p)->getRVal();
|
||
if (Logger::enabled())
|
||
Logger::cout() << "lv: " << *lv << " rv: " << *rv << '\n';
|
||
lv = p->ir->CreatePtrToInt(lv, DtoSize_t(), "tmp");
|
||
rv = p->ir->CreatePtrToInt(rv, DtoSize_t(), "tmp");
|
||
LLValue* diff = p->ir->CreateSub(lv,rv,"tmp");
|
||
if (diff->getType() != DtoType(type))
|
||
diff = p->ir->CreateIntToPtr(diff, DtoType(type), "tmp");
|
||
return new DImValue(type, diff);
|
||
}
|
||
else if (t1->ty == Tpointer && t2->isintegral())
|
||
{
|
||
Logger::println("Subtracting integer from pointer");
|
||
return emitPointerOffset(p, loc, l, e2, true, type);
|
||
}
|
||
else if (t->iscomplex()) {
|
||
return DtoComplexSub(loc, type, l, e2->toElem(p));
|
||
}
|
||
else {
|
||
return DtoBinSub(l, e2->toElem(p));
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* MulExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("MulExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = e1->toElem(p);
|
||
DValue* r = e2->toElem(p);
|
||
|
||
errorOnIllegalArrayOp(this, e1, e2);
|
||
|
||
if (type->iscomplex()) {
|
||
return DtoComplexMul(loc, type, l, r);
|
||
}
|
||
|
||
return DtoBinMul(type, l, r);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* DivExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("DivExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = e1->toElem(p);
|
||
DValue* r = e2->toElem(p);
|
||
|
||
errorOnIllegalArrayOp(this, e1, e2);
|
||
|
||
if (type->iscomplex()) {
|
||
return DtoComplexDiv(loc, type, l, r);
|
||
}
|
||
|
||
return DtoBinDiv(type, l, r);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* ModExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("ModExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = e1->toElem(p);
|
||
DValue* r = e2->toElem(p);
|
||
|
||
errorOnIllegalArrayOp(this, e1, e2);
|
||
|
||
if (type->iscomplex()) {
|
||
return DtoComplexRem(loc, type, l, r);
|
||
}
|
||
|
||
return DtoBinRem(type, l, r);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void CallExp::cacheLvalue(IRState* p)
|
||
{
|
||
Logger::println("Caching l-value of %s", toChars());
|
||
LOG_SCOPE;
|
||
cachedLvalue = toElem(p)->getLVal();
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* CallExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("CallExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (cachedLvalue)
|
||
{
|
||
LLValue* V = cachedLvalue;
|
||
return new DVarValue(type, V);
|
||
}
|
||
|
||
// handle magic inline asm
|
||
if (e1->op == TOKvar)
|
||
{
|
||
VarExp* ve = static_cast<VarExp*>(e1);
|
||
if (FuncDeclaration* fd = ve->var->isFuncDeclaration())
|
||
{
|
||
if (fd->llvmInternal == LLVMinline_asm)
|
||
{
|
||
return DtoInlineAsmExpr(loc, fd, arguments);
|
||
}
|
||
}
|
||
}
|
||
|
||
// get the callee value
|
||
DValue* fnval = e1->toElem(p);
|
||
|
||
// get func value if any
|
||
DFuncValue* dfnval = fnval->isFunc();
|
||
|
||
// handle magic intrinsics (mapping to instructions)
|
||
if (dfnval && dfnval->func)
|
||
{
|
||
FuncDeclaration* fndecl = dfnval->func;
|
||
|
||
// as requested by bearophile, see if it's a C printf call and that it's valid.
|
||
if (global.params.warnings && checkPrintf)
|
||
{
|
||
if (fndecl->linkage == LINKc && strcmp(fndecl->ident->string, "printf") == 0)
|
||
{
|
||
warnInvalidPrintfCall(loc, static_cast<Expression*>(arguments->data[0]), arguments->dim);
|
||
}
|
||
}
|
||
|
||
// va_start instruction
|
||
if (fndecl->llvmInternal == LLVMva_start) {
|
||
if (arguments->dim != 2) {
|
||
error("va_start instruction expects 2 arguments");
|
||
fatal();
|
||
return NULL;
|
||
}
|
||
// llvm doesn't need the second param hence the override
|
||
Expression* exp = static_cast<Expression*>(arguments->data[0]);
|
||
LLValue* arg = exp->toElem(p)->getLVal();
|
||
if (LLValue *argptr = gIR->func()->_argptr) {
|
||
DtoStore(DtoLoad(argptr), DtoBitCast(arg, getPtrToType(getVoidPtrType())));
|
||
return new DImValue(type, arg);
|
||
} else if (global.params.targetTriple.getArch() == llvm::Triple::x86_64) {
|
||
LLValue *va_list = DtoAlloca(exp->type->nextOf());
|
||
DtoStore(va_list, arg);
|
||
va_list = DtoBitCast(va_list, getVoidPtrType());
|
||
return new DImValue(type, gIR->ir->CreateCall(GET_INTRINSIC_DECL(vastart), va_list, ""));
|
||
} else
|
||
{
|
||
arg = DtoBitCast(arg, getVoidPtrType());
|
||
return new DImValue(type, gIR->ir->CreateCall(GET_INTRINSIC_DECL(vastart), arg, ""));
|
||
}
|
||
}
|
||
else if (fndecl->llvmInternal == LLVMva_copy &&
|
||
global.params.targetTriple.getArch() == llvm::Triple::x86_64) {
|
||
if (arguments->dim != 2) {
|
||
error("va_copy instruction expects 2 arguments");
|
||
fatal();
|
||
return NULL;
|
||
}
|
||
Expression* exp1 = static_cast<Expression*>(arguments->data[0]);
|
||
Expression* exp2 = static_cast<Expression*>(arguments->data[1]);
|
||
LLValue* arg1 = exp1->toElem(p)->getLVal();
|
||
LLValue* arg2 = exp2->toElem(p)->getLVal();
|
||
|
||
LLValue *va_list = DtoAlloca(exp1->type->nextOf());
|
||
DtoStore(va_list, arg1);
|
||
|
||
DtoStore(DtoLoad(DtoLoad(arg2)), DtoLoad(arg1));
|
||
return new DVarValue(type, arg1);
|
||
}
|
||
// va_arg instruction
|
||
else if (fndecl->llvmInternal == LLVMva_arg) {
|
||
if (arguments->dim != 1) {
|
||
error("va_arg instruction expects 1 arguments");
|
||
fatal();
|
||
return NULL;
|
||
}
|
||
return DtoVaArg(loc, type, static_cast<Expression*>(arguments->data[0]));
|
||
}
|
||
// C alloca
|
||
else if (fndecl->llvmInternal == LLVMalloca) {
|
||
if (arguments->dim != 1) {
|
||
error("alloca expects 1 arguments");
|
||
fatal();
|
||
return NULL;
|
||
}
|
||
Expression* exp = static_cast<Expression*>(arguments->data[0]);
|
||
DValue* expv = exp->toElem(p);
|
||
if (expv->getType()->toBasetype()->ty != Tint32)
|
||
expv = DtoCast(loc, expv, Type::tint32);
|
||
return new DImValue(type, p->ir->CreateAlloca(LLType::getInt8Ty(gIR->context()), expv->getRVal(), ".alloca"));
|
||
}
|
||
// fence instruction
|
||
else if (fndecl->llvmInternal == LLVMfence) {
|
||
if (arguments->dim != 1) {
|
||
error("fence instruction expects 1 arguments");
|
||
return NULL;
|
||
}
|
||
gIR->ir->CreateFence(llvm::AtomicOrdering(static_cast<Expression*>(arguments->data[0])->toInteger()));
|
||
return NULL;
|
||
// atomic store instruction
|
||
} else if (fndecl->llvmInternal == LLVMatomic_store) {
|
||
if (arguments->dim != 3) {
|
||
error("atomic store instruction expects 3 arguments");
|
||
return NULL;
|
||
}
|
||
Expression* exp1 = static_cast<Expression*>(arguments->data[0]);
|
||
Expression* exp2 = static_cast<Expression*>(arguments->data[1]);
|
||
int atomicOrdering = static_cast<Expression*>(arguments->data[2])->toInteger();
|
||
LLValue* val = exp1->toElem(p)->getRVal();
|
||
LLValue* ptr = exp2->toElem(p)->getRVal();
|
||
llvm::StoreInst* ret = gIR->ir->CreateStore(val, ptr, "tmp");
|
||
ret->setAtomic(llvm::AtomicOrdering(atomicOrdering));
|
||
ret->setAlignment(getTypeAllocSize(val->getType()));
|
||
return NULL;
|
||
// atomic load instruction
|
||
} else if (fndecl->llvmInternal == LLVMatomic_load) {
|
||
if (arguments->dim != 2) {
|
||
error("atomic load instruction expects 2 arguments");
|
||
fatal();
|
||
return NULL;
|
||
}
|
||
|
||
Expression* exp = static_cast<Expression*>(arguments->data[0]);
|
||
int atomicOrdering = static_cast<Expression*>(arguments->data[1])->toInteger();
|
||
LLValue* ptr = exp->toElem(p)->getRVal();
|
||
Type* retType = exp->type->nextOf();
|
||
llvm::LoadInst* val = gIR->ir->CreateLoad(ptr, "tmp");
|
||
val->setAlignment(getTypeAllocSize(val->getType()));
|
||
val->setAtomic(llvm::AtomicOrdering(atomicOrdering));
|
||
return new DImValue(retType, val);
|
||
// cmpxchg instruction
|
||
} else if (fndecl->llvmInternal == LLVMatomic_cmp_xchg) {
|
||
if (arguments->dim != 4) {
|
||
error("cmpxchg instruction expects 4 arguments");
|
||
fatal();
|
||
return NULL;
|
||
}
|
||
Expression* exp1 = static_cast<Expression*>(arguments->data[0]);
|
||
Expression* exp2 = static_cast<Expression*>(arguments->data[1]);
|
||
Expression* exp3 = static_cast<Expression*>(arguments->data[2]);
|
||
int atomicOrdering = static_cast<Expression*>(arguments->data[3])->toInteger();
|
||
LLValue* ptr = exp1->toElem(p)->getRVal();
|
||
LLValue* cmp = exp2->toElem(p)->getRVal();
|
||
LLValue* val = exp3->toElem(p)->getRVal();
|
||
LLValue* ret = gIR->ir->CreateAtomicCmpXchg(ptr, cmp, val, llvm::AtomicOrdering(atomicOrdering));
|
||
return new DImValue(exp3->type, ret);
|
||
// atomicrmw instruction
|
||
} else if (fndecl->llvmInternal == LLVMatomic_rmw) {
|
||
if (arguments->dim != 3) {
|
||
error("atomic_rmw instruction expects 3 arguments");
|
||
fatal();
|
||
return NULL;
|
||
}
|
||
|
||
static const char *ops[] = {
|
||
"xchg",
|
||
"add",
|
||
"sub",
|
||
"and",
|
||
"nand",
|
||
"or",
|
||
"xor",
|
||
"max",
|
||
"min",
|
||
"umax",
|
||
"umin",
|
||
0
|
||
};
|
||
|
||
int op = 0;
|
||
for (; ; ++op) {
|
||
if (ops[op] == 0) {
|
||
error("unknown atomic_rmw operation %s", fndecl->intrinsicName.c_str());
|
||
fatal();
|
||
return NULL;
|
||
}
|
||
if (fndecl->intrinsicName == ops[op])
|
||
break;
|
||
}
|
||
|
||
Expression* exp1 = static_cast<Expression*>(arguments->data[0]);
|
||
Expression* exp2 = static_cast<Expression*>(arguments->data[1]);
|
||
int atomicOrdering = static_cast<Expression*>(arguments->data[2])->toInteger();
|
||
LLValue* ptr = exp1->toElem(p)->getRVal();
|
||
LLValue* val = exp2->toElem(p)->getRVal();
|
||
LLValue* ret = gIR->ir->CreateAtomicRMW(llvm::AtomicRMWInst::BinOp(op), ptr, val,
|
||
llvm::AtomicOrdering(atomicOrdering));
|
||
return new DImValue(exp2->type, ret);
|
||
// bitop
|
||
} else if (fndecl->llvmInternal == LLVMbitop_bt ||
|
||
fndecl->llvmInternal == LLVMbitop_btr ||
|
||
fndecl->llvmInternal == LLVMbitop_btc ||
|
||
fndecl->llvmInternal == LLVMbitop_bts)
|
||
{
|
||
if (arguments->dim != 2) {
|
||
error("bitop intrinsic expects 2 arguments");
|
||
fatal();
|
||
return NULL;
|
||
}
|
||
|
||
Expression* exp1 = static_cast<Expression*>(arguments->data[0]);
|
||
Expression* exp2 = static_cast<Expression*>(arguments->data[1]);
|
||
LLValue* ptr = exp1->toElem(p)->getRVal();
|
||
LLValue* bitnum = exp2->toElem(p)->getRVal();
|
||
|
||
unsigned bitmask = DtoSize_t()->getBitWidth() - 1;
|
||
assert(bitmask == 31 || bitmask == 63);
|
||
// auto q = cast(size_t*)ptr + (bitnum >> (64bit ? 6 : 5));
|
||
LLValue* q = DtoBitCast(ptr, DtoSize_t()->getPointerTo());
|
||
q = DtoGEP1(q, p->ir->CreateLShr(bitnum, bitmask == 63 ? 6 : 5), "bitop.q");
|
||
|
||
// auto mask = 1 << (bitnum & bitmask);
|
||
LLValue* mask = p->ir->CreateAnd(bitnum, DtoConstSize_t(bitmask), "bitop.tmp");
|
||
mask = p->ir->CreateShl(DtoConstSize_t(1), mask, "bitop.mask");
|
||
|
||
// auto result = (*q & mask) ? -1 : 0;
|
||
LLValue* val = p->ir->CreateZExt(DtoLoad(q, "bitop.tmp"), DtoSize_t(), "bitop.val");
|
||
LLValue* result = p->ir->CreateAnd(val, mask, "bitop.tmp");
|
||
result = p->ir->CreateICmpNE(result, DtoConstSize_t(0), "bitop.tmp");
|
||
result = p->ir->CreateSelect(result, DtoConstInt(-1), DtoConstInt(0), "bitop.result");
|
||
|
||
if (fndecl->llvmInternal != LLVMbitop_bt) {
|
||
llvm::Instruction::BinaryOps op;
|
||
if (fndecl->llvmInternal == LLVMbitop_btc) {
|
||
// *q ^= mask;
|
||
op = llvm::Instruction::Xor;
|
||
} else if (fndecl->llvmInternal == LLVMbitop_btr) {
|
||
// *q &= ~mask;
|
||
mask = p->ir->CreateNot(mask);
|
||
op = llvm::Instruction::And;
|
||
} else if (fndecl->llvmInternal == LLVMbitop_bts) {
|
||
// *q |= mask;
|
||
op = llvm::Instruction::Or;
|
||
} else {
|
||
llvm_unreachable("Unrecognized bitop intrinsic.");
|
||
}
|
||
|
||
LLValue *newVal = p->ir->CreateBinOp(op, val, mask, "bitop.new_val");
|
||
newVal = p->ir->CreateTrunc(newVal, DtoSize_t(), "bitop.tmp");
