ldc/driver/targetmachine.cpp
Kai Nacke afe6051ead LLVM 3.7: Fix MIPS ABI definition.
Detection of EABI is still missing.
2015-05-16 18:56:59 +02:00

477 lines
16 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- targetmachine.cpp -------------------------------------------------===//
//
// LDC the LLVM D compiler
//
// This file is distributed under the BSD-style LDC license. See the LICENSE
// file for details.
//
//===----------------------------------------------------------------------===//
//
// Note: The target CPU detection logic has been adapted from Clang
// (Tools.cpp and ToolChain.cpp in lib/Driver, the latter seems to have the
// more up-to-date version).
//
//===----------------------------------------------------------------------===//
#include "driver/targetmachine.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "mars.h"
#include "gen/logger.h"
static std::string getX86TargetCPU(const llvm::Triple &triple)
{
// Select the default CPU if none was given (or detection failed).
// Intel Macs are relatively recent, take advantage of that.
if (triple.isOSDarwin())
return triple.isArch64Bit() ? "core2" : "yonah";
// Everything else goes to x86-64 in 64-bit mode.
if (triple.isArch64Bit())
return "x86-64";
if (triple.getOSName().startswith("haiku"))
return "i586";
if (triple.getOSName().startswith("openbsd"))
return "i486";
if (triple.getOSName().startswith("bitrig"))
return "i686";
if (triple.getOSName().startswith("freebsd"))
return "i486";
if (triple.getOSName().startswith("netbsd"))
return "i486";
#if LDC_LLVM_VER >= 302
// All x86 devices running Android have core2 as their common
// denominator. This makes a better choice than pentium4.
if (triple.getEnvironment() == llvm::Triple::Android)
return "core2";
#endif
// Fallback to p4.
return "pentium4";
}
static std::string getARMTargetCPU(const llvm::Triple &triple)
{
const char *result = llvm::StringSwitch<const char *>(triple.getArchName())
.Cases("armv2", "armv2a","arm2")
.Case("armv3", "arm6")
.Case("armv3m", "arm7m")
.Case("armv4", "strongarm")
.Case("armv4t", "arm7tdmi")
.Cases("armv5", "armv5t", "arm10tdmi")
.Cases("armv5e", "armv5te", "arm1026ejs")
.Case("armv5tej", "arm926ej-s")
.Cases("armv6", "armv6k", "arm1136jf-s")
.Case("armv6j", "arm1136j-s")
.Cases("armv6z", "armv6zk", "arm1176jzf-s")
.Case("armv6t2", "arm1156t2-s")
.Cases("armv6m", "armv6-m", "cortex-m0")
.Cases("armv7", "armv7a", "armv7-a", "cortex-a8")
.Cases("armv7l", "armv7-l", "cortex-a8")
.Cases("armv7f", "armv7-f", "cortex-a9-mp")
.Cases("armv7s", "armv7-s", "swift")
.Cases("armv7r", "armv7-r", "cortex-r4")
.Cases("armv7m", "armv7-m", "cortex-m3")
.Cases("armv7em", "armv7e-m", "cortex-m4")
.Cases("armv8", "armv8a", "armv8-a", "cortex-a53")
.Case("ep9312", "ep9312")
.Case("iwmmxt", "iwmmxt")
.Case("xscale", "xscale")
// If all else failed, return the most base CPU with thumb interworking
// supported by LLVM.
.Default(0);
if (result)
return result;
return (triple.getEnvironment() == llvm::Triple::GNUEABIHF) ?
