ldc/ir/irfunction.cpp

676 lines
24 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- irfunction.cpp ----------------------------------------------------===//
//
// LDC the LLVM D compiler
//
// This file is distributed under the BSD-style LDC license. See the LICENSE
// file for details.
//
//===----------------------------------------------------------------------===//
#include "gen/llvm.h"
#include "gen/llvmhelpers.h"
#include "gen/irstate.h"
#include "gen/runtime.h"
#include "gen/tollvm.h"
#include "gen/ms-cxx-helper.h"
#include "ir/irdsymbol.h"
#include "ir/irfunction.h"
#include <sstream>
JumpTarget::JumpTarget(llvm::BasicBlock *targetBlock,
CleanupCursor cleanupScope, Statement *targetStatement)
: targetBlock(targetBlock), cleanupScope(cleanupScope),
targetStatement(targetStatement) {}
GotoJump::GotoJump(Loc loc, llvm::BasicBlock *sourceBlock,
llvm::BasicBlock *tentativeTarget, Identifier *targetLabel)
: sourceLoc(std::move(loc)), sourceBlock(sourceBlock),
tentativeTarget(tentativeTarget), targetLabel(targetLabel) {}
CatchScope::CatchScope(llvm::Constant *classInfoPtr,
llvm::BasicBlock *bodyBlock, CleanupCursor cleanupScope)
: classInfoPtr(classInfoPtr), bodyBlock(bodyBlock),
cleanupScope(cleanupScope) {}
bool useMSVCEH() {
#if LDC_LLVM_VER >= 308
return global.params.targetTriple.isWindowsMSVCEnvironment() &&
!global.params.targetTriple.isArch64Bit();
#else
return false;
#endif
}
namespace {
#if LDC_LLVM_VER >= 308
// MSVC/x86 uses C++ exception handling that puts cleanup blocks into funclets.
// This means that we cannot use a branch selector and conditional branches
// at cleanup exit to continue with different targets.
// Instead we make a full copy of the cleanup code for every target
//
// Return the beginning basic block of the cleanup code
llvm::BasicBlock *executeCleanupCopying(IRState *irs, CleanupScope &scope,
llvm::BasicBlock *sourceBlock,
llvm::BasicBlock *continueWith,
llvm::BasicBlock *unwindTo,
llvm::Value* funclet) {
if (isCatchSwitchBlock(scope.beginBlock))
return continueWith;
if (scope.cleanupBlocks.empty()) {
// figure out the list of blocks used by this cleanup step
findSuccessors(scope.cleanupBlocks, scope.beginBlock, scope.endBlock);
if (!scope.endBlock->getTerminator())
// Set up the unconditional branch at the end of the cleanup
llvm::BranchInst::Create(continueWith, scope.endBlock);
} else {
// check whether we have an exit target with the same continuation
for (CleanupExitTarget &tgt : scope.exitTargets)
if (tgt.branchTarget == continueWith) {
tgt.sourceBlocks.push_back(sourceBlock);
return tgt.cleanupBlocks.front();
}
}
// reuse the original IR if not unwinding and not already used
bool useOriginal = unwindTo == nullptr && funclet == nullptr;
for (CleanupExitTarget &tgt : scope.exitTargets)
useOriginal = useOriginal && tgt.cleanupBlocks.front() != scope.beginBlock;
// append new target
scope.exitTargets.push_back(CleanupExitTarget(continueWith));
scope.exitTargets.back().sourceBlocks.push_back(sourceBlock);
if (useOriginal) {
// change the continuation target if the initial branch was created
// by another instance with unwinding
if (continueWith)
if (auto term = scope.endBlock->getTerminator())
if (auto succ = term->getSuccessor(0))
if (succ != continueWith) {
remapBlocksValue(scope.cleanupBlocks, succ, continueWith);
}
scope.exitTargets.back().cleanupBlocks = scope.cleanupBlocks;
} else {
// clone the code
cloneBlocks(scope.cleanupBlocks, scope.exitTargets.back().cleanupBlocks,
continueWith, unwindTo, funclet);
}
return scope.exitTargets.back().cleanupBlocks.front();
}
#endif // LDC_LLVM_VER >= 308
void executeCleanup(IRState *irs, CleanupScope &scope,
llvm::BasicBlock *sourceBlock,
llvm::BasicBlock *continueWith) {
assert(!useMSVCEH()); // should always use executeCleanupCopying
if (scope.exitTargets.empty() ||
(scope.exitTargets.size() == 1 &&
scope.exitTargets[0].branchTarget == continueWith)) {
// We didn't need a branch selector before and still don't need one.