|
||
DtoStore(newVal, q);
|
||
}
|
||
|
||
return new DImValue(type, result);
|
||
}
|
||
}
|
||
return DtoCallFunction(loc, type, fnval, arguments);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* CastExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("CastExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// get the value to cast
|
||
DValue* u = e1->toElem(p);
|
||
|
||
// cast it to the 'to' type, if necessary
|
||
DValue* v = u;
|
||
if (!to->equals(e1->type))
|
||
v = DtoCast(loc, u, to);
|
||
|
||
// paint the type, if necessary
|
||
if (!type->equals(to))
|
||
v = DtoPaintType(loc, v, type);
|
||
|
||
// return the new rvalue
|
||
return v;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
LLConstant* CastExp::toConstElem(IRState* p)
|
||
{
|
||
Logger::print("CastExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
LLConstant* res;
|
||
LLType* lltype = DtoType(type);
|
||
Type* tb = to->toBasetype();
|
||
|
||
// string literal to dyn array:
|
||
// reinterpret the string data as an array, calculate the length
|
||
if (e1->op == TOKstring && tb->ty == Tarray) {
|
||
/* StringExp *strexp = static_cast<StringExp*>(e1);
|
||
size_t datalen = strexp->sz * strexp->len;
|
||
Type* eltype = tb->nextOf()->toBasetype();
|
||
if (datalen % eltype->size() != 0) {
|
||
error("the sizes don't line up");
|
||
return e1->toConstElem(p);
|
||
}
|
||
size_t arrlen = datalen / eltype->size();*/
|
||
error("ct cast of string to dynamic array not fully implemented");
|
||
return e1->toConstElem(p);
|
||
}
|
||
// pointer to pointer
|
||
else if (tb->ty == Tpointer && e1->type->toBasetype()->ty == Tpointer) {
|
||
res = llvm::ConstantExpr::getBitCast(e1->toConstElem(p), lltype);
|
||
}
|
||
// global variable to pointer
|
||
else if (tb->ty == Tpointer && e1->op == TOKvar) {
|
||
VarDeclaration *vd = static_cast<VarExp*>(e1)->var->isVarDeclaration();
|
||
assert(vd);
|
||
DtoResolveVariable(vd);
|
||
LLConstant *value = vd->ir.irGlobal ? isaConstant(vd->ir.irGlobal->value) : 0;
|
||
if (!value)
|
||
goto Lerr;
|
||
Type *type = vd->type->toBasetype();
|
||
if (type->ty == Tarray || type->ty == Tdelegate) {
|
||
LLConstant* idxs[2] = { DtoConstSize_t(0), DtoConstSize_t(1) };
|
||
value = llvm::ConstantExpr::getGetElementPtr(value, idxs, true);
|
||
}
|
||
return DtoBitCast(value, DtoType(tb));
|
||
}
|
||
else if (tb->ty == Tclass && e1->type->ty == Tclass) {
|
||
assert(e1->op == TOKclassreference);
|
||
ClassDeclaration* cd = static_cast<ClassReferenceExp*>(e1)->originalClass();
|
||
|
||
llvm::Constant* instance = e1->toConstElem(p);
|
||
if (InterfaceDeclaration* it = static_cast<TypeClass*>(tb)->sym->isInterfaceDeclaration()) {
|
||
assert(it->isBaseOf(cd, NULL));
|
||
|
||
IrTypeClass* typeclass = cd->type->irtype->isClass();
|
||
|
||
// find interface impl
|
||
size_t i_index = typeclass->getInterfaceIndex(it);
|
||
assert(i_index != ~0UL);
|
||
|
||
// offset pointer
|
||
instance = DtoGEPi(instance, 0, i_index);
|
||
}
|
||
return DtoBitCast(instance, DtoType(tb));
|
||
}
|
||
else {
|
||
goto Lerr;
|
||
}
|
||
|
||
return res;
|
||
|
||
Lerr:
|
||
error("cannot cast %s to %s at compile time", e1->type->toChars(), type->toChars());
|
||
if (!global.gag)
|
||
fatal();
|
||
return NULL;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* SymOffExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("SymOffExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* base = DtoSymbolAddress(loc, var->type, var);
|
||
|
||
// This weird setup is required to be able to handle both variables as
|
||
// well as functions and TypeInfo references (which are not a DVarValue
|
||
// as well due to the level-of-indirection hack in Type::getTypeInfo that
|
||
// is unfortunately required by the frontend).
|
||
llvm::Value* baseValue;
|
||
if (base->isLVal())
|
||
baseValue = base->getLVal();
|
||
else
|
||
baseValue = base->getRVal();
|
||
assert(isaPointer(baseValue));
|
||
|
||
llvm::Value* offsetValue;
|
||
Type* offsetType;
|
||
|
||
if (offset == 0)
|
||
{
|
||
offsetValue = baseValue;
|
||
offsetType = base->type->pointerTo();
|
||
}
|
||
else
|
||
{
|
||
uint64_t elemSize = gDataLayout->getTypeStoreSize(
|
||
baseValue->getType()->getContainedType(0));
|
||
if (offset % elemSize == 0)
|
||
{
|
||
// We can turn this into a "nice" GEP.
|
||
offsetValue = DtoGEPi1(baseValue, offset / elemSize);
|
||
offsetType = base->type->pointerTo();
|
||
}
|
||
else
|
||
{
|
||
// Offset isn't a multiple of base type size, just cast to i8* and
|
||
// apply the byte offset.
|
||
offsetValue = DtoGEPi1(DtoBitCast(baseValue, getVoidPtrType()), offset);
|
||
offsetType = Type::tvoidptr;
|
||
}
|
||
}
|
||
|
||
// Casts are also "optimized into" SymOffExp by the frontend.
|
||
return DtoCast(loc, new DImValue(offsetType, offsetValue), type);
|
||
}
|
||
|
||
llvm::Constant* SymOffExp::toConstElem(IRState* p)
|
||
{
|
||
IF_LOG Logger::println("SymOffExp::toConstElem: %s @ %s", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// We might get null here due to the hackish implementation of
|
||
// AssocArrayLiteralExp::toElem.
|
||
llvm::Constant* base = DtoConstSymbolAddress(loc, var);
|
||
if (!base) return 0;
|
||
|
||
llvm::Constant* result;
|
||
if (offset == 0)
|
||
{
|
||
result = base;
|
||
}
|
||
else
|
||
{
|
||
const unsigned elemSize = gDataLayout->getTypeStoreSize(
|
||
base->getType()->getContainedType(0));
|
||
|
||
Logger::println("adding offset: %u (elem size: %u)", offset, elemSize);
|
||
|
||
if (offset % elemSize == 0)
|
||
{
|
||
// We can turn this into a "nice" GEP.
|
||
result = llvm::ConstantExpr::getGetElementPtr(base,
|
||
DtoConstSize_t(offset / elemSize));
|
||
}
|
||
else
|
||
{
|
||
// Offset isn't a multiple of base type size, just cast to i8* and
|
||
// apply the byte offset.
|
||
result = llvm::ConstantExpr::getGetElementPtr(
|
||
DtoBitCast(base, getVoidPtrType()),
|
||
DtoConstSize_t(offset));
|
||
}
|
||
}
|
||
|
||
return DtoBitCast(result, DtoType(type));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* AddrExp::toElem(IRState* p)
|
||
{
|
||
IF_LOG Logger::println("AddrExp::toElem: %s @ %s", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// The address of a StructLiteralExp can in fact be a global variable, check
|
||
// for that instead of re-codegening the literal.
|
||
if (e1->op == TOKstructliteral)
|
||
{
|
||
IF_LOG Logger::println("is struct literal");
|
||
StructLiteralExp* se = static_cast<StructLiteralExp*>(e1);
|
||
|
||
// DMD uses origin here as well, necessary to handle messed-up AST on
|
||
// forward references.
|
||
if (se->origin->globalVar)
|
||
{
|
||
IF_LOG Logger::cout() << "returning address of global: " <<
|
||
*se->globalVar << '\n';
|
||
return new DImValue(type, DtoBitCast(se->origin->globalVar, DtoType(type)));
|
||
}
|
||
}
|
||
|
||
DValue* v = e1->toElem(p);
|
||
if (v->isField()) {
|
||
Logger::println("is field");
|
||
return v;
|
||
}
|
||
else if (DFuncValue* fv = v->isFunc()) {
|
||
Logger::println("is func");
|
||
//Logger::println("FuncDeclaration");
|
||
FuncDeclaration* fd = fv->func;
|
||
assert(fd);
|
||
DtoResolveFunction(fd);
|
||
return new DFuncValue(fd, fd->ir.irFunc->func);
|
||
}
|
||
else if (v->isIm()) {
|
||
Logger::println("is immediate");
|
||
return v;
|
||
}
|
||
Logger::println("is nothing special");
|
||
|
||
// we special case here, since apparently taking the address of a slice is ok
|
||
LLValue* lval;
|
||
if (v->isLVal())
|
||
lval = v->getLVal();
|
||
else
|
||
{
|
||
assert(v->isSlice());
|
||
LLValue* rval = v->getRVal();
|
||
lval = DtoRawAlloca(rval->getType(), 0, ".tmp_slice_storage");
|
||
DtoStore(rval, lval);
|
||
}
|
||
|
||
if (Logger::enabled())
|
||
Logger::cout() << "lval: " << *lval << '\n';
|
||
|
||
return new DImValue(type, DtoBitCast(lval, DtoType(type)));
|
||
}
|
||
|
||
LLConstant* AddrExp::toConstElem(IRState* p)
|
||
{
|
||
IF_LOG Logger::println("AddrExp::toConstElem: %s @ %s", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
// FIXME: this should probably be generalized more so we don't
|
||
// need to have a case for each thing we can take the address of
|
||
|
||
// address of global variable
|
||
if (e1->op == TOKvar)
|
||
{
|
||
VarExp* vexp = static_cast<VarExp*>(e1);
|
||
LLConstant *c = DtoConstSymbolAddress(loc, vexp->var);
|
||
return c ? DtoBitCast(c, DtoType(type)) : 0;
|
||
}
|
||
// address of indexExp
|
||
else if (e1->op == TOKindex)
|
||
{
|
||
IndexExp* iexp = static_cast<IndexExp*>(e1);
|
||
|
||
// indexee must be global static array var
|
||
assert(iexp->e1->op == TOKvar);
|
||
VarExp* vexp = static_cast<VarExp*>(iexp->e1);
|
||
VarDeclaration* vd = vexp->var->isVarDeclaration();
|
||
assert(vd);
|
||
assert(vd->type->toBasetype()->ty == Tsarray);
|
||
DtoResolveVariable(vd);
|
||
assert(vd->ir.irGlobal);
|
||
|
||
// get index
|
||
LLConstant* index = iexp->e2->toConstElem(p);
|
||
assert(index->getType() == DtoSize_t());
|
||
|
||
// gep
|
||
LLConstant* idxs[2] = { DtoConstSize_t(0), index };
|
||
LLConstant *val = isaConstant(vd->ir.irGlobal->value);
|
||
val = DtoBitCast(val, DtoType(vd->type->pointerTo()));
|
||
LLConstant* gep = llvm::ConstantExpr::getGetElementPtr(val, idxs, true);
|
||
|
||
// bitcast to requested type
|
||
assert(type->toBasetype()->ty == Tpointer);
|
||
return DtoBitCast(gep, DtoType(type));
|
||
}
|
||
else if (e1->op == TOKstructliteral)
|
||
{
|
||
StructLiteralExp* se = static_cast<StructLiteralExp*>(e1);
|
||
|
||
if (se->globalVar)
|
||
{
|
||
Logger::cout() << "Returning existing global: " << *se->globalVar << '\n';
|
||
return se->globalVar;
|
||
}
|
||
|
||
se->globalVar = new llvm::GlobalVariable(*p->module,
|
||
DtoType(e1->type), false, llvm::GlobalValue::InternalLinkage, 0,
|
||
".structliteral");
|
||
|
||
llvm::Constant* constValue = se->toConstElem(p);
|
||
if (constValue->getType() != se->globalVar->getType()->getContainedType(0))
|
||
{
|
||
llvm::GlobalVariable* finalGlobalVar = new llvm::GlobalVariable(
|
||
*p->module, constValue->getType(), false,
|
||
llvm::GlobalValue::InternalLinkage, 0, ".structliteral");
|
||
se->globalVar->replaceAllUsesWith(
|
||
DtoBitCast(finalGlobalVar, se->globalVar->getType()));
|
||
se->globalVar->eraseFromParent();
|
||
se->globalVar = finalGlobalVar;
|
||
}
|
||
se->globalVar->setInitializer(constValue);
|
||
se->globalVar->setAlignment(e1->type->alignsize());
|
||
|
||
return se->globalVar;
|
||
}
|
||
else if (e1->op == TOKslice)
|
||
{
|
||
error("non-constant expression '%s'", toChars());
|
||
fatal();
|
||
}
|
||
// not yet supported
|
||
else
|
||
{
|
||
error("constant expression '%s' not yet implemented", toChars());
|
||
fatal();
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void PtrExp::cacheLvalue(IRState* p)
|
||
{
|
||
Logger::println("Caching l-value of %s", toChars());
|
||
LOG_SCOPE;
|
||
cachedLvalue = e1->toElem(p)->getRVal();
|
||
}
|
||
|
||
DValue* PtrExp::toElem(IRState* p)
|
||
{
|
||
Logger::println("PtrExp::toElem: %s @ %s", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// function pointers are special
|
||
if (type->toBasetype()->ty == Tfunction)
|
||
{
|
||
assert(!cachedLvalue);
|
||
DValue *dv = e1->toElem(p);
|
||
if (DFuncValue *dfv = dv->isFunc())
|
||
return new DFuncValue(type, dfv->func, dfv->getRVal());
|
||
else
|
||
return new DImValue(type, dv->getRVal());
|
||
}
|
||
|
||
// get the rvalue and return it as an lvalue
|
||
LLValue* V;
|
||
if (cachedLvalue)
|
||
{
|
||
V = cachedLvalue;
|
||
}
|
||
else
|
||
{
|
||
V = e1->toElem(p)->getRVal();
|
||
}
|
||
|
||
// The frontend emits dereferences of class/interfaces types to access the
|
||
// first member, which is the .classinfo property.