"arm1176jzf-s" : "arm7tdmi";
}
/// Returns the LLVM name of the target CPU to use given the provided
/// -mcpu argument and target triple.
static std::string getTargetCPU(const std::string &cpu,
const llvm::Triple &triple)
{
if (!cpu.empty())
{
if (cpu != "native")
return cpu;
// FIXME: Reject attempts to use -mcpu=native unless the target matches
// the host.
std::string hostCPU = llvm::sys::getHostCPUName();
if (!hostCPU.empty() && hostCPU != "generic")
return hostCPU;
}
switch (triple.getArch())
{
default:
// We don't know about the specifics of this platform, just return the
// empty string and let LLVM decide.
return cpu;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return getX86TargetCPU(triple);
case llvm::Triple::arm:
return getARMTargetCPU(triple);
}
}
static const char *getLLVMArchSuffixForARM(llvm::StringRef CPU)
{
return llvm::StringSwitch<const char *>(CPU)
.Case("strongarm", "v4")
.Cases("arm7tdmi", "arm7tdmi-s", "arm710t", "v4t")
.Cases("arm720t", "arm9", "arm9tdmi", "v4t")
.Cases("arm920", "arm920t", "arm922t", "v4t")
.Cases("arm940t", "ep9312","v4t")
.Cases("arm10tdmi", "arm1020t", "v5")
.Cases("arm9e", "arm926ej-s", "arm946e-s", "v5e")
.Cases("arm966e-s", "arm968e-s", "arm10e", "v5e")
.Cases("arm1020e", "arm1022e", "xscale", "iwmmxt", "v5e")
.Cases("arm1136j-s", "arm1136jf-s", "arm1176jz-s", "v6")
.Cases("arm1176jzf-s", "mpcorenovfp", "mpcore", "v6")
.Cases("arm1156t2-s", "arm1156t2f-s", "v6t2")
.Cases("cortex-a5", "cortex-a7", "cortex-a8", "v7")
.Cases("cortex-a9", "cortex-a12", "cortex-a15", "v7")
.Cases("cortex-r4", "cortex-r5", "v7r")
.Case("cortex-m0", "v6m")
.Case("cortex-m3", "v7m")
.Case("cortex-m4", "v7em")
.Case("cortex-a9-mp", "v7f")
.Case("swift", "v7s")
.Case("cortex-a53", "v8")
.Case("krait", "v7")
.Default("");
}
static FloatABI::Type getARMFloatABI(const llvm::Triple &triple,
const char* llvmArchSuffix)
{
switch (triple.getOS()) {
case llvm::Triple::Darwin:
case llvm::Triple::MacOSX:
case llvm::Triple::IOS: {
// Darwin defaults to "softfp" for v6 and v7.
if (llvm::StringRef(llvmArchSuffix).startswith("v6") ||
llvm::StringRef(llvmArchSuffix).startswith("v7"))
return FloatABI::SoftFP;
return FloatABI::Soft;
}
case llvm::Triple::FreeBSD:
// FreeBSD defaults to soft float
return FloatABI::Soft;
default:
switch(triple.getEnvironment()) {
case llvm::Triple::GNUEABIHF:
return FloatABI::Hard;
case llvm::Triple::GNUEABI:
return FloatABI::SoftFP;
case llvm::Triple::EABI:
// EABI is always AAPCS, and if it was not marked 'hard', it's softfp
return FloatABI::SoftFP;
#if LDC_LLVM_VER >= 302
case llvm::Triple::Android: {
if (llvm::StringRef(llvmArchSuffix).startswith("v7"))
return FloatABI::SoftFP;
return FloatABI::Soft;
}
#endif
default:
// Assume "soft".
// TODO: Warn the user we are guessing.
return FloatABI::Soft;
}
}
}
#if LDC_LLVM_VER < 307
/// Sanitizes the MIPS ABI in the feature string.
static void addMipsABI(const llvm::Triple &triple, std::vector<std::string> &attrs)
{
enum ABI { O32 = 1<<0, N32 = 1<<1, N64 = 1<<2, EABI = 1<<3 };
const bool is64Bit = triple.getArch() == llvm::Triple::mips64 ||
triple.getArch() == llvm::Triple::mips64el;
const uint32_t defaultABI = is64Bit ? N64 : O32;
uint32_t bits = defaultABI;
std::vector<std::string>::iterator I = attrs.begin();
while (I != attrs.end())
{
std::string str = *I;
bool enabled = str[0] == '+';
std::string flag = (str[0] == '+' || str[0] == '-') ? str.substr(1) : str;
uint32_t newBit = 0;
if (flag == "o32") newBit = O32;
if (flag == "n32") newBit = N32;
if (flag == "n64") newBit = N64;
if (flag == "eabi") newBit = EABI;
if (newBit)
{
I = attrs.erase(I);
if (enabled) bits |= newBit;
else bits &= ~newBit;
}
else
++I;
}
switch (bits)
{
case O32: attrs.push_back("+o32"); break;
case N32: attrs.push_back("+n32"); break;
case N64: attrs.push_back("+n64"); break;
case EABI: attrs.push_back("+eabi"); break;
default: error(Loc(), "Only one ABI argument is supported"); fatal();
}
if (bits != defaultABI)
attrs.push_back(is64Bit ? "-n64" : "-o32");
}
#endif
/// Looks up a target based on an arch name and a target triple.
