ldc/gen/toobj.cpp

989 lines
34 KiB
C++

// Copyright (c) 1999-2004 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.
#include <cstddef>
#include <iostream>
#include <fstream>
#include "gen/llvm.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetMachineRegistry.h"
#include "mars.h"
#include "module.h"
#include "mtype.h"
#include "declaration.h"
#include "statement.h"
#include "enum.h"
#include "aggregate.h"
#include "init.h"
#include "attrib.h"
#include "id.h"
#include "import.h"
#include "template.h"
#include "scope.h"
#include "gen/irstate.h"
#include "gen/elem.h"
#include "gen/logger.h"
#include "gen/tollvm.h"
#include "gen/arrays.h"
#include "gen/structs.h"
#include "gen/todebug.h"
#include "gen/runtime.h"
//////////////////////////////////////////////////////////////////////////////////////////
void
Module::genobjfile()
{
Logger::cout() << "Generating module: " << (md ? md->toChars() : toChars()) << '\n';
LOG_SCOPE;
// start by deleting the old object file
deleteObjFile();
// create a new ir state
IRState ir;
gIR = &ir;
ir.dmodule = this;
// name the module
std::string mname(toChars());
if (md != 0)
mname = md->toChars();
ir.module = new llvm::Module(mname);
// set target stuff
std::string target_triple(global.params.tt_arch);
target_triple.append(global.params.tt_os);
ir.module->setTargetTriple(target_triple);
ir.module->setDataLayout(global.params.data_layout);
// heavily inspired by tools/llc/llc.cpp:200-230
const llvm::TargetMachineRegistry::Entry* targetEntry;
std::string targetError;
targetEntry = llvm::TargetMachineRegistry::getClosestStaticTargetForModule(*ir.module, targetError);
assert(targetEntry && "Failed to find a static target for module");
std::auto_ptr<llvm::TargetMachine> targetPtr(targetEntry->CtorFn(*ir.module, "")); // TODO: replace "" with features
assert(targetPtr.get() && "Could not allocate target machine!");
llvm::TargetMachine &targetMachine = *targetPtr.get();
gTargetData = targetMachine.getTargetData();
// debug info
if (global.params.symdebug) {
RegisterDwarfSymbols(ir.module);
ir.dwarfCompileUnit = DtoDwarfCompileUnit(this);
}
// process module members
for (int k=0; k < members->dim; k++) {
Dsymbol* dsym = (Dsymbol*)(members->data[k]);
assert(dsym);
dsym->toObjFile();
}
gTargetData = 0;
// emit the llvm main function if necessary
if (ir.emitMain) {
DtoMain();
}
// verify the llvm
if (!global.params.novalidate) {
std::string verifyErr;
Logger::println("Verifying module...");
if (llvm::verifyModule(*ir.module,llvm::ReturnStatusAction,&verifyErr))
{
error("%s", verifyErr.c_str());
fatal();
}
else {
Logger::println("Verification passed!");
}
}
// run passes
// TODO
// write bytecode
{
Logger::println("Writing LLVM bitcode\n");
std::ofstream bos(bcfile->name->toChars(), std::ios::binary);
llvm::WriteBitcodeToFile(ir.module, bos);
}
// disassemble ?
