ldc/gen/functions.cpp

862 lines
29 KiB
C++

#include "gen/llvm.h"
#include "mtype.h"
#include "aggregate.h"
#include "init.h"
#include "declaration.h"
#include "template.h"
#include "module.h"
#include "statement.h"
#include "gen/irstate.h"
#include "gen/tollvm.h"
#include "gen/runtime.h"
#include "gen/arrays.h"
#include "gen/logger.h"
#include "gen/functions.h"
#include "gen/todebug.h"
#include "gen/classes.h"
#include "gen/dvalue.h"
const llvm::FunctionType* DtoFunctionType(Type* type, const LLType* thistype, bool ismain)
{
TypeFunction* f = (TypeFunction*)type;
assert(f != 0);
if (type->ir.type != NULL) {
return llvm::cast<llvm::FunctionType>(type->ir.type->get());
}
bool typesafeVararg = false;
bool arrayVararg = false;
if (f->linkage == LINKd)
{
if (f->varargs == 1)
typesafeVararg = true;
else if (f->varargs == 2)
arrayVararg = true;
}
// return value type
const LLType* rettype;
const LLType* actualRettype;
Type* rt = f->next;
bool retinptr = false;
bool usesthis = false;
if (ismain) {
rettype = llvm::Type::Int32Ty;
actualRettype = rettype;
}
else {
assert(rt);
Type* rtfin = DtoDType(rt);
if (DtoIsReturnedInArg(rt)) {
rettype = getPtrToType(DtoType(rt));
actualRettype = llvm::Type::VoidTy;
f->llvmRetInPtr = retinptr = true;
}
else {
rettype = DtoType(rt);
actualRettype = rettype;
}
}
// parameter types
std::vector<const LLType*> paramvec;
if (retinptr) {
//Logger::cout() << "returning through pointer parameter: " << *rettype << '\n';
paramvec.push_back(rettype);
}
if (thistype) {
paramvec.push_back(thistype);
usesthis = true;
}
if (typesafeVararg) {
ClassDeclaration* ti = Type::typeinfo;
ti->toObjFile();
DtoForceConstInitDsymbol(ti);
assert(ti->ir.irStruct->constInit);
std::vector<const LLType*> types;
types.push_back(DtoSize_t());
types.push_back(getPtrToType(getPtrToType(ti->ir.irStruct->constInit->getType())));
const LLType* t1 = llvm::StructType::get(types);
paramvec.push_back(getPtrToType(t1));
paramvec.push_back(getPtrToType(llvm::Type::Int8Ty));
}
else if (arrayVararg)
{
// do nothing?
}
size_t n = Argument::dim(f->parameters);
int nbyval = 0;
llvm::PAListPtr palist;
for (int i=0; i < n; ++i) {
Argument* arg = Argument::getNth(f->parameters, i);
// ensure scalar
Type* argT = DtoDType(arg->type);
assert(argT);
bool refOrOut = ((arg->storageClass & STCref) || (arg->storageClass & STCout));
const LLType* at = DtoType(argT);
if (isaStruct(at)) {
Logger::println("struct param");
paramvec.push_back(getPtrToType(at));
arg->llvmByVal = !refOrOut;
}
else if (isaArray(at)) {
Logger::println("sarray param");
assert(argT->ty == Tsarray);
//paramvec.push_back(getPtrToType(at->getContainedType(0)));
paramvec.push_back(getPtrToType(at));
arg->llvmByVal = !refOrOut;
}
else if (llvm::isa<llvm::OpaqueType>(at)) {
Logger::println("opaque param");
assert(argT->ty == Tstruct || argT->ty == Tclass);
paramvec.push_back(getPtrToType(at));
}
else {
if (refOrOut) {
Logger::println("by ref param");
at = getPtrToType(at);
}
else {
Logger::println("in param");
}
paramvec.push_back(at);
}
if (arg->llvmByVal)
nbyval++;
}
//warning("set %d byval args for type: %s", nbyval, f->toChars());
// construct function type
bool isvararg = !(typesafeVararg || arrayVararg) && f->varargs;
llvm::FunctionType* functype = llvm::FunctionType::get(actualRettype, paramvec, isvararg);