///
/// If the arch name is non-empty, then the lookup is done by arch. Otherwise,
/// the target triple is used.
///
/// This has been adapted from the corresponding LLVM 3.2+ overload of
/// llvm::TargetRegistry::lookupTarget. Once support for LLVM 3.1 is dropped,
/// the registry method can be used instead.
const llvm::Target *lookupTarget(const std::string &arch, llvm::Triple &triple,
std::string &errorMsg)
{
// Allocate target machine. First, check whether the user has explicitly
// specified an architecture to compile for. If so we have to look it up by
// name, because it might be a backend that has no mapping to a target triple.
const llvm::Target *target = 0;
if (!arch.empty())
{
#if LDC_LLVM_VER >= 307
for (const llvm::Target &T : llvm::TargetRegistry::targets())
{
#else
for (llvm::TargetRegistry::iterator it = llvm::TargetRegistry::begin(),
ie = llvm::TargetRegistry::end(); it != ie; ++it)
{
const llvm::Target& T = *it;
#endif
if (arch == T.getName())
{
target = &T;
break;
}
}
if (!target)
{
errorMsg = "invalid target architecture '" + arch + "', see "
"-version for a list of supported targets.";
return 0;
}
// Adjust the triple to match (if known), otherwise stick with the
// given triple.
llvm::Triple::ArchType Type = llvm::Triple::getArchTypeForLLVMName(arch);
if (Type != llvm::Triple::UnknownArch)
triple.setArch(Type);
}
else
{
std::string tempError;
target = llvm::TargetRegistry::lookupTarget(triple.getTriple(), tempError);
if (!target)
{
errorMsg = "unable to get target for '" + triple.getTriple() +
"', see -version and -mtriple.";
}
}
return target;
}
llvm::TargetMachine* createTargetMachine(
std::string targetTriple,
std::string arch,
std::string cpu,
std::vector<std::string> attrs,
ExplicitBitness::Type bitness,
FloatABI::Type floatABI,
llvm::Reloc::Model relocModel,
llvm::CodeModel::Model codeModel,
llvm::CodeGenOpt::Level codeGenOptLevel,
bool noFramePointerElim,
bool noLinkerStripDead)
{
// Determine target triple. If the user didn't explicitly specify one, use
// the one set at LLVM configure time.
llvm::Triple triple;
if (targetTriple.empty())
{
triple = llvm::Triple(llvm::sys::getDefaultTargetTriple());
// Handle -m32/-m64.
if (sizeof(void*) == 4 && bitness == ExplicitBitness::M64)
{
triple = triple.get64BitArchVariant();
}
else if (sizeof(void*) == 8 && bitness == ExplicitBitness::M32)
{
triple = triple.get32BitArchVariant();
}
}
else
{
triple = llvm::Triple(llvm::Triple::normalize(targetTriple));
}
// Look up the LLVM backend to use. This also updates triple with the
// user-specified arch, if any.
std::string errMsg;
const llvm::Target *target = lookupTarget(arch, triple, errMsg);
if (target == 0)
{
error(Loc(), "%s", errMsg.c_str());
fatal();
}
// Package up features to be passed to target/subtarget.
