ldc/gen/functions.cpp
Tomas Lindquist Olsen 64537a9478 [svn r149] fixed: a bunch of D-style variadics problems.
fixed: GotoDefaultStatement implemented.
fixed: some other minor bugs.
2008-01-26 17:13:22 +01:00

799 lines
27 KiB
C++

#include "gen/llvm.h"
#include "mtype.h"
#include "aggregate.h"
#include "init.h"
#include "declaration.h"
#include "template.h"
#include "module.h"
#include "statement.h"
#include "gen/irstate.h"
#include "gen/tollvm.h"
#include "gen/runtime.h"
#include "gen/arrays.h"
#include "gen/logger.h"
#include "gen/functions.h"
#include "gen/todebug.h"
#include "gen/classes.h"
#include "gen/dvalue.h"
const llvm::FunctionType* DtoFunctionType(Type* type, const llvm::Type* thistype, bool ismain)
{
TypeFunction* f = (TypeFunction*)type;
assert(f != 0);
if (type->llvmType != NULL) {
return llvm::cast<llvm::FunctionType>(type->llvmType->get());
}
bool typesafeVararg = false;
if (f->linkage == LINKd && f->varargs == 1) {
typesafeVararg = true;
}
// return value type
const llvm::Type* rettype;
const llvm::Type* actualRettype;
Type* rt = f->next;
bool retinptr = false;
bool usesthis = false;
if (ismain) {
rettype = llvm::Type::Int32Ty;
actualRettype = rettype;
}
else {
assert(rt);
Type* rtfin = DtoDType(rt);
if (DtoIsPassedByRef(rt)) {
rettype = getPtrToType(DtoType(rt));
actualRettype = llvm::Type::VoidTy;
f->llvmRetInPtr = retinptr = true;
}
else {
rettype = DtoType(rt);
actualRettype = rettype;
}
}
// parameter types
std::vector<const llvm::Type*> paramvec;
if (retinptr) {
//Logger::cout() << "returning through pointer parameter: " << *rettype << '\n';
paramvec.push_back(rettype);
}
if (thistype) {
paramvec.push_back(thistype);
usesthis = true;
}
if (typesafeVararg) {
ClassDeclaration* ti = Type::typeinfo;
ti->toObjFile();
DtoForceConstInitDsymbol(ti);
assert(ti->irStruct->constInit);
std::vector<const llvm::Type*> types;
types.push_back(DtoSize_t());
types.push_back(getPtrToType(getPtrToType(ti->irStruct->constInit->getType())));
const llvm::Type* t1 = llvm::StructType::get(types);
paramvec.push_back(getPtrToType(t1));
paramvec.push_back(getPtrToType(llvm::Type::Int8Ty));
}
size_t n = Argument::dim(f->parameters);
for (int i=0; i < n; ++i) {
Argument* arg = Argument::getNth(f->parameters, i);
// ensure scalar
Type* argT = DtoDType(arg->type);
assert(argT);
const llvm::Type* at = DtoType(argT);
if (isaStruct(at)) {
Logger::println("struct param");
paramvec.push_back(getPtrToType(at));
}
else if (isaArray(at)) {
Logger::println("sarray param");
assert(argT->ty == Tsarray);
//paramvec.push_back(getPtrToType(at->getContainedType(0)));
paramvec.push_back(getPtrToType(at));
}
else if (llvm::isa<llvm::OpaqueType>(at)) {
Logger::println("opaque param");
assert(argT->ty == Tstruct || argT->ty == Tclass);
paramvec.push_back(getPtrToType(at));
}
else {
if ((arg->storageClass & STCref) || (arg->storageClass & STCout)) {
Logger::println("by ref param");
at = getPtrToType(at);
}
else {
Logger::println("in param");
}
paramvec.push_back(at);
}
}
// construct function type
bool isvararg = !typesafeVararg && f->varargs;
llvm::FunctionType* functype = llvm::FunctionType::get(actualRettype, paramvec, isvararg);
f->llvmRetInPtr = retinptr;
f->llvmUsesThis = usesthis;
//if (!f->llvmType)