|
||
Type* origType = e1->type->toBasetype();
|
||
if (origType->ty == Tclass)
|
||
{
|
||
TypeClass* ct = static_cast<TypeClass*>(origType);
|
||
|
||
Type* resultType;
|
||
if (ct->sym->isInterfaceDeclaration())
|
||
{
|
||
// For interfaces, the first entry in the vtbl is actually a pointer
|
||
// to an Interface instance, which has the type info as its first
|
||
// member, so we have to add an extra layer of indirection.
|
||
resultType = Type::typeinfointerface->type->pointerTo();
|
||
}
|
||
else
|
||
{
|
||
resultType = Type::typeinfointerface->type;
|
||
}
|
||
|
||
V = DtoBitCast(V, DtoType(resultType->pointerTo()->pointerTo()));
|
||
}
|
||
|
||
return new DVarValue(type, V);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void DotVarExp::cacheLvalue(IRState* p)
|
||
{
|
||
Logger::println("Caching l-value of %s", toChars());
|
||
LOG_SCOPE;
|
||
cachedLvalue = toElem(p)->getLVal();
|
||
}
|
||
|
||
DValue* DotVarExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("DotVarExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (cachedLvalue)
|
||
{
|
||
Logger::println("using cached lvalue");
|
||
LLValue *V = cachedLvalue;
|
||
VarDeclaration* vd = var->isVarDeclaration();
|
||
assert(vd);
|
||
return new DVarValue(type, vd, V);
|
||
}
|
||
|
||
DValue* l = e1->toElem(p);
|
||
|
||
Type* e1type = e1->type->toBasetype();
|
||
|
||
//Logger::println("e1type=%s", e1type->toChars());
|
||
//Logger::cout() << *DtoType(e1type) << '\n';
|
||
|
||
if (VarDeclaration* vd = var->isVarDeclaration()) {
|
||
LLValue* arrptr;
|
||
// indexing struct pointer
|
||
if (e1type->ty == Tpointer) {
|
||
assert(e1type->nextOf()->ty == Tstruct);
|
||
TypeStruct* ts = static_cast<TypeStruct*>(e1type->nextOf());
|
||
arrptr = DtoIndexStruct(l->getRVal(), ts->sym, vd);
|
||
}
|
||
// indexing normal struct
|
||
else if (e1type->ty == Tstruct) {
|
||
TypeStruct* ts = static_cast<TypeStruct*>(e1type);
|
||
arrptr = DtoIndexStruct(l->getRVal(), ts->sym, vd);
|
||
}
|
||
// indexing class
|
||
else if (e1type->ty == Tclass) {
|
||
TypeClass* tc = static_cast<TypeClass*>(e1type);
|
||
arrptr = DtoIndexClass(l->getRVal(), tc->sym, vd);
|
||
}
|
||
else
|
||
llvm_unreachable("Unknown DotVarExp type for VarDeclaration.");
|
||
|
||
//Logger::cout() << "mem: " << *arrptr << '\n';
|
||
return new DVarValue(type, vd, arrptr);
|
||
}
|
||
else if (FuncDeclaration* fdecl = var->isFuncDeclaration())
|
||
{
|
||
DtoResolveFunction(fdecl);
|
||
|
||
// This is a bit more convoluted than it would need to be, because it
|
||
// has to take templated interface methods into account, for which
|
||
// isFinal is not necessarily true.
|
||
const bool nonFinal = !fdecl->isFinal() &&
|
||
(fdecl->isAbstract() || fdecl->isVirtual());
|
||
|
||
// If we are calling a non-final interface function, we need to get
|
||
// the pointer to the underlying object instead of passing the
|
||
// interface pointer directly.
|
||
// Unless it is a cpp interface, in that case, we have to match
|
||
// C++ behavior and pass the interface pointer.
|
||
LLValue* passedThis = 0;
|
||
if (e1type->ty == Tclass)
|
||
{
|
||
TypeClass* tc = static_cast<TypeClass*>(e1type);
|
||
if (tc->sym->isInterfaceDeclaration() && nonFinal && !tc->sym->isCPPinterface())
|
||
passedThis = DtoCastInterfaceToObject(l, NULL)->getRVal();
|
||
}
|
||
LLValue* vthis = l->getRVal();
|
||
if (!passedThis) passedThis = vthis;
|
||
|
||
// Decide whether this function needs to be looked up in the vtable.
|
||
// Even virtual functions are looked up directly if super or DotTypeExp
|
||
// are used, thus we need to walk through the this expression and check.
|
||
bool vtbllookup = nonFinal;
|
||
Expression* e = e1;
|
||
while (e && vtbllookup)
|
||
{
|
||
if (e->op == TOKsuper || e->op == TOKdottype)
|
||
vtbllookup = false;
|
||
else if (e->op == TOKcast)
|
||
e = static_cast<CastExp*>(e)->e1;
|
||
else
|
||
break;
|
||
}
|
||
|
||
// Get the actual function value to call.
|
||
LLValue* funcval = 0;
|
||
if (vtbllookup)
|
||
{
|
||
DImValue thisVal(e1type, vthis);
|
||
funcval = DtoVirtualFunctionPointer(&thisVal, fdecl, toChars());
|
||
}
|
||
else
|
||
{
|
||
funcval = fdecl->ir.irFunc->func;
|
||
}
|
||
assert(funcval);
|
||
|
||
return new DFuncValue(fdecl, funcval, passedThis);
|
||
}
|
||
|
||
llvm_unreachable("Unknown target for VarDeclaration.");
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* ThisExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("ThisExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// regular this expr
|
||
if (VarDeclaration* vd = var->isVarDeclaration()) {
|
||
LLValue* v;
|
||
Dsymbol* vdparent = vd->toParent2();
|
||
Identifier *ident = p->func()->decl->ident;
|
||
// In D1, contracts are treated as normal nested methods, 'this' is
|
||
// just passed in the context struct along with any used parameters.
|
||
if (ident == Id::ensure || ident == Id::require) {
|
||
Logger::println("contract this exp");
|
||
v = p->func()->nestArg;
|
||
v = DtoBitCast(v, DtoType(type)->getPointerTo());
|
||
} else
|
||
if (vdparent != p->func()->decl) {
|
||
Logger::println("nested this exp");
|
||
return DtoNestedVariable(loc, type, vd, type->ty == Tstruct);
|
||
}
|
||
else {
|
||
Logger::println("normal this exp");
|
||
v = p->func()->thisArg;
|
||
}
|
||
return new DVarValue(type, vd, v);
|
||
}
|
||
|
||
llvm_unreachable("No VarDeclaration in ThisExp.");
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void IndexExp::cacheLvalue(IRState* p)
|
||
{
|
||
Logger::println("Caching l-value of %s", toChars());
|
||
LOG_SCOPE;
|
||
cachedLvalue = toElem(p)->getLVal();
|
||
}
|
||
|
||
DValue* IndexExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("IndexExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (cachedLvalue)
|
||
{
|
||
LLValue* V = cachedLvalue;
|
||
return new DVarValue(type, V);
|
||
}
|
||
|
||
DValue* l = e1->toElem(p);
|
||
|
||
Type* e1type = e1->type->toBasetype();
|
||
|
||
p->arrays.push_back(l); // if $ is used it must be an array so this is fine.
|
||
DValue* r = e2->toElem(p);
|
||
p->arrays.pop_back();
|
||
|
||
LLValue* zero = DtoConstUint(0);
|
||
|
||
LLValue* arrptr = 0;
|
||
if (e1type->ty == Tpointer) {
|
||
arrptr = DtoGEP1(l->getRVal(),r->getRVal());
|
||
}
|
||
else if (e1type->ty == Tsarray) {
|
||
if (gIR->emitArrayBoundsChecks())
|
||
DtoArrayBoundsCheck(loc, l, r);
|
||
arrptr = DtoGEP(l->getRVal(), zero, r->getRVal());
|
||
}
|
||
else if (e1type->ty == Tarray) {
|
||
if (gIR->emitArrayBoundsChecks())
|
||
DtoArrayBoundsCheck(loc, l, r);
|
||
arrptr = DtoArrayPtr(l);
|
||
arrptr = DtoGEP1(arrptr,r->getRVal());
|
||
}
|
||
else if (e1type->ty == Taarray) {
|
||
return DtoAAIndex(loc, type, l, r, modifiable);
|
||
}
|
||
else {
|
||
Logger::println("e1type: %s", e1type->toChars());
|
||
llvm_unreachable("Unknown IndexExp target.");
|
||
}
|
||
return new DVarValue(type, arrptr);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* SliceExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("SliceExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// this is the new slicing code, it's different in that a full slice will no longer retain the original pointer.
|
||
// but this was broken if there *was* no original pointer, ie. a slice of a slice...
|
||
// now all slices have *both* the 'len' and 'ptr' fields set to != null.
|
||
|
||
// value being sliced
|
||
LLValue* elen = 0;
|
||
LLValue* eptr;
|
||
DValue* e = e1->toElem(p);
|
||
|
||
// handle pointer slicing
|
||
Type* etype = e1->type->toBasetype();
|
||
if (etype->ty == Tpointer)
|
||
{
|
||
assert(lwr);
|
||
eptr = e->getRVal();
|
||
}
|
||
// array slice
|
||
else
|
||
{
|
||
eptr = DtoArrayPtr(e);
|
||
}
|
||
|
||
// has lower bound, pointer needs adjustment
|
||
if (lwr)
|
||
{
|
||
// must have upper bound too then
|
||
assert(upr);
|
||
|
||
// get bounds (make sure $ works)
|
||
p->arrays.push_back(e);
|
||
DValue* lo = lwr->toElem(p);
|
||
DValue* up = upr->toElem(p);
|
||
p->arrays.pop_back();
|
||
LLValue* vlo = lo->getRVal();
|
||
LLValue* vup = up->getRVal();
|
||
|
||
if (gIR->emitArrayBoundsChecks())
|
||
DtoArrayBoundsCheck(loc, e, up, lo);
|
||
|
||
// offset by lower
|
||
eptr = DtoGEP1(eptr, vlo);
|
||
|
||
// adjust length
|
||
elen = p->ir->CreateSub(vup, vlo, "tmp");
|
||
}
|
||
// no bounds or full slice -> just convert to slice
|
||
else
|
||
{
|
||
assert(e1->type->toBasetype()->ty != Tpointer);
|
||
// if the sliceee is a static array, we use the length of that as DMD seems
|
||
// to give contrary inconsistent sizesin some multidimensional static array cases.
