ldc/gen/uda.cpp
2020-01-06 17:01:31 +01:00

535 lines
17 KiB
C++

#include "gen/uda.h"
#include "dmd/aggregate.h"
#include "dmd/attrib.h"
#include "dmd/declaration.h"
#include "dmd/errors.h"
#include "dmd/expression.h"
#include "dmd/id.h"
#include "dmd/identifier.h"
#include "dmd/module.h"
#include "gen/irstate.h"
#include "gen/llvm.h"
#include "gen/llvmhelpers.h"
#include "ir/irfunction.h"
#include "ir/irvar.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
namespace llvm {
// Auto-generate:
// Attribute::AttrKind getAttrKindFromName(StringRef AttrName) { ... }
#define GET_ATTR_KIND_FROM_NAME
#if LDC_LLVM_VER >= 400 && LDC_LLVM_VER < 700
#include "llvm/IR/Attributes.gen"
#else
#include "llvm/IR/Attributes.inc"
#endif
}
namespace {
/// Checks whether `moduleDecl` is in the ldc package and it's identifier is
/// `id`.
bool isMagicModule(const ModuleDeclaration *moduleDecl, const Identifier *id) {
if (!moduleDecl)
return false;
if (moduleDecl->id != id) {
return false;
}
if (moduleDecl->packages->length != 1 ||
(*moduleDecl->packages)[0] != Id::ldc) {
return false;
}
return true;
}
/// Checks whether the type of `e` is a struct from an ldc recognised module,
/// i.e. ldc.attributes or ldc.dcompute.
bool isFromMagicModule(const StructLiteralExp *e, const Identifier *id) {
auto moduleDecl = e->sd->getModule()->md;
return isMagicModule(moduleDecl, id);
}
StructLiteralExp *getLdcAttributesStruct(Expression *attr) {
// See whether we can evaluate the attribute at compile-time. All the LDC
// attributes are struct literals that may be constructed using a CTFE
// function.
unsigned prevErrors = global.startGagging();
auto e = attr->ctfeInterpret();
if (global.endGagging(prevErrors)) {
return nullptr;
}
if (e->op != TOKstructliteral) {
return nullptr;
}
auto sle = static_cast<StructLiteralExp *>(e);
if (isFromMagicModule(sle, Id::attributes)) {
return sle;
}
return nullptr;
}
void checkStructElems(StructLiteralExp *sle, ArrayParam<Type *> elemTypes) {
if (sle->elements->length != elemTypes.size()) {
sle->error("unexpected field count in `ldc.%s.%s`; does druntime not "
"match compiler version?",
sle->sd->getModule()->md->id->toChars(),
sle->sd->ident->toChars());
fatal();
}
for (size_t i = 0; i < sle->elements->length; ++i) {
if ((*sle->elements)[i]->type->toBasetype() != elemTypes[i]) {
sle->error("invalid field type in `ldc.%s.%s`; does druntime not "
"match compiler version?",
sle->sd->getModule()->md->id->toChars(),
sle->sd->ident->toChars());
fatal();
}
}
}
/// Returns the StructLiteralExp magic attribute with identifier `id` from
/// the ldc magic module with identifier `from` (attributes or dcompute)
/// if it is applied to `sym`, otherwise returns nullptr.
StructLiteralExp *getMagicAttribute(Dsymbol *sym, const Identifier *id,
const Identifier *from) {
if (!sym->userAttribDecl)
return nullptr;
// Loop over all UDAs and early return the expression if a match was found.
Expressions *attrs = sym->userAttribDecl->getAttributes();
expandTuples(attrs);
for (auto &attr : *attrs) {
if (attr->op != TOKstructliteral)
continue;
auto sle = static_cast<StructLiteralExp *>(attr);
if (!isFromMagicModule(sle, from))
continue;
if (id == sle->sd->ident) {
return sle;
}
}
return nullptr;
}
sinteger_t getIntElem(StructLiteralExp *sle, size_t idx) {
auto arg = (*sle->elements)[idx];
return arg->toInteger();
}
llvm::StringRef getStringElem(StructLiteralExp *sle, size_t idx) {
auto arg = (*sle->elements)[idx];
if (arg && arg->op == TOKstring) {
auto strexp = static_cast<StringExp *>(arg);
DString str = strexp->peekString();
return {str.ptr, str.length};
}
// Default initialized element (arg->op == TOKnull)
return {};
}
llvm::StringRef getFirstElemString(StructLiteralExp *sle) {
return getStringElem(sle, 0);
}
// @allocSize(1)
// @allocSize(0,2)
void applyAttrAllocSize(StructLiteralExp *sle, IrFunction *irFunc) {
checkStructElems(sle, {Type::tint32, Type::tint32});
auto sizeArgIdx = getIntElem(sle, 0);
auto numArgIdx = getIntElem(sle, 1);
// Get the number of parameters that the user specified (excluding the
// implicit `this` parameter)
auto numUserParams = irFunc->irFty.args.size();
// Verify that the index values are valid
bool error = false;
if (sizeArgIdx + 1 > sinteger_t(numUserParams)) {
sle->error("`@ldc.attributes.allocSize.sizeArgIdx=%d` too large for "
"function `%s` with %d arguments.",
(int)sizeArgIdx, irFunc->decl->toChars(), (int)numUserParams);
error = true;
}
if (numArgIdx + 1 > sinteger_t(numUserParams)) {
sle->error("`@ldc.attributes.allocSize.numArgIdx=%d` too large for "
"function `%s` with %d arguments.",
(int)numArgIdx, irFunc->decl->toChars(), (int)numUserParams);
error = true;
}
if (error)
return;
// Get the number of parameters of the function in LLVM IR. This includes
// the `this` and sret parameters.