f->llvmType = new llvm::PATypeHolder(functype);
//else
//assert(functype == f->llvmType->get());
return functype;
}
//////////////////////////////////////////////////////////////////////////////////////////
static const llvm::FunctionType* DtoVaFunctionType(FuncDeclaration* fdecl)
{
// type has already been resolved
if (fdecl->type->llvmType != 0) {
return llvm::cast<llvm::FunctionType>(fdecl->type->llvmType->get());
}
TypeFunction* f = (TypeFunction*)fdecl->type;
assert(f != 0);
const llvm::PointerType* i8pty = getPtrToType(llvm::Type::Int8Ty);
std::vector<const llvm::Type*> args;
if (fdecl->llvmInternal == LLVMva_start) {
args.push_back(i8pty);
}
else if (fdecl->llvmInternal == LLVMva_intrinsic) {
size_t n = Argument::dim(f->parameters);
for (size_t i=0; i<n; ++i) {
args.push_back(i8pty);
}
}
else
assert(0);
const llvm::FunctionType* fty = llvm::FunctionType::get(llvm::Type::VoidTy, args, false);
f->llvmType = new llvm::PATypeHolder(fty);
return fty;
}
//////////////////////////////////////////////////////////////////////////////////////////
const llvm::FunctionType* DtoFunctionType(FuncDeclaration* fdecl)
{
if ((fdecl->llvmInternal == LLVMva_start) || (fdecl->llvmInternal == LLVMva_intrinsic)) {
return DtoVaFunctionType(fdecl);
}
// unittest has null type, just build it manually
/*if (fdecl->isUnitTestDeclaration()) {
std::vector<const llvm::Type*> args;
return llvm::FunctionType::get(llvm::Type::VoidTy, args, false);
}*/
// type has already been resolved
if (fdecl->type->llvmType != 0) {
return llvm::cast<llvm::FunctionType>(fdecl->type->llvmType->get());
}
const llvm::Type* thisty = NULL;
if (fdecl->needThis()) {
if (AggregateDeclaration* ad = fdecl->isMember2()) {
Logger::println("isMember = this is: %s", ad->type->toChars());
thisty = DtoType(ad->type);
//Logger::cout() << "this llvm type: " << *thisty << '\n';
if (isaStruct(thisty) || (!gIR->structs.empty() && thisty == gIR->topstruct()->recty.get()))
thisty = getPtrToType(thisty);
}
else {
Logger::println("chars: %s type: %s kind: %s", fdecl->toChars(), fdecl->type->toChars(), fdecl->kind());
assert(0);
}
}
else if (fdecl->isNested()) {
thisty = getPtrToType(llvm::Type::Int8Ty);
}
const llvm::FunctionType* functype = DtoFunctionType(fdecl->type, thisty, fdecl->isMain());
return functype;
}
//////////////////////////////////////////////////////////////////////////////////////////
static llvm::Function* DtoDeclareVaFunction(FuncDeclaration* fdecl)
{
TypeFunction* f = (TypeFunction*)DtoDType(fdecl->type);
const llvm::FunctionType* fty = DtoVaFunctionType(fdecl);
llvm::Constant* fn = 0;
if (fdecl->llvmInternal == LLVMva_start) {
fn = gIR->module->getOrInsertFunction("llvm.va_start", fty);
assert(fn);
}
else if (fdecl->llvmInternal == LLVMva_intrinsic) {
fn = gIR->module->getOrInsertFunction(fdecl->llvmInternal1, fty);
assert(fn);
}
else
assert(0);
llvm::Function* func = llvm::dyn_cast<llvm::Function>(fn);
assert(func);
assert(func->isIntrinsic());
fdecl->irFunc->func = func;
return func;
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoResolveFunction(FuncDeclaration* fdecl)
{
if (!global.params.useUnitTests && fdecl->isUnitTestDeclaration()) {
return; // ignore declaration completely
}
// is imported and we don't have access?