|
||
// (namely default initialization, int[16][16] arr; -> int[256] arr = 0;)
|
||
if (etype->ty == Tsarray)
|
||
{
|
||
TypeSArray* tsa = static_cast<TypeSArray*>(etype);
|
||
elen = DtoConstSize_t(tsa->dim->toUInteger());
|
||
|
||
// in this case, we also need to make sure the pointer is cast to the innermost element type
|
||
eptr = DtoBitCast(eptr, DtoType(tsa->nextOf()->pointerTo()));
|
||
}
|
||
}
|
||
|
||
// The frontend generates a SliceExp of static array type when assigning a
|
||
// fixed-width slice to a static array.
|
||
if (type->toBasetype()->ty == Tsarray)
|
||
{
|
||
return new DVarValue(type,
|
||
DtoBitCast(eptr, DtoType(type->pointerTo())));
|
||
}
|
||
|
||
if (!elen) elen = DtoArrayLen(e);
|
||
return new DSliceValue(type, elen, eptr);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* CmpExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("CmpExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = e1->toElem(p);
|
||
DValue* r = e2->toElem(p);
|
||
|
||
Type* t = e1->type->toBasetype();
|
||
|
||
LLValue* eval = 0;
|
||
|
||
if (t->isintegral() || t->ty == Tpointer || t->ty == Tnull)
|
||
{
|
||
llvm::ICmpInst::Predicate icmpPred;
|
||
tokToIcmpPred(op, isLLVMUnsigned(t), &icmpPred, &eval);
|
||
|
||
if (!eval)
|
||
{
|
||
LLValue* a = l->getRVal();
|
||
LLValue* b = r->getRVal();
|
||
if (Logger::enabled())
|
||
{
|
||
Logger::cout() << "type 1: " << *a << '\n';
|
||
Logger::cout() << "type 2: " << *b << '\n';
|
||
}
|
||
if (a->getType() != b->getType())
|
||
b = DtoBitCast(b, a->getType());
|
||
eval = p->ir->CreateICmp(icmpPred, a, b, "tmp");
|
||
}
|
||
}
|
||
else if (t->isfloating())
|
||
{
|
||
llvm::FCmpInst::Predicate cmpop;
|
||
switch(op)
|
||
{
|
||
case TOKlt:
|
||
cmpop = llvm::FCmpInst::FCMP_OLT;break;
|
||
case TOKle:
|
||
cmpop = llvm::FCmpInst::FCMP_OLE;break;
|
||
case TOKgt:
|
||
cmpop = llvm::FCmpInst::FCMP_OGT;break;
|
||
case TOKge:
|
||
cmpop = llvm::FCmpInst::FCMP_OGE;break;
|
||
case TOKunord:
|
||
cmpop = llvm::FCmpInst::FCMP_UNO;break;
|
||
case TOKule:
|
||
cmpop = llvm::FCmpInst::FCMP_ULE;break;
|
||
case TOKul:
|
||
cmpop = llvm::FCmpInst::FCMP_ULT;break;
|
||
case TOKuge:
|
||
cmpop = llvm::FCmpInst::FCMP_UGE;break;
|
||
case TOKug:
|
||
cmpop = llvm::FCmpInst::FCMP_UGT;break;
|
||
case TOKue:
|
||
cmpop = llvm::FCmpInst::FCMP_UEQ;break;
|
||
case TOKlg:
|
||
cmpop = llvm::FCmpInst::FCMP_ONE;break;
|
||
case TOKleg:
|
||
cmpop = llvm::FCmpInst::FCMP_ORD;break;
|
||
|
||
default:
|
||
llvm_unreachable("Unsupported floating point comparison operator.");
|
||
}
|
||
eval = p->ir->CreateFCmp(cmpop, l->getRVal(), r->getRVal(), "tmp");
|
||
}
|
||
else if (t->ty == Tsarray || t->ty == Tarray)
|
||
{
|
||
Logger::println("static or dynamic array");
|
||
eval = DtoArrayCompare(loc,op,l,r);
|
||
}
|
||
else if (t->ty == Taarray)
|
||
{
|
||
eval = LLConstantInt::getFalse(gIR->context());
|
||
}
|
||
else if (t->ty == Tdelegate)
|
||
{
|
||
llvm::ICmpInst::Predicate icmpPred;
|
||
tokToIcmpPred(op, isLLVMUnsigned(t), &icmpPred, &eval);
|
||
|
||
if (!eval)
|
||
{
|
||
// First compare the function pointers, then the context ones. This is
|
||
// what DMD does.
|
||
llvm::Value* lhs = l->getRVal();
|
||
llvm::Value* rhs = r->getRVal();
|
||
|
||
llvm::BasicBlock* oldend = p->scopeend();
|
||
llvm::BasicBlock* fptreq = llvm::BasicBlock::Create(
|
||
gIR->context(), "fptreq", gIR->topfunc(), oldend);
|
||
llvm::BasicBlock* fptrneq = llvm::BasicBlock::Create(
|
||
gIR->context(), "fptrneq", gIR->topfunc(), oldend);
|
||
llvm::BasicBlock* dgcmpend = llvm::BasicBlock::Create(
|
||
gIR->context(), "dgcmpend", gIR->topfunc(), oldend);
|
||
|
||
llvm::Value* lfptr = p->ir->CreateExtractValue(lhs, 1, ".lfptr");
|
||
llvm::Value* rfptr = p->ir->CreateExtractValue(rhs, 1, ".rfptr");
|
||
|
||
llvm::Value* fptreqcmp = p->ir->CreateICmp(llvm::ICmpInst::ICMP_EQ,
|
||
lfptr, rfptr, ".fptreqcmp");
|
||
llvm::BranchInst::Create(fptreq, fptrneq, fptreqcmp, p->scopebb());
|
||
|
||
p->scope() = IRScope(fptreq, fptrneq);
|
||
llvm::Value* lctx = p->ir->CreateExtractValue(lhs, 0, ".lctx");
|
||
llvm::Value* rctx = p->ir->CreateExtractValue(rhs, 0, ".rctx");
|
||
llvm::Value* ctxcmp = p->ir->CreateICmp(icmpPred, lctx, rctx, ".ctxcmp");
|
||
llvm::BranchInst::Create(dgcmpend,p->scopebb());
|
||
|
||
p->scope() = IRScope(fptrneq, dgcmpend);
|
||
llvm::Value* fptrcmp = p->ir->CreateICmp(icmpPred, lfptr, rfptr, ".fptrcmp");
|
||
llvm::BranchInst::Create(dgcmpend,p->scopebb());
|
||
|
||
p->scope() = IRScope(dgcmpend, oldend);
|
||
llvm::PHINode* phi = p->ir->CreatePHI(ctxcmp->getType(), 2, ".dgcmp");
|
||
phi->addIncoming(ctxcmp, fptreq);
|
||
phi->addIncoming(fptrcmp, fptrneq);
|
||
eval = phi;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
llvm_unreachable("Unsupported CmpExp type");
|
||
}
|
||
|
||
return new DImValue(type, eval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* EqualExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("EqualExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = e1->toElem(p);
|
||
DValue* r = e2->toElem(p);
|
||
LLValue* lv = l->getRVal();
|
||
LLValue* rv = r->getRVal();
|
||
|
||
Type* t = e1->type->toBasetype();
|
||
|
||
LLValue* eval = 0;
|
||
|
||
// the Tclass catches interface comparisons, regular
|
||
// class equality should be rewritten as a.opEquals(b) by this time
|
||
if (t->isintegral() || t->ty == Tpointer || t->ty == Tclass || t->ty == Tnull)
|
||
{
|
||
Logger::println("integral or pointer or interface");
|
||
llvm::ICmpInst::Predicate cmpop;
|
||
switch(op)
|
||
{
|
||
case TOKequal:
|
||
cmpop = llvm::ICmpInst::ICMP_EQ;
|
||
break;
|
||
case TOKnotequal:
|
||
cmpop = llvm::ICmpInst::ICMP_NE;
|
||
break;
|
||
default:
|
||
llvm_unreachable("Unsupported integral type equality comparison.");
|
||
}
|
||
if (rv->getType() != lv->getType()) {
|
||
rv = DtoBitCast(rv, lv->getType());
|
||
}
|
||
if (Logger::enabled())
|
||
{
|
||
Logger::cout() << "lv: " << *lv << '\n';
|
||
Logger::cout() << "rv: " << *rv << '\n';
|
||
}
|
||
eval = p->ir->CreateICmp(cmpop, lv, rv, "tmp");
|
||
}
|
||
else if (t->isfloating()) // includes iscomplex
|
||
{
|
||
eval = DtoBinNumericEquals(loc, l, r, op);
|
||
}
|
||
else if (t->ty == Tsarray || t->ty == Tarray)
|
||
{
|
||
Logger::println("static or dynamic array");
|
||
eval = DtoArrayEquals(loc,op,l,r);
|
||
}
|
||
else if (t->ty == Taarray)
|
||
{
|
||
Logger::println("associative array");
|
||
eval = DtoAAEquals(loc,op,l,r);
|
||
}
|
||
else if (t->ty == Tdelegate)
|
||
{
|
||
Logger::println("delegate");
|
||
eval = DtoDelegateEquals(op,l->getRVal(),r->getRVal());
|
||
}
|
||
else if (t->ty == Tstruct)
|
||
{
|
||
Logger::println("struct");
|
||
// when this is reached it means there is no opEquals overload.
|
||
eval = DtoStructEquals(op,l,r);
|
||
}
|
||
else
|
||
{
|
||
llvm_unreachable("Unsupported EqualExp type.");
|
||
}
|
||
|
||
return new DImValue(type, eval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* PostExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("PostExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = e1->toElem(p);
|
||
e2->toElem(p);
|
||
|
||
LLValue* val = l->getRVal();
|
||
LLValue* post = 0;
|
||
|
||
Type* e1type = e1->type->toBasetype();
|
||
Type* e2type = e2->type->toBasetype();
|
||
|
||
if (e1type->isintegral())
|
||
{
|
||
assert(e2type->isintegral());
|
||
LLValue* one = LLConstantInt::get(val->getType(), 1, !e2type->isunsigned());
|
||
if (op == TOKplusplus) {
|
||
post = llvm::BinaryOperator::CreateAdd(val,one,"tmp",p->scopebb());
|
||
}
|
||
else if (op == TOKminusminus) {
|
||
post = llvm::BinaryOperator::CreateSub(val,one,"tmp",p->scopebb());
|
||
}
|
||
}
|
||
else if (e1type->ty == Tpointer)
|
||
{
|
||
assert(e2->op == TOKint64);
|
||
LLConstant* minusone = LLConstantInt::get(DtoSize_t(),static_cast<uint64_t>(-1),true);
|
||
LLConstant* plusone = LLConstantInt::get(DtoSize_t(),static_cast<uint64_t>(1),false);
|
||
LLConstant* whichone = (op == TOKplusplus) ? plusone : minusone;
|
||
post = llvm::GetElementPtrInst::Create(val, whichone, "tmp", p->scopebb());
|
||
}
|
||
else if (e1type->isfloating())
|
||
{
|
||
assert(e2type->isfloating());
|
||
LLValue* one = DtoConstFP(e1type, ldouble(1.0));
|
||
if (op == TOKplusplus) {
|
||
post = llvm::BinaryOperator::CreateFAdd(val,one,"tmp",p->scopebb());
|
||
}
|
||
else if (op == TOKminusminus) {
|
||
post = llvm::BinaryOperator::CreateFSub(val,one,"tmp",p->scopebb());
|
||
}
|
||
}
|
||
else
|
||
assert(post);
|
||
|
||
DtoStore(post,l->getLVal());
|
||
|
||
return new DImValue(type,val);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* NewExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("NewExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
assert(newtype);
|
||
Type* ntype = newtype->toBasetype();
|
||
|
||
// new class
|
||
if (ntype->ty == Tclass) {
|
||
Logger::println("new class");
|
||
return DtoNewClass(loc, static_cast<TypeClass*>(ntype), this);
|
||
}
|
||
// new dynamic array
|
||
else if (ntype->ty == Tarray)
|
||
{
|
||
Logger::println("new dynamic array: %s", newtype->toChars());
|
||
// get dim
|
||
assert(arguments);
|
||
assert(arguments->dim >= 1);
|
||
if (arguments->dim == 1)
|
||
{
|
||
DValue* sz = static_cast<Expression*>(arguments->data[0])->toElem(p);
|
||
// allocate & init
|
||
return DtoNewDynArray(loc, newtype, sz, true);
|
||
}
|
||
else
|
||
{
|
||
size_t ndims = arguments->dim;
|
||
std::vector<DValue*> dims;
|
||
dims.reserve(ndims);
|
||
for (size_t i=0; i<ndims; ++i)
|
||
dims.push_back(static_cast<Expression*>(arguments->data[i])->toElem(p));
|
||
return DtoNewMulDimDynArray(loc, newtype, &dims[0], ndims, true);
|
||
}
|
||
}
|
||
// new static array
|
||
else if (ntype->ty == Tsarray)
|
||
{
|
||
llvm_unreachable("Static array new should decay to dynamic array.");
|
||
}
|
||
// new struct
|
||
else if (ntype->ty == Tstruct)
|
||
{
|
||
Logger::println("new struct on heap: %s\n", newtype->toChars());
|
||
// allocate
|
||
LLValue* mem = 0;
|
||
if (allocator)
|
||
{
|
||
// custom allocator
|
||
DtoResolveFunction(allocator);
|
||
DFuncValue dfn(allocator, allocator->ir.irFunc->func);
|
||
DValue* res = DtoCallFunction(loc, NULL, &dfn, newargs);
|
||
mem = DtoBitCast(res->getRVal(), DtoType(ntype->pointerTo()), ".newstruct_custom");
|
||
} else
|
||
{
|
||
// default allocator
|
||
mem = DtoNew(newtype);
|
||
}
|
||
// init
|
||
TypeStruct* ts = static_cast<TypeStruct*>(ntype);
|
||
if (ts->isZeroInit(ts->sym->loc)) {
|
||
DtoAggrZeroInit(mem);
|
||
}
|
||
else {
|
||
assert(ts->sym);
|
||
DtoResolveStruct(ts->sym);
|
||
DtoAggrCopy(mem, ts->sym->ir.irAggr->getInitSymbol());
|
||
}
|
||
if (ts->sym->isNested() && ts->sym->vthis)
|
||
DtoResolveNestedContext(loc, ts->sym, mem);
|
||
|
||
// call constructor
|
||
if (member)
|
||
{
|
||
Logger::println("Calling constructor");
|
||
assert(arguments != NULL);
|
||
DtoResolveFunction(member);
|
||
DFuncValue dfn(member, member->ir.irFunc->func, mem);
|
||
DtoCallFunction(loc, ts, &dfn, arguments);
|
||
}
|
||
return new DImValue(type, mem);
|
||
}
|
||
// new basic type
|
||
else
|
||
{
|
||
// allocate
|
||
LLValue* mem = DtoNew(newtype);
|
||
DVarValue tmpvar(newtype, mem);
|
||
|
||
// default initialize
|
||
// static arrays never appear here, so using the defaultInit is ok!