f->llvmRetInPtr = retinptr;
f->llvmUsesThis = usesthis;
f->ir.type = new llvm::PATypeHolder(functype);
return functype;
}
//////////////////////////////////////////////////////////////////////////////////////////
static const llvm::FunctionType* DtoVaFunctionType(FuncDeclaration* fdecl)
{
// type has already been resolved
if (fdecl->type->ir.type != 0) {
return llvm::cast<llvm::FunctionType>(fdecl->type->ir.type->get());
}
TypeFunction* f = (TypeFunction*)fdecl->type;
assert(f != 0);
const llvm::PointerType* i8pty = getPtrToType(llvm::Type::Int8Ty);
std::vector<const LLType*> args;
if (fdecl->llvmInternal == LLVMva_start) {
args.push_back(i8pty);
}
else if (fdecl->llvmInternal == LLVMva_intrinsic) {
size_t n = Argument::dim(f->parameters);
for (size_t i=0; i<n; ++i) {
args.push_back(i8pty);
}
}
else
assert(0);
const llvm::FunctionType* fty = llvm::FunctionType::get(llvm::Type::VoidTy, args, false);
f->ir.type = new llvm::PATypeHolder(fty);
return fty;
}
//////////////////////////////////////////////////////////////////////////////////////////
const llvm::FunctionType* DtoFunctionType(FuncDeclaration* fdecl)
{
if ((fdecl->llvmInternal == LLVMva_start) || (fdecl->llvmInternal == LLVMva_intrinsic)) {
return DtoVaFunctionType(fdecl);
}
// unittest has null type, just build it manually
/*if (fdecl->isUnitTestDeclaration()) {
std::vector<const LLType*> args;
return llvm::FunctionType::get(llvm::Type::VoidTy, args, false);
}*/
// type has already been resolved
if (fdecl->type->ir.type != 0) {
return llvm::cast<llvm::FunctionType>(fdecl->type->ir.type->get());
}
const LLType* thisty = NULL;
if (fdecl->needThis()) {
if (AggregateDeclaration* ad = fdecl->isMember2()) {
Logger::println("isMember = this is: %s", ad->type->toChars());
thisty = DtoType(ad->type);
//Logger::cout() << "this llvm type: " << *thisty << '\n';
if (isaStruct(thisty) || (!gIR->structs.empty() && thisty == gIR->topstruct()->recty.get()))
thisty = getPtrToType(thisty);
}
else {
Logger::println("chars: %s type: %s kind: %s", fdecl->toChars(), fdecl->type->toChars(), fdecl->kind());
assert(0);
}
}
else if (fdecl->isNested()) {
thisty = getPtrToType(llvm::Type::Int8Ty);
}
const llvm::FunctionType* functype = DtoFunctionType(fdecl->type, thisty, fdecl->isMain());
return functype;
}
//////////////////////////////////////////////////////////////////////////////////////////
static llvm::Function* DtoDeclareVaFunction(FuncDeclaration* fdecl)
{
TypeFunction* f = (TypeFunction*)DtoDType(fdecl->type);
const llvm::FunctionType* fty = DtoVaFunctionType(fdecl);
LLConstant* fn = 0;
if (fdecl->llvmInternal == LLVMva_start) {
fn = gIR->module->getOrInsertFunction("llvm.va_start", fty);
assert(fn);
}
else if (fdecl->llvmInternal == LLVMva_intrinsic) {
fn = gIR->module->getOrInsertFunction(fdecl->llvmInternal1, fty);
assert(fn);
}
else
assert(0);
llvm::Function* func = llvm::dyn_cast<llvm::Function>(fn);
assert(func);
assert(func->isIntrinsic());
fdecl->ir.irFunc->func = func;
return func;
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoResolveFunction(FuncDeclaration* fdecl)
{
if (!global.params.useUnitTests && fdecl->isUnitTestDeclaration()) {
return; // ignore declaration completely
}
// is imported and we don't have access?