const auto llvmNumParams = irFunc->irFty.funcType->getNumParams();
// Offset to correct indices for sret and this parameters.
// These parameters can never be used for allocsize, and the user-specified
// index does not account for these.
unsigned offset = llvmNumParams - numUserParams;
// Calculate the param indices for the function as defined in LLVM IR
auto llvmSizeIdx =
irFunc->irFty.reverseParams ? numUserParams - sizeArgIdx - 1 : sizeArgIdx;
auto llvmNumIdx =
irFunc->irFty.reverseParams ? numUserParams - numArgIdx - 1 : numArgIdx;
llvmSizeIdx += offset;
llvmNumIdx += offset;
llvm::AttrBuilder builder;
if (numArgIdx >= 0) {
builder.addAllocSizeAttr(llvmSizeIdx, llvmNumIdx);
} else {
builder.addAllocSizeAttr(llvmSizeIdx, llvm::Optional<unsigned>());
}
llvm::Function *func = irFunc->getLLVMFunc();
#if LDC_LLVM_VER >= 500
func->addAttributes(LLAttributeSet::FunctionIndex, builder);
#else
func->addAttributes(LLAttributeSet::FunctionIndex,
LLAttributeSet::get(func->getContext(),
LLAttributeSet::FunctionIndex,
builder));
#endif
}
// @llvmAttr("key", "value")
// @llvmAttr("key")
void applyAttrLLVMAttr(StructLiteralExp *sle, llvm::AttrBuilder &attrs) {
checkStructElems(sle, {Type::tstring, Type::tstring});
llvm::StringRef key = getStringElem(sle, 0);
llvm::StringRef value = getStringElem(sle, 1);
if (value.empty()) {
const auto kind = llvm::getAttrKindFromName(key);
if (kind != llvm::Attribute::None) {
attrs.addAttribute(kind);
} else {
attrs.addAttribute(key);
}
} else {
attrs.addAttribute(key, value);
}
}
// @llvmFastMathFlag("flag")
void applyAttrLLVMFastMathFlag(StructLiteralExp *sle, IrFunction *irFunc) {
checkStructElems(sle, {Type::tstring});
llvm::StringRef value = getStringElem(sle, 0);
if (value == "clear") {
irFunc->FMF.clear();
} else if (value == "fast") {
#if LDC_LLVM_VER >= 600
irFunc->FMF.setFast();
#else
irFunc->FMF.setUnsafeAlgebra();
#endif
} else if (value == "contract") {
#if LDC_LLVM_VER >= 500
irFunc->FMF.setAllowContract(true);
#else
sle->warning("ignoring parameter `contract` for `@ldc.attributes.%s`: "
"LDC needs to be built against LLVM 5.0+ for support",
sle->sd->ident->toChars());
#endif
} else if (value == "nnan") {
irFunc->FMF.setNoNaNs();
} else if (value == "ninf") {
irFunc->FMF.setNoInfs();
} else if (value == "nsz") {
irFunc->FMF.setNoSignedZeros();
} else if (value == "arcp") {
irFunc->FMF.setAllowReciprocal();
} else {
sle->warning(
"ignoring unrecognized flag parameter `%.*s` for `@ldc.attributes.%s`",
static_cast<int>(value.size()), value.data(),
sle->sd->ident->toChars());
}
}
void applyAttrOptStrategy(StructLiteralExp *sle, IrFunction *irFunc) {
checkStructElems(sle, {Type::tstring});
llvm::StringRef value = getStringElem(sle, 0);
llvm::Function *func = irFunc->getLLVMFunc();
if (value == "none") {
if (irFunc->decl->inlining == PINLINEalways) {
sle->error("cannot combine `@ldc.attributes.%s(\"none\")` with "
"`pragma(inline, true)`",
sle->sd->ident->toChars());
return;
}
irFunc->decl->inlining = PINLINEnever;
func->addFnAttr(llvm::Attribute::OptimizeNone);
} else if (value == "optsize") {
func->addFnAttr(llvm::Attribute::OptimizeForSize);
} else if (value == "minsize") {
func->addFnAttr(llvm::Attribute::MinSize);
} else {
sle->warning(
"ignoring unrecognized parameter `%.*s` for `@ldc.attributes.%s`",
static_cast<int>(value.size()), value.data(),
sle->sd->ident->toChars());
}
}
void applyAttrSection(StructLiteralExp *sle, llvm::GlobalObject *globj) {
checkStructElems(sle, {Type::tstring});
globj->setSection(getFirstElemString(sle));
}
void applyAttrTarget(StructLiteralExp *sle, llvm::Function *func,
IrFunction *irFunc) {
// TODO: this is a rudimentary implementation for @target. Many more
// target-related attributes could be applied to functions (not just for
// @target): clang applies many attributes that LDC does not.