|
||
Expression* exp = newtype->defaultInit(loc);
|
||
DValue* iv = exp->toElem(gIR);
|
||
DtoAssign(loc, &tmpvar, iv);
|
||
|
||
// return as pointer-to
|
||
return new DImValue(type, mem);
|
||
}
|
||
|
||
llvm_unreachable(0);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* DeleteExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("DeleteExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* dval = e1->toElem(p);
|
||
Type* et = e1->type->toBasetype();
|
||
|
||
// simple pointer
|
||
if (et->ty == Tpointer)
|
||
{
|
||
DtoDeleteMemory(dval->isLVal() ? dval->getLVal() : makeLValue(loc, dval));
|
||
}
|
||
// class
|
||
else if (et->ty == Tclass)
|
||
{
|
||
bool onstack = false;
|
||
TypeClass* tc = static_cast<TypeClass*>(et);
|
||
if (tc->sym->isInterfaceDeclaration())
|
||
{
|
||
LLValue *val = dval->getLVal();
|
||
DtoDeleteInterface(val);
|
||
onstack = true;
|
||
}
|
||
else if (DVarValue* vv = dval->isVar()) {
|
||
if (vv->var && vv->var->onstack) {
|
||
DtoFinalizeClass(dval->getRVal());
|
||
onstack = true;
|
||
}
|
||
}
|
||
if (!onstack) {
|
||
LLValue* rval = dval->getRVal();
|
||
DtoDeleteClass(rval);
|
||
}
|
||
if (dval->isVar()) {
|
||
LLValue* lval = dval->getLVal();
|
||
DtoStore(LLConstant::getNullValue(lval->getType()->getContainedType(0)), lval);
|
||
}
|
||
}
|
||
// dyn array
|
||
else if (et->ty == Tarray)
|
||
{
|
||
DtoDeleteArray(dval);
|
||
if (dval->isLVal())
|
||
DtoSetArrayToNull(dval->getLVal());
|
||
}
|
||
// unknown/invalid
|
||
else
|
||
{
|
||
llvm_unreachable("Unsupported DeleteExp target.");
|
||
}
|
||
|
||
// no value to return
|
||
return NULL;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* ArrayLengthExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("ArrayLengthExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* u = e1->toElem(p);
|
||
return new DImValue(type, DtoArrayLen(u));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* AssertExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("AssertExp::toElem: %s\n", toChars());
|
||
LOG_SCOPE;
|
||
|
||
if(!global.params.useAssert)
|
||
return NULL;
|
||
|
||
// condition
|
||
DValue* cond;
|
||
Type* condty;
|
||
|
||
// special case for dmd generated assert(this); when not in -release mode
|
||
if (e1->op == TOKthis && static_cast<ThisExp*>(e1)->var == NULL)
|
||
{
|
||
LLValue* thisarg = p->func()->thisArg;
|
||
assert(thisarg && "null thisarg, but we're in assert(this) exp;");
|
||
LLValue* thisptr = DtoLoad(p->func()->thisArg);
|
||
condty = e1->type->toBasetype();
|
||
cond = new DImValue(condty, thisptr);
|
||
}
|
||
else
|
||
{
|
||
cond = e1->toElem(p);
|
||
condty = e1->type->toBasetype();
|
||
}
|
||
|
||
// create basic blocks
|
||
llvm::BasicBlock* oldend = p->scopeend();
|
||
llvm::BasicBlock* assertbb = llvm::BasicBlock::Create(gIR->context(), "assert", p->topfunc(), oldend);
|
||
llvm::BasicBlock* endbb = llvm::BasicBlock::Create(gIR->context(), "noassert", p->topfunc(), oldend);
|
||
|
||
// test condition
|
||
LLValue* condval = DtoCast(loc, cond, Type::tbool)->getRVal();
|
||
|
||
// branch
|
||
llvm::BranchInst::Create(endbb, assertbb, condval, p->scopebb());
|
||
|
||
// call assert runtime functions
|
||
p->scope() = IRScope(assertbb,endbb);
|
||
DtoAssert(p->func()->decl->getModule(), loc, msg ? msg->toElem(p) : NULL);
|
||
|
||
// rewrite the scope
|
||
p->scope() = IRScope(endbb,oldend);
|
||
|
||
|
||
FuncDeclaration* invdecl;
|
||
// class invariants
|
||
if(
|
||
global.params.useInvariants &&
|
||
condty->ty == Tclass &&
|
||
!(static_cast<TypeClass*>(condty)->sym->isInterfaceDeclaration()))
|
||
{
|
||
Logger::println("calling class invariant");
|
||
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module,
|
||
gABI->mangleForLLVM("_D9invariant12_d_invariantFC6ObjectZv", LINKd).c_str());
|
||
LLValue* arg = DtoBitCast(cond->getRVal(), fn->getFunctionType()->getParamType(0));
|
||
gIR->CreateCallOrInvoke(fn, arg);
|
||
}
|
||
// struct invariants
|
||
else if(
|
||
global.params.useInvariants &&
|
||
condty->ty == Tpointer && condty->nextOf()->ty == Tstruct &&
|
||
(invdecl = static_cast<TypeStruct*>(condty->nextOf())->sym->inv) != NULL)
|
||
{
|
||
Logger::print("calling struct invariant");
|
||
DtoResolveFunction(invdecl);
|
||
DFuncValue invfunc(invdecl, invdecl->ir.irFunc->func, cond->getRVal());
|
||
DtoCallFunction(loc, NULL, &invfunc, NULL);
|
||
}
|
||
|
||
// DMD allows syntax like this:
|
||
// f() == 0 || assert(false)
|
||
return new DImValue(type, DtoConstBool(false));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* NotExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("NotExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* u = e1->toElem(p);
|
||
|
||
LLValue* b = DtoCast(loc, u, Type::tbool)->getRVal();
|
||
|
||
LLConstant* zero = DtoConstBool(false);
|
||
b = p->ir->CreateICmpEQ(b,zero);
|
||
|
||
return new DImValue(type, b);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* AndAndExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("AndAndExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* u = e1->toElem(p);
|
||
|
||
llvm::BasicBlock* oldend = p->scopeend();
|
||
llvm::BasicBlock* andand = llvm::BasicBlock::Create(gIR->context(), "andand", gIR->topfunc(), oldend);
|
||
llvm::BasicBlock* andandend = llvm::BasicBlock::Create(gIR->context(), "andandend", gIR->topfunc(), oldend);
|
||
|
||
LLValue* ubool = DtoCast(loc, u, Type::tbool)->getRVal();
|
||
|
||
llvm::BasicBlock* oldblock = p->scopebb();
|
||
llvm::BranchInst::Create(andand,andandend,ubool,p->scopebb());
|
||
|
||
p->scope() = IRScope(andand, andandend);
|
||
DValue* v = e2->toElemDtor(p);
|
||
|
||
LLValue* vbool = 0;
|
||
if (!v->isFunc() && v->getType() != Type::tvoid)
|
||
{
|
||
vbool = DtoCast(loc, v, Type::tbool)->getRVal();
|
||
}
|
||
|
||
llvm::BasicBlock* newblock = p->scopebb();
|
||
llvm::BranchInst::Create(andandend,p->scopebb());
|
||
p->scope() = IRScope(andandend, oldend);
|
||
|
||
LLValue* resval = 0;
|
||
if (ubool == vbool || !vbool) {
|
||
// No need to create a PHI node.
|
||
resval = ubool;
|
||
} else {
|
||
llvm::PHINode* phi = p->ir->CreatePHI(LLType::getInt1Ty(gIR->context()), 2, "andandval");
|
||
// If we jumped over evaluation of the right-hand side,
|
||
// the result is false. Otherwise it's the value of the right-hand side.
|
||
phi->addIncoming(LLConstantInt::getFalse(gIR->context()), oldblock);
|
||
phi->addIncoming(vbool, newblock);
|
||
resval = phi;
|
||
}
|
||
|
||
return new DImValue(type, resval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* OrOrExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("OrOrExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* u = e1->toElem(p);
|
||
|
||
llvm::BasicBlock* oldend = p->scopeend();
|
||
llvm::BasicBlock* oror = llvm::BasicBlock::Create(gIR->context(), "oror", gIR->topfunc(), oldend);
|
||
llvm::BasicBlock* ororend = llvm::BasicBlock::Create(gIR->context(), "ororend", gIR->topfunc(), oldend);
|
||
|
||
LLValue* ubool = DtoCast(loc, u, Type::tbool)->getRVal();
|
||
|
||
llvm::BasicBlock* oldblock = p->scopebb();
|
||
llvm::BranchInst::Create(ororend,oror,ubool,p->scopebb());
|
||
|
||
p->scope() = IRScope(oror, ororend);
|
||
DValue* v = e2->toElemDtor(p);
|
||
|
||
LLValue* vbool = 0;
|
||
if (v && !v->isFunc() && v->getType() != Type::tvoid)
|
||
{
|
||
vbool = DtoCast(loc, v, Type::tbool)->getRVal();
|
||
}
|
||
|
||
llvm::BasicBlock* newblock = p->scopebb();
|
||
llvm::BranchInst::Create(ororend,p->scopebb());
|
||
p->scope() = IRScope(ororend, oldend);
|
||
|
||
LLValue* resval = 0;
|
||
if (ubool == vbool || !vbool) {
|
||
// No need to create a PHI node.
|
||
resval = ubool;
|
||
} else {
|
||
llvm::PHINode* phi = p->ir->CreatePHI(LLType::getInt1Ty(gIR->context()), 2, "ororval");
|
||
// If we jumped over evaluation of the right-hand side,
|
||
// the result is true. Otherwise, it's the value of the right-hand side.
