ldc/gen/functions.cpp
David Nadlinger 15c5316e26 Prevent two function with same mangled name but different types from being declared.
Previously, LDC would crash in the backend due to the fact that the IR is typed in such cases (we recently had such an instance with Tango, where an extern( C ) function was declared once with int and once with size_t).
2011-07-27 23:01:22 +02:00

957 lines
28 KiB
C++

#include "gen/llvm.h"
#include "llvm/Support/CFG.h"
#include "llvm/Intrinsics.h"
#include "mtype.h"
#include "aggregate.h"
#include "init.h"
#include "declaration.h"
#include "template.h"
#include "module.h"
#include "statement.h"
#include "gen/irstate.h"
#include "gen/tollvm.h"
#include "gen/llvmhelpers.h"
#include "gen/runtime.h"
#include "gen/arrays.h"
#include "gen/logger.h"
#include "gen/functions.h"
#include "gen/todebug.h"
#include "gen/classes.h"
#include "gen/dvalue.h"
#include "gen/abi.h"
#include "gen/nested.h"
#include "gen/cl_options.h"
using namespace llvm::Attribute;
const llvm::FunctionType* DtoFunctionType(Type* type, Type* thistype, Type* nesttype, bool ismain)
{
if (Logger::enabled())
Logger::println("DtoFunctionType(%s)", type->toChars());
LOG_SCOPE
// sanity check
assert(type->ty == Tfunction);
TypeFunction* f = (TypeFunction*)type;
TargetABI* abi = (f->linkage == LINKintrinsic ? TargetABI::getIntrinsic() : gABI);
// Tell the ABI we're resolving a new function type
abi->newFunctionType(f);
// Do not modify f->fty yet; this function may be called recursively if any
// of the argument types refer to this type.
IrFuncTy fty;
// llvm idx counter
size_t lidx = 0;
// main needs a little special handling
if (ismain)
{
fty.ret = new IrFuncTyArg(Type::tint32, false);
}
// sane return value
else
{
Type* rt = f->next;
unsigned a = 0;
// sret return
if (abi->returnInArg(f))
{
fty.arg_sret = new IrFuncTyArg(rt, true, StructRet | NoAlias | NoCapture);
rt = Type::tvoid;
lidx++;
}
// sext/zext return
else
{
Type *t = rt;
#if DMDV2
if (f->isref)
t = t->pointerTo();
#endif
if (unsigned se = DtoShouldExtend(t))
a = se;
}
#if DMDV2
fty.ret = new IrFuncTyArg(rt, f->isref, a);
#else
fty.ret = new IrFuncTyArg(rt, false, a);
#endif
}
lidx++;
// member functions
if (thistype)
{
bool toref = (thistype->toBasetype()->ty == Tstruct);
#if STRUCTTHISREF
fty.is_arg_this_ref = toref;
#endif
fty.arg_this = new IrFuncTyArg(thistype, toref);
lidx++;
}
// and nested functions
else if (nesttype)
{
fty.arg_nest = new IrFuncTyArg(nesttype, false);
lidx++;
}
// vararg functions are special too
if (f->varargs)
{
if (f->linkage == LINKd)
{
// d style with hidden args
// 2 (array) is handled by the frontend
if (f->varargs == 1)
{
// _arguments
fty.arg_arguments = new IrFuncTyArg(Type::typeinfo->type->arrayOf(), false);
lidx++;
// _argptr
fty.arg_argptr = new IrFuncTyArg(Type::tvoid->pointerTo(), false, NoAlias | NoCapture);
lidx++;
}
}
else if (f->linkage == LINKc)
{
fty.c_vararg = true;
}
else
{
type->error(0, "invalid linkage for variadic function");
fatal();
}
}
// if this _Dmain() doesn't have an argument, we force it to have one
int nargs = Parameter::dim(f->parameters);
if (ismain && nargs == 0)
{
Type* mainargs = Type::tchar->arrayOf()->arrayOf();
fty.args.push_back(new IrFuncTyArg(mainargs, false));
lidx++;
}
// add explicit parameters
else for (int i = 0; i < nargs; i++)
{
// get argument
Parameter* arg = Parameter::getNth(f->parameters, i);
// reference semantics? ref, out and d1 static arrays are
bool byref = arg->storageClass & (STCref|STCout);
#if !SARRAYVALUE
byref = byref || (arg->type->toBasetype()->ty == Tsarray);
#endif
Type* argtype = arg->type;
unsigned a = 0;
// handle lazy args
if (arg->storageClass & STClazy)
{
Logger::println("lazy param");
TypeFunction *ltf = new TypeFunction(NULL, arg->type, 0, LINKd);
TypeDelegate *ltd = new TypeDelegate(ltf);
argtype = ltd;
}
// byval
else if (abi->passByVal(byref ? argtype->pointerTo() : argtype))
{
if (!byref) a |= llvm::Attribute::ByVal;
byref = true;
}
// sext/zext
else if (!byref)
{
a |= DtoShouldExtend(argtype);
}
fty.args.push_back(new IrFuncTyArg(argtype, byref, a));
lidx++;
}
// Now we can modify f->fty safely.