if (global.params.disassemble) {
Logger::println("Writing LLVM asm to: %s\n", llfile->name->toChars());
std::ofstream aos(llfile->name->toChars());
ir.module->print(aos);
}
delete ir.module;
gIR = NULL;
}
/* ================================================================== */
// Put out instance of ModuleInfo for this Module
void Module::genmoduleinfo()
{
}
/* ================================================================== */
void Dsymbol::toObjFile()
{
Logger::println("Ignoring Dsymbol::toObjFile for %s", toChars());
}
/* ================================================================== */
void Declaration::toObjFile()
{
Logger::println("Ignoring Declaration::toObjFile for %s", toChars());
}
/* ================================================================== */
void InterfaceDeclaration::toObjFile()
{
Logger::println("Ignoring InterfaceDeclaration::toObjFile for %s", toChars());
}
/* ================================================================== */
void StructDeclaration::toObjFile()
{
TypeStruct* ts = (TypeStruct*)DtoDType(type);
if (llvmType != 0)
return;
static int sdi = 0;
Logger::print("StructDeclaration::toObjFile(%d): %s\n", sdi++, toChars());
LOG_SCOPE;
gIR->structs.push_back(IRStruct(ts));
for (int k=0; k < members->dim; k++) {
Dsymbol* dsym = (Dsymbol*)(members->data[k]);
dsym->toObjFile();
}
Logger::println("doing struct fields");
llvm::StructType* structtype = 0;
std::vector<llvm::Constant*> fieldinits;
if (gIR->topstruct().offsets.empty())
{
std::vector<const llvm::Type*> fieldtypes;
Logger::println("has no fields");
fieldtypes.push_back(llvm::Type::Int8Ty);
fieldinits.push_back(llvm::ConstantInt::get(llvm::Type::Int8Ty, 0, false));
structtype = llvm::StructType::get(fieldtypes);
}
else
{
Logger::println("has fields");
std::vector<const llvm::Type*> fieldtypes;
unsigned prevsize = (unsigned)-1;
unsigned lastoffset = (unsigned)-1;
const llvm::Type* fieldtype = NULL;
llvm::Constant* fieldinit = NULL;
size_t fieldpad = 0;
int idx = 0;
for (IRStruct::OffsetMap::iterator i=gIR->topstruct().offsets.begin(); i!=gIR->topstruct().offsets.end(); ++i) {
// first iteration
if (lastoffset == (unsigned)-1) {
lastoffset = i->first;
assert(lastoffset == 0);
fieldtype = DtoType(i->second.var->type);
fieldinit = i->second.init;
prevsize = gTargetData->getTypeSize(fieldtype);
i->second.var->llvmFieldIndex = idx;
}
// colliding offset?
else if (lastoffset == i->first) {
const llvm::Type* t = DtoType(i->second.var->type);
size_t s = gTargetData->getTypeSize(t);
if (s > prevsize) {
fieldpad += s - prevsize;
prevsize = s;
}
llvmHasUnions = true;
i->second.var->llvmFieldIndex = idx;
}
// intersecting offset?
else if (i->first < (lastoffset + prevsize)) {
const llvm::Type* t = DtoType(i->second.var->type);
size_t s = gTargetData->getTypeSize(t);
assert((i->first + s) <= (lastoffset + prevsize)); // this holds because all types are aligned to their size
llvmHasUnions = true;
i->second.var->llvmFieldIndex = idx;
i->second.var->llvmFieldIndexOffset = (i->first - lastoffset) / s;
}
// fresh offset
else {
// commit the field
fieldtypes.push_back(fieldtype);
fieldinits.push_back(fieldinit);
if (fieldpad) {
// match up with below
std::vector<llvm::Constant*> vals(fieldpad, llvm::ConstantInt::get(llvm::Type::Int8Ty, 0, false));
llvm::Constant* c = llvm::ConstantArray::get(llvm::ArrayType::get(llvm::Type::Int8Ty, fieldpad), vals);
fieldtypes.push_back(c->getType());
fieldinits.push_back(c);
idx++;
}
idx++;
// start new
lastoffset = i->first;
fieldtype = DtoType(i->second.var->type);
fieldinit = i->second.init;
prevsize = gTargetData->getTypeSize(fieldtype);
i->second.var->llvmFieldIndex = idx;