if (fdecl->getModule() != gIR->dmodule)
{
if (fdecl->prot() == PROTprivate)
return;
}
if (fdecl->llvmResolved) return;
fdecl->llvmResolved = true;
Logger::println("DtoResolveFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
LOG_SCOPE;
if (fdecl->runTimeHack) {
gIR->declareList.push_back(fdecl);
TypeFunction* tf = (TypeFunction*)fdecl->type;
tf->llvmRetInPtr = DtoIsPassedByRef(tf->next);
return;
}
if (fdecl->parent)
if (TemplateInstance* tinst = fdecl->parent->isTemplateInstance())
{
TemplateDeclaration* tempdecl = tinst->tempdecl;
if (tempdecl->llvmInternal == LLVMva_arg)
{
Logger::println("magic va_arg found");
fdecl->llvmInternal = LLVMva_arg;
fdecl->llvmDeclared = true;
fdecl->llvmInitialized = true;
fdecl->llvmDefined = true;
return; // this gets mapped to an instruction so a declaration makes no sence
}
else if (tempdecl->llvmInternal == LLVMva_start)
{
Logger::println("magic va_start found");
fdecl->llvmInternal = LLVMva_start;
}
}
DtoFunctionType(fdecl);
// queue declaration
if (!fdecl->isAbstract())
gIR->declareList.push_back(fdecl);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoDeclareFunction(FuncDeclaration* fdecl)
{
if (fdecl->llvmDeclared) return;
fdecl->llvmDeclared = true;
Logger::println("DtoDeclareFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
LOG_SCOPE;
assert(!fdecl->isAbstract());
// intrinsic sanity check
if (fdecl->llvmInternal == LLVMintrinsic && fdecl->fbody) {
error(fdecl->loc, "intrinsics cannot have function bodies");
fatal();
}
if (fdecl->runTimeHack) {
Logger::println("runtime hack func chars: %s", fdecl->toChars());
if (!fdecl->irFunc) {
fdecl->irFunc = new IrFunction(fdecl);
fdecl->irFunc->func = LLVM_D_GetRuntimeFunction(gIR->module, fdecl->toChars());
}
return;
}
bool declareOnly = false;
bool templInst = fdecl->parent && DtoIsTemplateInstance(fdecl->parent);
if (!templInst && fdecl->getModule() != gIR->dmodule)
{
Logger::println("not template instance, and not in this module. declare only!");
Logger::println("current module: %s", gIR->dmodule->ident->toChars());
Logger::println("func module: %s", fdecl->getModule()->ident->toChars());
declareOnly = true;
}
else if (fdecl->llvmInternal == LLVMva_start)
declareOnly = true;
if (!fdecl->irFunc) {
fdecl->irFunc = new IrFunction(fdecl);
}
// mangled name
char* mangled_name;
if (fdecl->llvmInternal == LLVMintrinsic)
mangled_name = fdecl->llvmInternal1;
else
mangled_name = fdecl->mangle();
llvm::Function* vafunc = 0;
if ((fdecl->llvmInternal == LLVMva_start) || (fdecl->llvmInternal == LLVMva_intrinsic)) {
vafunc = DtoDeclareVaFunction(fdecl);
}
Type* t = DtoDType(fdecl->type);
TypeFunction* f = (TypeFunction*)t;
// construct function
const llvm::FunctionType* functype = DtoFunctionType(fdecl);
llvm::Function* func = vafunc ? vafunc : gIR->module->getFunction(mangled_name);
if (!func)
func = new llvm::Function(functype, DtoLinkage(fdecl->protection, fdecl->storage_class), mangled_name, gIR->module);
else
assert(func->getFunctionType() == functype);
// add func to IRFunc
fdecl->irFunc->func = func;
// calling convention
if (!vafunc && fdecl->llvmInternal != LLVMintrinsic)
func->setCallingConv(DtoCallingConv(f->linkage));
// template instances should have weak linkage
if (!vafunc && fdecl->llvmInternal != LLVMintrinsic && fdecl->parent && DtoIsTemplateInstance(fdecl->parent))