f->fty = fty;
// let the abi rewrite the types as necesary
abi->rewriteFunctionType(f);
// Tell the ABI we're done with this function type
abi->doneWithFunctionType();
// build the function type
std::vector<const LLType*> argtypes;
argtypes.reserve(lidx);
if (f->fty.arg_sret) argtypes.push_back(f->fty.arg_sret->ltype);
if (f->fty.arg_this) argtypes.push_back(f->fty.arg_this->ltype);
if (f->fty.arg_nest) argtypes.push_back(f->fty.arg_nest->ltype);
if (f->fty.arg_arguments) argtypes.push_back(f->fty.arg_arguments->ltype);
if (f->fty.arg_argptr) argtypes.push_back(f->fty.arg_argptr->ltype);
size_t beg = argtypes.size();
size_t nargs2 = f->fty.args.size();
for (size_t i = 0; i < nargs2; i++)
{
argtypes.push_back(f->fty.args[i]->ltype);
}
// reverse params?
if (f->fty.reverseParams && nargs2 > 1)
{
std::reverse(argtypes.begin() + beg, argtypes.end());
}
llvm::FunctionType* functype = llvm::FunctionType::get(f->fty.ret->ltype, argtypes, f->fty.c_vararg);
Logger::cout() << "Final function type: " << *functype << "\n";
return functype;
}
//////////////////////////////////////////////////////////////////////////////////////////
static const llvm::FunctionType* DtoVaFunctionType(FuncDeclaration* fdecl)
{
TypeFunction* f = (TypeFunction*)fdecl->type;
const llvm::FunctionType* fty = 0;
// create new ir funcTy
f->fty.reset();
f->fty.ret = new IrFuncTyArg(Type::tvoid, false);
f->fty.args.push_back(new IrFuncTyArg(Type::tvoid->pointerTo(), false));
if (fdecl->llvmInternal == LLVMva_start)
fty = GET_INTRINSIC_DECL(vastart)->getFunctionType();
else if (fdecl->llvmInternal == LLVMva_copy) {
fty = GET_INTRINSIC_DECL(vacopy)->getFunctionType();
f->fty.args.push_back(new IrFuncTyArg(Type::tvoid->pointerTo(), false));
}
else if (fdecl->llvmInternal == LLVMva_end)
fty = GET_INTRINSIC_DECL(vaend)->getFunctionType();
assert(fty);
return fty;
}
//////////////////////////////////////////////////////////////////////////////////////////
const llvm::FunctionType* DtoFunctionType(FuncDeclaration* fdecl)
{
// handle for C vararg intrinsics
if (fdecl->isVaIntrinsic())
return DtoVaFunctionType(fdecl);
Type *dthis=0, *dnest=0;
if (fdecl->needThis()) {
if (AggregateDeclaration* ad = fdecl->isMember2()) {
Logger::println("isMember = this is: %s", ad->type->toChars());
dthis = ad->type;
const LLType* thisty = DtoType(dthis);
//Logger::cout() << "this llvm type: " << *thisty << '\n';
if (ad->isStructDeclaration())
thisty = getPtrToType(thisty);
}
else {
Logger::println("chars: %s type: %s kind: %s", fdecl->toChars(), fdecl->type->toChars(), fdecl->kind());
assert(0);
}
}
else if (fdecl->isNested()) {
dnest = Type::tvoid->pointerTo();
}
const llvm::FunctionType* functype = DtoFunctionType(fdecl->type, dthis, dnest, fdecl->isMain());
return functype;
}
//////////////////////////////////////////////////////////////////////////////////////////
static llvm::Function* DtoDeclareVaFunction(FuncDeclaration* fdecl)
{
DtoVaFunctionType(fdecl);
llvm::Function* func = 0;
if (fdecl->llvmInternal == LLVMva_start)
func = GET_INTRINSIC_DECL(vastart);
else if (fdecl->llvmInternal == LLVMva_copy)