fieldpad = 0;
}
}
fieldtypes.push_back(fieldtype);
fieldinits.push_back(fieldinit);
if (fieldpad) {
// match up with above
std::vector<llvm::Constant*> vals(fieldpad, llvm::ConstantInt::get(llvm::Type::Int8Ty, 0, false));
llvm::Constant* c = llvm::ConstantArray::get(llvm::ArrayType::get(llvm::Type::Int8Ty, fieldpad), vals);
fieldtypes.push_back(c->getType());
fieldinits.push_back(c);
}
Logger::println("creating struct type");
structtype = llvm::StructType::get(fieldtypes);
}
// refine abstract types for stuff like: struct S{S* next;}
if (gIR->topstruct().recty != 0)
{
llvm::PATypeHolder& pa = gIR->topstruct().recty;
llvm::cast<llvm::OpaqueType>(pa.get())->refineAbstractTypeTo(structtype);
structtype = llvm::cast<llvm::StructType>(pa.get());
}
ts->llvmType = structtype;
llvmType = structtype;
if (parent->isModule()) {
gIR->module->addTypeName(mangle(),ts->llvmType);
}
llvmUnion = new DUnion; // uses gIR->topstruct()
// generate static data
llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::ExternalLinkage;
llvm::Constant* _init = 0;
// always generate the constant initalizer
if (!zeroInit) {
Logger::println("Not zero initialized");
//assert(tk == gIR->gIR->topstruct()().size());
#ifndef LLVMD_NO_LOGGER
Logger::cout() << "struct type: " << *structtype << '\n';
for (size_t k=0; k<fieldinits.size(); ++k) {
Logger::cout() << "Type:" << '\n';
Logger::cout() << *fieldinits[k]->getType() << '\n';
Logger::cout() << "Value:" << '\n';
Logger::cout() << *fieldinits[k] << '\n';
}
Logger::cout() << "Initializer printed" << '\n';
#endif
llvmInitZ = llvm::ConstantStruct::get(structtype,fieldinits);
}
else {
Logger::println("Zero initialized");
llvmInitZ = llvm::ConstantAggregateZero::get(structtype);
}
// only provide the constant initializer for the defining module
if (getModule() == gIR->dmodule)
{
_init = llvmInitZ;
}
std::string initname("_D");
initname.append(mangle());
initname.append("6__initZ");
llvm::GlobalVariable* initvar = new llvm::GlobalVariable(ts->llvmType, true, _linkage, _init, initname, gIR->module);
ts->llvmInit = initvar;
// generate member function definitions
gIR->topstruct().queueFuncs = false;
IRStruct::FuncDeclVector& mfs = gIR->topstruct().funcs;
size_t n = mfs.size();
for (size_t i=0; i<n; ++i) {
mfs[i]->toObjFile();
}
llvmDModule = gIR->dmodule;
gIR->structs.pop_back();
// generate typeinfo
if (getModule() == gIR->dmodule && llvmInternal != LLVMnotypeinfo)
type->getTypeInfo(NULL);
}
/* ================================================================== */
static unsigned LLVM_ClassOffsetToIndex(ClassDeclaration* cd, unsigned os, unsigned& idx)
{
// start at the bottom of the inheritance chain
if (cd->baseClass != 0) {
unsigned o = LLVM_ClassOffsetToIndex(cd->baseClass, os, idx);
if (o != (unsigned)-1)
return o;
}
// check this class
unsigned i;
for (i=0; i<cd->fields.dim; ++i) {
VarDeclaration* vd = (VarDeclaration*)cd->fields.data[i];
if (os == vd->offset)
return i+idx;
}
idx += i;
return (unsigned)-1;
}
void ClassDeclaration::offsetToIndex(Type* t, unsigned os, std::vector<unsigned>& result)
{
unsigned idx = 0;
unsigned r = LLVM_ClassOffsetToIndex(this, os, idx);
assert(r != (unsigned)-1 && "Offset not found in any aggregate field");
result.push_back(r+1); // vtable is 0
}
/* ================================================================== */
static void LLVM_AddBaseClassData(BaseClasses* bcs)
{
// add base class data members first
for (int j=0; j<bcs->dim; j++)
{
BaseClass* bc = (BaseClass*)(bcs->data[j]);
assert(bc);
Logger::println("Adding base class members of %s", bc->base->toChars());
LOG_SCOPE;
LLVM_AddBaseClassData(&bc->base->baseclasses);