assert(!scope.branchSelector);
// Set up the unconditional branch at the end of the cleanup if we have
// not done so already.
if (scope.exitTargets.empty()) {
scope.exitTargets.push_back(CleanupExitTarget(continueWith));
llvm::BranchInst::Create(continueWith, scope.endBlock);
}
scope.exitTargets.front().sourceBlocks.push_back(sourceBlock);
return;
}
// We need a branch selector if we are here...
if (!scope.branchSelector) {
// ... and have not created one yet, so do so now.
scope.branchSelector = new llvm::AllocaInst(
llvm::Type::getInt32Ty(gIR->context()),
llvm::Twine("branchsel.") + scope.beginBlock->getName(),
irs->topallocapoint());
// Now we also need to store 0 to it to keep the paths that go to the
// only existing branch target the same.
auto &v = scope.exitTargets.front().sourceBlocks;
for (auto bb : v) {
new llvm::StoreInst(DtoConstUint(0), scope.branchSelector,
bb->getTerminator());
}
// And convert the BranchInst to the existing branch target to a
// SelectInst so we can append the other cases to it.
scope.endBlock->getTerminator()->eraseFromParent();
llvm::Value *sel =
new llvm::LoadInst(scope.branchSelector, "", scope.endBlock);
llvm::SwitchInst::Create(
sel, scope.exitTargets[0].branchTarget,
1, // Expected number of branches, only for pre-allocating.
scope.endBlock);
}
// If we already know this branch target, figure out the branch selector
// value and simply insert the store into the source block (prior to the
// last instruction, which is the branch to the first cleanup).
for (unsigned i = 0; i < scope.exitTargets.size(); ++i) {
CleanupExitTarget &t = scope.exitTargets[i];
if (t.branchTarget == continueWith) {
new llvm::StoreInst(DtoConstUint(i), scope.branchSelector,
sourceBlock->getTerminator());
// Note: Strictly speaking, keeping this up to date would not be
// needed right now, because we never to any optimizations that
// require changes to the source blocks after the initial conversion
// from one to two branch targets. Keeping this around for now to
// ease future development, but may be removed to save some work.
t.sourceBlocks.push_back(sourceBlock);
return;
}
}
// We don't know this branch target yet, so add it to the SwitchInst...
llvm::ConstantInt *const selectorVal = DtoConstUint(scope.exitTargets.size());
llvm::cast<llvm::SwitchInst>(scope.endBlock->getTerminator())
->addCase(selectorVal, continueWith);
// ... insert the store into the source block...
new llvm::StoreInst(selectorVal, scope.branchSelector,
sourceBlock->getTerminator());
// ... and keep track of it (again, this is unnecessary right now as
// discussed in the above note).
scope.exitTargets.push_back(CleanupExitTarget(continueWith));
scope.exitTargets.back().sourceBlocks.push_back(sourceBlock);
}
}
ScopeStack::~ScopeStack() {
// If there are still unresolved gotos left, it means that they were either
// down or "sideways" (i.e. down another branch) of the tree of all
// cleanup scopes, both of which are not allowed in D.
if (!topLevelUnresolvedGotos.empty()) {
for (const auto &i : topLevelUnresolvedGotos) {
error(i.sourceLoc, "goto into try/finally scope is not allowed");
}
fatal();
}
}
void ScopeStack::pushCleanup(llvm::BasicBlock *beginBlock,
llvm::BasicBlock *endBlock) {
cleanupScopes.push_back(CleanupScope(beginBlock, endBlock));
}
void ScopeStack::runCleanups(CleanupCursor sourceScope,
CleanupCursor targetScope,
llvm::BasicBlock *continueWith) {
#if LDC_LLVM_VER >= 308
if (useMSVCEH()) {
runCleanupCopies(sourceScope, targetScope, continueWith);
return;
}
#endif
assert(targetScope <= sourceScope);
if (targetScope == sourceScope) {
// No cleanups to run, just branch to the next block.
irs->ir->CreateBr(continueWith);
return;
}
// Insert the unconditional branch to the first cleanup block.
irs->ir->CreateBr(cleanupScopes[sourceScope - 1].beginBlock);
// Update all the control flow in the cleanups to make sure we end up where
// we want.
