// Compiler implementation of the D programming language // Copyright (c) 1999-2011 by Digital Mars // All Rights Reserved // written by Walter Bright // http://www.digitalmars.com // License for redistribution is by either the Artistic License // in artistic.txt, or the GNU General Public License in gnu.txt. // See the included readme.txt for details. #include #include #include #include #include #if _MSC_VER #include #else #if IN_DMD #include #endif #endif #if _WIN32 && __DMC__ extern "C" char * __cdecl __locale_decpoint; #endif #if __MINGW32__ #ifndef isnan #define isnan _isnan #endif #endif #ifdef __APPLE__ #ifndef isnan int isnan(double); #endif #endif #include "rmem.h" #if IN_DMD #include "port.h" #include "root.h" #endif #include "mtype.h" #include "init.h" #include "expression.h" #include "template.h" #include "utf.h" #include "enum.h" #include "scope.h" #include "statement.h" #include "declaration.h" #include "aggregate.h" #include "import.h" #include "id.h" #include "dsymbol.h" #include "module.h" #include "attrib.h" #include "hdrgen.h" #include "parse.h" #include "doc.h" #if IN_DMD Expression *createTypeInfoArray(Scope *sc, Expression *args[], unsigned dim); #endif Expression *expandVar(int result, VarDeclaration *v); #define LOGSEMANTIC 0 /************************************************************* * Given var, we need to get the * right 'this' pointer if var is in an outer class, but our * existing 'this' pointer is in an inner class. * Input: * e1 existing 'this' * ad struct or class we need the correct 'this' for * var the specific member of ad we're accessing */ Expression *getRightThis(Loc loc, Scope *sc, AggregateDeclaration *ad, Expression *e1, Declaration *var) { //printf("\ngetRightThis(e1 = %s, ad = %s, var = %s)\n", e1->toChars(), ad->toChars(), var->toChars()); L1: Type *t = e1->type->toBasetype(); //printf("e1->type = %s, var->type = %s\n", e1->type->toChars(), var->type->toChars()); /* If e1 is not the 'this' pointer for ad */ if (ad && !(t->ty == Tpointer && t->nextOf()->ty == Tstruct && ((TypeStruct *)t->nextOf())->sym == ad) && !(t->ty == Tstruct && ((TypeStruct *)t)->sym == ad) ) { ClassDeclaration *cd = ad->isClassDeclaration(); ClassDeclaration *tcd = t->isClassHandle(); /* e1 is the right this if ad is a base class of e1 */ if (!cd || !tcd || !(tcd == cd || cd->isBaseOf(tcd, NULL)) ) { /* Only classes can be inner classes with an 'outer' * member pointing to the enclosing class instance */ if (tcd && tcd->isNested()) { /* e1 is the 'this' pointer for an inner class: tcd. * Rewrite it as the 'this' pointer for the outer class. */ e1 = new DotVarExp(loc, e1, tcd->vthis); e1->type = tcd->vthis->type; // Do not call checkNestedRef() //e1 = e1->semantic(sc); // Skip up over nested functions, and get the enclosing // class type. int n = 0; Dsymbol *s; for (s = tcd->toParent(); s && s->isFuncDeclaration(); s = s->toParent()) { FuncDeclaration *f = s->isFuncDeclaration(); if (f->vthis) { //printf("rewriting e1 to %s's this\n", f->toChars()); n++; // LDC seems dmd misses it sometimes here :/ if (f->isMember2()) { f->vthis->nestedrefs.push(sc->parent->isFuncDeclaration()); f->closureVars.push(f->vthis); } e1 = new VarExp(loc, f->vthis); } else { e1->error("need 'this' of type %s to access member %s" " from static function %s", ad->toChars(), var->toChars(), f->toChars()); e1 = new ErrorExp(); return e1; } } if (s && s->isClassDeclaration()) { e1->type = s->isClassDeclaration()->type; if (n > 1) e1 = e1->semantic(sc); } else e1 = e1->semantic(sc); goto L1; } /* Can't find a path from e1 to ad */ e1->error("this for %s needs to be type %s not type %s", var->toChars(), ad->toChars(), t->toChars()); e1 = new ErrorExp(); } } return e1; } /***************************************** * Determine if 'this' is available. * If it is, return the FuncDeclaration that has it. */ FuncDeclaration *hasThis(Scope *sc) { FuncDeclaration *fd; FuncDeclaration *fdthis; //printf("hasThis()\n"); fdthis = sc->parent->isFuncDeclaration(); //printf("fdthis = %p, '%s'\n", fdthis, fdthis ? fdthis->toChars() : ""); /* Special case for inside template constraint */ if (fdthis && (sc->flags & SCOPEstaticif) && fdthis->parent->isTemplateDeclaration()) { //TemplateDeclaration *td = fdthis->parent->isTemplateDeclaration(); //printf("[%s] td = %s, fdthis->vthis = %p\n", td->loc.toChars(), td->toChars(), fdthis->vthis); return fdthis->vthis ? fdthis : NULL; } // Go upwards until we find the enclosing member function fd = fdthis; while (1) { if (!fd) { goto Lno; } if (!fd->isNested()) break; Dsymbol *parent = fd->parent; while (1) { if (!parent) goto Lno; TemplateInstance *ti = parent->isTemplateInstance(); if (ti) parent = ti->parent; else break; } fd = parent->isFuncDeclaration(); } if (!fd->isThis()) { //printf("test '%s'\n", fd->toChars()); goto Lno; } assert(fd->vthis); return fd; Lno: return NULL; // don't have 'this' available } /*************************************** * Pull out any properties. */ Expression *resolveProperties(Scope *sc, Expression *e) { //printf("resolveProperties(%s)\n", e->toChars()); TemplateDeclaration *td; Objects *targsi; Expression *ethis; if (e->op == TOKdotti) { DotTemplateInstanceExp* dti = (DotTemplateInstanceExp *)e; td = dti->getTempdecl(sc); dti->ti->semanticTiargs(sc); targsi = dti->ti->tiargs; ethis = dti->e1; goto L1; } else if (e->op == TOKdottd) { DotTemplateExp *dte = (DotTemplateExp *)e; td = dte->td; targsi = NULL; ethis = dte->e1; goto L1; } else if (e->op == TOKtemplate) { td = ((TemplateExp *)e)->td; targsi = NULL; ethis = NULL; L1: assert(td); unsigned errors = global.startGagging(); FuncDeclaration *fd = td->deduceFunctionTemplate(sc, e->loc, targsi, ethis, NULL, 1); if (global.endGagging(errors)) fd = NULL; // eat "is not a function template" error if (fd && fd->type) { assert(fd->type->ty == Tfunction); TypeFunction *tf = (TypeFunction *)fd->type; if (!tf->isproperty && global.params.enforcePropertySyntax) { error(e->loc, "not a property %s", e->toChars()); return new ErrorExp(); } e = new CallExp(e->loc, e); e = e->semantic(sc); } goto return_expr; } if (e->type) { Type *t = e->type->toBasetype(); if (t->ty == Tfunction || e->op == TOKoverloadset) { if (t->ty == Tfunction && !((TypeFunction *)t)->isproperty && global.params.enforcePropertySyntax) { error(e->loc, "not a property %s", e->toChars()); return new ErrorExp(); } e = new CallExp(e->loc, e); e = e->semantic(sc); } /* Look for e being a lazy parameter; rewrite as delegate call */ else if (e->op == TOKvar) { VarExp *ve = (VarExp *)e; if (ve->var->storage_class & STClazy) { e = new CallExp(e->loc, e); e = e->semantic(sc); } } else if (e->op == TOKdotexp) { e->error("expression has no value"); return new ErrorExp(); } } return_expr: if (!e->type) { error(e->loc, "cannot resolve type for %s", e->toChars()); e->type = new TypeError(); } return e; } /****************************** * Perform semantic() on an array of Expressions. */ Expressions *arrayExpressionSemantic(Expressions *exps, Scope *sc) { if (exps) { for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; if (e) { e = e->semantic(sc); (*exps)[i] = e; } } } return exps; } /****************************** * Perform canThrow() on an array of Expressions. */ #if DMDV2 int arrayExpressionCanThrow(Expressions *exps, bool mustNotThrow) { if (exps) { for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; if (e && e->canThrow(mustNotThrow)) return 1; } } return 0; } #endif /**************************************** * Expand tuples. */ void expandTuples(Expressions *exps) { //printf("expandTuples()\n"); if (exps) { for (size_t i = 0; i < exps->dim; i++) { Expression *arg = (*exps)[i]; if (!arg) continue; // Look for tuple with 0 members if (arg->op == TOKtype) { TypeExp *e = (TypeExp *)arg; if (e->type->toBasetype()->ty == Ttuple) { TypeTuple *tt = (TypeTuple *)e->type->toBasetype(); if (!tt->arguments || tt->arguments->dim == 0) { exps->remove(i); if (i == exps->dim) return; i--; continue; } } } // Inline expand all the tuples while (arg->op == TOKtuple) { TupleExp *te = (TupleExp *)arg; exps->remove(i); // remove arg exps->insert(i, te->exps); // replace with tuple contents if (i == exps->dim) return; // empty tuple, no more arguments arg = (*exps)[i]; } } } } /**************************************** * Expand alias this tuples. */ TupleDeclaration *isAliasThisTuple(Expression *e) { if (e->type) { Type *t = e->type->toBasetype(); AggregateDeclaration *ad; if (t->ty == Tstruct) { ad = ((TypeStruct *)t)->sym; goto L1; } else if (t->ty == Tclass) { ad = ((TypeClass *)t)->sym; L1: Dsymbol *s = ad->aliasthis; if (s && s->isVarDeclaration()) { TupleDeclaration *td = s->isVarDeclaration()->toAlias()->isTupleDeclaration(); if (td && td->isexp) return td; } } } return NULL; } int expandAliasThisTuples(Expressions *exps, int starti) { if (!exps || exps->dim == 0) return -1; for (size_t u = starti; u < exps->dim; u++) { Expression *exp = exps->tdata()[u]; TupleDeclaration *td = isAliasThisTuple(exp); if (td) { exps->remove(u); for (size_t i = 0; iobjects->dim; ++i) { Expression *e = isExpression(td->objects->tdata()[i]); assert(e); assert(e->op == TOKdsymbol); DsymbolExp *se = (DsymbolExp *)e; Declaration *d = se->s->isDeclaration(); assert(d); e = new DotVarExp(exp->loc, exp, d); assert(d->type); e->type = d->type; exps->insert(u + i, e); } #if 0 printf("expansion ->\n"); for (size_t i = 0; idim; ++i) { Expression *e = exps->tdata()[i]; printf("\texps[%d] e = %s %s\n", i, Token::tochars[e->op], e->toChars()); } #endif return u; } } return -1; } Expressions *arrayExpressionToCommonType(Scope *sc, Expressions *exps, Type **pt) { #if DMDV1 /* The first element sets the type */ Type *t0 = NULL; for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; if (!e->type) { error("%s has no value", e->toChars()); e = new ErrorExp(); } e = resolveProperties(sc, e); if (!t0) t0 = e->type; else e = e->implicitCastTo(sc, t0); (*exps)[i] = e; } if (!t0) t0 = Type::tvoid; if (pt) *pt = t0; // Eventually, we want to make this copy-on-write return exps; #endif #if DMDV2 /* The type is determined by applying ?: to each pair. */ /* Still have a problem with: * ubyte[][] = [ cast(ubyte[])"hello", [1]]; * which works if the array literal is initialized top down with the ubyte[][] * type, but fails with this function doing bottom up typing. */ //printf("arrayExpressionToCommonType()\n"); IntegerExp integerexp(0); CondExp condexp(0, &integerexp, NULL, NULL); Type *t0 = NULL; Expression *e0; int j0; for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; e = resolveProperties(sc, e); if (!e->type) { error("%s has no value", e->toChars()); e = new ErrorExp(); } if (t0) { if (t0 != e->type) { /* This applies ?: to merge the types. It's backwards; * ?: should call this function to merge types. */ condexp.type = NULL; condexp.e1 = e0; condexp.e2 = e; condexp.loc = e->loc; condexp.semantic(sc); (*exps)[j0] = condexp.e1; e = condexp.e2; j0 = i; e0 = e; t0 = e0->type; } } else { j0 = i; e0 = e; t0 = e->type; } (*exps)[i] = e; } if (t0) { for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; e = e->implicitCastTo(sc, t0); (*exps)[i] = e; } } else t0 = Type::tvoid; // [] is typed as void[] if (pt) *pt = t0; // Eventually, we want to make this copy-on-write return exps; #endif } /**************************************** * Get TemplateDeclaration enclosing FuncDeclaration. */ TemplateDeclaration *getFuncTemplateDecl(Dsymbol *s) { FuncDeclaration *f = s->isFuncDeclaration(); if (f && f->parent) { TemplateInstance *ti = f->parent->isTemplateInstance(); if (ti && !ti->isTemplateMixin() && (ti->name == f->ident || ti->toAlias()->ident == f->ident) && ti->tempdecl && ti->tempdecl->onemember) { return ti->tempdecl; } } return NULL; } /**************************************** * Preprocess arguments to function. */ void preFunctionParameters(Loc loc, Scope *sc, Expressions *exps) { if (exps) { expandTuples(exps); for (size_t i = 0; i < exps->dim; i++) { Expression *arg = (*exps)[i]; arg = resolveProperties(sc, arg); (*exps)[i] = arg; //arg->rvalue(); #if 0 if (arg->type->ty == Tfunction) { arg = new AddrExp(arg->loc, arg); arg = arg->semantic(sc); (*exps)[i] = arg; } #endif } } } /************************************************ * If we want the value of this expression, but do not want to call * the destructor on it. */ void valueNoDtor(Expression *e) { if (e->op == TOKcall) { /* The struct value returned from the function is transferred * so do not call the destructor on it. * Recognize: * ((S _ctmp = S.init), _ctmp).this(...) * and make sure the destructor is not called on _ctmp * BUG: if e is a CommaExp, we should go down the right side. */ CallExp *ce = (CallExp *)e; if (ce->e1->op == TOKdotvar) { DotVarExp *dve = (DotVarExp *)ce->e1; if (dve->var->isCtorDeclaration()) { // It's a constructor call if (dve->e1->op == TOKcomma) { CommaExp *comma = (CommaExp *)dve->e1; if (comma->e2->op == TOKvar) { VarExp *ve = (VarExp *)comma->e2; VarDeclaration *ctmp = ve->var->isVarDeclaration(); if (ctmp) ctmp->noscope = 1; } } } } } } /********************************************* * Call copy constructor for struct value argument. */ #if DMDV2 Expression *callCpCtor(Loc loc, Scope *sc, Expression *e, int noscope) { Type *tb = e->type->toBasetype(); assert(tb->ty == Tstruct); StructDeclaration *sd = ((TypeStruct *)tb)->sym; if (sd->cpctor) { /* Create a variable tmp, and replace the argument e with: * (tmp = e),tmp * and let AssignExp() handle the construction. * This is not the most efficent, ideally tmp would be constructed * directly onto the stack. */ Identifier *idtmp = Lexer::uniqueId("__cpcttmp"); VarDeclaration *tmp = new VarDeclaration(loc, tb, idtmp, new ExpInitializer(0, e)); tmp->storage_class |= STCctfe; tmp->noscope = noscope; Expression *ae = new DeclarationExp(loc, tmp); e = new CommaExp(loc, ae, new VarExp(loc, tmp)); e = e->semantic(sc); } return e; } #endif // Check if this function is a member of a template which has only been // instantiated speculatively, eg from inside is(typeof()). // Return the speculative template instance it is part of, // or NULL if not speculative. TemplateInstance *isSpeculativeFunction(FuncDeclaration *fd) { Dsymbol * par = fd->parent; while (par) { TemplateInstance *ti = par->isTemplateInstance(); if (ti && ti->speculative) return ti; par = par->toParent(); } return NULL; } /**************************************** * Now that we know the exact type of the function we're calling, * the arguments[] need to be adjusted: * 1. implicitly convert argument to the corresponding parameter type * 2. add default arguments for any missing arguments * 3. do default promotions on arguments corresponding to ... * 4. add hidden _arguments[] argument * 5. call copy constructor for struct value arguments * Returns: * return type from function */ Type *functionParameters(Loc loc, Scope *sc, TypeFunction *tf, Expression *ethis, Expressions *arguments, FuncDeclaration *fd) { //printf("functionParameters()\n"); assert(arguments); assert(fd || tf->next); size_t nargs = arguments ? arguments->dim : 0; size_t nparams = Parameter::dim(tf->parameters); if (nargs > nparams && tf->varargs == 0) { error(loc, "expected %zu arguments, not %zu for non-variadic function type %s", nparams, nargs, tf->toChars()); return Type::terror; } // If inferring return type, and semantic3() needs to be run if not already run if (!tf->next && fd->inferRetType) { TemplateInstance *spec = isSpeculativeFunction(fd); int olderrs = global.errors; fd->semantic3(fd->scope); // Update the template instantiation with the number // of errors which occured. if (spec && global.errors != olderrs) spec->errors = global.errors - olderrs; } unsigned n = (nargs > nparams) ? nargs : nparams; // n = max(nargs, nparams) unsigned wildmatch = 0; if (ethis && tf->isWild()) { Type *t = ethis->type; if (t->isWild()) wildmatch |= MODwild; else if (t->isConst()) wildmatch |= MODconst; else if (t->isImmutable()) wildmatch |= MODimmutable; else wildmatch |= MODmutable; } int done = 0; for (size_t i = 0; i < n; i++) { Expression *arg; if (i < nargs) arg = arguments->tdata()[i]; else arg = NULL; if (i < nparams) { Parameter *p = Parameter::getNth(tf->parameters, i); if (!arg) { if (!p->defaultArg) { if (tf->varargs == 2 && i + 1 == nparams) goto L2; error(loc, "expected %zu function arguments, not %zu", nparams, nargs); return Type::terror; } arg = p->defaultArg; arg = arg->inlineCopy(sc); #if DMDV2 arg = arg->resolveLoc(loc, sc); // __FILE__ and __LINE__ #endif arguments->push(arg); nargs++; } else if (arg->op == TOKfunction) { FuncExp *fe = (FuncExp *)arg; Type *pt = p->type; if (tf->varargs == 2 && i + 1 == nparams && pt->nextOf()) pt = pt->nextOf(); fe->setType(pt); arg = fe->semantic(sc); arguments->tdata()[i] = arg; } if (tf->varargs == 2 && i + 1 == nparams) { //printf("\t\tvarargs == 2, p->type = '%s'\n", p->type->toChars()); if (arg->implicitConvTo(p->type)) { if (p->type->nextOf() && arg->implicitConvTo(p->type->nextOf())) goto