|
||
phi->addIncoming(LLConstantInt::getTrue(gIR->context()), oldblock);
|
||
phi->addIncoming(vbool, newblock);
|
||
resval = phi;
|
||
}
|
||
|
||
return new DImValue(type, resval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
#define BinBitExp(X,Y) \
|
||
DValue* X##Exp::toElem(IRState* p) \
|
||
{ \
|
||
Logger::print("%sExp::toElem: %s @ %s\n", #X, toChars(), type->toChars()); \
|
||
LOG_SCOPE; \
|
||
DValue* u = e1->toElem(p); \
|
||
DValue* v = e2->toElem(p); \
|
||
errorOnIllegalArrayOp(this, e1, e2); \
|
||
LLValue* x = llvm::BinaryOperator::Create(llvm::Instruction::Y, u->getRVal(), v->getRVal(), "tmp", p->scopebb()); \
|
||
return new DImValue(type, x); \
|
||
}
|
||
|
||
BinBitExp(And,And)
|
||
BinBitExp(Or,Or)
|
||
BinBitExp(Xor,Xor)
|
||
BinBitExp(Shl,Shl)
|
||
BinBitExp(Ushr,LShr)
|
||
|
||
DValue* ShrExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("ShrExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
DValue* u = e1->toElem(p);
|
||
DValue* v = e2->toElem(p);
|
||
LLValue* x;
|
||
if (isLLVMUnsigned(e1->type))
|
||
x = p->ir->CreateLShr(u->getRVal(), v->getRVal(), "tmp");
|
||
else
|
||
x = p->ir->CreateAShr(u->getRVal(), v->getRVal(), "tmp");
|
||
return new DImValue(type, x);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* HaltExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("HaltExp::toElem: %s\n", toChars());
|
||
LOG_SCOPE;
|
||
|
||
p->ir->CreateCall(GET_INTRINSIC_DECL(trap), "");
|
||
p->ir->CreateUnreachable();
|
||
|
||
// this terminated the basicblock, start a new one
|
||
// this is sensible, since someone might goto behind the assert
|
||
// and prevents compiler errors if a terminator follows the assert
|
||
llvm::BasicBlock* oldend = gIR->scopeend();
|
||
llvm::BasicBlock* bb = llvm::BasicBlock::Create(gIR->context(), "afterhalt", p->topfunc(), oldend);
|
||
p->scope() = IRScope(bb,oldend);
|
||
|
||
return 0;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* DelegateExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("DelegateExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if(func->isStatic())
|
||
error("can't take delegate of static function %s, it does not require a context ptr", func->toChars());
|
||
|
||
LLPointerType* int8ptrty = getPtrToType(LLType::getInt8Ty(gIR->context()));
|
||
|
||
assert(type->toBasetype()->ty == Tdelegate);
|
||
LLType* dgty = DtoType(type);
|
||
|
||
DValue* u = e1->toElem(p);
|
||
LLValue* uval;
|
||
if (DFuncValue* f = u->isFunc()) {
|
||
assert(f->func);
|
||
LLValue* contextptr = DtoNestedContext(loc, f->func);
|
||
uval = DtoBitCast(contextptr, getVoidPtrType());
|
||
}
|
||
else {
|
||
DValue* src = u;
|
||
if (ClassDeclaration* cd = u->getType()->isClassHandle())
|
||
{
|
||
Logger::println("context type is class handle");
|
||
if (cd->isInterfaceDeclaration())
|
||
{
|
||
Logger::println("context type is interface");
|
||
src = DtoCastInterfaceToObject(u, ClassDeclaration::object->type);
|
||
}
|
||
}
|
||
uval = src->getRVal();
|
||
}
|
||
|
||
if (Logger::enabled())
|
||
Logger::cout() << "context = " << *uval << '\n';
|
||
|
||
LLValue* castcontext = DtoBitCast(uval, int8ptrty);
|
||
|
||
Logger::println("func: '%s'", func->toPrettyChars());
|
||
|
||
LLValue* castfptr;
|
||
|
||
if (e1->op != TOKsuper && e1->op != TOKdottype && func->isVirtual() && !func->isFinal())
|
||
castfptr = DtoVirtualFunctionPointer(u, func, toChars());
|
||
else if (func->isAbstract())
|
||
llvm_unreachable("Delegate to abstract method not implemented.");
|
||
else if (func->toParent()->isInterfaceDeclaration())
|
||
llvm_unreachable("Delegate to interface method not implemented.");
|
||
else
|
||
{
|
||
DtoResolveFunction(func);
|
||
|
||
// We need to actually codegen the function here, as literals are not
|
||
// added to the module member list.
|
||
if (func->semanticRun == PASSsemantic3done)
|
||
{
|
||
Dsymbol *owner = func->toParent();
|
||
while (!owner->isTemplateInstance() && owner->toParent())
|
||
owner = owner->toParent();
|
||
if (owner->isTemplateInstance() || owner == p->dmodule)
|
||
{
|
||
func->codegen(p);
|
||
}
|
||
}
|
||
|
||
castfptr = func->ir.irFunc->func;
|
||
}
|
||
|
||
castfptr = DtoBitCast(castfptr, dgty->getContainedType(1));
|
||
|
||
return new DImValue(type, DtoAggrPair(DtoType(type), castcontext, castfptr, ".dg"));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* IdentityExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("IdentityExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = e1->toElem(p);
|
||
DValue* r = e2->toElem(p);
|
||
LLValue* lv = l->getRVal();
|
||
LLValue* rv = r->getRVal();
|
||
|
||
Type* t1 = e1->type->toBasetype();
|
||
|
||
// handle dynarray specially
|
||
if (t1->ty == Tarray)
|
||
return new DImValue(type, DtoDynArrayIs(op,l,r));
|
||
// also structs
|
||
else if (t1->ty == Tstruct)
|
||
return new DImValue(type, DtoStructEquals(op,l,r));
|
||
|
||
// FIXME this stuff isn't pretty
|
||
LLValue* eval = 0;
|
||
|
||
if (t1->ty == Tdelegate) {
|
||
if (r->isNull()) {
|
||
rv = NULL;
|
||
}
|
||
else {
|
||
assert(lv->getType() == rv->getType());
|
||
}
|
||
eval = DtoDelegateEquals(op,lv,rv);
|
||
}
|
||
else if (t1->isfloating()) // includes iscomplex
|
||
{
|
||
eval = DtoBinNumericEquals(loc, l, r, op);
|
||
}
|
||
else if (t1->ty == Tpointer || t1->ty == Tclass)
|
||
{
|
||
if (lv->getType() != rv->getType()) {
|
||
if (r->isNull())
|
||
rv = llvm::ConstantPointerNull::get(isaPointer(lv->getType()));
|
||
else
|
||
rv = DtoBitCast(rv, lv->getType());
|
||
}
|
||
eval = (op == TOKidentity)
|
||
? p->ir->CreateICmpEQ(lv,rv,"tmp")
|
||
: p->ir->CreateICmpNE(lv,rv,"tmp");
|
||
}
|
||
else {
|
||
assert(lv->getType() == rv->getType());
|
||
eval = (op == TOKidentity)
|
||
? p->ir->CreateICmpEQ(lv,rv,"tmp")
|
||
: p->ir->CreateICmpNE(lv,rv,"tmp");
|
||
}
|
||
return new DImValue(type, eval);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* CommaExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("CommaExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (cachedLvalue)
|
||
{
|
||
LLValue* V = cachedLvalue;
|
||
return new DVarValue(type, V);
|
||
}
|
||
|
||
e1->toElem(p);
|
||
DValue* v = e2->toElem(p);
|
||
assert(e2->type == type);
|
||
return v;
|
||
}
|
||
|
||
void CommaExp::cacheLvalue(IRState* p)
|
||
{
|
||
Logger::println("Caching l-value of %s", toChars());
|
||
LOG_SCOPE;
|
||
cachedLvalue = toElem(p)->getLVal();
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* CondExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("CondExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
Type* dtype = type->toBasetype();
|
||
|
||
DValue* dvv;
|
||
// voids returns will need no storage
|
||
if (dtype->ty != Tvoid) {
|
||
// allocate a temporary for the final result. failed to come up with a better way :/
|
||
LLValue* resval = DtoAlloca(dtype,"condtmp");
|
||
dvv = new DVarValue(type, resval);
|
||
} else {
|
||
dvv = new DConstValue(type, getNullValue(voidToI8(DtoType(dtype))));
|
||
}
|
||
|
||
llvm::BasicBlock* oldend = p->scopeend();
|
||
llvm::BasicBlock* condtrue = llvm::BasicBlock::Create(gIR->context(), "condtrue", gIR->topfunc(), oldend);
|
||
llvm::BasicBlock* condfalse = llvm::BasicBlock::Create(gIR->context(), "condfalse", gIR->topfunc(), oldend);
|
||
llvm::BasicBlock* condend = llvm::BasicBlock::Create(gIR->context(), "condend", gIR->topfunc(), oldend);
|
||
|
||
DValue* c = econd->toElem(p);
|
||
LLValue* cond_val = DtoCast(loc, c, Type::tbool)->getRVal();
|
||
llvm::BranchInst::Create(condtrue,condfalse,cond_val,p->scopebb());
|
||
|
||
p->scope() = IRScope(condtrue, condfalse);
|
||
DValue* u = e1->toElemDtor(p);
|
||
if (dtype->ty != Tvoid)
|
||
DtoAssign(loc, dvv, u);
|
||
llvm::BranchInst::Create(condend,p->scopebb());
|
||
|
||
p->scope() = IRScope(condfalse, condend);
|
||
DValue* v = e2->toElemDtor(p);
|
||
if (dtype->ty != Tvoid)
|
||
DtoAssign(loc, dvv, v);
|
||
llvm::BranchInst::Create(condend,p->scopebb());
|
||
|
||
p->scope() = IRScope(condend, oldend);
|
||
return dvv;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* ComExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("ComExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* u = e1->toElem(p);
|
||
|
||
LLValue* value = u->getRVal();
|
||
LLValue* minusone = LLConstantInt::get(value->getType(), static_cast<uint64_t>(-1), true);
|
||
value = llvm::BinaryOperator::Create(llvm::Instruction::Xor, value, minusone, "tmp", p->scopebb());
|
||
|
||
return new DImValue(type, value);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* NegExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("NegExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = e1->toElem(p);
|
||
|
||
if (type->iscomplex()) {
|
||
return DtoComplexNeg(loc, type, l);
|
||
}
|
||
|
||
LLValue* val = l->getRVal();
|
||
|
||
if (type->isintegral())
|
||
val = gIR->ir->CreateNeg(val,"negval");
|
||
else
|
||
val = gIR->ir->CreateFNeg(val,"negval");
|
||
|
||
return new DImValue(type, val);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* CatExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("CatExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
return DtoCatArrays(type, e1, e2);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* CatAssignExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("CatAssignExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* l = e1->toElem(p);
|
||
|
||
Type* e1type = e1->type->toBasetype();
|
||
assert(e1type->ty == Tarray);
|
||
Type* elemtype = e1type->nextOf()->toBasetype();
|
||
Type* e2type = e2->type->toBasetype();
|
||
|
||
if (e1type->ty == Tarray && e2type->ty == Tdchar &&
|
||
(elemtype->ty == Tchar || elemtype->ty == Twchar))
|
||
{
|
||
if (elemtype->ty == Tchar)
|
||
// append dchar to char[]
|
||
DtoAppendDCharToString(l, e2);
|
||
else /*if (elemtype->ty == Twchar)*/
|
||
// append dchar to wchar[]
|
||
DtoAppendDCharToUnicodeString(l, e2);
|
||
}
|
||
else if (e1type->equals(e2type)) {
|
||
// apeend array
|
||
DSliceValue* slice = DtoCatAssignArray(l,e2);
|
||
DtoAssign(loc, l, slice);
|
||
}
|
||
else {
|
||
// append element
|
||
DtoCatAssignElement(loc, e1type, l, e2);
|
||
}
|
||
|
||
return l;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* FuncExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("FuncExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
assert(fd);
|
||
|
||
if (fd->tok == TOKreserved && type->ty == Tpointer)
|
||
{
|
||
// This is a lambda that was inferred to be a function literal instead
|
||
// of a delegate, so set tok here in order to get correct types/mangling.
|
||
// Horrible hack, but DMD does the same thing.
|
||
fd->tok = TOKfunction;
|
||
fd->vthis = NULL;
|
||
}
|
||
|
||
if (fd->isNested()) Logger::println("nested");
|
||
Logger::println("kind = %s", fd->kind());
|
||
|
||
// We need to actually codegen the function here, as literals are not added
|
||
// to the module member list.
|
||
fd->codegen(p);
|
||
assert(fd->ir.irFunc->func);
|
||
|
||
if (fd->isNested()) {
|
||
LLType* dgty = DtoType(type);
|
||
|
||
LLValue* cval;
|
||
IrFunction* irfn = p->func();
|
||
if (irfn->nestedVar
|
||
// We cannot use a frame allocated in one function
|
||
// for a delegate created in another function
|
||
// (that happens with anonymous functions)
|
||
&& fd->toParent2() == irfn->decl
|
||
)
|
||
cval = irfn->nestedVar;
|
||
else if (irfn->nestArg)
|
||
cval = DtoLoad(irfn->nestArg);
|
||
// TODO: should we enable that for D1 as well?
|
||
else if (irfn->thisArg)
|
||
{
|
||
AggregateDeclaration* ad = irfn->decl->isMember2();
|
||
if (!ad || !ad->vthis) {
|
||
cval = getNullPtr(getVoidPtrType());
|
||
} else {
|
||
cval = ad->isClassDeclaration() ? DtoLoad(irfn->thisArg) : irfn->thisArg;
|
||
cval = DtoLoad(DtoGEPi(cval, 0,ad->vthis->ir.irField->index, ".vthis"));
|
||
}
|
||
}
|
||
else
|
||
cval = getNullPtr(getVoidPtrType());
|
||
cval = DtoBitCast(cval, dgty->getContainedType(0));
|
||
|
||
LLValue* castfptr = DtoBitCast(fd->ir.irFunc->func, dgty->getContainedType(1));
|
||
|
||
return new DImValue(type, DtoAggrPair(cval, castfptr, ".func"));
|
||
|
||
} else {
|
||
return new DFuncValue(type, fd, fd->ir.irFunc->func);
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
LLConstant* FuncExp::toConstElem(IRState* p)
|
||
{
|
||
Logger::print("FuncExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
assert(fd);
|
||
|
||
if (fd->tok == TOKreserved && type->ty == Tpointer)
|
||
{
|
||
// This is a lambda that was inferred to be a function literal instead
|
||
// of a delegate, so set tok here in order to get correct types/mangling.
|
||
// Horrible hack, but DMD does the same thing in FuncExp::toElem and
|
||
// other random places.