func = GET_INTRINSIC_DECL(vacopy);
else if (fdecl->llvmInternal == LLVMva_end)
func = GET_INTRINSIC_DECL(vaend);
assert(func);
fdecl->ir.irFunc->func = func;
return func;
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoResolveFunction(FuncDeclaration* fdecl)
{
if ((!global.params.useUnitTests || !fdecl->type) && fdecl->isUnitTestDeclaration()) {
Logger::println("Ignoring unittest %s", fdecl->toPrettyChars());
return; // ignore declaration completely
}
if (fdecl->ir.resolved) return;
fdecl->ir.resolved = true;
//printf("resolve function: %s\n", fdecl->toPrettyChars());
if (fdecl->parent)
if (TemplateInstance* tinst = fdecl->parent->isTemplateInstance())
{
TemplateDeclaration* tempdecl = tinst->tempdecl;
if (tempdecl->llvmInternal == LLVMva_arg)
{
Logger::println("magic va_arg found");
fdecl->llvmInternal = LLVMva_arg;
fdecl->ir.resolved = true;
fdecl->ir.declared = true;
fdecl->ir.initialized = true;
fdecl->ir.defined = true;
return; // this gets mapped to an instruction so a declaration makes no sence
}
else if (tempdecl->llvmInternal == LLVMva_start)
{
Logger::println("magic va_start found");
fdecl->llvmInternal = LLVMva_start;
}
else if (tempdecl->llvmInternal == LLVMintrinsic)
{
Logger::println("overloaded intrinsic found");
fdecl->llvmInternal = LLVMintrinsic;
DtoOverloadedIntrinsicName(tinst, tempdecl, fdecl->intrinsicName);
fdecl->linkage = LINKintrinsic;
((TypeFunction*)fdecl->type)->linkage = LINKintrinsic;
}
else if (tempdecl->llvmInternal == LLVMinline_asm)
{
Logger::println("magic inline asm found");
TypeFunction* tf = (TypeFunction*)fdecl->type;
if (tf->varargs != 1 || (fdecl->parameters && fdecl->parameters->dim != 0))
{
error("invalid __asm declaration, must be a D style variadic with no explicit parameters");
fatal();
}
fdecl->llvmInternal = LLVMinline_asm;
fdecl->ir.resolved = true;
fdecl->ir.declared = true;
fdecl->ir.initialized = true;
fdecl->ir.defined = true;
return; // this gets mapped to a special inline asm call, no point in going on.
}
}
DtoType(fdecl->type);
Logger::println("DtoResolveFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
LOG_SCOPE;
// queue declaration unless the function is abstract without body
if (!fdecl->isAbstract() || fdecl->fbody)
{
DtoDeclareFunction(fdecl);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
static void set_param_attrs(TypeFunction* f, llvm::Function* func, FuncDeclaration* fdecl)
{
LLSmallVector<llvm::AttributeWithIndex, 9> attrs;
llvm::AttributeWithIndex PAWI;
int idx = 0;
// handle implicit args
#define ADD_PA(X) \
if (f->fty.X) { \
if (f->fty.X->attrs) { \
PAWI.Index = idx; \
PAWI.Attrs = f->fty.X->attrs; \
attrs.push_back(PAWI); \
} \
idx++; \
}
ADD_PA(ret)
ADD_PA(arg_sret)
ADD_PA(arg_this)
ADD_PA(arg_nest)
ADD_PA(arg_arguments)
ADD_PA(arg_argptr)
#undef ADD_PA
// set attrs on the rest of the arguments
size_t n = Parameter::dim(f->parameters);
LLSmallVector<unsigned,8> attrptr(n, 0);
for (size_t k = 0; k < n; ++k)
{
Parameter* fnarg = Parameter::getNth(f->parameters, k);
assert(fnarg);
attrptr[k] = f->fty.args[k]->attrs;
}
// reverse params?