L2; else if (nargs != nparams) { error(loc, "expected %zu function arguments, not %zu", nparams, nargs); return Type::terror; } goto L1; } L2: Type *tb = p->type->toBasetype(); Type *tret = p->isLazyArray(); switch (tb->ty) { case Tsarray: case Tarray: { // Create a static array variable v of type arg->type #ifdef IN_GCC /* GCC 4.0 does not like zero length arrays used like this; pass a null array value instead. Could also just make a one-element array. */ if (nargs - i == 0) { arg = new NullExp(loc); break; } #endif Identifier *id = Lexer::uniqueId("__arrayArg"); Type *t = new TypeSArray(((TypeArray *)tb)->next, new IntegerExp(nargs - i)); t = t->semantic(loc, sc); bool isSafe = fd ? fd->isSafe() : tf->trust == TRUSTsafe; VarDeclaration *v = new VarDeclaration(loc, t, id, isSafe ? NULL : new VoidInitializer(loc)); v->storage_class |= STCctfe; v->semantic(sc); v->parent = sc->parent; //sc->insert(v); Expression *c = new DeclarationExp(0, v); c->type = v->type; for (size_t u = i; u < nargs; u++) { Expression *a = arguments->tdata()[u]; if (tret && !((TypeArray *)tb)->next->equals(a->type)) a = a->toDelegate(sc, tret); Expression *e = new VarExp(loc, v); e = new IndexExp(loc, e, new IntegerExp(u + 1 - nparams)); ConstructExp *ae = new ConstructExp(loc, e, a); if (c) c = new CommaExp(loc, c, ae); else c = ae; } arg = new VarExp(loc, v); if (c) arg = new CommaExp(loc, c, arg); break; } case Tclass: { /* Set arg to be: * new Tclass(arg0, arg1, ..., argn) */ Expressions *args = new Expressions(); args->setDim(nargs - i); for (size_t u = i; u < nargs; u++) args->tdata()[u - i] = arguments->tdata()[u]; arg = new NewExp(loc, NULL, NULL, p->type, args); break; } default: if (!arg) { error(loc, "not enough arguments"); return Type::terror; } break; } arg = arg->semantic(sc); //printf("\targ = '%s'\n", arg->toChars()); arguments->setDim(i + 1); arguments->tdata()[i] = arg; nargs = i + 1; done = 1; } L1: if (!(p->storageClass & STClazy && p->type->ty == Tvoid)) { unsigned mod = arg->type->wildConvTo(p->type); if (mod) { wildmatch |= mod; } } } if (done) break; } if (wildmatch) { /* Calculate wild matching modifier */ if (wildmatch & MODconst || wildmatch & (wildmatch - 1)) wildmatch = MODconst; else if (wildmatch & MODimmutable) wildmatch = MODimmutable; else if (wildmatch & MODwild) wildmatch = MODwild; else { assert(wildmatch & MODmutable); wildmatch = MODmutable; } } assert(nargs >= nparams); for (size_t i = 0; i < nargs; i++) { Expression *arg = arguments->tdata()[i]; assert(arg); if (i < nparams) { Parameter *p = Parameter::getNth(tf->parameters, i); if (!(p->storageClass & STClazy && p->type->ty == Tvoid)) { if (p->type->hasWild()) { arg = arg->implicitCastTo(sc, p->type->substWildTo(wildmatch)); arg = arg->optimize(WANTvalue); } else if (p->type != arg->type) { //printf("arg->type = %s, p->type = %s\n", arg->type->toChars(), p->type->toChars()); if (arg->op == TOKtype) { arg->error("cannot pass type %s as function argument", arg->toChars()); arg = new ErrorExp(); goto L3; } else arg = arg->implicitCastTo(sc, p->type); arg = arg->optimize(WANTvalue); } } if (p->storageClass & STCref) { arg = arg->toLvalue(sc, arg); } else if (p->storageClass & STCout) { arg = arg->modifiableLvalue(sc, arg); } Type *tb = arg->type->toBasetype(); // LDC we don't want this! #if !IN_LLVM #if !SARRAYVALUE // Convert static arrays to pointers if (tb->ty == Tsarray) { arg = arg->checkToPointer(); } #endif #endif #if DMDV2 if (tb->ty == Tstruct && !(p->storageClass & (STCref | STCout))) { if (arg->op == TOKcall) { /* The struct value returned from the function is transferred * to the function, so the callee should not call the destructor * on it. */ valueNoDtor(arg); } else { /* Not transferring it, so call the copy constructor */ arg = callCpCtor(loc, sc, arg, 1); } } #endif //printf("arg: %s\n", arg->toChars()); //printf("type: %s\n", arg->type->toChars()); // Convert lazy argument to a delegate if (p->storageClass & STClazy) { arg = arg->toDelegate(sc, p->type); } #if DMDV2 /* Look for arguments that cannot 'escape' from the called * function. */ if (!tf->parameterEscapes(p)) { Expression *a = arg; if (a->op == TOKcast) a = ((CastExp *)a)->e1; /* Function literals