for (int k=0; k < bc->base->members->dim; k++) {
Dsymbol* dsym = (Dsymbol*)(bc->base->members->data[k]);
if (dsym->isVarDeclaration())
{
dsym->toObjFile();
}
}
}
}
void ClassDeclaration::toObjFile()
{
TypeClass* ts = (TypeClass*)DtoDType(type);
if (ts->llvmType != 0 || llvmInProgress)
return;
llvmInProgress = true;
static int fdi = 0;
Logger::print("ClassDeclaration::toObjFile(%d): %s\n", fdi++, toChars());
LOG_SCOPE;
gIR->structs.push_back(IRStruct(ts));
gIR->classes.push_back(this);
// add vtable
llvm::PATypeHolder pa = llvm::OpaqueType::get();
const llvm::Type* vtabty = llvm::PointerType::get(pa);
std::vector<const llvm::Type*> fieldtypes;
fieldtypes.push_back(vtabty);
std::vector<llvm::Constant*> fieldinits;
fieldinits.push_back(0);
// base classes first
LLVM_AddBaseClassData(&baseclasses);
// then add own members
for (int k=0; k < members->dim; k++) {
Dsymbol* dsym = (Dsymbol*)(members->data[k]);
dsym->toObjFile();
}
// fill out fieldtypes/inits
for (IRStruct::OffsetMap::iterator i=gIR->topstruct().offsets.begin(); i!=gIR->topstruct().offsets.end(); ++i) {
fieldtypes.push_back(DtoType(i->second.var->type));
fieldinits.push_back(i->second.init);
}
llvm::StructType* structtype = llvm::StructType::get(fieldtypes);
// refine abstract types for stuff like: class C {C next;}
if (gIR->topstruct().recty != 0)
{
llvm::PATypeHolder& pa = gIR->topstruct().recty;
llvm::cast<llvm::OpaqueType>(pa.get())->refineAbstractTypeTo(structtype);
structtype = llvm::cast<llvm::StructType>(pa.get());
}
ts->llvmType = structtype;
llvmType = structtype;
bool needs_definition = false;
if (parent->isModule()) {
gIR->module->addTypeName(mangle(),ts->llvmType);
needs_definition = (getModule() == gIR->dmodule);
}
else {
assert(0 && "class parent is not a module");
}
// generate vtable
llvm::GlobalVariable* svtblVar = 0;
std::vector<llvm::Constant*> sinits;
std::vector<const llvm::Type*> sinits_ty;
sinits.reserve(vtbl.dim);
sinits_ty.reserve(vtbl.dim);
for (int k=0; k < vtbl.dim; k++)
{
Dsymbol* dsym = (Dsymbol*)vtbl.data[k];
assert(dsym);
//Logger::cout() << "vtblsym: " << dsym->toChars() << '\n';
if (FuncDeclaration* fd = dsym->isFuncDeclaration()) {
fd->toObjFile();
assert(fd->llvmValue);
llvm::Constant* c = llvm::cast<llvm::Constant>(fd->llvmValue);
sinits.push_back(c);
sinits_ty.push_back(c->getType());
}
else if (ClassDeclaration* cd = dsym->isClassDeclaration()) {
const llvm::Type* cty = llvm::PointerType::get(llvm::Type::Int8Ty);
llvm::Constant* c = llvm::Constant::getNullValue(cty);
sinits.push_back(c);
sinits_ty.push_back(cty);
}
else
assert(0);
}
const llvm::StructType* svtbl_ty = 0;
if (!sinits.empty())
{
llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::ExternalLinkage;
std::string varname("_D");
varname.append(mangle());
varname.append("6__vtblZ");
std::string styname(mangle());
styname.append("__vtblTy");
svtbl_ty = llvm::StructType::get(sinits_ty);
gIR->module->addTypeName(styname, svtbl_ty);
svtblVar = new llvm::GlobalVariable(svtbl_ty, true, _linkage, 0, varname, gIR->module);
llvmConstVtbl = llvm::cast<llvm::ConstantStruct>(llvm::ConstantStruct::get(svtbl_ty, sinits));
if (needs_definition)
svtblVar->setInitializer(llvmConstVtbl);
llvmVtbl = svtblVar;
}
////////////////////////////////////////////////////////////////////////////////
// refine for final vtable type
llvm::cast<llvm::OpaqueType>(pa.get())->refineAbstractTypeTo(svtbl_ty);
svtbl_ty = llvm::cast<llvm::StructType>(pa.get());
structtype = llvm::cast<llvm::StructType>(gIR->topstruct().recty.get());
ts->llvmType = structtype;
llvmType = structtype;
// generate initializer
llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::ExternalLinkage;