for (CleanupCursor i = sourceScope; i-- > targetScope;) {
llvm::BasicBlock *nextBlock =
(i > targetScope) ? cleanupScopes[i - 1].beginBlock : continueWith;
executeCleanup(irs, cleanupScopes[i], irs->scopebb(), nextBlock);
}
}
#if LDC_LLVM_VER >= 308
void ScopeStack::runCleanupCopies(CleanupCursor sourceScope,
CleanupCursor targetScope,
llvm::BasicBlock *continueWith) {
assert(targetScope <= sourceScope);
// work through the blocks in reverse execution order, so we
// can merge cleanups that end up at the same continuation target
for (CleanupCursor i = targetScope; i < sourceScope; ++i)
continueWith = executeCleanupCopying(irs, cleanupScopes[i], irs->scopebb(),
continueWith, nullptr, nullptr);
// Insert the unconditional branch to the first cleanup block.
irs->ir->CreateBr(continueWith);
}
llvm::BasicBlock *ScopeStack::runCleanupPad(CleanupCursor scope,
llvm::BasicBlock *unwindTo) {
if (isCatchSwitchBlock(cleanupScopes[scope].beginBlock))
return cleanupScopes[scope].beginBlock;
// when hitting a catch return instruction during cleanup,
// just unwind to the corresponding catchswitch block instead
if (!cleanupScopes[scope].beginBlock->empty()) {
if (auto catchret = llvm::dyn_cast<llvm::CatchReturnInst>(
&cleanupScopes[scope].beginBlock->front())) {
llvm::BasicBlock* endcatch = nullptr;
auto catchpad = catchret->getCatchPad();
auto catchswitch = catchpad->getCatchSwitch();
return catchswitch->getUnwindDest();
}
}
// each cleanup block is bracketed by a pair of cleanuppad/cleanupret
// instructions, any unwinding should also just continue at the next
// cleanup block, e.g.:
//
// cleanuppad:
// %0 = cleanuppad within %funclet[]
// br label %copy
//
// copy:
// invoke _dtor to %cleanupret unwind %unwindTo [ "funclet"(token %0) ]
//
// cleanupret:
// cleanupret %0 unwind %unwindTo
//
llvm::BasicBlock *cleanupbb =
llvm::BasicBlock::Create(irs->context(), "cleanuppad", irs->topfunc());
auto cleanuppad =
llvm::CleanupPadInst::Create(getFuncletToken(), {}, "", cleanupbb);
llvm::BasicBlock *cleanupret =
llvm::BasicBlock::Create(irs->context(), "cleanupret", irs->topfunc());
llvm::CleanupReturnInst::Create(cleanuppad, unwindTo, cleanupret);
auto copybb = executeCleanupCopying(irs, cleanupScopes[scope], cleanupbb,
cleanupret, unwindTo, cleanuppad);
llvm::BranchInst::Create(copybb, cleanupbb);
return cleanupbb;
}
#endif
void ScopeStack::runAllCleanups(llvm::BasicBlock *continueWith) {
runCleanups(0, continueWith);
}
void ScopeStack::popCleanups(CleanupCursor targetScope) {
assert(targetScope <= currentCleanupScope());
if (targetScope == currentCleanupScope()) {
return;
}
for (CleanupCursor i = currentCleanupScope(); i-- > targetScope;) {
// Any gotos that are still unresolved necessarily leave this scope.
// Thus, the cleanup needs to be executed.
for (const auto &gotoJump : currentUnresolvedGotos()) {
// Make the source resp. last cleanup branch to this one.
llvm::BasicBlock *tentative = gotoJump.tentativeTarget;
#if LDC_LLVM_VER >= 308
if (useMSVCEH()) {
llvm::BasicBlock *continueWith =
llvm::BasicBlock::Create(irs->context(), "jumpcleanup", irs->topfunc());
auto startCleanup =
executeCleanupCopying(irs, cleanupScopes[i], gotoJump.sourceBlock,
continueWith, nullptr, nullptr);
tentative->replaceAllUsesWith(startCleanup);
llvm::BranchInst::Create(tentative, continueWith);
} else
#endif
{
tentative->replaceAllUsesWith(cleanupScopes[i].beginBlock);
// And continue execution with the tentative target (we simply reuse
// it because there is no reason not to).