// The current implementation here does not do any checking of the specified
// string and simply passes all to llvm.
checkStructElems(sle, {Type::tstring});
llvm::StringRef targetspec = getFirstElemString(sle);
if (targetspec.empty() || targetspec == "default")
return;
llvm::StringRef CPU;
std::vector<std::string> features;
if (func->hasFnAttribute("target-features")) {
auto attr = func->getFnAttribute("target-features");
features.push_back(attr.getValueAsString());
}
llvm::SmallVector<llvm::StringRef, 4> fragments;
llvm::SplitString(targetspec, fragments, ",");
// special strings: "arch=<cpu>", "tune=<...>", "fpmath=<...>"
// if string starts with "no-", strip "no"
// otherwise add "+"
for (auto s : fragments) {
s = s.trim();
if (s.empty())
continue;
if (s.startswith("arch=")) {
// TODO: be smarter than overwriting the previous arch= setting
CPU = s.drop_front(5);
continue;
}
if (s.startswith("tune=")) {
// clang 3.8 ignores tune= too
continue;
}
if (s.startswith("fpmath=")) {
// TODO: implementation; clang 3.8 ignores fpmath= too
continue;
}
if (s.startswith("no-")) {
std::string f = (std::string("-") + s.drop_front(3)).str();
features.emplace_back(std::move(f));
continue;
}
std::string f = (std::string("+") + s).str();
features.emplace_back(std::move(f));
}
if (!CPU.empty()) {
func->addFnAttr("target-cpu", CPU);
irFunc->targetCpuOverridden = true;
}
if (!features.empty()) {
// Sorting the features puts negative features ("-") after positive features
// ("+"). This provides the desired behavior of negative features overriding
// positive features regardless of their order in the source code.
sort(features.begin(), features.end());
func->addFnAttr("target-features",
llvm::join(features.begin(), features.end(), ","));
irFunc->targetFeaturesOverridden = true;
}
}
void applyAttrAssumeUsed(IRState &irs, StructLiteralExp *sle,
llvm::Constant *symbol) {
checkStructElems(sle, {});
irs.usedArray.push_back(symbol);
}
} // anonymous namespace
void applyVarDeclUDAs(VarDeclaration *decl, llvm::GlobalVariable *gvar) {
if (!decl->userAttribDecl)
return;
Expressions *attrs = decl->userAttribDecl->getAttributes();
expandTuples(attrs);
for (auto &attr : *attrs) {
auto sle = getLdcAttributesStruct(attr);
if (!sle)
continue;
auto ident = sle->sd->ident;
if (ident == Id::udaSection) {
applyAttrSection(sle, gvar);
} else if (ident == Id::udaOptStrategy || ident == Id::udaTarget) {
sle->error(
"Special attribute `ldc.attributes.%s` is only valid for functions",
ident->toChars());
} else if (ident == Id::udaAssumeUsed) {
applyAttrAssumeUsed(*gIR, sle, gvar);
} else if (ident == Id::udaWeak) {
// @weak is applied elsewhere
} else if (ident == Id::udaDynamicCompile ||
ident == Id::udaDynamicCompileEmit) {
sle->error(
"Special attribute `ldc.attributes.%s` is only valid for functions",
ident->toChars());
} else if (ident == Id::udaDynamicCompileConst) {
getIrGlobal(decl)->dynamicCompileConst = true;
} else {
sle->warning(
"Ignoring unrecognized special attribute `ldc.attributes.%s`",
ident->toChars());
}
}
}
void applyFuncDeclUDAs(FuncDeclaration *decl, IrFunction *irFunc) {
// function UDAs
if (decl->userAttribDecl) {
llvm::Function *func = irFunc->getLLVMFunc();
assert(func);
Expressions *attrs = decl->userAttribDecl->getAttributes();
expandTuples(attrs);
for (auto &attr : *attrs) {
