ldc/runtime/jit-rt/cpp-so/compile.cpp
2017-08-27 17:42:55 +03:00

305 lines
8.5 KiB
C++

#include <cassert>
#include <stdexcept>
#include <map>
#include "optimizer.h"
#include "context.h"
#include "utils.h"
#include "callback_ostream.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#if LDC_LLVM_VER >= 500
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#else
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#endif
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/Host.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Bitcode/BitcodeReader.h"
namespace {
#pragma pack(push,1)
struct RtCompileFuncList
{
const char* name;
void** func;
};
struct RtCompileSymList
{
const char* name;
void* sym;
};
struct RtCompileVarList
{
const char* name;
const void* init;
};
struct RtComileModuleList
{
RtComileModuleList* next;
const char* irData;
int irDataSize;
RtCompileFuncList* funcList;
int funcListSize;
RtCompileSymList* symList;
int symListSize;
RtCompileVarList* varList;
int varListSize;
};
#pragma pack(pop)
llvm::SmallVector<std::string, 4> getHostAttrs() {
llvm::SmallVector<std::string, 4> features;
llvm::StringMap<bool> hostFeatures;
if (llvm::sys::getHostCPUFeatures(hostFeatures)) {
for (auto &&f : hostFeatures) {
features.push_back(((f.second ? "+" : "-") + f.first()).str());
}
}
return features;
}
using SymMap = std::map<std::string, void*>;
struct llvm_init_obj {
llvm_init_obj() {
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
}
};
class MyJIT {
private:
llvm_init_obj initObj;
llvm::llvm_shutdown_obj shutdownObj;
std::unique_ptr<llvm::TargetMachine> targetmachine;
const llvm::DataLayout dataLayout;
#if LDC_LLVM_VER >= 500
using ObjectLayerT = llvm::orc::RTDyldObjectLinkingLayer<>;
#else
using ObjectLayerT = llvm::orc::ObjectLinkingLayer<>;
#endif
ObjectLayerT objectLayer;
using CompileLayerT = llvm::orc::IRCompileLayer<ObjectLayerT>;
CompileLayerT compileLayer;
llvm::LLVMContext context;
typedef CompileLayerT::ModuleSetHandleT ModuleHandleT;
bool compiled = false;
ModuleHandleT moduleHandle;
public:
MyJIT():
targetmachine(llvm::EngineBuilder()
.setRelocationModel(llvm::Reloc::Static)
.selectTarget(llvm::Triple(llvm::sys::getProcessTriple()),
llvm::StringRef(),
llvm::sys::getHostCPUName(),
getHostAttrs())),
dataLayout(targetmachine->createDataLayout()),
compileLayer(objectLayer, llvm::orc::SimpleCompiler(*targetmachine))
{
llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
}
llvm::TargetMachine& getTargetMachine() { return *targetmachine; }
void addModules(std::vector<std::unique_ptr<llvm::Module>> &&modules,
const SymMap& symMap) {
reset();
// Build our symbol resolver:
// Lambda 1: Look back into the JIT itself to find symbols that are part of
// the same "logical dylib".
// Lambda 2: Search for external symbols in the host process.
auto Resolver = llvm::orc::createLambdaResolver(
[&](const std::string& name) {
if (auto Sym = compileLayer.findSymbol(name, false)) {
return Sym;
}
return llvm::JITSymbol(nullptr);
},
[&](const std::string& name) {
auto it = symMap.find(name);
if (symMap.end() != it) {
return llvm::JITSymbol(reinterpret_cast<llvm::JITTargetAddress>(it->second),
llvm::JITSymbolFlags::Exported);
}
if (auto SymAddr = llvm::RTDyldMemoryManager::getSymbolAddressInProcess(name)) {
return llvm::JITSymbol(SymAddr, llvm::JITSymbolFlags::Exported);
}
return llvm::JITSymbol(nullptr);
});
// Add the set to the JIT with the resolver we created above and a newly
// created SectionMemoryManager.