executeCleanup(irs, cleanupScopes[i], gotoJump.sourceBlock, tentative);
}
}
std::vector<GotoJump> &nextUnresolved =
(i == 0) ? topLevelUnresolvedGotos
: cleanupScopes[i - 1].unresolvedGotos;
nextUnresolved.insert(nextUnresolved.end(),
currentUnresolvedGotos().begin(),
currentUnresolvedGotos().end());
cleanupScopes.pop_back();
}
}
void ScopeStack::pushCatch(llvm::Constant *classInfoPtr,
llvm::BasicBlock *bodyBlock) {
if (useMSVCEH()) {
#if LDC_LLVM_VER >= 308
assert(isCatchSwitchBlock(bodyBlock));
pushCleanup(bodyBlock, bodyBlock);
#endif
} else {
catchScopes.emplace_back(classInfoPtr, bodyBlock, currentCleanupScope());
currentLandingPads().push_back(nullptr);
}
}
void ScopeStack::popCatch() {
if (useMSVCEH()) {
#if LDC_LLVM_VER >= 308
assert(isCatchSwitchBlock(cleanupScopes.back().beginBlock));
popCleanups(currentCleanupScope() - 1);
#endif
} else {
catchScopes.pop_back();
currentLandingPads().pop_back();
}
}
void ScopeStack::pushLoopTarget(Statement *loopStatement,
llvm::BasicBlock *continueTarget,
llvm::BasicBlock *breakTarget) {
continueTargets.emplace_back(continueTarget, currentCleanupScope(),
loopStatement);
breakTargets.emplace_back(breakTarget, currentCleanupScope(), loopStatement);
}
void ScopeStack::popLoopTarget() {
continueTargets.pop_back();
breakTargets.pop_back();
}
void ScopeStack::pushBreakTarget(Statement *switchStatement,
llvm::BasicBlock *targetBlock) {
breakTargets.push_back({targetBlock, currentCleanupScope(), switchStatement});
}
void ScopeStack::popBreakTarget() { breakTargets.pop_back(); }
void ScopeStack::addLabelTarget(Identifier *labelName,
llvm::BasicBlock *targetBlock) {
labelTargets[labelName] = {targetBlock, currentCleanupScope(), nullptr};
// See whether any of the unresolved gotos target this label, and resolve
// those that do.
std::vector<GotoJump> &unresolved = currentUnresolvedGotos();
size_t i = 0;
while (i < unresolved.size()) {
if (unresolved[i].targetLabel != labelName) {
++i;
continue;
}
unresolved[i].tentativeTarget->replaceAllUsesWith(targetBlock);
unresolved[i].tentativeTarget->eraseFromParent();
unresolved.erase(unresolved.begin() + i);
}
}
void ScopeStack::jumpToLabel(Loc loc, Identifier *labelName) {
// If we have already seen that label, branch to it, executing any cleanups
// as necessary.
auto it = labelTargets.find(labelName);
if (it != labelTargets.end()) {
runCleanups(it->second.cleanupScope, it->second.targetBlock);
return;
}
llvm::BasicBlock *target = llvm::BasicBlock::Create(
irs->context(), "goto.unresolved", irs->topfunc());
irs->ir->CreateBr(target);
currentUnresolvedGotos().emplace_back(loc, irs->scopebb(), target, labelName);
}
void ScopeStack::jumpToStatement(std::vector<JumpTarget> &targets,
Statement *loopOrSwitchStatement) {
for (auto it = targets.rbegin(), end = targets.rend(); it != end; ++it) {
if (it->targetStatement == loopOrSwitchStatement) {
runCleanups(it->cleanupScope, it->targetBlock);
return;
}
}
assert(false && "Target for labeled break not found.");
}
void ScopeStack::jumpToClosest(std::vector<JumpTarget> &targets) {
assert(!targets.empty() &&
"Encountered break/continue but no loop in scope.");
JumpTarget &t = targets.back();
runCleanups(t.cleanupScope, t.targetBlock);
}
std::vector<GotoJump> &ScopeStack::currentUnresolvedGotos() {
return cleanupScopes.empty() ? topLevelUnresolvedGotos
: cleanupScopes.back().unresolvedGotos;
}
std::vector<llvm::BasicBlock *> &ScopeStack::currentLandingPads() {
return cleanupScopes.empty() ? topLevelLandingPads
: cleanupScopes.back().landingPads;
}
llvm::BasicBlock *&ScopeStack::getLandingPadRef(CleanupCursor scope) {
auto &pads = cleanupScopes.empty() ? topLevelLandingPads
: cleanupScopes[scope].landingPads;
if (pads.empty()) {
// Have not encountered any catches (for which we would push a scope) or
// calls to throwing functions (where we would have already executed
// this if) in this cleanup scope yet.