can only appear once, so if this * appearance was scoped, there cannot be any others. */ if (a->op == TOKfunction) { FuncExp *fe = (FuncExp *)a; fe->fd->tookAddressOf = 0; } /* For passing a delegate to a scoped parameter, * this doesn't count as taking the address of it. * We only worry about 'escaping' references to the function. */ else if (a->op == TOKdelegate) { DelegateExp *de = (DelegateExp *)a; if (de->e1->op == TOKvar) { VarExp *ve = (VarExp *)de->e1; FuncDeclaration *f = ve->var->isFuncDeclaration(); if (f) { f->tookAddressOf--; //printf("tookAddressOf = %d\n", f->tookAddressOf); } } } } #endif } else { // If not D linkage, do promotions // LDC: don't do promotions on intrinsics if (tf->linkage != LINKd && tf->linkage != LINKintrinsic) { // Promote bytes, words, etc., to ints arg = arg->integralPromotions(sc); // Promote floats to doubles switch (arg->type->ty) { case Tfloat32: arg = arg->castTo(sc, Type::tfloat64); break; case Timaginary32: arg = arg->castTo(sc, Type::timaginary64); break; } } // Do not allow types that need destructors if (arg->type->needsDestruction()) { arg->error("cannot pass types that need destruction as variadic arguments"); arg = new ErrorExp(); } // Convert static arrays to dynamic arrays // BUG: I don't think this is right for D2 Type *tb = arg->type->toBasetype(); if (tb->ty == Tsarray) { TypeSArray *ts = (TypeSArray *)tb; Type *ta = ts->next->arrayOf(); if (ts->size(arg->loc) == 0) arg = new NullExp(arg->loc, ta); else arg = arg->castTo(sc, ta); } #if DMDV2 if (tb->ty == Tstruct) { arg = callCpCtor(loc, sc, arg, 1); } #endif // Give error for overloaded function addresses #if IN_LLVM if (arg->op == TOKaddress) { AddrExp *ae = (AddrExp *)arg; if (ae->e1->op == TOKvar) { VarExp *ve = (VarExp*)ae->e1; FuncDeclaration *fd = ve->var->isFuncDeclaration(); if (fd && #if DMDV2 ve->hasOverloads && #endif !fd->isUnique()) { arg->error("function %s is overloaded", arg->toChars()); } } } #else if (arg->op == TOKsymoff) { SymOffExp *se = (SymOffExp *)arg; if ( #if DMDV2 se->hasOverloads && #endif !se->var->isFuncDeclaration()->isUnique()) { arg->error("function %s is overloaded", arg->toChars()); arg = new ErrorExp(); } } #endif arg->rvalue(); } arg = arg->optimize(WANTvalue); L3: arguments->tdata()[i] = arg; } #if !IN_LLVM // If D linkage and variadic, add _arguments[] as first argument if (tf->linkage == LINKd && tf->varargs == 1) { assert(arguments->dim >= nparams); Expression *e = createTypeInfoArray(sc, (Expression **)&arguments->tdata()[nparams], arguments->dim - nparams); arguments->insert(0, e); } #endif Type *tret = tf->next; if (wildmatch) { /* Adjust function return type based on wildmatch */ //printf("wildmatch = x%x, tret = %s\n", wildmatch, tret->toChars()); tret = tret->substWildTo(wildmatch); } return tret; } /************************************************** * Write expression out to buf, but wrap it * in ( ) if its precedence is less than pr. */ void expToCBuffer(OutBuffer *buf, HdrGenState *hgs, Expression *e, enum PREC pr) { #if !IN_LLVM #ifdef DEBUG if (precedence[e->op] == PREC_zero) printf("precedence not defined for token '%s'\n",Token::tochars[e->op]); #endif assert(precedence[e->op] != PREC_zero); assert(pr != PREC_zero); #endif //if (precedence[e->op] == 0) e->dump(0); if (precedence[e->op] < pr || /* Despite precedence, we don't allow aop] == pr)) { buf->writeByte('('); e->toCBuffer(buf, hgs); buf->writeByte(')'); } else e->toCBuffer(buf, hgs); } /************************************************** * Write out argument list to buf. */ void argsToCBuffer(OutBuffer *buf, Expressions *arguments, HdrGenState *hgs) { if (arguments) { for (size_t i = 0; i < arguments->dim; i++) { Expression *arg = arguments->tdata()[i]; if (arg) { if (i) buf->writeByte(','); expToCBuffer(buf, hgs, arg, PREC_assign); } } } } /************************************************** * Write out argument types to buf. */ void argExpTypesToCBuffer(OutBuffer *buf, Expressions *arguments, HdrGenState *hgs) { if (arguments) { OutBuffer argbuf; for (size_t i = 0; i < arguments->dim; i++) { Expression *arg = arguments->tdata()[i]; if (i) buf->writeByte(','); argbuf.reset(); arg->type->toCBuffer2(&argbuf, hgs, 0); buf->write(&argbuf); } } } /******************************** Expression **************************/ Expression::Expression(Loc loc, enum TOK op, int size) : loc(loc) { //printf("Expression::Expression(op = %d) this = %p\n", op, this); this->loc = loc; this->op = op; this->size = size; this->parens = 0; type = NULL; #if IN_LLVM cachedLvalue = NULL; #endif } Expression *Expression::syntaxCopy() { //printf("Expression::syntaxCopy()\n"); //dump(0); return copy(); } /********************************* * Does *not* do a deep copy. */ Expression *Expression::copy() { Expression *e; if (!size) { #ifdef DEBUG fprintf(stdmsg, "No expression copy for: %s\n", toChars()); printf("op = %d\n", op); dump(0); #endif assert(0); } e = (Expression *)mem.malloc(size); //printf("Expression::copy(op = %d) e = %p\n", op, e); return (Expression *)memcpy(e, this, size); } /************************** * Semantically analyze Expression. * Determine types, fold constants, etc. */ Expression *Expression::semantic(Scope *sc) { #if LOGSEMANTIC printf("Expression::semantic() %s\n", toChars()); #endif if (type) type = type->semantic(loc, sc); else type = Type::tvoid; return this; } /********************************** * Try to run semantic routines. * If they fail, return NULL. */ Expression *Expression::trySemantic(Scope *sc) { //printf("+trySemantic(%s)\n", toChars()); unsigned errors = global.startGagging(); Expression *e = semantic(sc); if (global.endGagging(errors)) { e = NULL; } //printf("-trySemantic(%s)\n", toChars()); return e; } void Expression::print() { fprintf(stdmsg, "%s\n", toChars()); fflush(stdmsg); } char *Expression::toChars() { OutBuffer *buf; HdrGenState hgs; memset(&hgs, 0, sizeof(hgs)); buf = new OutBuffer(); toCBuffer(buf, &hgs); return buf->toChars(); } void Expression::error(const char *format, ...) { if (type != Type::terror) { va_list ap; va_start(ap, format); ::verror(loc, format, ap); va_end( ap ); } } void Expression::warning(const char *format, ...) { if (type != Type::terror) { va_list ap; va_start(ap, format); ::vwarning(loc, format, ap); va_end( ap ); } } int Expression::rvalue() { if (type && type->toBasetype()->ty == Tvoid) { error("expression %s is void and has no value", toChars()); #if 0 dump(0); halt(); #endif if (!global.gag) type = Type::terror; return 0; } return 1; } Expression *Expression::combine(Expression *e1, Expression *e2) { if (e1) { if (e2) { e1 = new CommaExp(e1->loc, e1, e2); e1->type = e2->type; } } else e1 = e2; return e1; } dinteger_t Expression::toInteger() { //printf("Expression %s\n", Token::toChars(op)); error("Integer constant expression expected instead of %s", toChars()); return 0; } uinteger_t Expression::toUInteger() { //printf("Expression %s\n", Token::toChars(op)); return (uinteger_t)toInteger(); } real_t Expression::toReal() { error("Floating point constant expression expected instead of %s", toChars()); return 0; } real_t Expression::toImaginary() { error("Floating point constant expression expected instead of %s", toChars()); return 0; } complex_t Expression::toComplex() { error("Floating point constant expression expected instead of %s", toChars()); #ifdef IN_GCC return complex_t(real_t(0)); // %% nicer #else return 0; #endif } StringExp *Expression::toString() { return NULL; } void Expression::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(Token::toChars(op)); } void Expression::toMangleBuffer(OutBuffer *buf) { error("expression %s is not a valid template value argument", toChars()); #ifdef DEBUG dump(0); #endif } /*************************************** * Return !=0 if expression is an lvalue. */ #if DMDV2 int Expression::isLvalue() { return 0; } #endif /******************************* * Give error if we're not an lvalue. * If we can, convert expression to be an lvalue. */ Expression *Expression::toLvalue(Scope *sc, Expression *e) { if (!e) e = this; else if (!loc.filename) loc = e->loc; error("%s is not an lvalue", e->toChars()); return new ErrorExp(); } Expression *Expression::modifiableLvalue(Scope *sc, Expression *e) { //printf("Expression::modifiableLvalue() %s, type = %s\n", toChars(), type->toChars()); // See if this expression is a modifiable lvalue (i.e. not const) #if DMDV2 if (type && (!type->isMutable() || !type->isAssignable())) { error("%s is not