mirror of
https://github.com/ldc-developers/ldc.git
synced 2025-04-30 15:10:59 +03:00

Removed use of dyn_cast, llvm no compiles without exceptions and rtti by default. We do need exceptions for the libconfig stuff, but rtti isn't necessary (anymore). Debug info needs to be rewritten, as in LLVM 2.7 the format has completely changed. To have something to look at while rewriting, the old code has been wrapped inside #ifndef DISABLE_DEBUG_INFO , this means that you have to define this to compile at the moment. Updated tango 0.99.9 patch to include updated EH runtime code, which is needed for LLVM 2.7 as well.
930 lines
27 KiB
C++
930 lines
27 KiB
C++
#include "gen/llvm.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Intrinsics.h"
|
|
|
|
#include "mtype.h"
|
|
#include "aggregate.h"
|
|
#include "init.h"
|
|
#include "declaration.h"
|
|
#include "template.h"
|
|
#include "module.h"
|
|
#include "statement.h"
|
|
|
|
#include "gen/irstate.h"
|
|
#include "gen/tollvm.h"
|
|
#include "gen/llvmhelpers.h"
|
|
#include "gen/runtime.h"
|
|
#include "gen/arrays.h"
|
|
#include "gen/logger.h"
|
|
#include "gen/functions.h"
|
|
#include "gen/todebug.h"
|
|
#include "gen/classes.h"
|
|
#include "gen/dvalue.h"
|
|
#include "gen/abi.h"
|
|
#include "gen/nested.h"
|
|
|
|
using namespace llvm::Attribute;
|
|
|
|
const llvm::FunctionType* DtoFunctionType(Type* type, Type* thistype, Type* nesttype, bool ismain)
|
|
{
|
|
if (Logger::enabled())
|
|
Logger::println("DtoFunctionType(%s)", type->toChars());
|
|
LOG_SCOPE
|
|
|
|
// sanity check
|
|
assert(type->ty == Tfunction);
|
|
TypeFunction* f = (TypeFunction*)type;
|
|
|
|
TargetABI* abi = (f->linkage == LINKintrinsic ? TargetABI::getIntrinsic() : gABI);
|
|
// Tell the ABI we're resolving a new function type
|
|
abi->newFunctionType(f);
|
|
|
|
// Do not modify f->fty yet; this function may be called recursively if any
|
|
// of the argument types refer to this type.
|
|
IrFuncTy fty;
|
|
|
|
// llvm idx counter
|
|
size_t lidx = 0;
|
|
|
|
// main needs a little special handling
|
|
if (ismain)
|
|
{
|
|
fty.ret = new IrFuncTyArg(Type::tint32, false);
|
|
}
|
|
// sane return value
|
|
else
|
|
{
|
|
Type* rt = f->next;
|
|
unsigned a = 0;
|
|
// sret return
|
|
if (abi->returnInArg(f))
|
|
{
|
|
fty.arg_sret = new IrFuncTyArg(rt, true, StructRet | NoAlias | NoCapture);
|
|
rt = Type::tvoid;
|
|
lidx++;
|
|
}
|
|
// sext/zext return
|
|
else if (unsigned se = DtoShouldExtend(rt))
|
|
{
|
|
a = se;
|
|
}
|
|
fty.ret = new IrFuncTyArg(rt, false, a);
|
|
}
|
|
lidx++;
|
|
|
|
// member functions
|
|
if (thistype)
|
|
{
|
|
bool toref = (thistype->toBasetype()->ty == Tstruct);
|
|
fty.arg_this = new IrFuncTyArg(thistype, toref);
|
|
lidx++;
|
|
}
|
|
|
|
// and nested functions
|
|
else if (nesttype)
|
|
{
|
|
fty.arg_nest = new IrFuncTyArg(nesttype, false);
|
|
lidx++;
|
|
}
|
|
|
|
// vararg functions are special too
|
|
if (f->varargs)
|
|
{
|
|
if (f->linkage == LINKd)
|
|
{
|
|
// d style with hidden args
|
|
// 2 (array) is handled by the frontend
|
|
if (f->varargs == 1)
|
|
{
|
|
// _arguments
|
|
fty.arg_arguments = new IrFuncTyArg(Type::typeinfo->type->arrayOf(), false);
|
|
lidx++;
|
|
// _argptr
|
|
fty.arg_argptr = new IrFuncTyArg(Type::tvoid->pointerTo(), false, NoAlias | NoCapture);
|
|
lidx++;
|
|
}
|
|
}
|
|
else if (f->linkage == LINKc)
|
|
{
|
|
fty.c_vararg = true;
|
|
}
|
|
else
|
|
{
|
|
type->error(0, "invalid linkage for variadic function");
|
|
fatal();
|