llvm::Constant* _init = 0;
// first field is always the vtable
assert(svtblVar != 0);
fieldinits[0] = svtblVar;
llvmInitZ = _init = llvm::ConstantStruct::get(structtype,fieldinits);
assert(_init);
std::string initname("_D");
initname.append(mangle());
initname.append("6__initZ");
//Logger::cout() << *_init << '\n';
llvm::GlobalVariable* initvar = new llvm::GlobalVariable(ts->llvmType, true, _linkage, NULL, initname, gIR->module);
ts->llvmInit = initvar;
if (needs_definition) {
initvar->setInitializer(_init);
// generate member functions
gIR->topstruct().queueFuncs = false;
IRStruct::FuncDeclVector& mfs = gIR->topstruct().funcs;
size_t n = mfs.size();
for (size_t i=0; i<n; ++i) {
mfs[i]->toObjFile();
}
}
gIR->classes.pop_back();
gIR->structs.pop_back();
llvmInProgress = false;
}
/******************************************
* Get offset of base class's vtbl[] initializer from start of csym.
* Returns ~0 if not this csym.
*/
unsigned ClassDeclaration::baseVtblOffset(BaseClass *bc)
{
return ~0;
}
/* ================================================================== */
void VarDeclaration::toObjFile()
{
Logger::print("VarDeclaration::toObjFile(): %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
llvm::Module* M = gIR->module;
if (aliassym)
{
Logger::println("alias sym");
toAlias()->toObjFile();
return;
}
// global variable or magic
if (isDataseg())
{
if (llvmTouched) return;
else llvmTouched = true;
bool _isconst = false;
if (isConst() && (init && !init->isExpInitializer()))
_isconst = true;
llvm::GlobalValue::LinkageTypes _linkage;
bool istempl = false;
if ((storage_class & STCcomdat) || (parent && DtoIsTemplateInstance(parent))) {
_linkage = llvm::GlobalValue::WeakLinkage;
istempl = true;
}
else if (parent && parent->isFuncDeclaration())
_linkage = llvm::GlobalValue::InternalLinkage;
else
_linkage = DtoLinkage(protection, storage_class);
Type* t = DtoDType(type);
const llvm::Type* _type = DtoType(t);
assert(_type);
llvm::Constant* _init = 0;
bool _signed = !type->isunsigned();
Logger::println("Creating global variable");
std::string _name(mangle());
bool emitRTstaticInit = false;
if (!(storage_class & STCextern) && (getModule() == gIR->dmodule || istempl))
{
if (parent && parent->isFuncDeclaration() && init && init->isExpInitializer()) {
_init = DtoConstInitializer(t, NULL);
emitRTstaticInit = true;
}
else {
_init = DtoConstInitializer(t, init);
}
//Logger::cout() << "initializer: " << *_init << '\n';
if (_type != _init->getType()) {
Logger::cout() << "got type '" << *_init->getType() << "' expected '" << *_type << "'\n";
// zero initalizer
if (_init->isNullValue())
_init = llvm::Constant::getNullValue(_type);
// pointer to global constant (struct.init)
else if (llvm::isa<llvm::GlobalVariable>(_init))
{
assert(_init->getType()->getContainedType(0) == _type);
llvm::GlobalVariable* gv = llvm::cast<llvm::GlobalVariable>(_init);
assert(t->ty == Tstruct);
TypeStruct* ts = (TypeStruct*)t;
assert(ts->sym->llvmInitZ);
_init = ts->sym->llvmInitZ;
}
// array single value init
else if (llvm::isa<llvm::ArrayType>(_type))
{
_init = DtoConstStaticArray(_type, _init);
}
else {
Logger::cout() << "Unexpected initializer type: " << *_type << '\n';
//assert(0);
}
}
}
if (_init && _init->getType() != _type)
_type = _init->getType();
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(_type,_isconst,_linkage,_init,_name,M);
llvmValue = gvar;
if (emitRTstaticInit)
DtoLazyStaticInit(istempl, gvar, init, t);
llvmDModule = gIR->dmodule;
//if (storage_class & STCprivate)
// gvar->setVisibility(llvm::GlobalValue::ProtectedVisibility);
}
// inside aggregate declaration. declare a field.