if (fdecl->getModule() != gIR->dmodule)
{
if (fdecl->prot() == PROTprivate)
return;
}
if (fdecl->ir.resolved) return;
fdecl->ir.resolved = true;
Logger::println("DtoResolveFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
LOG_SCOPE;
if (fdecl->runTimeHack) {
gIR->declareList.push_back(fdecl);
TypeFunction* tf = (TypeFunction*)fdecl->type;
tf->llvmRetInPtr = DtoIsPassedByRef(tf->next);
return;
}
if (fdecl->parent)
if (TemplateInstance* tinst = fdecl->parent->isTemplateInstance())
{
TemplateDeclaration* tempdecl = tinst->tempdecl;
if (tempdecl->llvmInternal == LLVMva_arg)
{
Logger::println("magic va_arg found");
fdecl->llvmInternal = LLVMva_arg;
fdecl->ir.declared = true;
fdecl->ir.initialized = true;
fdecl->ir.defined = true;
return; // this gets mapped to an instruction so a declaration makes no sence
}
else if (tempdecl->llvmInternal == LLVMva_start)
{
Logger::println("magic va_start found");
fdecl->llvmInternal = LLVMva_start;
}
}
DtoFunctionType(fdecl);
// queue declaration
if (!fdecl->isAbstract())
gIR->declareList.push_back(fdecl);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoDeclareFunction(FuncDeclaration* fdecl)
{
if (fdecl->ir.declared) return;
fdecl->ir.declared = true;
Logger::println("DtoDeclareFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
LOG_SCOPE;
assert(!fdecl->isAbstract());
// intrinsic sanity check
if (fdecl->llvmInternal == LLVMintrinsic && fdecl->fbody) {
error(fdecl->loc, "intrinsics cannot have function bodies");
fatal();
}
if (fdecl->runTimeHack) {
Logger::println("runtime hack func chars: %s", fdecl->toChars());
if (!fdecl->ir.irFunc) {
fdecl->ir.irFunc = new IrFunction(fdecl);
fdecl->ir.irFunc->func = LLVM_D_GetRuntimeFunction(gIR->module, fdecl->toChars());
}
return;
}
bool declareOnly = false;
bool templInst = fdecl->parent && DtoIsTemplateInstance(fdecl->parent);
if (!templInst && fdecl->getModule() != gIR->dmodule)
{
Logger::println("not template instance, and not in this module. declare only!");
Logger::println("current module: %s", gIR->dmodule->ident->toChars());
Logger::println("func module: %s", fdecl->getModule()->ident->toChars());
declareOnly = true;
}
else if (fdecl->llvmInternal == LLVMva_start)
declareOnly = true;
if (!fdecl->ir.irFunc) {
fdecl->ir.irFunc = new IrFunction(fdecl);
}
// mangled name
char* mangled_name;
if (fdecl->llvmInternal == LLVMintrinsic)
mangled_name = fdecl->llvmInternal1;
else
mangled_name = fdecl->mangle();
llvm::Function* vafunc = 0;
if ((fdecl->llvmInternal == LLVMva_start) || (fdecl->llvmInternal == LLVMva_intrinsic)) {
vafunc = DtoDeclareVaFunction(fdecl);
}
Type* t = DtoDType(fdecl->type);
TypeFunction* f = (TypeFunction*)t;
// construct function
const llvm::FunctionType* functype = DtoFunctionType(fdecl);
llvm::Function* func = vafunc ? vafunc : gIR->module->getFunction(mangled_name);
if (!func)
func = llvm::Function::Create(functype, DtoLinkage(fdecl), mangled_name, gIR->module);
else
assert(func->getFunctionType() == functype);
// add func to IRFunc
fdecl->ir.irFunc->func = func;
// calling convention
if (!vafunc && fdecl->llvmInternal != LLVMintrinsic)
func->setCallingConv(DtoCallingConv(f->linkage));
else // fall back to C, it should be the right thing to do
func->setCallingConv(llvm::CallingConv::C);
fdecl->ir.irFunc->func = func;
assert(llvm::isa<llvm::FunctionType>(f->ir.type->get()));
// parameter attributes
if (f->parameters)
{
int llidx = 1;
if (f->llvmRetInPtr) ++llidx;
if (f->llvmUsesThis) ++llidx;
if (f->linkage == LINKd && f->varargs == 1)