|
}
|
|
}
|
|
|
|
// if this _Dmain() doesn't have an argument, we force it to have one
|
|
int nargs = Parameter::dim(f->parameters);
|
|
|
|
if (ismain && nargs == 0)
|
|
{
|
|
Type* mainargs = Type::tchar->arrayOf()->arrayOf();
|
|
fty.args.push_back(new IrFuncTyArg(mainargs, false));
|
|
lidx++;
|
|
}
|
|
// add explicit parameters
|
|
else for (int i = 0; i < nargs; i++)
|
|
{
|
|
// get argument
|
|
Parameter* arg = Parameter::getNth(f->parameters, i);
|
|
|
|
// reference semantics? ref, out and static arrays are
|
|
bool byref = (arg->storageClass & (STCref|STCout)) || (arg->type->toBasetype()->ty == Tsarray);
|
|
|
|
Type* argtype = arg->type;
|
|
unsigned a = 0;
|
|
|
|
// handle lazy args
|
|
if (arg->storageClass & STClazy)
|
|
{
|
|
Logger::println("lazy param");
|
|
TypeFunction *ltf = new TypeFunction(NULL, arg->type, 0, LINKd);
|
|
TypeDelegate *ltd = new TypeDelegate(ltf);
|
|
argtype = ltd;
|
|
}
|
|
// byval
|
|
else if (abi->passByVal(byref ? argtype->pointerTo() : argtype))
|
|
{
|
|
if (!byref) a |= llvm::Attribute::ByVal;
|
|
byref = true;
|
|
}
|
|
// sext/zext
|
|
else if (!byref)
|
|
{
|
|
a |= DtoShouldExtend(argtype);
|
|
}
|
|
|
|
fty.args.push_back(new IrFuncTyArg(argtype, byref, a));
|
|
lidx++;
|
|
}
|
|
|
|
// Now we can modify f->fty safely.
|
|
f->fty = fty;
|
|
|
|
// let the abi rewrite the types as necesary
|
|
abi->rewriteFunctionType(f);
|
|
|
|
// Tell the ABI we're done with this function type
|
|
abi->doneWithFunctionType();
|
|
|
|
// build the function type
|
|
std::vector<const LLType*> argtypes;
|
|
argtypes.reserve(lidx);
|
|
|
|
if (f->fty.arg_sret) argtypes.push_back(f->fty.arg_sret->ltype);
|
|
if (f->fty.arg_this) argtypes.push_back(f->fty.arg_this->ltype);
|
|
if (f->fty.arg_nest) argtypes.push_back(f->fty.arg_nest->ltype);
|
|
if (f->fty.arg_arguments) argtypes.push_back(f->fty.arg_arguments->ltype);
|
|
if (f->fty.arg_argptr) argtypes.push_back(f->fty.arg_argptr->ltype);
|
|
|
|
size_t beg = argtypes.size();
|
|
size_t nargs2 = f->fty.args.size();
|
|
for (size_t i = 0; i < nargs2; i++)
|
|
{
|
|
argtypes.push_back(f->fty.args[i]->ltype);
|
|
}
|
|
|
|
// reverse params?
|
|
if (f->fty.reverseParams && nargs2 > 1)
|
|
{
|
|
std::reverse(argtypes.begin() + beg, argtypes.end());
|
|
}
|
|
|
|
llvm::FunctionType* functype = llvm::FunctionType::get(f->fty.ret->ltype, argtypes, f->fty.c_vararg);
|
|
|
|
Logger::cout() << "Final function type: " << *functype << "\n";
|
|
|
|
return functype;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static const llvm::FunctionType* DtoVaFunctionType(FuncDeclaration* fdecl)
|
|
{
|
|
TypeFunction* f = (TypeFunction*)fdecl->type;
|
|
const llvm::FunctionType* fty = 0;
|
|
|
|
// create new ir funcTy
|
|
f->fty.reset();
|
|
f->fty.ret = new IrFuncTyArg(Type::tvoid, false);
|
|
|
|
f->fty.args.push_back(new IrFuncTyArg(Type::tvoid->pointerTo(), false));
|
|
|
|
if (fdecl->llvmInternal == LLVMva_start)
|
|
fty = GET_INTRINSIC_DECL(vastart)->getFunctionType();
|
|
else if (fdecl->llvmInternal == LLVMva_copy) {
|
|
fty = GET_INTRINSIC_DECL(vacopy)->getFunctionType();
|
|
f->fty.args.push_back(new IrFuncTyArg(Type::tvoid->pointerTo(), false));
|
|
}
|
|
else if (fdecl->llvmInternal == LLVMva_end)
|
|
fty = GET_INTRINSIC_DECL(vaend)->getFunctionType();
|
|
assert(fty);
|
|
|
|
return fty;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
const llvm::FunctionType* DtoFunctionType(FuncDeclaration* fdecl)
|
|
{
|
|
// handle for C vararg intrinsics