else
{
Logger::println("Aggregate var declaration: '%s' offset=%d", toChars(), offset);
Type* t = DtoDType(type);
const llvm::Type* _type = DtoType(t);
llvm::Constant*_init = DtoConstInitializer(t, init);
assert(_init);
Logger::cout() << "field init is: " << *_init << " type should be " << *_type << '\n';
if (_type != _init->getType())
{
if (t->ty == Tsarray)
{
const llvm::ArrayType* arrty = llvm::cast<llvm::ArrayType>(_type);
uint64_t n = arrty->getNumElements();
std::vector<llvm::Constant*> vals(n,_init);
_init = llvm::ConstantArray::get(arrty, vals);
}
else if (t->ty == Tarray)
{
assert(llvm::isa<llvm::StructType>(_type));
_init = llvm::ConstantAggregateZero::get(_type);
}
else if (t->ty == Tstruct)
{
const llvm::StructType* structty = llvm::cast<llvm::StructType>(_type);
TypeStruct* ts = (TypeStruct*)t;
assert(ts);
assert(ts->sym);
assert(ts->sym->llvmInitZ);
_init = ts->sym->llvmInitZ;
}
else if (t->ty == Tclass)
{
_init = llvm::Constant::getNullValue(_type);
}
else {
Logger::println("failed for type %s", type->toChars());
assert(0);
}
}
// add the field in the IRStruct
gIR->topstruct().offsets.insert(std::make_pair(offset, IRStruct::Offset(this,_init)));
}
Logger::println("VarDeclaration::toObjFile is done");
}
/* ================================================================== */
void TypedefDeclaration::toObjFile()
{
static int tdi = 0;
Logger::print("TypedefDeclaration::toObjFile(%d): %s\n", tdi++, toChars());
LOG_SCOPE;
// generate typeinfo
type->getTypeInfo(NULL);
}
/* ================================================================== */
void EnumDeclaration::toObjFile()
{
Logger::println("Ignoring EnumDeclaration::toObjFile for %s", toChars());
}
/* ================================================================== */
void FuncDeclaration::toObjFile()
{
if (llvmDModule) {
assert(llvmValue != 0);
return;
}
if (llvmRunTimeHack) {
Logger::println("runtime hack func chars: %s", toChars());
if (!llvmValue)
llvmValue = LLVM_D_GetRuntimeFunction(gIR->module, toChars());
return;
}
if (isUnitTestDeclaration()) {
Logger::println("*** ATTENTION: ignoring unittest declaration: %s", toChars());
return;
}
Type* t = DtoDType(type);
TypeFunction* f = (TypeFunction*)t;
bool declareOnly = false;
if (parent)
{
if (TemplateInstance* tinst = parent->isTemplateInstance()) {
TemplateDeclaration* tempdecl = tinst->tempdecl;
if (tempdecl->llvmInternal == LLVMva_start)
{
Logger::println("magic va_start found");
llvmInternal = LLVMva_start;
declareOnly = true;
}
else if (tempdecl->llvmInternal == LLVMva_arg)
{
Logger::println("magic va_arg found");
llvmInternal = LLVMva_arg;
return;
}
}
}
llvm::Function* func = DtoDeclareFunction(this);
if (declareOnly)
return;
if (!gIR->structs.empty() && gIR->topstruct().queueFuncs) {
if (!llvmQueued) {
Logger::println("queueing %s", toChars());
gIR->topstruct().funcs.push_back(this);
llvmQueued = true;
}
return; // we wait with the definition as they might invoke a virtual method and the vtable is not yet complete