llidx += 2;
int funcNumArgs = func->getArgumentList().size();
std::vector<llvm::ParamAttrsWithIndex> attrs;
int k = 0;
int nbyval = 0;
for (; llidx <= funcNumArgs && f->parameters->dim > k; ++llidx,++k)
{
Argument* fnarg = (Argument*)f->parameters->data[k];
assert(fnarg);
if (fnarg->llvmByVal)
{
llvm::ParamAttrsWithIndex PAWI;
PAWI.Index = llidx;
PAWI.Attrs = llvm::ParamAttr::ByVal;
attrs.push_back(PAWI);
nbyval++;
}
}
//warning("set %d byval args for function: %s", nbyval, func->getName().c_str());
if (nbyval) {
llvm::PAListPtr palist = llvm::PAListPtr::get(attrs.begin(), attrs.end());
func->setParamAttrs(palist);
}
}
// main
if (fdecl->isMain()) {
gIR->mainFunc = func;
}
// static ctor
if (fdecl->isStaticCtorDeclaration() && fdecl->getModule() == gIR->dmodule) {
gIR->ctors.push_back(fdecl);
}
// static dtor
else if (fdecl->isStaticDtorDeclaration() && fdecl->getModule() == gIR->dmodule) {
gIR->dtors.push_back(fdecl);
}
// we never reference parameters of function prototypes
if (!declareOnly)
{
// name parameters
llvm::Function::arg_iterator iarg = func->arg_begin();
int k = 0;
if (f->llvmRetInPtr) {
iarg->setName("retval");
fdecl->ir.irFunc->retArg = iarg;
++iarg;
}
if (f->llvmUsesThis) {
iarg->setName("this");
fdecl->ir.irFunc->thisVar = iarg;
assert(fdecl->ir.irFunc->thisVar);
++iarg;
}
if (f->linkage == LINKd && f->varargs == 1) {
iarg->setName("_arguments");
fdecl->ir.irFunc->_arguments = iarg;
++iarg;
iarg->setName("_argptr");
fdecl->ir.irFunc->_argptr = iarg;
++iarg;
}
for (; iarg != func->arg_end(); ++iarg)
{
if (fdecl->parameters && fdecl->parameters->dim > k)
{
Dsymbol* argsym = (Dsymbol*)fdecl->parameters->data[k++];
VarDeclaration* argvd = argsym->isVarDeclaration();
assert(argvd);
assert(!argvd->ir.irLocal);
argvd->ir.irLocal = new IrLocal(argvd);
argvd->ir.irLocal->value = iarg;
iarg->setName(argvd->ident->toChars());
}
else
{
iarg->setName("unnamed");
}
}
}
if (fdecl->isUnitTestDeclaration())
gIR->unitTests.push_back(fdecl);
if (!declareOnly)
gIR->defineList.push_back(fdecl);
else
assert(func->getLinkage() != llvm::GlobalValue::InternalLinkage);
Logger::cout() << "func decl: " << *func << '\n';
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoDefineFunc(FuncDeclaration* fd)
{
if (fd->ir.defined) return;
fd->ir.defined = true;
assert(fd->ir.declared);
Logger::println("DtoDefineFunc(%s): %s", fd->toPrettyChars(), fd->loc.toChars());
LOG_SCOPE;
// debug info
if (global.params.symdebug) {
Module* mo = fd->getModule();
fd->ir.irFunc->dwarfSubProg = DtoDwarfSubProgram(fd, DtoDwarfCompileUnit(mo));
}
Type* t = DtoDType(fd->type);
TypeFunction* f = (TypeFunction*)t;
assert(f->ir.type);
llvm::Function* func = fd->ir.irFunc->func;
const llvm::FunctionType* functype = func->getFunctionType();
// only members of the current module or template instances maybe be defined
if (fd->getModule() == gIR->dmodule || DtoIsTemplateInstance(fd->parent))
{
fd->ir.DModule = gIR->dmodule;
// function definition
if (fd->fbody != 0)
{
Logger::println("Doing function body for: %s", fd->toChars());
assert(fd->ir.irFunc);
gIR->functions.push_back(fd->ir.irFunc);
if (fd->isMain())
gIR->emitMain = true;
std::string entryname("entry_");
entryname.append(fd->toPrettyChars());
llvm::BasicBlock* beginbb = llvm::BasicBlock::Create(entryname,func);
llvm::BasicBlock* endbb = llvm::BasicBlock::Create("endentry",func);
//assert(gIR->scopes.empty());
gIR->scopes.push_back(IRScope(beginbb, endbb));
// create alloca point