|
|
if (fdecl->isVaIntrinsic())
|
|
return DtoVaFunctionType(fdecl);
|
|
|
|
Type *dthis=0, *dnest=0;
|
|
|
|
if (fdecl->needThis()) {
|
|
if (AggregateDeclaration* ad = fdecl->isMember2()) {
|
|
Logger::println("isMember = this is: %s", ad->type->toChars());
|
|
dthis = ad->type;
|
|
const LLType* thisty = DtoType(dthis);
|
|
//Logger::cout() << "this llvm type: " << *thisty << '\n';
|
|
if (ad->isStructDeclaration())
|
|
thisty = getPtrToType(thisty);
|
|
}
|
|
else {
|
|
Logger::println("chars: %s type: %s kind: %s", fdecl->toChars(), fdecl->type->toChars(), fdecl->kind());
|
|
assert(0);
|
|
}
|
|
}
|
|
else if (fdecl->isNested()) {
|
|
dnest = Type::tvoid->pointerTo();
|
|
}
|
|
|
|
const llvm::FunctionType* functype = DtoFunctionType(fdecl->type, dthis, dnest, fdecl->isMain());
|
|
|
|
return functype;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static llvm::Function* DtoDeclareVaFunction(FuncDeclaration* fdecl)
|
|
{
|
|
TypeFunction* f = (TypeFunction*)fdecl->type->toBasetype();
|
|
const llvm::FunctionType* fty = DtoVaFunctionType(fdecl);
|
|
llvm::Function* func = 0;
|
|
|
|
if (fdecl->llvmInternal == LLVMva_start)
|
|
func = GET_INTRINSIC_DECL(vastart);
|
|
else if (fdecl->llvmInternal == LLVMva_copy)
|
|
func = GET_INTRINSIC_DECL(vacopy);
|
|
else if (fdecl->llvmInternal == LLVMva_end)
|
|
func = GET_INTRINSIC_DECL(vaend);
|
|
assert(func);
|
|
|
|
fdecl->ir.irFunc->func = func;
|
|
return func;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void DtoResolveFunction(FuncDeclaration* fdecl)
|
|
{
|
|
if (!global.params.useUnitTests && fdecl->isUnitTestDeclaration()) {
|
|
Logger::println("Ignoring unittest %s", fdecl->toPrettyChars());
|
|
return; // ignore declaration completely
|
|
}
|
|
|
|
if (fdecl->ir.resolved) return;
|
|
fdecl->ir.resolved = true;
|
|
|
|
//printf("resolve function: %s\n", fdecl->toPrettyChars());
|
|
|
|
if (fdecl->parent)
|
|
if (TemplateInstance* tinst = fdecl->parent->isTemplateInstance())
|
|
{
|
|
TemplateDeclaration* tempdecl = tinst->tempdecl;
|
|
if (tempdecl->llvmInternal == LLVMva_arg)
|
|
{
|
|
Logger::println("magic va_arg found");
|
|
fdecl->llvmInternal = LLVMva_arg;
|
|
fdecl->ir.resolved = true;
|
|
fdecl->ir.declared = true;
|
|
fdecl->ir.initialized = true;
|
|
fdecl->ir.defined = true;
|
|
return; // this gets mapped to an instruction so a declaration makes no sence
|
|
}
|
|
else if (tempdecl->llvmInternal == LLVMva_start)
|
|
{
|
|
Logger::println("magic va_start found");
|
|
fdecl->llvmInternal = LLVMva_start;
|
|
}
|
|
else if (tempdecl->llvmInternal == LLVMintrinsic)
|
|
{
|
|
Logger::println("overloaded intrinsic found");
|
|
fdecl->llvmInternal = LLVMintrinsic;
|
|
DtoOverloadedIntrinsicName(tinst, tempdecl, fdecl->intrinsicName);
|
|
fdecl->linkage = LINKintrinsic;
|
|
((TypeFunction*)fdecl->type)->linkage = LINKintrinsic;
|
|
}
|
|
else if (tempdecl->llvmInternal == LLVMinline_asm)
|
|
{
|
|
Logger::println("magic inline asm found");
|
|
TypeFunction* tf = (TypeFunction*)fdecl->type;
|
|
if (tf->varargs != 1 || (fdecl->parameters && fdecl->parameters->dim != 0))
|
|
{
|
|
error("invalid __asm declaration, must be a D style variadic with no explicit parameters");
|
|
fatal();
|
|
}
|
|
fdecl->llvmInternal = LLVMinline_asm;
|
|
fdecl->ir.resolved = true;
|
|
fdecl->ir.declared = true;
|
|
fdecl->ir.initialized = true;
|
|
fdecl->ir.defined = true;
|
|
return; // this gets mapped to a special inline asm call, no point in going on.