llvm::SubtargetFeatures features;
features.getDefaultSubtargetFeatures(triple);
if (cpu == "native")
{
llvm::StringMap<bool> hostFeatures;
if (llvm::sys::getHostCPUFeatures(hostFeatures))
{
llvm::StringMapConstIterator<bool> i = hostFeatures.begin(),
end = hostFeatures.end();
for (; i != end; ++i)
#if LDC_LLVM_VER >= 305
features.AddFeature(std::string((i->second ? "+" : "-")).append(i->first()));
#else
features.AddFeature(i->first(), i->second);
#endif
}
}
#if LDC_LLVM_VER < 307
if (triple.getArch() == llvm::Triple::mips ||
triple.getArch() == llvm::Triple::mipsel ||
triple.getArch() == llvm::Triple::mips64 ||
triple.getArch() == llvm::Triple::mips64el)
addMipsABI(triple, attrs);
#endif
for (unsigned i = 0; i < attrs.size(); ++i)
features.AddFeature(attrs[i]);
// With an empty CPU string, LLVM will default to the host CPU, which is
// usually not what we want (expected behavior from other compilers is
// to default to "generic").
cpu = getTargetCPU(cpu, triple);
if (Logger::enabled())
{
Logger::println("Targeting '%s' (CPU '%s' with features '%s')",
triple.str().c_str(), cpu.c_str(), features.getString().c_str());
}
if (triple.isMacOSX() && relocModel == llvm::Reloc::Default)
{
// OS X defaults to PIC (and as of 10.7.5/LLVM 3.1-3.3, TLS use leads
// to crashes for non-PIC code). LLVM doesn't handle this.
relocModel = llvm::Reloc::PIC_;
}
if (floatABI == FloatABI::Default)
{
switch (triple.getArch())
{
default: // X86, ...
floatABI = FloatABI::Hard;
break;
case llvm::Triple::arm:
case llvm::Triple::thumb:
floatABI = getARMFloatABI(triple, getLLVMArchSuffixForARM(cpu));
break;
}
}
#if LDC_LLVM_VER < 305
if (triple.getArch() == llvm::Triple::arm && !triple.isOSDarwin())
{
// On ARM, we want to use EHABI exception handling, as we don't support
// SJLJ EH in druntime. Unfortunately, it is still in a partly
// experimental state, and the -arm-enable-ehabi-descriptors command
// line option is not exposed via an internal API at all.
const char *backendArgs[3] = {
"ldc2", // Fake name, irrelevant.
"-arm-enable-ehabi",
"-arm-enable-ehabi-descriptors"
};
llvm::cl::ParseCommandLineOptions(3, backendArgs);
}
#endif
llvm::TargetOptions targetOptions;
targetOptions.NoFramePointerElim = noFramePointerElim;
switch (floatABI)
{
default: llvm_unreachable("Floating point ABI type unknown.");
case FloatABI::Soft:
#if LDC_LLVM_VER < 307
targetOptions.UseSoftFloat = true;
#endif
targetOptions.FloatABIType = llvm::FloatABI::Soft;
break;
case FloatABI::SoftFP:
#if LDC_LLVM_VER < 307
targetOptions.UseSoftFloat = false;
#endif
targetOptions.FloatABIType = llvm::FloatABI::Soft;
break;
case FloatABI::Hard:
#if LDC_LLVM_VER < 307
targetOptions.UseSoftFloat = false;
#endif
targetOptions.FloatABIType = llvm::FloatABI::Hard;
break;
}
// Right now, we only support linker-level dead code elimination on Linux
// using the GNU toolchain (based on ld's --gc-sections flag). The Apple ld
// on OS X supports a similar flag (-dead_strip) that doesn't require
// emitting the symbols into different sections. The MinGW ld doesn't seem
// to support --gc-sections at all, and FreeBSD needs more investigation.
if (!noLinkerStripDead &&
(triple.getOS() == llvm::Triple::Linux || triple.getOS() == llvm::Triple::Win32))
{
#if LDC_LLVM_VER < 305
llvm::TargetMachine::setDataSections(true);
llvm::TargetMachine::setFunctionSections(true);
#else
targetOptions.FunctionSections = true;
targetOptions.DataSections = true;
#endif
}
return target->createTargetMachine(
triple.str(),
cpu,
features.getString(),
targetOptions,
relocModel,
codeModel,
codeGenOptLevel
);
}