ldc/ddmd/argtypes.d
David Nadlinger 9f998a398d Initial merge of upstream v2.071.0-b2
Notably, the glue layer side of the changed multiple interface
inheritance layout (DMD a54e89d) has not been implemented yet.

This corresponds to DMD commit 3f6a763c0589dd03c1c206eafd434b593702564e.
2016-04-03 15:15:14 +01:00

457 lines
15 KiB
D

// Compiler implementation of the D programming language
// Copyright (c) 1999-2015 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
module ddmd.argtypes;
import core.stdc.stdio;
import ddmd.declaration;
import ddmd.globals;
import ddmd.mtype;
import ddmd.visitor;
/****************************************************
* This breaks a type down into 'simpler' types that can be passed to a function
* in registers, and returned in registers.
* It's highly platform dependent.
* Params:
* t = type to break down
* Returns:
* tuple of types, each element can be passed in a register.
* A tuple of zero length means the type cannot be passed/returned in registers.
*/
extern (C++) TypeTuple toArgTypes(Type t)
{
extern (C++) final class ToArgTypes : Visitor
{
alias visit = super.visit;
public:
TypeTuple result;
override void visit(Type)
{
// not valid for a parameter
}
override void visit(TypeError)
{
result = new TypeTuple(Type.terror);
}
override void visit(TypeBasic t)
{
Type t1 = null;
Type t2 = null;
switch (t.ty)
{
case Tvoid:
return;
case Tbool:
case Tint8:
case Tuns8:
case Tint16:
case Tuns16:
case Tint32:
case Tuns32:
case Tfloat32:
case Tint64:
case Tuns64:
case Tint128:
case Tuns128:
case Tfloat64:
case Tfloat80:
t1 = t;
break;
case Timaginary32:
t1 = Type.tfloat32;
break;
case Timaginary64:
t1 = Type.tfloat64;
break;
case Timaginary80:
t1 = Type.tfloat80;
break;
case Tcomplex32:
if (global.params.is64bit)
t1 = Type.tfloat64;
else
{
t1 = Type.tfloat64;
t2 = Type.tfloat64;
}
break;
case Tcomplex64:
t1 = Type.tfloat64;
t2 = Type.tfloat64;
break;
case Tcomplex80:
t1 = Type.tfloat80;
t2 = Type.tfloat80;
break;
case Tchar:
t1 = Type.tuns8;
break;
case Twchar:
t1 = Type.tuns16;
break;
case Tdchar:
t1 = Type.tuns32;
break;
default:
assert(0);
}
if (t1)
{
if (t2)
result = new TypeTuple(t1, t2);
else
result = new TypeTuple(t1);
}
else
result = new TypeTuple();
}
override void visit(TypeVector t)
{
result = new TypeTuple(t);
}
override void visit(TypeSArray t)
{
if (t.dim)
{
/* Should really be done as if it were a struct with dim members
* of the array's elements.
* I.e. int[2] should be done like struct S { int a; int b; }
*/
dinteger_t sz = t.dim.toInteger();
// T[1] should be passed like T
if (sz == 1)
{
t.next.accept(this);
return;
}
}
result = new TypeTuple(); // pass on the stack for efficiency
}
override void visit(TypeAArray)
{
result = new TypeTuple(Type.tvoidptr);
}
override void visit(TypePointer)
{
result = new TypeTuple(Type.tvoidptr);
}
/*************************************
* Convert a floating point type into the equivalent integral type.
*/
static Type mergeFloatToInt(Type t)
{
switch (t.ty)
{
case Tfloat32:
case Timaginary32:
t = Type.tint32;
break;
case Tfloat64:
case Timaginary64:
case Tcomplex32:
t = Type.tint64;
break;
default:
debug
{
printf("mergeFloatToInt() %s\n", t.toChars());
}
assert(0);
}
return t;
}
/*************************************
* This merges two types into an 8byte type.
* Params:
* t1 = first type (can be null)
* t2 = second type (can be null)
* offset2 = offset of t2 from start of t1
* Returns:
* type that encompasses both t1 and t2, null if cannot be done
*/
static Type argtypemerge(Type t1, Type t2, uint offset2)
{
//printf("argtypemerge(%s, %s, %d)\n", t1 ? t1.toChars() : "", t2 ? t2.toChars() : "", offset2);
if (!t1)
{
assert(!t2 || offset2 == 0);
return t2;
}
if (!t2)
return t1;
uint sz1 = cast(uint)t1.size(Loc());
uint sz2 = cast(uint)t2.size(Loc());
if (t1.ty != t2.ty && (t1.ty == Tfloat80 || t2.ty == Tfloat80))
return null;
// [float,float] => [cfloat]
if (t1.ty == Tfloat32 && t2.ty == Tfloat32 && offset2 == 4)
return Type.tfloat64;
// Merging floating and non-floating types produces the non-floating type
if (t1.isfloating())
{
if (!t2.isfloating())
t1 = mergeFloatToInt(t1);
}
else if (t2.isfloating())
t2 = mergeFloatToInt(t2);
Type t;
// Pick type with larger size
if (sz1 < sz2)
t = t2;
else
t = t1;