|
|
}
|
|
}
|
|
|
|
DtoType(fdecl->type);
|
|
|
|
Logger::println("DtoResolveFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
|
|
LOG_SCOPE;
|
|
|
|
// queue declaration unless the function is abstract without body
|
|
if (!fdecl->isAbstract() || fdecl->fbody)
|
|
{
|
|
DtoDeclareFunction(fdecl);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static void set_param_attrs(TypeFunction* f, llvm::Function* func, FuncDeclaration* fdecl)
|
|
{
|
|
int funcNumArgs = func->getArgumentList().size();
|
|
|
|
LLSmallVector<llvm::AttributeWithIndex, 9> attrs;
|
|
llvm::AttributeWithIndex PAWI;
|
|
|
|
int idx = 0;
|
|
|
|
// handle implicit args
|
|
#define ADD_PA(X) \
|
|
if (f->fty.X) { \
|
|
if (f->fty.X->attrs) { \
|
|
PAWI.Index = idx; \
|
|
PAWI.Attrs = f->fty.X->attrs; \
|
|
attrs.push_back(PAWI); \
|
|
} \
|
|
idx++; \
|
|
}
|
|
|
|
ADD_PA(ret)
|
|
ADD_PA(arg_sret)
|
|
ADD_PA(arg_this)
|
|
ADD_PA(arg_nest)
|
|
ADD_PA(arg_arguments)
|
|
ADD_PA(arg_argptr)
|
|
|
|
#undef ADD_PA
|
|
|
|
// set attrs on the rest of the arguments
|
|
size_t n = Parameter::dim(f->parameters);
|
|
LLSmallVector<unsigned,8> attrptr(n, 0);
|
|
|
|
for (size_t k = 0; k < n; ++k)
|
|
{
|
|
Parameter* fnarg = Parameter::getNth(f->parameters, k);
|
|
assert(fnarg);
|
|
|
|
attrptr[k] = f->fty.args[k]->attrs;
|
|
}
|
|
|
|
// reverse params?
|
|
if (f->fty.reverseParams)
|
|
{
|
|
std::reverse(attrptr.begin(), attrptr.end());
|
|
}
|
|
|
|
// build rest of attrs list
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
if (attrptr[i])
|
|
{
|
|
PAWI.Index = idx+i;
|
|
PAWI.Attrs = attrptr[i];
|
|
attrs.push_back(PAWI);
|
|
}
|
|
}
|
|
|
|
llvm::AttrListPtr attrlist = llvm::AttrListPtr::get(attrs.begin(), attrs.end());
|
|
func->setAttributes(attrlist);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void DtoDeclareFunction(FuncDeclaration* fdecl)
|
|
{
|
|
DtoResolveFunction(fdecl);
|
|
|
|
if (fdecl->ir.declared) return;
|
|
fdecl->ir.declared = true;
|
|
|
|
Logger::println("DtoDeclareFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
|
|
LOG_SCOPE;
|
|
|
|
//printf("declare function: %s\n", fdecl->toPrettyChars());
|
|
|
|
// intrinsic sanity check
|
|
if (fdecl->llvmInternal == LLVMintrinsic && fdecl->fbody) {
|
|
error(fdecl->loc, "intrinsics cannot have function bodies");
|
|
fatal();
|
|
}
|
|
|
|
// get TypeFunction*
|
|
Type* t = fdecl->type->toBasetype();
|
|
TypeFunction* f = (TypeFunction*)t;
|
|
|
|
bool declareOnly = !mustDefineSymbol(fdecl);
|
|
|
|
if (fdecl->llvmInternal == LLVMva_start)
|
|
declareOnly = true;
|
|
|
|
if (!fdecl->ir.irFunc) {
|
|
fdecl->ir.irFunc = new IrFunction(fdecl);
|
|
}
|
|
|
|
// mangled name
|
|
const char* mangled_name;
|
|
if (fdecl->llvmInternal == LLVMintrinsic)
|
|
mangled_name = fdecl->intrinsicName.c_str();
|
|
else
|
|
mangled_name = fdecl->mangle();
|
|
|
|
llvm::Function* vafunc = 0;
|
|
if (fdecl->isVaIntrinsic())
|
|
vafunc = DtoDeclareVaFunction(fdecl);
|
|
|
|
// construct function
|
|
const llvm::FunctionType* functype = DtoFunctionType(fdecl);