}
// debug info
if (global.params.symdebug) {
llvmDwarfSubProgram = DtoDwarfSubProgram(this);
}
assert(f->llvmType);
const llvm::FunctionType* functype = llvm::cast<llvm::FunctionType>(llvmValue->getType()->getContainedType(0));
// template instances should have weak linkage
if (parent && DtoIsTemplateInstance(parent)) {
func->setLinkage(llvm::GlobalValue::WeakLinkage);
}
// only members of the current module maybe be defined
if (getModule() == gIR->dmodule || DtoIsTemplateInstance(parent))
{
llvmDModule = gIR->dmodule;
// handle static constructor / destructor
if (isStaticCtorDeclaration() || isStaticDtorDeclaration()) {
const llvm::ArrayType* sctor_type = llvm::ArrayType::get(llvm::PointerType::get(functype),1);
//Logger::cout() << "static ctor type: " << *sctor_type << '\n';
llvm::Constant* sctor_func = llvm::cast<llvm::Constant>(llvmValue);
//Logger::cout() << "static ctor func: " << *sctor_func << '\n';
llvm::Constant* sctor_init = llvm::ConstantArray::get(sctor_type,&sctor_func,1);
//Logger::cout() << "static ctor init: " << *sctor_init << '\n';
// output the llvm.global_ctors array
const char* varname = isStaticCtorDeclaration() ? "_d_module_ctor_array" : "_d_module_dtor_array";
llvm::GlobalVariable* sctor_arr = new llvm::GlobalVariable(sctor_type, false, llvm::GlobalValue::AppendingLinkage, sctor_init, varname, gIR->module);
}
// function definition
if (fbody != 0)
{
gIR->functions.push_back(IRFunction(this));
gIR->func().func = func;
// first make absolutely sure the type is up to date
f->llvmType = llvmValue->getType()->getContainedType(0);
//Logger::cout() << "func type: " << *f->llvmType << '\n';
// this handling
if (f->llvmUsesThis) {
Logger::println("uses this");
if (f->llvmRetInPtr)
llvmThisVar = ++func->arg_begin();
else
llvmThisVar = func->arg_begin();
assert(llvmThisVar != 0);
}
if (isMain())
gIR->emitMain = true;
llvm::BasicBlock* beginbb = new llvm::BasicBlock("entry",func);
llvm::BasicBlock* endbb = new llvm::BasicBlock("endentry",func);
//assert(gIR->scopes.empty());
gIR->scopes.push_back(IRScope(beginbb, endbb));
// create alloca point
f->llvmAllocaPoint = new llvm::BitCastInst(llvm::ConstantInt::get(llvm::Type::Int32Ty,0,false),llvm::Type::Int32Ty,"alloca point",gIR->scopebb());
gIR->func().allocapoint = f->llvmAllocaPoint;
// give arguments storage
size_t n = Argument::dim(f->parameters);
for (int i=0; i < n; ++i) {
Argument* arg = Argument::getNth(f->parameters, i);
if (arg && arg->vardecl) {
VarDeclaration* vd = arg->vardecl;
if (!vd->llvmNeedsStorage || vd->nestedref || vd->isRef() || vd->isOut() || DtoIsPassedByRef(vd->type))
continue;
llvm::Value* a = vd->llvmValue;
assert(a);
std::string s(a->getName());
Logger::println("giving argument '%s' storage", s.c_str());
s.append("_storage");
llvm::Value* v = new llvm::AllocaInst(a->getType(),s,f->llvmAllocaPoint);
gIR->ir->CreateStore(a,v);
vd->llvmValue = v;
}
else {
Logger::println("*** ATTENTION: some unknown argument: %s", arg ? arg->toChars() : 0);
}
}