// If t2 does not lie within t1, need to increase the size of t to enclose both
if (offset2 && sz1 < offset2 + sz2)
{
switch (offset2 + sz2)
{
case 2:
t = Type.tint16;
break;
case 3:
case 4:
t = Type.tint32;
break;
default:
t = Type.tint64;
break;
}
}
return t;
}
override void visit(TypeDArray)
{
/* Should be done as if it were:
* struct S { size_t length; void* ptr; }
*/
if (global.params.is64bit && !global.params.isLP64)
{
// For AMD64 ILP32 ABI, D arrays fit into a single integer register.
uint offset = cast(uint)Type.tsize_t.size(Loc());
Type t = argtypemerge(Type.tsize_t, Type.tvoidptr, offset);
if (t)
{
result = new TypeTuple(t);
return;
}
}
result = new TypeTuple(Type.tsize_t, Type.tvoidptr);
}
override void visit(TypeDelegate)
{
/* Should be done as if it were:
* struct S { size_t length; void* ptr; }
*/
if (global.params.is64bit && !global.params.isLP64)
{
// For AMD64 ILP32 ABI, delegates fit into a single integer register.
uint offset = cast(uint)Type.tsize_t.size(Loc());
Type t = argtypemerge(Type.tsize_t, Type.tvoidptr, offset);
if (t)
{
result = new TypeTuple(t);
return;
}
}
result = new TypeTuple(Type.tvoidptr, Type.tvoidptr);
}
override void visit(TypeStruct t)
{
//printf("TypeStruct.toArgTypes() %s\n", t.toChars());
if (!t.sym.isPOD() || t.sym.fields.dim == 0)
{
Lmemory:
//printf("\ttoArgTypes() %s => [ ]\n", t->toChars());
result = new TypeTuple(); // pass on the stack
return;
}
Type t1 = null;
Type t2 = null;
d_uns64 sz = t.size(Loc());
assert(sz < 0xFFFFFFFF);
switch (cast(uint)sz)
{
case 1:
t1 = Type.tint8;
break;
case 2:
t1 = Type.tint16;
break;
case 3:
if (!global.params.is64bit)
goto Lmemory;
goto case;
case 4:
t1 = Type.tint32;
break;
case 5:
case 6:
case 7:
if (!global.params.is64bit)
goto Lmemory;
goto case;
case 8:
t1 = Type.tint64;
break;
case 16:
t1 = null; // could be a TypeVector
break;
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
if (!global.params.is64bit)
goto Lmemory;
t1 = null;
break;
default:
goto Lmemory;
}
if (global.params.is64bit && t.sym.fields.dim)
{
version (all)
{
t1 = null;
for (size_t i = 0; i < t.sym.fields.dim; i++)
{
VarDeclaration f = t.sym.fields[i];
//printf(" [%d] %s f.type = %s\n", cast(int)i, f.toChars(), f.type.toChars());
TypeTuple tup = toArgTypes(f.type);
if (!tup)
goto Lmemory;
size_t dim = tup.arguments.dim;
Type ft1 = null;
Type ft2 = null;
switch (dim)
{
case 2:
ft1 = (*tup.arguments)[0].type;
ft2 = (*tup.arguments)[1].type;
break;
case 1:
if (f.offset < 8)
ft1 = (*tup.arguments)[0].type;
else
ft2 = (*tup.arguments)[0].type;
break;
default:
goto Lmemory;
}
if (f.offset & 7)
{
// Misaligned fields goto Lmemory
uint alignsz = f.type.alignsize();
if (f.offset & (alignsz - 1))
goto Lmemory;
// Fields that overlap the 8byte boundary goto Lmemory
d_uns64 fieldsz = f.type.size(Loc());
if (f.offset < 8 && (f.offset + fieldsz) > 8)
goto Lmemory;
}
// First field in 8byte must be at start of 8byte
assert(t1 || f.offset == 0);
//printf("ft1 = %s\n", ft1 ? ft1.toChars() : "null");
//printf("ft2 = %s\n", ft2 ? ft2.toChars() : "null");
if (ft1)
{
t1 = argtypemerge(t1, ft1, f.offset);
if (!t1)
goto Lmemory;
}
if (ft2)
{
uint off2 = f.offset;
if (ft1)
off2 = 8;
if (!t2 && off2 != 8)
goto Lmemory;
assert(t2 || off2 == 8);
t2 = argtypemerge(t2, ft2, off2 - 8);
if (!t2)
goto Lmemory;
}
}
if (t2)
{
if (t1.isfloating() && t2.isfloating())
{
if ((t1.ty == Tfloat32 || t1.ty == Tfloat64) && (t2.ty == Tfloat32 || t2.ty == Tfloat64))
{
}
else
goto Lmemory;
}
else if (t1.isfloating())
goto Lmemory;
else if (t2.isfloating())
goto Lmemory;
else
{
}
}
}
else
{
if (t.sym.fields.dim == 1)
{
VarDeclaration f = t.sym.fields[0];
//printf("f->type = %s\n", f->type->toChars());
TypeTuple tup = toArgTypes(f.type);
if (tup)
{
size_t dim = tup.arguments.dim;
if (dim == 1)
t1 = (*tup.arguments)[0].type;
}
}
}
}
//printf("\ttoArgTypes() %s => [%s,%s]\n", t->toChars(), t1 ? t1->toChars() : "", t2 ? t2->toChars() : "");
if (t1)
{
//if (t1) printf("test1: %s => %s\n", toChars(), t1->toChars());
if (t2)
result = new TypeTuple(t1, t2);
else
result = new TypeTuple(t1);
}
else
goto Lmemory;
}
override void visit(TypeEnum t)
{
t.toBasetype().accept(this);
}
override void visit(TypeClass)
{
result = new TypeTuple(Type.tvoidptr);
}
}
scope ToArgTypes v = new ToArgTypes();
t.accept(v);
return v.result;
}