|
|
llvm::Function* func = vafunc ? vafunc : gIR->module->getFunction(mangled_name);
|
|
if (!func)
|
|
func = llvm::Function::Create(functype, DtoLinkage(fdecl), mangled_name, gIR->module);
|
|
|
|
if (Logger::enabled())
|
|
Logger::cout() << "func = " << *func << std::endl;
|
|
|
|
// add func to IRFunc
|
|
fdecl->ir.irFunc->func = func;
|
|
|
|
// calling convention
|
|
if (!vafunc && fdecl->llvmInternal != LLVMintrinsic)
|
|
func->setCallingConv(DtoCallingConv(fdecl->loc, f->linkage));
|
|
else // fall back to C, it should be the right thing to do
|
|
func->setCallingConv(llvm::CallingConv::C);
|
|
|
|
fdecl->ir.irFunc->func = func;
|
|
|
|
// parameter attributes
|
|
if (!fdecl->isIntrinsic()) {
|
|
set_param_attrs(f, func, fdecl);
|
|
}
|
|
|
|
// main
|
|
if (fdecl->isMain()) {
|
|
gIR->mainFunc = func;
|
|
}
|
|
|
|
// static ctor
|
|
if (fdecl->isStaticCtorDeclaration()) {
|
|
if (mustDefineSymbol(fdecl)) {
|
|
gIR->ctors.push_back(fdecl);
|
|
}
|
|
}
|
|
// static dtor
|
|
else if (fdecl->isStaticDtorDeclaration()) {
|
|
if (mustDefineSymbol(fdecl)) {
|
|
gIR->dtors.push_back(fdecl);
|
|
}
|
|
}
|
|
|
|
// we never reference parameters of function prototypes
|
|
std::string str;
|
|
if (!declareOnly)
|
|
{
|
|
// name parameters
|
|
llvm::Function::arg_iterator iarg = func->arg_begin();
|
|
|
|
if (f->fty.arg_sret) {
|
|
iarg->setName(".sret_arg");
|
|
fdecl->ir.irFunc->retArg = iarg;
|
|
++iarg;
|
|
}
|
|
|
|
if (f->fty.arg_this) {
|
|
iarg->setName(".this_arg");
|
|
fdecl->ir.irFunc->thisArg = iarg;
|
|
assert(fdecl->ir.irFunc->thisArg);
|
|
++iarg;
|
|
}
|
|
else if (f->fty.arg_nest) {
|
|
iarg->setName(".nest_arg");
|
|
fdecl->ir.irFunc->nestArg = iarg;
|
|
assert(fdecl->ir.irFunc->nestArg);
|
|
++iarg;
|
|
}
|
|
|
|
if (f->fty.arg_argptr) {
|
|
iarg->setName("._arguments");
|
|
fdecl->ir.irFunc->_arguments = iarg;
|
|
++iarg;
|
|
iarg->setName("._argptr");
|
|
fdecl->ir.irFunc->_argptr = iarg;
|
|
++iarg;
|
|
}
|
|
|
|
int k = 0;
|
|
|
|
for (; iarg != func->arg_end(); ++iarg)
|
|
{
|
|
if (fdecl->parameters && fdecl->parameters->dim > k)
|
|
{
|
|
Dsymbol* argsym;
|
|
if (f->fty.reverseParams)
|
|
argsym = (Dsymbol*)fdecl->parameters->data[fdecl->parameters->dim-k-1];
|
|
else
|
|
argsym = (Dsymbol*)fdecl->parameters->data[k];
|
|
|
|
VarDeclaration* argvd = argsym->isVarDeclaration();
|
|
assert(argvd);
|
|
assert(!argvd->ir.irLocal);
|
|
argvd->ir.irLocal = new IrLocal(argvd);
|
|
argvd->ir.irLocal->value = iarg;
|
|
|
|
str = argvd->ident->toChars();
|
|
str.append("_arg");
|
|
iarg->setName(str);
|
|
|
|
k++;
|
|
}
|
|
else
|
|
{
|
|
iarg->setName("unnamed");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (fdecl->isUnitTestDeclaration() && !declareOnly)
|
|
gIR->unitTests.push_back(fdecl);
|
|
|
|
if (!declareOnly)
|
|
Type::sir->addFunctionBody(fdecl->ir.irFunc);
|
|
else
|
|
assert(func->getLinkage() != llvm::GlobalValue::InternalLinkage);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// FIXME: this isn't too pretty!