auto sle = getLdcAttributesStruct(attr);
if (!sle)
continue;
auto ident = sle->sd->ident;
if (ident == Id::udaAllocSize) {
applyAttrAllocSize(sle, irFunc);
} else if (ident == Id::udaLLVMAttr) {
llvm::AttrBuilder attrs;
applyAttrLLVMAttr(sle, attrs);
#if LDC_LLVM_VER >= 500
func->addAttributes(LLAttributeSet::FunctionIndex, attrs);
#else
AttrSet attrSet;
attrSet.addToFunction(attrs);
func->addAttributes(LLAttributeSet::FunctionIndex, attrSet);
#endif
} else if (ident == Id::udaLLVMFastMathFlag) {
applyAttrLLVMFastMathFlag(sle, irFunc);
} else if (ident == Id::udaOptStrategy) {
applyAttrOptStrategy(sle, irFunc);
} else if (ident == Id::udaSection) {
applyAttrSection(sle, func);
} else if (ident == Id::udaTarget) {
applyAttrTarget(sle, func, irFunc);
} else if (ident == Id::udaAssumeUsed) {
applyAttrAssumeUsed(*gIR, sle, func);
} else if (ident == Id::udaWeak || ident == Id::udaKernel) {
// @weak and @kernel are applied elsewhere
} else if (ident == Id::udaDynamicCompile) {
irFunc->dynamicCompile = true;
} else if (ident == Id::udaDynamicCompileEmit) {
irFunc->dynamicCompileEmit = true;
} else if (ident == Id::udaDynamicCompileConst) {
sle->error(
"Special attribute `ldc.attributes.%s` is only valid for variables",
ident->toChars());
} else {
sle->warning(
"Ignoring unrecognized special attribute `ldc.attributes.%s`",
ident->toChars());
}
}
}
// parameter UDAs
auto parameterList = irFunc->type->parameterList;
for (auto arg : irFunc->irFty.args) {
if (arg->parametersIdx >= parameterList.length())
continue;
auto param =
Parameter::getNth(parameterList.parameters, arg->parametersIdx);
if (!param->userAttribDecl)
continue;
Expressions *attrs = param->userAttribDecl->getAttributes();
expandTuples(attrs);
for (auto &attr : *attrs) {
auto sle = getLdcAttributesStruct(attr);
if (!sle)
continue;
auto ident = sle->sd->ident;
if (ident == Id::udaLLVMAttr) {
applyAttrLLVMAttr(sle, arg->attrs);
} else {
sle->warning("Ignoring unrecognized special parameter attribute "
"`ldc.attributes.%s`",
ident->toChars());
}
}
}
}
/// Checks whether 'sym' has the @ldc.attributes._weak() UDA applied.
bool hasWeakUDA(Dsymbol *sym) {
auto sle = getMagicAttribute(sym, Id::udaWeak, Id::attributes);
if (!sle)
return false;
checkStructElems(sle, {});
auto vd = sym->isVarDeclaration();
if (!(vd && vd->isDataseg()) && !sym->isFuncDeclaration())
sym->error("`@ldc.attributes.weak` can only be applied to functions or "
"global variables");
return true;
}
/// Returns 0 if 'sym' does not have the @ldc.dcompute.compute() UDA applied.
/// Returns 1 + n if 'sym' does and is @compute(n).
extern "C" DComputeCompileFor hasComputeAttr(Dsymbol *sym) {
auto sle = getMagicAttribute(sym, Id::udaCompute, Id::dcompute);
if (!sle)
return DComputeCompileFor::hostOnly;
checkStructElems(sle, {Type::tint32});
return static_cast<DComputeCompileFor>(1 + (*sle->elements)[0]->toInteger());
}
/// Checks whether 'sym' has the @ldc.dcompute._kernel() UDA applied.
bool hasKernelAttr(Dsymbol *sym) {
auto sle = getMagicAttribute(sym, Id::udaKernel, Id::dcompute);
if (!sle)
return false;
checkStructElems(sle, {});
if (!sym->isFuncDeclaration() &&
hasComputeAttr(sym->getModule()) != DComputeCompileFor::hostOnly) {
sym->error("`@ldc.dcompute.kernel` can only be applied to functions"
" in modules marked `@ldc.dcompute.compute`");
}
return true;
}