if (f->fty.reverseParams)
{
std::reverse(attrptr.begin(), attrptr.end());
}
// build rest of attrs list
for (int i = 0; i < n; i++)
{
if (attrptr[i])
{
PAWI.Index = idx+i;
PAWI.Attrs = attrptr[i];
attrs.push_back(PAWI);
}
}
llvm::AttrListPtr attrlist = llvm::AttrListPtr::get(attrs.begin(), attrs.end());
func->setAttributes(attrlist);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoDeclareFunction(FuncDeclaration* fdecl)
{
DtoResolveFunction(fdecl);
if (fdecl->ir.declared) return;
fdecl->ir.declared = true;
Logger::println("DtoDeclareFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
LOG_SCOPE;
//printf("declare function: %s\n", fdecl->toPrettyChars());
// intrinsic sanity check
if (fdecl->llvmInternal == LLVMintrinsic && fdecl->fbody) {
error(fdecl->loc, "intrinsics cannot have function bodies");
fatal();
}
// get TypeFunction*
Type* t = fdecl->type->toBasetype();
TypeFunction* f = (TypeFunction*)t;
bool declareOnly = !mustDefineSymbol(fdecl);
if (fdecl->llvmInternal == LLVMva_start)
declareOnly = true;
if (!fdecl->ir.irFunc) {
fdecl->ir.irFunc = new IrFunction(fdecl);
}
// mangled name
const char* mangled_name;
if (fdecl->llvmInternal == LLVMintrinsic)
mangled_name = fdecl->intrinsicName.c_str();
else
mangled_name = fdecl->mangle();
llvm::Function* vafunc = 0;
if (fdecl->isVaIntrinsic())
vafunc = DtoDeclareVaFunction(fdecl);
// construct function
const llvm::FunctionType* functype = DtoFunctionType(fdecl);
llvm::Function* func = vafunc ? vafunc : gIR->module->getFunction(mangled_name);
if (!func) {
func = llvm::Function::Create(functype, DtoLinkage(fdecl), mangled_name, gIR->module);
} else if (func->getFunctionType() != functype) {
error(fdecl->loc, "Function type does not match previously declared function with the same mangled name: %s", fdecl->mangle());
}
if (Logger::enabled())
Logger::cout() << "func = " << *func << std::endl;
// add func to IRFunc
fdecl->ir.irFunc->func = func;
// calling convention
if (!vafunc && fdecl->llvmInternal != LLVMintrinsic)
func->setCallingConv(DtoCallingConv(fdecl->loc, f->linkage));
else // fall back to C, it should be the right thing to do
func->setCallingConv(llvm::CallingConv::C);
// parameter attributes
if (!fdecl->isIntrinsic()) {
set_param_attrs(f, func, fdecl);
if (opts::disableRedZone) {
func->addFnAttr(NoRedZone);
}
}
// main
if (fdecl->isMain()) {
gIR->mainFunc = func;
}
#if DMDV2
// shared static ctor
if (fdecl->isSharedStaticCtorDeclaration()) {
if (mustDefineSymbol(fdecl)) {
gIR->sharedCtors.push_back(fdecl);
}
}
// shared static dtor
else if (StaticDtorDeclaration *dtorDecl = fdecl->isSharedStaticDtorDeclaration()) {
if (mustDefineSymbol(fdecl)) {
gIR->sharedDtors.push_front(fdecl);
if (dtorDecl->vgate)
gIR->sharedGates.push_front(dtorDecl->vgate);
}
} else
#endif
// static ctor
if (fdecl->isStaticCtorDeclaration()) {
if (mustDefineSymbol(fdecl)) {
gIR->ctors.push_back(fdecl);
}
}
// static dtor
else if (StaticDtorDeclaration *dtorDecl = fdecl->isStaticDtorDeclaration()) {
if (mustDefineSymbol(fdecl)) {
gIR->dtors.push_front(fdecl);
#if DMDV2
if (dtorDecl->vgate)
gIR->gates.push_front(dtorDecl->vgate);
#endif
}
}
// we never reference parameters of function prototypes
std::string str;
// if (!declareOnly)
{
// name parameters