|
|
|
|
void DtoDefineFunction(FuncDeclaration* fd)
|
|
{
|
|
DtoDeclareFunction(fd);
|
|
|
|
if (fd->ir.defined) return;
|
|
fd->ir.defined = true;
|
|
|
|
assert(fd->ir.declared);
|
|
|
|
if (Logger::enabled())
|
|
Logger::println("DtoDefineFunc(%s): %s", fd->toPrettyChars(), fd->loc.toChars());
|
|
LOG_SCOPE;
|
|
|
|
// if this function is naked, we take over right away! no standard processing!
|
|
if (fd->naked)
|
|
{
|
|
DtoDefineNakedFunction(fd);
|
|
return;
|
|
}
|
|
|
|
#ifndef DISABLE_DEBUG_INFO
|
|
// debug info
|
|
if (global.params.symdebug)
|
|
fd->ir.irFunc->diSubprogram = DtoDwarfSubProgram(fd);
|
|
#endif
|
|
|
|
Type* t = fd->type->toBasetype();
|
|
TypeFunction* f = (TypeFunction*)t;
|
|
assert(f->irtype);
|
|
|
|
llvm::Function* func = fd->ir.irFunc->func;
|
|
const llvm::FunctionType* functype = func->getFunctionType();
|
|
|
|
// sanity check
|
|
assert(mustDefineSymbol(fd));
|
|
|
|
// set module owner
|
|
fd->ir.DModule = gIR->dmodule;
|
|
|
|
// is there a body?
|
|
if (fd->fbody == NULL)
|
|
return;
|
|
|
|
Logger::println("Doing function body for: %s", fd->toChars());
|
|
assert(fd->ir.irFunc);
|
|
IrFunction* irfunction = fd->ir.irFunc;
|
|
gIR->functions.push_back(irfunction);
|
|
|
|
if (fd->isMain())
|
|
gIR->emitMain = true;
|
|
|
|
std::string entryname("entry");
|
|
|
|
llvm::BasicBlock* beginbb = llvm::BasicBlock::Create(gIR->context(), entryname,func);
|
|
llvm::BasicBlock* endbb = llvm::BasicBlock::Create(gIR->context(), "endentry",func);
|
|
|
|
//assert(gIR->scopes.empty());
|
|
gIR->scopes.push_back(IRScope(beginbb, endbb));
|
|
|
|
// create alloca point
|
|
// this gets erased when the function is complete, so alignment etc does not matter at all
|
|
llvm::Instruction* allocaPoint = new llvm::AllocaInst(LLType::getInt32Ty(gIR->context()), "alloca point", beginbb);
|
|
irfunction->allocapoint = allocaPoint;
|
|
|
|
#ifndef DISABLE_DEBUG_INFO
|
|
// debug info - after all allocas, but before any llvm.dbg.declare etc
|
|
if (global.params.symdebug) DtoDwarfFuncStart(fd);
|
|
#endif
|
|
|
|
// this hack makes sure the frame pointer elimination optimization is disabled.
|
|
// this this eliminates a bunch of inline asm related issues.
|
|
if (fd->inlineAsm)
|
|
{
|
|
// emit a call to llvm_eh_unwind_init
|
|
LLFunction* hack = GET_INTRINSIC_DECL(eh_unwind_init);
|
|
gIR->ir->CreateCall(hack, "");
|
|
}
|
|
|
|
// give the 'this' argument storage and debug info
|
|
if (f->fty.arg_this)
|
|
{
|
|
LLValue* thisvar = irfunction->thisArg;
|
|
assert(thisvar);
|
|
|
|
LLValue* thismem = DtoRawAlloca(thisvar->getType(), 0, "this"); // FIXME: align?