pads.push_back(nullptr);
}
return pads.back();
}
llvm::BasicBlock *ScopeStack::getLandingPad() {
llvm::BasicBlock *&landingPad = getLandingPadRef(currentCleanupScope() - 1);
if (!landingPad) {
#if LDC_LLVM_VER >= 308
if (useMSVCEH()) {
assert(currentCleanupScope() > 0);
landingPad = emitLandingPadMSVCEH(currentCleanupScope() - 1);
} else
#endif
landingPad = emitLandingPad();
}
return landingPad;
}
namespace {
llvm::LandingPadInst *createLandingPadInst(IRState *irs) {
LLType *retType =
LLStructType::get(LLType::getInt8PtrTy(irs->context()),
LLType::getInt32Ty(irs->context()), nullptr);
#if LDC_LLVM_VER >= 307
LLFunction *currentFunction = irs->func()->func;
if (!currentFunction->hasPersonalityFn()) {
LLFunction *personalityFn =
getRuntimeFunction(Loc(), irs->module, "_d_eh_personality");
currentFunction->setPersonalityFn(personalityFn);
}
return irs->ir->CreateLandingPad(retType, 0);
#else
LLFunction *personalityFn =
getRuntimeFunction(Loc(), irs->module, "_d_eh_personality");
return irs->ir->CreateLandingPad(retType, personalityFn, 0);
#endif
}
}
#if LDC_LLVM_VER >= 308
llvm::BasicBlock *ScopeStack::emitLandingPadMSVCEH(CleanupCursor scope) {
LLFunction *currentFunction = irs->func()->func;
if (!currentFunction->hasPersonalityFn()) {
const char *personality = "__CxxFrameHandler3";
LLFunction *personalityFn =
getRuntimeFunction(Loc(), irs->module, personality);
currentFunction->setPersonalityFn(personalityFn);
}
// WinEHPrepare pass fails after optimizations, so disable these for now
if (!currentFunction->getFnAttribute("disable-tail-calls")
.isStringAttribute()) {
currentFunction->addFnAttr("disable-tail-calls", "true");
currentFunction->addFnAttr(llvm::Attribute::NoInline);
}
if (scope == 0)
return runCleanupPad(scope, nullptr);
llvm::BasicBlock *&pad = getLandingPadRef(scope - 1);
if (!pad)
pad = emitLandingPadMSVCEH(scope - 1);
return runCleanupPad(scope, pad);
}
#endif
llvm::BasicBlock *ScopeStack::emitLandingPad() {
// save and rewrite scope
IRScope savedIRScope = irs->scope();
llvm::BasicBlock *beginBB =
llvm::BasicBlock::Create(irs->context(), "landingPad", irs->topfunc());
irs->scope() = IRScope(beginBB);
llvm::LandingPadInst *landingPad = createLandingPadInst(irs);
// Stash away the exception object pointer and selector value into their
// stack slots.
llvm::Value *ehPtr = DtoExtractValue(landingPad, 0);
irs->ir->CreateStore(ehPtr, irs->func()->getOrCreateEhPtrSlot());
llvm::Value *ehSelector = DtoExtractValue(landingPad, 1);
if (!irs->func()->ehSelectorSlot) {
irs->func()->ehSelectorSlot =
DtoRawAlloca(ehSelector->getType(), 0, "eh.selector");
}
irs->ir->CreateStore(ehSelector, irs->func()->ehSelectorSlot);
// Add landingpad clauses, emit finallys and 'if' chain to catch the
// exception.