func->setLinkage(llvm::GlobalValue::WeakLinkage);
// extern(C) functions are always external
if (f->linkage == LINKc)
func->setLinkage(llvm::GlobalValue::ExternalLinkage);
// intrinsics are always external C
if (fdecl->llvmInternal == LLVMintrinsic)
{
func->setLinkage(llvm::GlobalValue::ExternalLinkage);
func->setCallingConv(llvm::CallingConv::C);
}
fdecl->irFunc->func = func;
assert(llvm::isa<llvm::FunctionType>(f->llvmType->get()));
// main
if (fdecl->isMain()) {
gIR->mainFunc = func;
}
// static ctor
if (fdecl->isStaticCtorDeclaration()) {
gIR->ctors.push_back(fdecl);
}
// static dtor
else if (fdecl->isStaticDtorDeclaration()) {
gIR->dtors.push_back(fdecl);
}
// name parameters
llvm::Function::arg_iterator iarg = func->arg_begin();
int k = 0;
if (f->llvmRetInPtr) {
iarg->setName("retval");
fdecl->irFunc->retArg = iarg;
++iarg;
}
if (f->llvmUsesThis) {
iarg->setName("this");
fdecl->irFunc->thisVar = iarg;
assert(fdecl->irFunc->thisVar);
++iarg;
}
if (f->linkage == LINKd && f->varargs == 1) {
iarg->setName("_arguments");
fdecl->irFunc->_arguments = iarg;
++iarg;
iarg->setName("_argptr");
fdecl->irFunc->_argptr = iarg;
++iarg;
}
for (; iarg != func->arg_end(); ++iarg)
{
Argument* arg = Argument::getNth(f->parameters, k++);
//arg->llvmValue = iarg;
//Logger::println("identifier: '%s' %p\n", arg->ident->toChars(), arg->ident);
if (arg && arg->ident != 0) {
if (arg->vardecl) {
assert(!arg->vardecl->irLocal);
arg->vardecl->irLocal = new IrLocal(arg->vardecl);
arg->vardecl->irLocal->value = iarg;
}
iarg->setName(arg->ident->toChars());
}
else {
iarg->setName("unnamed");
}
}
if (fdecl->isUnitTestDeclaration())
gIR->unitTests.push_back(fdecl);
if (!declareOnly)
gIR->defineList.push_back(fdecl);
else
assert(func->getLinkage() != llvm::GlobalValue::InternalLinkage);
Logger::cout() << "func decl: " << *func << '\n';
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoDefineFunc(FuncDeclaration* fd)
{
if (fd->llvmDefined) return;
fd->llvmDefined = true;
assert(fd->llvmDeclared);
Logger::println("DtoDefineFunc(%s): %s", fd->toPrettyChars(), fd->loc.toChars());
LOG_SCOPE;
// debug info
if (global.params.symdebug) {
Module* mo = fd->getModule();
fd->irFunc->dwarfSubProg = DtoDwarfSubProgram(fd, DtoDwarfCompileUnit(mo));
}
Type* t = DtoDType(fd->type);
TypeFunction* f = (TypeFunction*)t;
assert(f->llvmType);
llvm::Function* func = fd->irFunc->func;
const llvm::FunctionType* functype = func->getFunctionType();
// only members of the current module or template instances maybe be defined
if (fd->getModule() == gIR->dmodule || DtoIsTemplateInstance(fd->parent))
{
fd->llvmDModule = gIR->dmodule;
// function definition
if (fd->fbody != 0)
{
Logger::println("Doing function body for: %s", fd->toChars());
assert(fd->irFunc);
gIR->functions.push_back(fd->irFunc);
if (fd->isMain())
gIR->emitMain = true;
llvm::BasicBlock* beginbb = new llvm::BasicBlock("entry",func);
llvm::BasicBlock* endbb = new llvm::BasicBlock("endentry",func);
//assert(gIR->scopes.empty());
gIR->scopes.push_back(IRScope(beginbb, endbb));
// create alloca point
llvm::Instruction* allocaPoint = new llvm::BitCastInst(llvm::ConstantInt::get(llvm::Type::Int32Ty,0,false),llvm::Type::Int32Ty,"alloca point",gIR->scopebb());
gIR->func()->allocapoint = allocaPoint;
// need result variable? (not nested)
if (fd->vresult && !fd->vresult->nestedref) {