moduleHandle = compileLayer.addModuleSet(std::move(modules),
llvm::make_unique<llvm::SectionMemoryManager>(),
std::move(Resolver));
compiled = true;
}
llvm::JITSymbol findSymbol(const std::string &name) {
return compileLayer.findSymbol(name, false);
}
llvm::LLVMContext& getContext() { return context; }
// void removeModule(ModuleHandle H) {
// CompileLayer.removeModuleSet(H);
// }
void reset() {
if (compiled) {
compileLayer.removeModuleSet(moduleHandle);
compiled = false;
}
}
};
void setRtCompileVars(const Context &context,
llvm::Module& module,
llvm::ArrayRef<RtCompileVarList> vals) {
for (auto&& val: vals) {
setRtCompileVar(context, module, val.name, val.init);
}
}
template<typename T>
llvm::ArrayRef<T> toArray(T* ptr, size_t size) {
return llvm::ArrayRef<T>(ptr, size);
}
struct JitFinaliser final {
MyJIT& jit;
bool finalized = false;
explicit JitFinaliser(MyJIT& j):
jit(j) {}
~JitFinaliser() {
if (!finalized) {
jit.reset();
}
}
void finalze() { finalized = true; }
};
MyJIT& getJit()
{
static MyJIT jit;
return jit;
}
void rtCompileProcessImplSoInternal(const RtComileModuleList* modlist_head, const Context& context) {
interruptPoint(context, "Init");
MyJIT& myJit = getJit();
auto current = modlist_head;
std::vector<std::pair<std::string, void**> > functions;
std::vector<std::unique_ptr<llvm::Module>> ms;
SymMap symMap;
OptimizerSettings settings;
settings.optLevel = context.optLevel;
settings.sizeLeve = context.sizeLeve;
while (nullptr != current) {
interruptPoint(context, "load IR");
auto buff = llvm::MemoryBuffer::getMemBuffer(llvm::StringRef(current->irData, current->irDataSize), "", false);
interruptPoint(context, "parse IR");
auto mod = llvm::parseBitcodeFile(*buff, myJit.getContext());
if (!mod) {
fatal(context, "Unable to parse IR");
}
else {
llvm::Module& module = **mod;
const auto name = module.getName();
interruptPoint(context,"Verify module", name.data());
::verifyModule(context, module);
module.setDataLayout(myJit.getTargetMachine().createDataLayout());
interruptPoint(context, "setRtCompileVars", name.data());
setRtCompileVars(context,
module,
toArray(current->varList, current->varListSize));
interruptPoint(context, "Optimize module", name.data());
optimizeModule(context, myJit.getTargetMachine(), settings, module);
interruptPoint(context, "Verify module", name.data());
::verifyModule(context, module);
if (nullptr != context.dumpHandler) {
auto callback =[&](const char* str, size_t len) {
context.dumpHandler(context.dumpHandlerData, str, len);
};
CallbackOstream os(callback);
module.print(os, nullptr, false, true);
}
ms.push_back(std::move(*mod));
for (auto&& fun: toArray(current->funcList, current->funcListSize)) {
functions.push_back(std::make_pair(fun.name, fun.func));
}
for (auto&& sym: toArray(current->symList, current->symListSize)) {
symMap.insert(std::make_pair(sym.name, sym.sym));
}
}
current = current->next;
}
interruptPoint(context, "Add modules");
myJit.addModules(std::move(ms), symMap);
JitFinaliser jitFinalizer(myJit);
interruptPoint(context, "Resolve functions");
for (auto&& fun: functions) {
auto symbol = myJit.findSymbol(fun.first);
const auto addr = symbol.getAddress();
if (0 == addr) {
std::string desc = std::string("Symbol not found in jitted code: ") + fun.first;
fatal(context, desc);
}
else {
*fun.second = reinterpret_cast<void*>(addr);
}
}
jitFinalizer.finalze();
}
} // anon namespace
extern "C" {
#ifdef _WIN32
__declspec(dllexport)
#endif
void rtCompileProcessImplSo(const void* modlist_head,
const Context* context,
size_t contextSize) {
assert(nullptr != context);
assert(sizeof(*context) == contextSize);
rtCompileProcessImplSoInternal(
static_cast<const RtComileModuleList*>(modlist_head),
*context);
}
}