|
||
fd->tok = TOKfunction;
|
||
fd->vthis = NULL;
|
||
}
|
||
|
||
if (fd->tok != TOKfunction)
|
||
{
|
||
assert(fd->tok == TOKdelegate || fd->tok == TOKreserved);
|
||
error("delegate literals as constant expressions are not yet allowed");
|
||
return 0;
|
||
}
|
||
|
||
// We need to actually codegen the function here, as literals are not added
|
||
// to the module member list.
|
||
fd->codegen(p);
|
||
assert(fd->ir.irFunc->func);
|
||
|
||
return fd->ir.irFunc->func;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* ArrayLiteralExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("ArrayLiteralExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// D types
|
||
Type* arrayType = type->toBasetype();
|
||
Type* elemType = arrayType->nextOf()->toBasetype();
|
||
|
||
// is dynamic ?
|
||
bool const dyn = (arrayType->ty == Tarray);
|
||
// length
|
||
size_t const len = elements->dim;
|
||
|
||
// llvm target type
|
||
LLType* llType = DtoType(arrayType);
|
||
if (Logger::enabled())
|
||
Logger::cout() << (dyn?"dynamic":"static") << " array literal with length " << len << " of D type: '" << arrayType->toChars() << "' has llvm type: '" << *llType << "'\n";
|
||
|
||
// llvm storage type
|
||
LLType* llElemType = i1ToI8(voidToI8(DtoType(elemType)));
|
||
LLType* llStoType = LLArrayType::get(llElemType, len);
|
||
if (Logger::enabled())
|
||
Logger::cout() << "llvm storage type: '" << *llStoType << "'\n";
|
||
|
||
// don't allocate storage for zero length dynamic array literals
|
||
if (dyn && len == 0)
|
||
{
|
||
// dmd seems to just make them null...
|
||
return new DSliceValue(type, DtoConstSize_t(0), getNullPtr(getPtrToType(llElemType)));
|
||
}
|
||
|
||
if (dyn)
|
||
{
|
||
if (arrayType->isImmutable() && isConstLiteral(this))
|
||
{
|
||
llvm::Constant* init = arrayLiteralToConst(p, this);
|
||
llvm::GlobalVariable* global = new llvm::GlobalVariable(
|
||
*gIR->module,
|
||
init->getType(),
|
||
true,
|
||
llvm::GlobalValue::InternalLinkage,
|
||
init,
|
||
".immutablearray"
|
||
);
|
||
return new DSliceValue(arrayType, DtoConstSize_t(elements->dim),
|
||
DtoBitCast(global, getPtrToType(llElemType)));
|
||
}
|
||
|
||
DSliceValue* dynSlice = DtoNewDynArray(loc, arrayType,
|
||
new DConstValue(Type::tsize_t, DtoConstSize_t(len)), false);
|
||
initializeArrayLiteral(p, this, DtoBitCast(dynSlice->ptr, getPtrToType(llStoType)));
|
||
return dynSlice;
|
||
}
|
||
else
|
||
{
|
||
llvm::Value* storage = DtoRawAlloca(llStoType, 0, "arrayliteral");
|
||
initializeArrayLiteral(p, this, storage);
|
||
return new DImValue(type, storage);
|
||
}
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
LLConstant* ArrayLiteralExp::toConstElem(IRState* p)
|
||
{
|
||
Logger::print("ArrayLiteralExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
// extract D types
|
||
Type* bt = type->toBasetype();
|
||
Type* elemt = bt->nextOf();
|
||
|
||
// build llvm array type
|
||
LLArrayType* arrtype = LLArrayType::get(i1ToI8(voidToI8(DtoType(elemt))), elements->dim);
|
||
|
||
// dynamic arrays can occur here as well ...
|
||
bool dyn = (bt->ty != Tsarray);
|
||
|
||
llvm::Constant* initval = arrayLiteralToConst(p, this);
|
||
|
||
// if static array, we're done
|
||
if (!dyn)
|
||
return initval;
|
||
|
||
bool canBeConst = type->isConst() || type->isImmutable();
|
||
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(*gIR->module,
|
||
initval->getType(), canBeConst, llvm::GlobalValue::InternalLinkage, initval,
|
||
".dynarrayStorage");
|
||
gvar->setUnnamedAddr(canBeConst);
|
||
llvm::Constant* store = DtoBitCast(gvar, getPtrToType(arrtype));
|
||
|
||
if (bt->ty == Tpointer)
|
||
// we need to return pointer to the static array.
|
||
return store;
|
||
|
||
// build a constant dynamic array reference with the .ptr field pointing into store
|
||
LLConstant* idxs[2] = { DtoConstUint(0), DtoConstUint(0) };
|
||
LLConstant* globalstorePtr = llvm::ConstantExpr::getGetElementPtr(store, idxs, true);
|
||
|
||
return DtoConstSlice(DtoConstSize_t(elements->dim), globalstorePtr);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
extern LLConstant* get_default_initializer(VarDeclaration* vd, Initializer* init);
|
||
|
||
static LLValue* write_zeroes(LLValue* mem, unsigned start, unsigned end) {
|
||
mem = DtoBitCast(mem, getVoidPtrType());
|
||
LLValue* gep = DtoGEPi1(mem, start, ".padding");
|
||
DtoMemSetZero(gep, DtoConstSize_t(end - start));
|
||
return mem;
|
||
}
|
||
|
||
DValue* StructLiteralExp::toElem(IRState* p)
|
||
{
|
||
IF_LOG Logger::print("StructLiteralExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
if (sinit)
|
||
{
|
||
// Copied from VarExp::toElem, need to clean this mess up.
|
||
Type* sdecltype = sinit->type->toBasetype();
|
||
Logger::print("Sym: type = %s\n", sdecltype->toChars());
|
||
assert(sdecltype->ty == Tstruct);
|
||
TypeStruct* ts = static_cast<TypeStruct*>(sdecltype);
|
||
assert(ts->sym);
|
||
DtoResolveStruct(ts->sym);
|
||
|
||
LLValue* initsym = ts->sym->ir.irAggr->getInitSymbol();
|
||
initsym = DtoBitCast(initsym, DtoType(ts->pointerTo()));
|
||
return new DVarValue(type, initsym);
|
||
}
|
||
|
||
if (inProgressMemory) return new DVarValue(type, inProgressMemory);
|
||
|
||
// make sure the struct is fully resolved
|
||
DtoResolveStruct(sd);
|
||
|
||
// alloca a stack slot
|
||
inProgressMemory = DtoRawAlloca(DtoType(type), 0, ".structliteral");
|
||
|
||
// ready elements data
|
||
assert(elements && "struct literal has null elements");
|
||
size_t nexprs = elements->dim;
|
||
Expression **exprs = reinterpret_cast<Expression **>(elements->data);
|
||
|
||
// might be reset to an actual i8* value so only a single bitcast is emitted.
|
||
LLValue* voidptr = inProgressMemory;
|
||
unsigned offset = 0;
|
||
|
||
// go through fields
|
||
ArrayIter<VarDeclaration> it(sd->fields);
|
||
for (; !it.done(); it.next())
|
||
{
|
||
VarDeclaration* vd = it.get();
|
||
|
||
// don't re-initialize unions
|
||
if (vd->offset < offset)
|
||
{
|
||
IF_LOG Logger::println("skipping field: %s %s (+%u)", vd->type->toChars(), vd->toChars(), vd->offset);
|
||
continue;
|
||
}
|
||
// initialize any padding so struct comparisons work
|
||
if (vd->offset != offset)
|
||
voidptr = write_zeroes(voidptr, offset, vd->offset);
|
||
offset = vd->offset + vd->type->size();
|
||
|
||
IF_LOG Logger::println("initializing field: %s %s (+%u)", vd->type->toChars(), vd->toChars(), vd->offset);
|
||
LOG_SCOPE
|
||
|
||
// get initializer
|
||
Expression* expr = (it.index < nexprs) ? exprs[it.index] : NULL;
|
||
DValue* val;
|
||
DConstValue cv(vd->type, NULL); // Only used in one branch; value is set beforehand
|
||
if (expr)
|
||
{
|
||
IF_LOG Logger::println("expr %zu = %s", it.index, expr->toChars());
|
||
val = expr->toElem(gIR);
|
||
}
|
||
else if (vd == sd->vthis) {
|
||
IF_LOG Logger::println("initializing vthis");
|
||
LOG_SCOPE
|
||
val = new DImValue(vd->type, DtoBitCast(DtoNestedContext(loc, sd), DtoType(vd->type)));
|
||
}
|
||
else
|
||
{
|
||
if (vd->init && vd->init->isVoidInitializer())
|
||
continue;
|
||
IF_LOG Logger::println("using default initializer");
|
||
LOG_SCOPE
|
||
cv.c = get_default_initializer(vd, NULL);
|
||
val = &cv;
|
||
}
|
||
|
||
// get a pointer to this field
|
||
DVarValue field(vd->type, vd, DtoIndexStruct(inProgressMemory, sd, vd));
|
||
|
||
// store the initializer there
|
||
DtoAssign(loc, &field, val, TOKconstruct, true);
|
||
|
||
if (expr)
|
||
callPostblit(loc, expr, field.getLVal());
|
||
|
||
// Also zero out padding bytes counted as being part of the type in DMD
|
||
// but not in LLVM; e.g. real/x86_fp80.
|
||
int implicitPadding =
|
||
vd->type->size() - gDataLayout->getTypeStoreSize(DtoType(vd->type));
|
||
assert(implicitPadding >= 0);
|
||
if (implicitPadding > 0)
|
||
{
|
||
Logger::println("zeroing %d padding bytes", implicitPadding);
|
||
voidptr = write_zeroes(voidptr, offset - implicitPadding, offset);
|
||
}
|
||
}
|
||
// initialize trailing padding
|
||
if (sd->structsize != offset)
|
||
voidptr = write_zeroes(voidptr, offset, sd->structsize);
|
||
|
||
// return as a var
|
||
DValue* result = new DVarValue(type, inProgressMemory);
|
||
inProgressMemory = 0;
|
||
return result;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
LLConstant* StructLiteralExp::toConstElem(IRState* p)
|
||
{
|
||
// type can legitimately be null for ClassReferenceExp::value.
|
||
IF_LOG Logger::print("StructLiteralExp::toConstElem: %s @ %s\n",
|
||
toChars(), type ? type->toChars() : "(null)");
|
||
LOG_SCOPE;
|
||
|
||
if (sinit)
|
||
{
|
||
// Copied from VarExp::toConstElem, need to clean this mess up.
|
||
Type* sdecltype = sinit->type->toBasetype();
|
||
Logger::print("Sym: type=%s\n", sdecltype->toChars());
|
||
assert(sdecltype->ty == Tstruct);
|
||
TypeStruct* ts = static_cast<TypeStruct*>(sdecltype);
|
||
DtoResolveStruct(ts->sym);
|
||
|
||
return ts->sym->ir.irAggr->getDefaultInit();
|
||
}
|
||
|
||
// make sure the struct is resolved
|
||
DtoResolveStruct(sd);
|
||
|
||
std::map<VarDeclaration*, llvm::Constant*> varInits;
|
||
const size_t nexprs = elements->dim;
|
||
for (size_t i = 0; i < nexprs; i++)
|
||
{
|
||
if ((*elements)[i])
|
||
{
|
||
varInits[sd->fields[i]] = (*elements)[i]->toConstElem(p);
|
||
}
|
||
}
|
||
|
||
return sd->ir.irAggr->createInitializerConstant(varInits);
|
||
}
|
||
|
||
llvm::Constant* ClassReferenceExp::toConstElem(IRState *p)
|
||
{
|
||
IF_LOG Logger::print("ClassReferenceExp::toConstElem: %s @ %s\n",
|
||
toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
ClassDeclaration* origClass = originalClass();
|
||
DtoResolveClass(origClass);
|
||
|
||
if (value->globalVar)
|
||
{
|
||
IF_LOG Logger::cout() << "Using existing global: " << *value->globalVar << '\n';
|
||
}
|
||
else
|
||
{
|
||
value->globalVar = new llvm::GlobalVariable(*p->module,
|
||
origClass->type->irtype->isClass()->getMemoryLLType(),
|
||
false, llvm::GlobalValue::InternalLinkage, 0, ".classref");
|
||
|
||
std::map<VarDeclaration*, llvm::Constant*> varInits;
|
||
|
||
// Unfortunately, ClassReferenceExp::getFieldAt is badly broken – it
|
||
// places the base class fields _after_ those of the subclass.