Logger::println("non-nested vresult value");
fd->vresult->irLocal = new IrLocal(fd->vresult);
fd->vresult->irLocal->value = new llvm::AllocaInst(DtoType(fd->vresult->type),"function_vresult",allocaPoint);
}
// give arguments storage
size_t n = Argument::dim(f->parameters);
for (int i=0; i < n; ++i) {
Argument* arg = Argument::getNth(f->parameters, i);
if (arg && arg->vardecl) {
VarDeclaration* vd = arg->vardecl;
if (!vd->needsStorage || vd->nestedref || vd->isRef() || vd->isOut() || DtoIsPassedByRef(vd->type))
continue;
llvm::Value* a = vd->irLocal->value;
assert(a);
std::string s(a->getName());
Logger::println("giving argument '%s' storage", s.c_str());
s.append("_storage");
llvm::Value* v = new llvm::AllocaInst(a->getType(),s,allocaPoint);
gIR->ir->CreateStore(a,v);
vd->irLocal->value = v;
}
else {
Logger::attention(fd->loc, "some unknown argument: %s", arg ? arg->toChars() : 0);
}
}
// debug info
if (global.params.symdebug) DtoDwarfFuncStart(fd);
llvm::Value* parentNested = NULL;
if (FuncDeclaration* fd2 = fd->toParent2()->isFuncDeclaration()) {
if (!fd->isStatic()) // huh?
parentNested = fd2->irFunc->nestedVar;
}
// need result variable? (nested)
if (fd->vresult && fd->vresult->nestedref) {
Logger::println("nested vresult value: %s", fd->vresult->toChars());
fd->nestedVars.insert(fd->vresult);
}
// construct nested variables struct
if (!fd->nestedVars.empty() || parentNested) {
std::vector<const llvm::Type*> nestTypes;
int j = 0;
if (parentNested) {
nestTypes.push_back(parentNested->getType());
j++;
}
for (std::set<VarDeclaration*>::iterator i=fd->nestedVars.begin(); i!=fd->nestedVars.end(); ++i) {
VarDeclaration* vd = *i;
Logger::println("referenced nested variable %s", vd->toChars());
if (!vd->irLocal)
vd->irLocal = new IrLocal(vd);
vd->irLocal->nestedIndex = j++;
if (vd->isParameter()) {
if (!vd->irLocal->value) {
assert(vd == fd->vthis);
vd->irLocal->value = fd->irFunc->thisVar;
}
assert(vd->irLocal->value);
nestTypes.push_back(vd->irLocal->value->getType());
}
else {
nestTypes.push_back(DtoType(vd->type));
}
}
const llvm::StructType* nestSType = llvm::StructType::get(nestTypes);
Logger::cout() << "nested var struct has type:" << *nestSType << '\n';
fd->irFunc->nestedVar = new llvm::AllocaInst(nestSType,"nestedvars",allocaPoint);
if (parentNested) {
assert(fd->irFunc->thisVar);
llvm::Value* ptr = gIR->ir->CreateBitCast(fd->irFunc->thisVar, parentNested->getType(), "tmp");
gIR->ir->CreateStore(ptr, DtoGEPi(fd->irFunc->nestedVar, 0,0, "tmp"));
}
for (std::set<VarDeclaration*>::iterator i=fd->nestedVars.begin(); i!=fd->nestedVars.end(); ++i) {
VarDeclaration* vd = *i;
if (vd->isParameter()) {
assert(vd->irLocal);
gIR->ir->CreateStore(vd->irLocal->value, DtoGEPi(fd->irFunc->nestedVar, 0, vd->irLocal->nestedIndex, "tmp"));
vd->irLocal->value = fd->irFunc->nestedVar;
}
}
}
// copy _argptr to a memory location
if (f->linkage == LINKd && f->varargs == 1)
{
llvm::Value* argptrmem = new llvm::AllocaInst(fd->irFunc->_argptr->getType(), "_argptrmem", gIR->topallocapoint());
new llvm::StoreInst(fd->irFunc->_argptr, argptrmem, gIR->scopebb());
fd->irFunc->_argptr = argptrmem;
}
// output function body
fd->fbody->toIR(gIR);
// llvm requires all basic blocks to end with a TerminatorInst but DMD does not put a return statement
// in automatically, so we do it here.