llvm::Instruction* allocaPoint = new llvm::AllocaInst(llvm::Type::Int32Ty, "alloca point", beginbb);
gIR->func()->allocapoint = allocaPoint;
// need result variable? (not nested)
if (fd->vresult && !fd->vresult->nestedref) {
Logger::println("non-nested vresult value");
fd->vresult->ir.irLocal = new IrLocal(fd->vresult);
fd->vresult->ir.irLocal->value = new llvm::AllocaInst(DtoType(fd->vresult->type),"function_vresult",allocaPoint);
}
// give arguments storage
if (fd->parameters)
{
size_t n = fd->parameters->dim;
for (int i=0; i < n; ++i)
{
Dsymbol* argsym = (Dsymbol*)fd->parameters->data[i];
VarDeclaration* vd = argsym->isVarDeclaration();
assert(vd);
if (!vd->needsStorage || vd->nestedref || vd->isRef() || vd->isOut() || DtoIsPassedByRef(vd->type))
continue;
LLValue* a = vd->ir.irLocal->value;
assert(a);
std::string s(a->getName());
Logger::println("giving argument '%s' storage", s.c_str());
s.append("_storage");
LLValue* v = new llvm::AllocaInst(a->getType(),s,allocaPoint);
gIR->ir->CreateStore(a,v);
vd->ir.irLocal->value = v;
}
}
// debug info
if (global.params.symdebug) DtoDwarfFuncStart(fd);
LLValue* parentNested = NULL;
if (FuncDeclaration* fd2 = fd->toParent2()->isFuncDeclaration()) {
if (!fd->isStatic()) // huh?
parentNested = fd2->ir.irFunc->nestedVar;
}
// need result variable? (nested)
if (fd->vresult && fd->vresult->nestedref) {
Logger::println("nested vresult value: %s", fd->vresult->toChars());
fd->nestedVars.insert(fd->vresult);
}
// construct nested variables struct
if (!fd->nestedVars.empty() || parentNested) {
std::vector<const LLType*> nestTypes;
int j = 0;
if (parentNested) {
nestTypes.push_back(parentNested->getType());
j++;
}
for (std::set<VarDeclaration*>::iterator i=fd->nestedVars.begin(); i!=fd->nestedVars.end(); ++i) {
VarDeclaration* vd = *i;
Logger::println("referenced nested variable %s", vd->toChars());
if (!vd->ir.irLocal)
vd->ir.irLocal = new IrLocal(vd);
vd->ir.irLocal->nestedIndex = j++;
if (vd->isParameter()) {
if (!vd->ir.irLocal->value) {
assert(vd == fd->vthis);
vd->ir.irLocal->value = fd->ir.irFunc->thisVar;
}
assert(vd->ir.irLocal->value);
nestTypes.push_back(vd->ir.irLocal->value->getType());
}
else {
nestTypes.push_back(DtoType(vd->type));
}
}
const llvm::StructType* nestSType = llvm::StructType::get(nestTypes);
Logger::cout() << "nested var struct has type:" << *nestSType << '\n';
fd->ir.irFunc->nestedVar = new llvm::AllocaInst(nestSType,"nestedvars",allocaPoint);
if (parentNested) {
assert(fd->ir.irFunc->thisVar);
LLValue* ptr = gIR->ir->CreateBitCast(fd->ir.irFunc->thisVar, parentNested->getType(), "tmp");
gIR->ir->CreateStore(ptr, DtoGEPi(fd->ir.irFunc->nestedVar, 0,0, "tmp"));
}
for (std::set<VarDeclaration*>::iterator i=fd->nestedVars.begin(); i!=fd->nestedVars.end(); ++i) {
VarDeclaration* vd = *i;
if (vd->isParameter()) {
assert(vd->ir.irLocal);
gIR->ir->CreateStore(vd->ir.irLocal->value, DtoGEPi(fd->ir.irFunc->nestedVar, 0, vd->ir.irLocal->nestedIndex, "tmp"));
vd->ir.irLocal->value = fd->ir.irFunc->nestedVar;
}
}
}
// copy _argptr to a memory location
if (f->linkage == LINKd && f->varargs == 1)
{
LLValue* argptrmem = new llvm::AllocaInst(fd->ir.irFunc->_argptr->getType(), "_argptrmem", gIR->topallocapoint());
new llvm::StoreInst(fd->ir.irFunc->_argptr, argptrmem, gIR->scopebb());
fd->ir.irFunc->_argptr = argptrmem;
}
// output function body
fd->fbody->toIR(gIR);
// llvm requires all basic blocks to end with a TerminatorInst but DMD does not put a return statement
// in automatically, so we do it here.