llvm::Function::arg_iterator iarg = func->arg_begin();
if (f->fty.arg_sret) {
iarg->setName(".sret_arg");
fdecl->ir.irFunc->retArg = iarg;
++iarg;
}
if (f->fty.arg_this) {
iarg->setName(".this_arg");
fdecl->ir.irFunc->thisArg = iarg;
assert(fdecl->ir.irFunc->thisArg);
++iarg;
}
else if (f->fty.arg_nest) {
iarg->setName(".nest_arg");
fdecl->ir.irFunc->nestArg = iarg;
assert(fdecl->ir.irFunc->nestArg);
++iarg;
}
if (f->fty.arg_argptr) {
iarg->setName("._arguments");
fdecl->ir.irFunc->_arguments = iarg;
++iarg;
iarg->setName("._argptr");
fdecl->ir.irFunc->_argptr = iarg;
++iarg;
}
int k = 0;
for (; iarg != func->arg_end(); ++iarg)
{
if (fdecl->parameters && fdecl->parameters->dim > k)
{
Dsymbol* argsym;
if (f->fty.reverseParams)
argsym = (Dsymbol*)fdecl->parameters->data[fdecl->parameters->dim-k-1];
else
argsym = (Dsymbol*)fdecl->parameters->data[k];
VarDeclaration* argvd = argsym->isVarDeclaration();
assert(argvd);
assert(!argvd->ir.irLocal);
argvd->ir.irLocal = new IrLocal(argvd);
argvd->ir.irLocal->value = iarg;
str = argvd->ident->toChars();
str.append("_arg");
iarg->setName(str);
k++;
}
else
{
iarg->setName("unnamed");
}
}
}
if (fdecl->isUnitTestDeclaration() && !declareOnly)
gIR->unitTests.push_back(fdecl);
if (!declareOnly)
Type::sir->addFunctionBody(fdecl->ir.irFunc);
else
assert(func->getLinkage() != llvm::GlobalValue::InternalLinkage);
}
//////////////////////////////////////////////////////////////////////////////////////////
// FIXME: this isn't too pretty!
void DtoDefineFunction(FuncDeclaration* fd)
{
DtoDeclareFunction(fd);
if (fd->ir.defined) return;
fd->ir.defined = true;
assert(fd->ir.declared);
if (Logger::enabled())
Logger::println("DtoDefineFunc(%s): %s", fd->toPrettyChars(), fd->loc.toChars());
LOG_SCOPE;
// if this function is naked, we take over right away! no standard processing!
if (fd->naked)
{
DtoDefineNakedFunction(fd);
return;
}
#ifndef DISABLE_DEBUG_INFO
// debug info
if (global.params.symdebug)
fd->ir.irFunc->diSubprogram = DtoDwarfSubProgram(fd);
#endif
Type* t = fd->type->toBasetype();
TypeFunction* f = (TypeFunction*)t;
// assert(f->irtype);
llvm::Function* func = fd->ir.irFunc->func;
// sanity check
assert(mustDefineSymbol(fd));
// set module owner
fd->ir.DModule = gIR->dmodule;
// is there a body?
if (fd->fbody == NULL)
return;
Logger::println("Doing function body for: %s", fd->toChars());
assert(fd->ir.irFunc);
IrFunction* irfunction = fd->ir.irFunc;
gIR->functions.push_back(irfunction);
if (fd->isMain())
gIR->emitMain = true;
std::string entryname("entry");
llvm::BasicBlock* beginbb = llvm::BasicBlock::Create(gIR->context(), entryname,func);
llvm::BasicBlock* endbb = llvm::BasicBlock::Create(gIR->context(), "endentry",func);
//assert(gIR->scopes.empty());
gIR->scopes.push_back(IRScope(beginbb, endbb));
// create alloca point
// this gets erased when the function is complete, so alignment etc does not matter at all
llvm::Instruction* allocaPoint = new llvm::AllocaInst(LLType::getInt32Ty(gIR->context()), "alloca point", beginbb);
irfunction->allocapoint = allocaPoint;
#ifndef DISABLE_DEBUG_INFO
// debug info - after all allocas, but before any llvm.dbg.declare etc
if (global.params.symdebug) DtoDwarfFuncStart(fd);
#endif
// this hack makes sure the frame pointer elimination optimization is disabled.