CleanupCursor lastCleanup = currentCleanupScope();
for (auto it = catchScopes.rbegin(), end = catchScopes.rend(); it != end;
++it) {
// Insert any cleanups in between the last catch we ran (i.e. tested for
// and found that the type does not match) and this one.
assert(lastCleanup >= it->cleanupScope);
if (lastCleanup > it->cleanupScope) {
landingPad->setCleanup(true);
llvm::BasicBlock *afterCleanupBB = llvm::BasicBlock::Create(
irs->context(), beginBB->getName() + llvm::Twine(".after.cleanup"),
irs->topfunc());
runCleanups(lastCleanup, it->cleanupScope, afterCleanupBB);
irs->scope() = IRScope(afterCleanupBB);
lastCleanup = it->cleanupScope;
}
// Add the ClassInfo reference to the landingpad instruction so it is
// emitted to the EH tables.
landingPad->addClause(it->classInfoPtr);
llvm::BasicBlock *mismatchBB = llvm::BasicBlock::Create(
irs->context(), beginBB->getName() + llvm::Twine(".mismatch"),
irs->topfunc());
// "Call" llvm.eh.typeid.for, which gives us the eh selector value to
// compare the landing pad selector value with.
llvm::Value *ehTypeId =
irs->ir->CreateCall(GET_INTRINSIC_DECL(eh_typeid_for),
DtoBitCast(it->classInfoPtr, getVoidPtrType()));
// Compare the selector value from the unwinder against the expected
// one and branch accordingly.
irs->ir->CreateCondBr(
irs->ir->CreateICmpEQ(irs->ir->CreateLoad(irs->func()->ehSelectorSlot),
ehTypeId),
it->bodyBlock, mismatchBB);
irs->scope() = IRScope(mismatchBB);
}
// No catch matched. Execute all finallys and resume unwinding.
if (lastCleanup > 0) {
landingPad->setCleanup(true);
runCleanups(lastCleanup, 0, irs->func()->getOrCreateResumeUnwindBlock());
} else if (!catchScopes.empty()) {
// Directly convert the last mismatch branch into a branch to the
// unwind resume block.
irs->scopebb()->replaceAllUsesWith(
irs->func()->getOrCreateResumeUnwindBlock());
irs->scopebb()->eraseFromParent();
} else {
irs->ir->CreateBr(irs->func()->getOrCreateResumeUnwindBlock());
}
irs->scope() = savedIRScope;
return beginBB;
}
IrFunction::IrFunction(FuncDeclaration *fd) {
decl = fd;
Type *t = fd->type->toBasetype();
assert(t->ty == Tfunction);
type = static_cast<TypeFunction *>(t);
}
void IrFunction::setNeverInline() {
assert(!func->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
llvm::Attribute::AlwaysInline) &&
"function can't be never- and always-inline at the same time");
func->addFnAttr(llvm::Attribute::NoInline);
}
void IrFunction::setAlwaysInline() {
assert(!func->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
llvm::Attribute::NoInline) &&
"function can't be never- and always-inline at the same time");
func->addFnAttr(llvm::Attribute::AlwaysInline);
}
llvm::AllocaInst *IrFunction::getOrCreateEhPtrSlot() {
if (!ehPtrSlot) {
ehPtrSlot = DtoRawAlloca(getVoidPtrType(), 0, "eh.ptr");
}
return ehPtrSlot;
}
llvm::BasicBlock *IrFunction::getOrCreateResumeUnwindBlock() {
assert(func == gIR->topfunc() &&
"Should only access unwind resume block while emitting function.");
if (!resumeUnwindBlock) {
resumeUnwindBlock =
llvm::BasicBlock::Create(gIR->context(), "eh.resume", func);
llvm::BasicBlock *oldBB = gIR->scopebb();
gIR->scope() = IRScope(resumeUnwindBlock);
llvm::Function *resumeFn =
getRuntimeFunction(Loc(), gIR->module, "_d_eh_resume_unwind");
gIR->ir->CreateCall(resumeFn, DtoLoad(getOrCreateEhPtrSlot()));
gIR->ir->CreateUnreachable();
gIR->scope() = IRScope(oldBB);
}
return resumeUnwindBlock;
}
IrFunction *getIrFunc(FuncDeclaration *decl, bool create) {
if (!isIrFuncCreated(decl) && create) {
assert(decl->ir->irFunc == NULL);
decl->ir->irFunc = new IrFunction(decl);
decl->ir->m_type = IrDsymbol::FuncType;
}
assert(decl->ir->irFunc != NULL);
return decl->ir->irFunc;
}
bool isIrFuncCreated(FuncDeclaration *decl) {
assert(decl);
assert(decl->ir);
IrDsymbol::Type t = decl->ir->type();
assert(t == IrDsymbol::FuncType || t == IrDsymbol::NotSet);
return t == IrDsymbol::FuncType;
}