if (!fd->isMain()) {
if (!gIR->scopereturned()) {
// pass the previous block into this block
if (global.params.symdebug) DtoDwarfFuncEnd(fd);
if (func->getReturnType() == llvm::Type::VoidTy) {
llvm::ReturnInst::Create(gIR->scopebb());
}
else {
llvm::ReturnInst::Create(llvm::UndefValue::get(func->getReturnType()), gIR->scopebb());
}
}
}
// erase alloca point
allocaPoint->eraseFromParent();
allocaPoint = 0;
gIR->func()->allocapoint = 0;
gIR->scopes.pop_back();
// get rid of the endentry block, it's never used
assert(!func->getBasicBlockList().empty());
func->getBasicBlockList().pop_back();
// if the last block is empty now, it must be unreachable or it's a bug somewhere else
// would be nice to figure out how to assert that this is correct
llvm::BasicBlock* lastbb = &func->getBasicBlockList().back();
if (lastbb->empty()) {
if (lastbb->getNumUses() == 0)
lastbb->eraseFromParent();
else {
new llvm::UnreachableInst(lastbb);
/*if (func->getReturnType() == llvm::Type::VoidTy) {
llvm::ReturnInst::Create(lastbb);
}
else {
llvm::ReturnInst::Create(llvm::UndefValue::get(func->getReturnType()), lastbb);
}*/
}
}
// if the last block is not terminated we return a null value or void
// for some unknown reason this is needed when a void main() has a inline asm block ...
// this should be harmless for well formed code!
lastbb = &func->getBasicBlockList().back();
if (!lastbb->getTerminator())
{
Logger::println("adding missing return statement");
if (func->getReturnType() == llvm::Type::VoidTy)
llvm::ReturnInst::Create(lastbb);
else
llvm::ReturnInst::Create(llvm::Constant::getNullValue(func->getReturnType()), lastbb);
}
gIR->functions.pop_back();
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoMain()
{
// emit main function llvm style
// int main(int argc, char**argv, char**env);
assert(gIR != 0);
IRState& ir = *gIR;
assert(ir.emitMain && ir.mainFunc);
// parameter types
std::vector<const LLType*> pvec;
pvec.push_back((const LLType*)llvm::Type::Int32Ty);
const LLType* chPtrType = (const LLType*)getPtrToType(llvm::Type::Int8Ty);
pvec.push_back((const LLType*)getPtrToType(chPtrType));
pvec.push_back((const LLType*)getPtrToType(chPtrType));
const LLType* rettype = (const LLType*)llvm::Type::Int32Ty;
llvm::FunctionType* functype = llvm::FunctionType::get(rettype, pvec, false);
llvm::Function* func = llvm::Function::Create(functype,llvm::GlobalValue::ExternalLinkage,"main",ir.module);
llvm::BasicBlock* bb = llvm::BasicBlock::Create("entry",func);
// call static ctors
llvm::Function* fn = LLVM_D_GetRuntimeFunction(ir.module,"_moduleCtor");
llvm::Instruction* apt = llvm::CallInst::Create(fn,"",bb);
// run unit tests if -unittest is provided
if (global.params.useUnitTests) {
fn = LLVM_D_GetRuntimeFunction(ir.module,"_moduleUnitTests");
llvm::Instruction* apt = llvm::CallInst::Create(fn,"",bb);
}
// call user main function
const llvm::FunctionType* mainty = ir.mainFunc->getFunctionType();
llvm::CallInst* call;
if (mainty->getNumParams() > 0)