|
|
DtoStore(thisvar, thismem);
|
|
irfunction->thisArg = thismem;
|
|
|
|
assert(!fd->vthis->ir.irLocal);
|
|
fd->vthis->ir.irLocal = new IrLocal(fd->vthis);
|
|
fd->vthis->ir.irLocal->value = thismem;
|
|
|
|
#ifndef DISABLE_DEBUG_INFO
|
|
if (global.params.symdebug)
|
|
DtoDwarfLocalVariable(thismem, fd->vthis);
|
|
#endif
|
|
|
|
#if DMDV1
|
|
if (fd->vthis->nestedref)
|
|
{
|
|
fd->nestedVars.insert(fd->vthis);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// give arguments storage
|
|
// and debug info
|
|
if (fd->parameters)
|
|
{
|
|
size_t n = f->fty.args.size();
|
|
assert(n == fd->parameters->dim);
|
|
for (int i=0; i < n; ++i)
|
|
{
|
|
Dsymbol* argsym = (Dsymbol*)fd->parameters->data[i];
|
|
VarDeclaration* vd = argsym->isVarDeclaration();
|
|
assert(vd);
|
|
|
|
IrLocal* irloc = vd->ir.irLocal;
|
|
assert(irloc);
|
|
|
|
#if DMDV1
|
|
if (vd->nestedref)
|
|
{
|
|
fd->nestedVars.insert(vd);
|
|
}
|
|
#endif
|
|
|
|
bool refout = vd->storage_class & (STCref | STCout);
|
|
bool lazy = vd->storage_class & STClazy;
|
|
|
|
if (!refout && (!f->fty.args[i]->byref || lazy))
|
|
{
|
|
// alloca a stack slot for this first class value arg
|
|
const LLType* argt;
|
|
if (lazy)
|
|
argt = irloc->value->getType();
|
|
else
|
|
argt = DtoType(vd->type);
|
|
LLValue* mem = DtoRawAlloca(argt, 0, vd->ident->toChars());
|
|
|
|
// let the abi transform the argument back first
|
|
DImValue arg_dval(vd->type, irloc->value);
|
|
f->fty.getParam(vd->type, i, &arg_dval, mem);
|
|
|
|
// set the arg var value to the alloca
|
|
irloc->value = mem;
|
|
}
|
|
|
|
#ifndef DISABLE_DEBUG_INFO
|
|
if (global.params.symdebug && !(isaArgument(irloc->value) && !isaArgument(irloc->value)->hasByValAttr()) && !refout)
|
|
DtoDwarfLocalVariable(irloc->value, vd);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// need result variable? (nested)
|
|
#if DMDV1
|
|
if (fd->vresult && fd->vresult->nestedref) {
|
|
Logger::println("nested vresult value: %s", fd->vresult->toChars());
|
|
fd->nestedVars.insert(fd->vresult);
|
|
}
|
|
#endif
|
|
|
|
#if DMDV2
|
|
// fill nestedVars
|
|
size_t nnest = fd->closureVars.dim;
|
|
for (size_t i = 0; i < nnest; ++i)
|
|
{
|
|
VarDeclaration* vd = (VarDeclaration*)fd->closureVars.data[i];
|
|
fd->nestedVars.insert(vd);
|
|
}
|
|
#endif
|
|
|
|
DtoCreateNestedContext(fd);
|
|
|
|
#if DMDV2
|
|
if (fd->vresult && fd->vresult->nestedrefs.dim) // FIXME: not sure here :/
|
|
#else
|
|
if (fd->vresult && fd->vresult->nestedref)
|
|
#endif
|
|
{
|
|
DtoNestedInit(fd->vresult);
|
|
} else if (fd->vresult) {
|
|
fd->vresult->ir.irLocal = new IrLocal(fd->vresult);
|
|
fd->vresult->ir.irLocal->value = DtoAlloca(fd->vresult->type, fd->vresult->toChars());
|
|
}
|
|
|
|
// copy _argptr and _arguments to a memory location
|
|
if (f->linkage == LINKd && f->varargs == 1)
|
|
{
|
|
// _argptr
|
|
LLValue* argptrmem = DtoRawAlloca(fd->ir.irFunc->_argptr->getType(), 0, "_argptr_mem");
|
|
new llvm::StoreInst(fd->ir.irFunc->_argptr, argptrmem, gIR->scopebb());
|
|
fd->ir.irFunc->_argptr = argptrmem;
|
|
|
|
// _arguments
|
|
LLValue* argumentsmem = DtoRawAlloca(fd->ir.irFunc->_arguments->getType(), 0, "_arguments_mem");
|
|
new llvm::StoreInst(fd->ir.irFunc->_arguments, argumentsmem, gIR->scopebb());
|
|
fd->ir.irFunc->_arguments = argumentsmem;
|
|
}
|
|
|
|
// output function body
|
|
{
|
|
FuncGen fg;
|
|
irfunction->gen = &fg;
|
|
fd->fbody->toIR(gIR);
|
|
irfunction->gen = 0;
|
|
}
|
|
|
|
// TODO: clean up this mess
|
|
|
|
// std::cout << *func << std::endl;
|
|
|
|
llvm::BasicBlock* bb = gIR->scopebb();
|
|
if (pred_begin(bb) == pred_end(bb) && bb != &bb->getParent()->getEntryBlock()) {
|
|
// This block is trivially unreachable, so just delete it.
|
|
// (This is a common case because it happens when 'return'
|
|
// is the last statement in a function)
|
|
bb->eraseFromParent();
|
|
} else if (!gIR->scopereturned()) {
|
|
// llvm requires all basic blocks to end with a TerminatorInst but DMD does not put a return statement
|
|
// in automatically, so we do it here.