if (!fd->isMain()) {
if (!gIR->scopereturned()) {
// pass the previous block into this block
if (global.params.symdebug) DtoDwarfFuncEnd(fd);
if (func->getReturnType() == llvm::Type::VoidTy) {
new llvm::ReturnInst(gIR->scopebb());
}
else {
new llvm::ReturnInst(llvm::UndefValue::get(func->getReturnType()), gIR->scopebb());
}
}
}
// erase alloca point
allocaPoint->eraseFromParent();
allocaPoint = 0;
gIR->func()->allocapoint = 0;
gIR->scopes.pop_back();
// get rid of the endentry block, it's never used
assert(!func->getBasicBlockList().empty());
func->getBasicBlockList().pop_back();
// if the last block is empty now, it must be unreachable or it's a bug somewhere else
// would be nice to figure out how to assert that this is correct
llvm::BasicBlock* lastbb = &func->getBasicBlockList().back();
if (lastbb->empty()) {
if (lastbb->getNumUses() == 0)
lastbb->eraseFromParent();
else {
new llvm::UnreachableInst(lastbb);
/*if (func->getReturnType() == llvm::Type::VoidTy) {
new llvm::ReturnInst(lastbb);
}
else {
new llvm::ReturnInst(llvm::UndefValue::get(func->getReturnType()), lastbb);
}*/
}
}
gIR->functions.pop_back();
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoMain()
{
// emit main function llvm style
// int main(int argc, char**argv, char**env);
assert(gIR != 0);
IRState& ir = *gIR;
assert(ir.emitMain && ir.mainFunc);
// parameter types
std::vector<const llvm::Type*> pvec;
pvec.push_back((const llvm::Type*)llvm::Type::Int32Ty);
const llvm::Type* chPtrType = (const llvm::Type*)getPtrToType(llvm::Type::Int8Ty);
pvec.push_back((const llvm::Type*)getPtrToType(chPtrType));
pvec.push_back((const llvm::Type*)getPtrToType(chPtrType));
const llvm::Type* rettype = (const llvm::Type*)llvm::Type::Int32Ty;
llvm::FunctionType* functype = llvm::FunctionType::get(rettype, pvec, false);
llvm::Function* func = new llvm::Function(functype,llvm::GlobalValue::ExternalLinkage,"main",ir.module);
llvm::BasicBlock* bb = new llvm::BasicBlock("entry",func);
// call static ctors
llvm::Function* fn = LLVM_D_GetRuntimeFunction(ir.module,"_moduleCtor");
llvm::Instruction* apt = new llvm::CallInst(fn,"",bb);
// run unit tests if -unittest is provided
if (global.params.useUnitTests) {
fn = LLVM_D_GetRuntimeFunction(ir.module,"_moduleUnitTests");
llvm::Instruction* apt = new llvm::CallInst(fn,"",bb);
}
// call user main function
const llvm::FunctionType* mainty = ir.mainFunc->getFunctionType();
llvm::CallInst* call;
if (mainty->getNumParams() > 0)
{
// main with arguments
assert(mainty->getNumParams() == 1);
std::vector<llvm::Value*> args;
llvm::Function* mfn = LLVM_D_GetRuntimeFunction(ir.module,"_d_main_args");
llvm::Function::arg_iterator argi = func->arg_begin();