// this this eliminates a bunch of inline asm related issues.
if (fd->inlineAsm)
{
// emit a call to llvm_eh_unwind_init
LLFunction* hack = GET_INTRINSIC_DECL(eh_unwind_init);
gIR->ir->CreateCall(hack, "");
}
// give the 'this' argument storage and debug info
if (f->fty.arg_this)
{
LLValue* thisvar = irfunction->thisArg;
assert(thisvar);
LLValue* thismem = DtoRawAlloca(thisvar->getType(), 0, "this"); // FIXME: align?
DtoStore(thisvar, thismem);
if (f->fty.is_arg_this_ref)
irfunction->thisArg = DtoLoad(thismem, "thisRef");
else
irfunction->thisArg = thismem;
assert(!fd->vthis->ir.irLocal);
fd->vthis->ir.irLocal = new IrLocal(fd->vthis);
fd->vthis->ir.irLocal->value = thismem;
#ifndef DISABLE_DEBUG_INFO
if (global.params.symdebug)
DtoDwarfLocalVariable(thismem, fd->vthis);
#endif
#if DMDV1
if (fd->vthis->nestedref)
{
fd->nestedVars.insert(fd->vthis);
}
#endif
}
// give arguments storage
// and debug info
if (fd->parameters)
{
size_t n = f->fty.args.size();
assert(n == fd->parameters->dim);
for (int i=0; i < n; ++i)
{
Dsymbol* argsym = (Dsymbol*)fd->parameters->data[i];
VarDeclaration* vd = argsym->isVarDeclaration();
assert(vd);
IrLocal* irloc = vd->ir.irLocal;
assert(irloc);
#if DMDV1
if (vd->nestedref)
{
fd->nestedVars.insert(vd);
}
#endif
bool refout = vd->storage_class & (STCref | STCout);
bool lazy = vd->storage_class & STClazy;
if (!refout && (!f->fty.args[i]->byref || lazy))
{
// alloca a stack slot for this first class value arg
const LLType* argt;
if (lazy)
argt = irloc->value->getType();
else
argt = DtoType(vd->type);
LLValue* mem = DtoRawAlloca(argt, 0, vd->ident->toChars());
// let the abi transform the argument back first
DImValue arg_dval(vd->type, irloc->value);
f->fty.getParam(vd->type, i, &arg_dval, mem);
// set the arg var value to the alloca
irloc->value = mem;
}
#ifndef DISABLE_DEBUG_INFO
if (global.params.symdebug && !(isaArgument(irloc->value) && isaArgument(irloc->value)->hasByValAttr()) && !refout)
DtoDwarfLocalVariable(irloc->value, vd);
#endif
}
}
// need result variable? (nested)
#if DMDV1
if (fd->vresult && fd->vresult->nestedref) {
Logger::println("nested vresult value: %s", fd->vresult->toChars());
fd->nestedVars.insert(fd->vresult);
}
#endif
FuncGen fg;
irfunction->gen = &fg;
DtoCreateNestedContext(fd);
#if DMDV2
if (fd->vresult && fd->vresult->nestedrefs.dim) // FIXME: not sure here :/
#else
if (fd->vresult && fd->vresult->nestedref)
#endif
{
DtoNestedInit(fd->vresult);
} else if (fd->vresult) {
fd->vresult->ir.irLocal = new IrLocal(fd->vresult);
fd->vresult->ir.irLocal->value = DtoAlloca(fd->vresult->type, fd->vresult->toChars());
}
// copy _argptr and _arguments to a memory location
if (f->linkage == LINKd && f->varargs == 1)
{
// _argptr
LLValue* argptrmem = DtoRawAlloca(fd->ir.irFunc->_argptr->getType(), 0, "_argptr_mem");
new llvm::StoreInst(fd->ir.irFunc->_argptr, argptrmem, gIR->scopebb());
fd->ir.irFunc->_argptr = argptrmem;
// _arguments
LLValue* argumentsmem = DtoRawAlloca(fd->ir.irFunc->_arguments->getType(), 0, "_arguments_mem");
new llvm::StoreInst(fd->ir.irFunc->_arguments, argumentsmem, gIR->scopebb());
fd->ir.irFunc->_arguments = argumentsmem;
}
// output function body
fd->fbody->toIR(gIR);
irfunction->gen = 0;
// TODO: clean up this mess
// std::cout << *func << std::endl;
llvm::BasicBlock* bb = gIR->scopebb();
if (pred_begin(bb) == pred_end(bb) && bb != &bb->getParent()->getEntryBlock()) {
// This block is trivially unreachable, so just delete it.