|
|
|
|
// pass the previous block into this block
|
|
#ifndef DISABLE_DEBUG_INFO
|
|
if (global.params.symdebug) DtoDwarfFuncEnd(fd);
|
|
#endif
|
|
if (func->getReturnType() == LLType::getVoidTy(gIR->context())) {
|
|
llvm::ReturnInst::Create(gIR->context(), gIR->scopebb());
|
|
}
|
|
else if (!fd->isMain()) {
|
|
AsmBlockStatement* asmb = fd->fbody->endsWithAsm();
|
|
if (asmb) {
|
|
assert(asmb->abiret);
|
|
llvm::ReturnInst::Create(gIR->context(), asmb->abiret, bb);
|
|
}
|
|
else {
|
|
llvm::ReturnInst::Create(gIR->context(), llvm::UndefValue::get(func->getReturnType()), bb);
|
|
}
|
|
}
|
|
else
|
|
llvm::ReturnInst::Create(gIR->context(), LLConstant::getNullValue(func->getReturnType()), bb);
|
|
}
|
|
|
|
// std::cout << *func << std::endl;
|
|
|
|
// erase alloca point
|
|
allocaPoint->eraseFromParent();
|
|
allocaPoint = 0;
|
|
gIR->func()->allocapoint = 0;
|
|
|
|
gIR->scopes.pop_back();
|
|
|
|
// get rid of the endentry block, it's never used
|
|
assert(!func->getBasicBlockList().empty());
|
|
func->getBasicBlockList().pop_back();
|
|
|
|
gIR->functions.pop_back();
|
|
|
|
// std::cout << *func << std::endl;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
const llvm::FunctionType* DtoBaseFunctionType(FuncDeclaration* fdecl)
|
|
{
|
|
Dsymbol* parent = fdecl->toParent();
|
|
ClassDeclaration* cd = parent->isClassDeclaration();
|
|
assert(cd);
|
|
|
|
FuncDeclaration* f = fdecl;
|
|
|
|
while (cd)
|
|
{
|
|
ClassDeclaration* base = cd->baseClass;
|
|
if (!base)
|
|
break;
|
|
FuncDeclaration* f2 = base->findFunc(fdecl->ident, (TypeFunction*)fdecl->type);
|
|
if (f2) {
|
|
f = f2;
|
|
cd = base;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
DtoResolveDsymbol(f);
|
|
return llvm::cast<llvm::FunctionType>(DtoType(f->type));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
DValue* DtoArgument(Parameter* fnarg, Expression* argexp)
|
|
{
|
|
Logger::println("DtoArgument");
|
|
LOG_SCOPE;
|
|
|
|
DValue* arg = argexp->toElem(gIR);
|
|
|
|
// ref/out arg
|
|
if (fnarg && (fnarg->storageClass & (STCref | STCout)))
|
|
{
|
|
if (arg->isVar())
|
|
arg = new DImValue(argexp->type, arg->getLVal());
|
|
else
|
|
arg = new DImValue(argexp->type, arg->getRVal());
|
|
}
|
|
// lazy arg
|
|
else if (fnarg && (fnarg->storageClass & STClazy))
|
|
{
|
|
assert(argexp->type->toBasetype()->ty == Tdelegate);
|
|
assert(!arg->isLVal());
|
|
return arg;
|
|
}
|
|
// byval arg, but expr has no storage yet
|
|
else if (DtoIsPassedByRef(argexp->type) && (arg->isSlice() || arg->isNull()))
|
|
{
|
|
LLValue* alloc = DtoAlloca(argexp->type, ".tmp_arg");
|
|
DVarValue* vv = new DVarValue(argexp->type, alloc);
|
|
DtoAssign(argexp->loc, vv, arg);
|
|
arg = vv;
|
|
}
|
|
|
|
return arg;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void DtoVariadicArgument(Expression* argexp, LLValue* dst)
|
|
{
|
|
Logger::println("DtoVariadicArgument");
|
|
LOG_SCOPE;
|
|
DVarValue vv(argexp->type, dst);
|
|
DtoAssign(argexp->loc, &vv, argexp->toElem(gIR));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool FuncDeclaration::isIntrinsic()
|
|
{
|
|
return (llvmInternal == LLVMintrinsic || isVaIntrinsic());
|
|
}
|
|
|
|
bool FuncDeclaration::isVaIntrinsic()
|
|
{
|
|
return (llvmInternal == LLVMva_start ||
|
|
llvmInternal == LLVMva_copy ||
|
|
llvmInternal == LLVMva_end);
|
|
}
|