args.push_back(argi++);
args.push_back(argi++);
const llvm::Type* at = mainty->getParamType(0)->getContainedType(0);
llvm::Value* arr = new llvm::AllocaInst(at->getContainedType(1)->getContainedType(0), func->arg_begin(), "argstorage", apt);
llvm::Value* a = new llvm::AllocaInst(at, "argarray", apt);
llvm::Value* ptr = DtoGEPi(a,0,0,"tmp",bb);
llvm::Value* v = args[0];
if (v->getType() != DtoSize_t())
v = new llvm::ZExtInst(v, DtoSize_t(), "tmp", bb);
new llvm::StoreInst(v,ptr,bb);
ptr = DtoGEPi(a,0,1,"tmp",bb);
new llvm::StoreInst(arr,ptr,bb);
args.push_back(a);
new llvm::CallInst(mfn, args.begin(), args.end(), "", bb);
call = new llvm::CallInst(ir.mainFunc,a,"ret",bb);
}
else
{
// main with no arguments
call = new llvm::CallInst(ir.mainFunc,"ret",bb);
}
call->setCallingConv(ir.mainFunc->getCallingConv());
// call static dtors
fn = LLVM_D_GetRuntimeFunction(ir.module,"_moduleDtor");
new llvm::CallInst(fn,"",bb);
// return
new llvm::ReturnInst(call,bb);
}
//////////////////////////////////////////////////////////////////////////////////////////
const llvm::FunctionType* DtoBaseFunctionType(FuncDeclaration* fdecl)
{
Dsymbol* parent = fdecl->toParent();
ClassDeclaration* cd = parent->isClassDeclaration();
assert(cd);
FuncDeclaration* f = fdecl;
while (cd)
{
ClassDeclaration* base = cd->baseClass;
if (!base)
break;
FuncDeclaration* f2 = base->findFunc(fdecl->ident, (TypeFunction*)fdecl->type);
if (f2) {
f = f2;
cd = base;
}
else
break;
}
DtoResolveDsymbol(f);
return llvm::cast<llvm::FunctionType>(DtoType(f->type));
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoArgument(Argument* fnarg, Expression* argexp)
{
Logger::println("DtoArgument");
LOG_SCOPE;
DValue* arg = argexp->toElem(gIR);
// ref/out arg
if (fnarg && ((fnarg->storageClass & STCref) || (fnarg->storageClass & STCout)))
{
if (arg->isVar() || arg->isLRValue())
arg = new DImValue(argexp->type, arg->getLVal(), false);
else
arg = new DImValue(argexp->type, arg->getRVal(), false);
}
// aggregate arg
else if (DtoIsPassedByRef(argexp->type))
{
llvm::Value* alloc = new llvm::AllocaInst(DtoType(argexp->type), "tmpparam", gIR->topallocapoint());
DVarValue* vv = new DVarValue(argexp->type, alloc, true);
DtoAssign(vv, arg);
arg = vv;
}
// normal arg (basic/value type)
else
{
// nothing to do
}
return arg;
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoVariadicArgument(Expression* argexp, llvm::Value* dst)
{
Logger::println("DtoVariadicArgument");
LOG_SCOPE;
DVarValue* vv = new DVarValue(argexp->type, dst, true);
DtoAssign(vv, argexp->toElem(gIR));
}
//////////////////////////////////////////////////////////////////////////////////////////