// debug info
if (global.params.symdebug) DtoDwarfFuncStart(this);
llvm::Value* parentNested = NULL;
if (FuncDeclaration* fd = toParent()->isFuncDeclaration()) {
parentNested = fd->llvmNested;
}
// construct nested variables struct
if (!llvmNestedVars.empty() || parentNested) {
std::vector<const llvm::Type*> nestTypes;
int j = 0;
if (parentNested) {
nestTypes.push_back(parentNested->getType());
j++;
}
for (std::set<VarDeclaration*>::iterator i=llvmNestedVars.begin(); i!=llvmNestedVars.end(); ++i) {
VarDeclaration* vd = *i;
vd->llvmNestedIndex = j++;
if (vd->isParameter()) {
assert(vd->llvmValue);
nestTypes.push_back(vd->llvmValue->getType());
}
else {
nestTypes.push_back(DtoType(vd->type));
}
}
const llvm::StructType* nestSType = llvm::StructType::get(nestTypes);
Logger::cout() << "nested var struct has type:" << '\n' << *nestSType;
llvmNested = new llvm::AllocaInst(nestSType,"nestedvars",f->llvmAllocaPoint);
if (parentNested) {
assert(llvmThisVar);
llvm::Value* ptr = gIR->ir->CreateBitCast(llvmThisVar, parentNested->getType(), "tmp");
gIR->ir->CreateStore(ptr, DtoGEPi(llvmNested, 0,0, "tmp"));
}
for (std::set<VarDeclaration*>::iterator i=llvmNestedVars.begin(); i!=llvmNestedVars.end(); ++i) {
VarDeclaration* vd = *i;
if (vd->isParameter()) {
gIR->ir->CreateStore(vd->llvmValue, DtoGEPi(llvmNested, 0, vd->llvmNestedIndex, "tmp"));
vd->llvmValue = llvmNested;
}
}
}
// copy _argptr to a memory location
if (f->linkage == LINKd && f->varargs == 1)
{
llvm::Value* argptrmem = new llvm::AllocaInst(llvmArgPtr->getType(), "_argptrmem", gIR->topallocapoint());
new llvm::StoreInst(llvmArgPtr, argptrmem, gIR->scopebb());
llvmArgPtr = argptrmem;
}
// output function body
fbody->toIR(gIR);
// llvm requires all basic blocks to end with a TerminatorInst but DMD does not put a return statement
// in automatically, so we do it here.
if (!isMain()) {
if (!gIR->scopereturned()) {
// pass the previous block into this block
if (global.params.symdebug) DtoDwarfFuncEnd(this);
if (func->getReturnType() == llvm::Type::VoidTy) {
new llvm::ReturnInst(gIR->scopebb());
}
else {
new llvm::ReturnInst(llvm::UndefValue::get(func->getReturnType()), gIR->scopebb());
}
}
}
// erase alloca point
f->llvmAllocaPoint->eraseFromParent();
f->llvmAllocaPoint = 0;
gIR->func().allocapoint = 0;
gIR->scopes.pop_back();
// get rid of the endentry block, it's never used
assert(!func->getBasicBlockList().empty());
func->getBasicBlockList().pop_back();
// if the last block is empty now, it must be unreachable or it's a bug somewhere else
// would be nice to figure out how to assert that this is correct
llvm::BasicBlock* lastbb = &func->getBasicBlockList().back();
if (lastbb->empty()) {
if (lastbb->getNumUses() == 0)
lastbb->eraseFromParent();
else {
new llvm::UnreachableInst(lastbb);
/*if (func->getReturnType() == llvm::Type::VoidTy) {
new llvm::ReturnInst(lastbb);
}
else {
new llvm::ReturnInst(llvm::UndefValue::get(func->getReturnType()), lastbb);
}*/
}
}
gIR->functions.pop_back();
}
}
}