|
||
{
|
||
const size_t nexprs = value->elements->dim;
|
||
|
||
std::stack<ClassDeclaration*> classHierachy;
|
||
ClassDeclaration* cur = origClass;
|
||
while (cur)
|
||
{
|
||
classHierachy.push(cur);
|
||
cur = cur->baseClass;
|
||
}
|
||
size_t i = 0;
|
||
while (!classHierachy.empty())
|
||
{
|
||
cur = classHierachy.top();
|
||
classHierachy.pop();
|
||
for (size_t j = 0; j < cur->fields.dim; ++j)
|
||
{
|
||
if ((*value->elements)[i])
|
||
{
|
||
VarDeclaration* field = cur->fields[j];
|
||
IF_LOG Logger::println("Getting initializer for: %s", field->toChars());
|
||
LOG_SCOPE;
|
||
varInits[field] = (*value->elements)[i]->toConstElem(p);
|
||
}
|
||
++i;
|
||
}
|
||
}
|
||
assert(i == nexprs);
|
||
}
|
||
|
||
llvm::Constant* constValue = origClass->ir.irAggr->createInitializerConstant(varInits);
|
||
|
||
if (constValue->getType() != value->globalVar->getType()->getContainedType(0))
|
||
{
|
||
llvm::GlobalVariable* finalGlobalVar = new llvm::GlobalVariable(
|
||
*p->module, constValue->getType(), false,
|
||
llvm::GlobalValue::InternalLinkage, 0, ".classref");
|
||
value->globalVar->replaceAllUsesWith(
|
||
DtoBitCast(finalGlobalVar, value->globalVar->getType()));
|
||
value->globalVar->eraseFromParent();
|
||
value->globalVar = finalGlobalVar;
|
||
}
|
||
value->globalVar->setInitializer(constValue);
|
||
}
|
||
|
||
llvm::Constant* result = value->globalVar;
|
||
|
||
assert(type->ty == Tclass);
|
||
ClassDeclaration* targetClass = static_cast<TypeClass*>(type)->sym;
|
||
if (InterfaceDeclaration* it = targetClass->isInterfaceDeclaration()) {
|
||
assert(it->isBaseOf(origClass, NULL));
|
||
|
||
IrTypeClass* typeclass = origClass->type->irtype->isClass();
|
||
|
||
// find interface impl
|
||
size_t i_index = typeclass->getInterfaceIndex(it);
|
||
assert(i_index != ~0UL);
|
||
|
||
// offset pointer
|
||
result = DtoGEPi(result, 0, i_index);
|
||
}
|
||
|
||
return DtoBitCast(result, DtoType(type));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* InExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("InExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* key = e1->toElem(p);
|
||
DValue* aa = e2->toElem(p);
|
||
|
||
return DtoAAIn(loc, type, aa, key);
|
||
}
|
||
|
||
DValue* RemoveExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("RemoveExp::toElem: %s\n", toChars());
|
||
LOG_SCOPE;
|
||
|
||
DValue* aa = e1->toElem(p);
|
||
DValue* key = e2->toElem(p);
|
||
|
||
return DtoAARemove(loc, aa, key);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
/// Constructs an array initializer constant with the given constants as its
|
||
/// elements. If the element types differ (unions, …), an anonymous struct
|
||
/// literal is emitted (as for array constant initializers).
|
||
static llvm::Constant* arrayConst(std::vector<llvm::Constant*>& vals,
|
||
Type* nominalElemType)
|
||
{
|
||
if (vals.size() == 0)
|
||
{
|
||
llvm::ArrayType* type = llvm::ArrayType::get(DtoType(nominalElemType), 0);
|
||
return llvm::ConstantArray::get(type, vals);
|
||
}
|
||
|
||
llvm::Type* elementType = NULL;
|
||
bool differentTypes = false;
|
||
for (std::vector<llvm::Constant*>::iterator i = vals.begin(), end = vals.end();
|
||
i != end; ++i)
|
||
{
|
||
if (!elementType)
|
||
elementType = (*i)->getType();
|
||
else
|
||
differentTypes |= (elementType != (*i)->getType());
|
||
}
|
||
|
||
if (differentTypes)
|
||
return llvm::ConstantStruct::getAnon(vals, true);
|
||
|
||
llvm::ArrayType *t = llvm::ArrayType::get(elementType, vals.size());
|
||
return llvm::ConstantArray::get(t, vals);
|
||
}
|
||
|
||
DValue* AssocArrayLiteralExp::toElem(IRState* p)
|
||
{
|
||
Logger::print("AssocArrayLiteralExp::toElem: %s @ %s\n", toChars(), type->toChars());
|
||
LOG_SCOPE;
|
||
|
||
assert(keys);
|
||
assert(values);
|
||
assert(keys->dim == values->dim);
|
||
|
||
Type* basetype = type->toBasetype();
|
||
Type* aatype = basetype;
|
||
Type* vtype = aatype->nextOf();
|
||
|
||
if (!keys->dim)
|
||
goto LruntimeInit;
|
||
|
||
if (aatype->ty != Taarray) {
|
||
// It's the AssociativeArray type.
|
||
// Turn it back into a TypeAArray
|
||
vtype = values->tdata()[0]->type;
|
||
aatype = new TypeAArray(vtype, keys->tdata()[0]->type);
|
||
aatype = aatype->semantic(loc, NULL);
|
||
}
|
||
|
||
{
|
||
std::vector<LLConstant*> keysInits, valuesInits;
|
||
keysInits.reserve(keys->dim);
|
||
valuesInits.reserve(keys->dim);
|
||
for (size_t i = 0, n = keys->dim; i < n; ++i)
|
||
{
|
||
Expression* ekey = keys->tdata()[i];
|
||
Expression* eval = values->tdata()[i];
|
||
Logger::println("(%zu) aa[%s] = %s", i, ekey->toChars(), eval->toChars());
|
||
unsigned errors = global.startGagging();
|
||
LLConstant *ekeyConst = ekey->toConstElem(p);
|
||
LLConstant *evalConst = eval->toConstElem(p);
|
||
if (global.endGagging(errors))
|
||
goto LruntimeInit;
|
||
assert(ekeyConst && evalConst);
|
||
keysInits.push_back(ekeyConst);
|
||
valuesInits.push_back(evalConst);
|
||
}
|
||
|
||
assert(aatype->ty == Taarray);
|
||
Type* indexType = static_cast<TypeAArray*>(aatype)->index;
|
||
assert(indexType && vtype);
|
||
|
||
llvm::Function* func = LLVM_D_GetRuntimeFunction(gIR->module, "_d_assocarrayliteralTX");
|
||
LLFunctionType* funcTy = func->getFunctionType();
|
||
LLValue* aaTypeInfo = DtoBitCast(DtoTypeInfoOf(stripModifiers(aatype)),
|
||
DtoType(Type::typeinfoassociativearray->type));
|
||
|
||
LLConstant* idxs[2] = { DtoConstUint(0), DtoConstUint(0) };
|
||
|
||
LLConstant* initval = arrayConst(keysInits, indexType);
|
||
LLConstant* globalstore = new LLGlobalVariable(*gIR->module, initval->getType(),
|
||
false, LLGlobalValue::InternalLinkage, initval, ".aaKeysStorage");
|
||
LLConstant* slice = llvm::ConstantExpr::getGetElementPtr(globalstore, idxs, true);
|
||
slice = DtoConstSlice(DtoConstSize_t(keys->dim), slice);
|
||
LLValue* keysArray = DtoAggrPaint(slice, funcTy->getParamType(1));
|
||
|
||
initval = arrayConst(valuesInits, vtype);
|
||
globalstore = new LLGlobalVariable(*gIR->module, initval->getType(),
|
||
false, LLGlobalValue::InternalLinkage, initval, ".aaValuesStorage");
|
||
slice = llvm::ConstantExpr::getGetElementPtr(globalstore, idxs, true);
|
||
slice = DtoConstSlice(DtoConstSize_t(keys->dim), slice);
|
||
LLValue* valuesArray = DtoAggrPaint(slice, funcTy->getParamType(2));
|
||
|
||
LLValue* aa = gIR->CreateCallOrInvoke3(func, aaTypeInfo, keysArray, valuesArray, "aa").getInstruction();
|
||
if (basetype->ty != Taarray) {
|
||
LLValue *tmp = DtoAlloca(type, "aaliteral");
|
||
DtoStore(aa, DtoGEPi(tmp, 0, 0));
|
||
return new DVarValue(type, tmp);
|
||
} else {
|
||
return new DImValue(type, aa);
|
||
}
|
||
}
|
||
|
||
LruntimeInit:
|
||
|
||
// it should be possible to avoid the temporary in some cases
|
||
LLValue* tmp = DtoAlloca(type, "aaliteral");
|
||
DValue* aa = new DVarValue(type, tmp);
|
||
DtoStore(LLConstant::getNullValue(DtoType(type)), tmp);
|
||
|
||
const size_t n = keys->dim;
|
||
for (size_t i=0; i<n; ++i)
|
||
{
|
||
Expression* ekey = static_cast<Expression*>(keys->data[i]);
|
||
Expression* eval = static_cast<Expression*>(values->data[i]);
|
||
|
||
Logger::println("(%zu) aa[%s] = %s", i, ekey->toChars(), eval->toChars());
|
||
|
||
// index
|
||
DValue* key = ekey->toElem(p);
|
||
DValue* mem = DtoAAIndex(loc, vtype, aa, key, true);
|
||
|
||
// store
|
||
DValue* val = eval->toElem(p);
|
||
DtoAssign(loc, mem, val);
|
||
}
|
||
|
||
return aa;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* GEPExp::toElem(IRState* p)
|
||
{
|
||
// (&a.foo).funcptr is a case where e1->toElem is genuinely not an l-value.
|
||
LLValue* val = makeLValue(loc, e1->toElem(p));
|
||
LLValue* v = DtoGEPi(val, 0, index);
|
||
return new DVarValue(type, DtoBitCast(v, getPtrToType(DtoType(type))));
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* BoolExp::toElem(IRState* p)
|
||
{
|
||
return new DImValue(type, DtoCast(loc, e1->toElem(p), Type::tbool)->getRVal());
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* DotTypeExp::toElem(IRState* p)
|
||
{
|
||
Type* t = sym->getType();
|
||
assert(t);
|
||
return e1->toElem(p);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* TypeExp::toElem(IRState *p)
|
||
{
|
||
error("type %s is not an expression", toChars());
|
||
//TODO: Improve error handling. DMD just returns some value here and hopes
|
||
// some more sensible error messages will be triggered.
|
||
fatal();
|
||
return NULL;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* TupleExp::toElem(IRState *p)
|
||
{
|
||
IF_LOG Logger::print("TupleExp::toElem() %s\n", toChars());
|
||
LOG_SCOPE;
|
||
|
||
// If there are any side effects, evaluate them first.
|
||
if (e0) e0->toElem(p);
|
||
|
||
std::vector<LLType*> types;
|
||
types.reserve(exps->dim);
|
||
for (size_t i = 0; i < exps->dim; i++)
|
||
{
|
||
Expression *el = static_cast<Expression *>(exps->data[i]);
|
||
types.push_back(i1ToI8(voidToI8(DtoType(el->type))));
|
||
}
|
||
LLValue *val = DtoRawAlloca(LLStructType::get(gIR->context(), types),0, "tuple");
|
||
for (size_t i = 0; i < exps->dim; i++)
|
||
{
|
||
Expression *el = static_cast<Expression *>(exps->data[i]);
|
||
DValue* ep = el->toElem(p);
|
||
LLValue *gep = DtoGEPi(val,0,i);
|
||
if (el->type->ty == Tstruct)
|
||
DtoStore(DtoLoad(ep->getRVal()), gep);
|
||
else if (el->type->ty != Tvoid)
|
||
DtoStoreZextI8(ep->getRVal(), gep);
|
||
else
|
||
DtoStore(LLConstantInt::get(LLType::getInt8Ty(gIR->context()), 0, false), gep);
|
||
}
|
||
return new DImValue(type, val);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
DValue* VectorExp::toElem(IRState* p)
|
||
{
|
||
IF_LOG Logger::print("VectorExp::toElem() %s\n", toChars());
|
||
LOG_SCOPE;
|
||
|
||
TypeVector *type = static_cast<TypeVector*>(to->toBasetype());
|
||
assert(type->ty == Tvector);
|
||
|
||
LLValue *vector = DtoAlloca(to);
|
||
|
||
// Array literals are assigned element-wise, other expressions are cast and
|
||
// splat across the vector elements. This is what DMD does.
|
||
if (e1->op == TOKarrayliteral) {
|
||
Logger::println("array literal expression");
|
||
ArrayLiteralExp *e = static_cast<ArrayLiteralExp*>(e1);
|
||
assert(e->elements->dim == dim && "Array literal vector initializer "
|
||
"length mismatch, should have been handled in frontend.");
|
||
for (unsigned int i = 0; i < dim; ++i) {
|
||
DValue *val = ((*e->elements)[i])->toElem(p);
|
||
LLValue *llval = DtoCast(loc, val, type->elementType())->getRVal();
|
||
DtoStore(llval, DtoGEPi(vector, 0, i));
|
||
}
|
||
} else {
|
||
Logger::println("normal (splat) expression");
|
||
DValue *val = e1->toElem(p);
|
||
LLValue* llval = DtoCast(loc, val, type->elementType())->getRVal();
|
||
for (unsigned int i = 0; i < dim; ++i) {
|
||
DtoStore(llval, DtoGEPi(vector, 0, i));
|
||
}
|
||
}
|
||
|
||
return new DVarValue(to, vector);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
#define STUB(x) DValue *x::toElem(IRState * p) {error("Exp type "#x" not implemented: %s", toChars()); fatal(); return 0; }
|
||
STUB(Expression)
|
||
STUB(ScopeExp)
|
||
STUB(SymbolExp)
|
||
STUB(PowExp)
|
||
STUB(PowAssignExp)
|
||
|
||
llvm::Constant* Expression::toConstElem(IRState * p)
|
||
{
|
||
error("expression '%s' is not a constant", toChars());
|
||
if (!global.gag)
|
||
fatal();
|
||
return NULL;
|
||
}
|