{
// main with arguments
assert(mainty->getNumParams() == 1);
std::vector<LLValue*> args;
llvm::Function* mfn = LLVM_D_GetRuntimeFunction(ir.module,"_d_main_args");
llvm::Function::arg_iterator argi = func->arg_begin();
args.push_back(argi++);
args.push_back(argi++);
const LLType* at = mainty->getParamType(0)->getContainedType(0);
LLValue* arr = new llvm::AllocaInst(at->getContainedType(1)->getContainedType(0), func->arg_begin(), "argstorage", apt);
LLValue* a = new llvm::AllocaInst(at, "argarray", apt);
LLValue* ptr = DtoGEPi(a,0,0,"tmp",bb);
LLValue* v = args[0];
if (v->getType() != DtoSize_t())
v = new llvm::ZExtInst(v, DtoSize_t(), "tmp", bb);
new llvm::StoreInst(v,ptr,bb);
ptr = DtoGEPi(a,0,1,"tmp",bb);
new llvm::StoreInst(arr,ptr,bb);
args.push_back(a);
llvm::CallInst::Create(mfn, args.begin(), args.end(), "", bb);
call = llvm::CallInst::Create(ir.mainFunc,a,"ret",bb);
}
else
{
// main with no arguments
call = llvm::CallInst::Create(ir.mainFunc,"ret",bb);
}
call->setCallingConv(ir.mainFunc->getCallingConv());
// call static dtors
fn = LLVM_D_GetRuntimeFunction(ir.module,"_moduleDtor");
llvm::CallInst::Create(fn,"",bb);
// return
llvm::ReturnInst::Create(call,bb);
}
//////////////////////////////////////////////////////////////////////////////////////////
const llvm::FunctionType* DtoBaseFunctionType(FuncDeclaration* fdecl)
{
Dsymbol* parent = fdecl->toParent();
ClassDeclaration* cd = parent->isClassDeclaration();
assert(cd);
FuncDeclaration* f = fdecl;
while (cd)
{
ClassDeclaration* base = cd->baseClass;
if (!base)
break;
FuncDeclaration* f2 = base->findFunc(fdecl->ident, (TypeFunction*)fdecl->type);
if (f2) {
f = f2;
cd = base;
}
else
break;
}
DtoResolveDsymbol(f);
return llvm::cast<llvm::FunctionType>(DtoType(f->type));
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoArgument(Argument* fnarg, Expression* argexp)
{
Logger::println("DtoArgument");
LOG_SCOPE;
DValue* arg = argexp->toElem(gIR);
// ref/out arg
if (fnarg && ((fnarg->storageClass & STCref) || (fnarg->storageClass & STCout)))
{
if (arg->isVar() || arg->isLRValue())
arg = new DImValue(argexp->type, arg->getLVal(), false);
else
arg = new DImValue(argexp->type, arg->getRVal(), false);
}
// byval arg, but expr has no storage yet
else if (DtoIsPassedByRef(argexp->type) && (arg->isSlice() || arg->isComplex() || arg->isNull()))
{
LLValue* alloc = new llvm::AllocaInst(DtoType(argexp->type), "tmpparam", gIR->topallocapoint());
DVarValue* vv = new DVarValue(argexp->type, alloc, true);
DtoAssign(vv, arg);
arg = vv;
}
return arg;
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoVariadicArgument(Expression* argexp, LLValue* dst)
{
Logger::println("DtoVariadicArgument");
LOG_SCOPE;
DVarValue* vv = new DVarValue(argexp->type, dst, true);
gIR->exps.push_back(IRExp(NULL, argexp, vv));
DtoAssign(vv, argexp->toElem(gIR));
gIR->exps.pop_back();
}
//////////////////////////////////////////////////////////////////////////////////////////