// (This is a common case because it happens when 'return'
// is the last statement in a function)
bb->eraseFromParent();
} else if (!gIR->scopereturned()) {
// llvm requires all basic blocks to end with a TerminatorInst but DMD does not put a return statement
// in automatically, so we do it here.
// pass the previous block into this block
#ifndef DISABLE_DEBUG_INFO
if (global.params.symdebug) DtoDwarfFuncEnd(fd);
#endif
if (func->getReturnType() == LLType::getVoidTy(gIR->context())) {
llvm::ReturnInst::Create(gIR->context(), gIR->scopebb());
}
else if (!fd->isMain()) {
AsmBlockStatement* asmb = fd->fbody->endsWithAsm();
if (asmb) {
assert(asmb->abiret);
llvm::ReturnInst::Create(gIR->context(), asmb->abiret, bb);
}
else {
llvm::ReturnInst::Create(gIR->context(), llvm::UndefValue::get(func->getReturnType()), bb);
}
}
else
llvm::ReturnInst::Create(gIR->context(), LLConstant::getNullValue(func->getReturnType()), bb);
}
// std::cout << *func << std::endl;
// erase alloca point
if (allocaPoint->getParent())
allocaPoint->eraseFromParent();
allocaPoint = 0;
gIR->func()->allocapoint = 0;
gIR->scopes.pop_back();
// get rid of the endentry block, it's never used
assert(!func->getBasicBlockList().empty());
func->getBasicBlockList().pop_back();
gIR->functions.pop_back();
// std::cout << *func << std::endl;
}
//////////////////////////////////////////////////////////////////////////////////////////
const llvm::FunctionType* DtoBaseFunctionType(FuncDeclaration* fdecl)
{
Dsymbol* parent = fdecl->toParent();
ClassDeclaration* cd = parent->isClassDeclaration();
assert(cd);
FuncDeclaration* f = fdecl;
while (cd)
{
ClassDeclaration* base = cd->baseClass;
if (!base)
break;
FuncDeclaration* f2 = base->findFunc(fdecl->ident, (TypeFunction*)fdecl->type);
if (f2) {
f = f2;
cd = base;
}
else
break;
}
DtoResolveDsymbol(f);
return llvm::cast<llvm::FunctionType>(DtoType(f->type));
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoArgument(Parameter* fnarg, Expression* argexp)
{
Logger::println("DtoArgument");
LOG_SCOPE;
DValue* arg = argexp->toElem(gIR);
// ref/out arg
if (fnarg && (fnarg->storageClass & (STCref | STCout)))
{
Loc loc;
arg = new DImValue(argexp->type, makeLValue(loc, arg));
}
// lazy arg
else if (fnarg && (fnarg->storageClass & STClazy))
{
assert(argexp->type->toBasetype()->ty == Tdelegate);
assert(!arg->isLVal());
return arg;
}
// byval arg, but expr has no storage yet
else if (DtoIsPassedByRef(argexp->type) && (arg->isSlice() || arg->isNull()))
{
LLValue* alloc = DtoAlloca(argexp->type, ".tmp_arg");
DVarValue* vv = new DVarValue(argexp->type, alloc);
DtoAssign(argexp->loc, vv, arg);
arg = vv;
}
return arg;
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoVariadicArgument(Expression* argexp, LLValue* dst)
{
Logger::println("DtoVariadicArgument");
LOG_SCOPE;
DVarValue vv(argexp->type, dst);
DtoAssign(argexp->loc, &vv, argexp->toElem(gIR));
}
//////////////////////////////////////////////////////////////////////////////////////////
bool FuncDeclaration::isIntrinsic()
{
return (llvmInternal == LLVMintrinsic || isVaIntrinsic());
}
bool FuncDeclaration::isVaIntrinsic()
{
return (llvmInternal == LLVMva_start ||
llvmInternal == LLVMva_copy ||
llvmInternal == LLVMva_end);
}