mutable", e->toChars()); return new ErrorExp(); } #endif return toLvalue(sc, e); } /************************************ * Detect cases where pointers to the stack can 'escape' the * lifetime of the stack frame. */ void Expression::checkEscape() { } void Expression::checkEscapeRef() { } void Expression::checkScalar() { if (!type->isscalar() && type->toBasetype() != Type::terror) error("'%s' is not a scalar, it is a %s", toChars(), type->toChars()); rvalue(); } void Expression::checkNoBool() { if (type->toBasetype()->ty == Tbool) error("operation not allowed on bool '%s'", toChars()); } Expression *Expression::checkIntegral() { if (!type->isintegral()) { if (type->toBasetype() != Type::terror) error("'%s' is not of integral type, it is a %s", toChars(), type->toChars()); return new ErrorExp(); } if (!rvalue()) return new ErrorExp(); return this; } Expression *Expression::checkArithmetic() { if (!type->isintegral() && !type->isfloating()) { if (type->toBasetype() != Type::terror) error("'%s' is not of arithmetic type, it is a %s", toChars(), type->toChars()); return new ErrorExp(); } if (!rvalue()) return new ErrorExp(); return this; } void Expression::checkDeprecated(Scope *sc, Dsymbol *s) { s->checkDeprecated(loc, sc); } #if DMDV2 /********************************************* * Calling function f. * Check the purity, i.e. if we're in a pure function * we can only call other pure functions. */ void Expression::checkPurity(Scope *sc, FuncDeclaration *f) { #if 1 if (sc->func) { /* Given: * void f() * { pure void g() * { * void h() * { * void i() { } * } * } * } * g() can call h() but not f() * i() can call h() and g() but not f() */ FuncDeclaration *outerfunc = sc->func; // Find the closest pure parent of the calling function while (outerfunc->toParent2() && !outerfunc->isPureBypassingInference() && outerfunc->toParent2()->isFuncDeclaration()) { outerfunc = outerfunc->toParent2()->isFuncDeclaration(); } // Find the closest pure parent of the called function FuncDeclaration *calledparent = f; while (calledparent->toParent2() && !calledparent->isPureBypassingInference() && calledparent->toParent2()->isFuncDeclaration() ) { calledparent = calledparent->toParent2()->isFuncDeclaration(); } // If the caller has a pure parent, then either the called func must be pure, // OR, they must have the same pure parent. if (/*outerfunc->isPure() &&*/ // comment out because we deduce purity now !sc->intypeof && !(sc->flags & SCOPEdebug) && !(f->isPure() || (calledparent == outerfunc))) { if (outerfunc->setImpure()) error("pure function '%s' cannot call impure function '%s'", outerfunc->toChars(), f->toChars()); } } #else if (sc->func && sc->func->isPure() && !sc->intypeof && !f->isPure()) error("pure function '%s' cannot call impure function '%s'", sc->func->toChars(), f->toChars()); #endif } /******************************************* * Accessing variable v. * Check for purity and safety violations. * If ethis is not NULL, then ethis is the 'this' pointer as in ethis.v */ void Expression::checkPurity(Scope *sc, VarDeclaration *v, Expression *ethis) { /* Look for purity and safety violations when accessing variable v * from current function. */ if (sc->func && !sc->intypeof && // allow violations inside typeof(expression) !(sc->flags & SCOPEdebug) && // allow violations inside debug conditionals v->ident != Id::ctfe && // magic variable never violates pure and safe !v->isImmutable() && // always safe and pure to access immutables... !(v->isConst() && v->isDataseg() && !v->type->hasPointers()) && // const global value types are immutable !(v->storage_class & STCmanifest) // ...or manifest constants ) { if (v->isDataseg()) { /* Accessing global mutable state. * Therefore, this function and all its immediately enclosing * functions must be pure. */ bool msg = FALSE; for (Dsymbol *s = sc->func; s; s = s->toParent2()) { FuncDeclaration *ff = s->isFuncDeclaration(); if (!ff) break; if (ff->setImpure() && !msg) { error("pure function '%s' cannot access mutable static data '%s'", sc->func->toChars(), v->toChars()); msg = TRUE; // only need the innermost message } } } else { /* Given: * void f() * { int fx; * pure void g() * { int gx; * void h() * { int hx; * void i() { } * } * } * } * i() can modify hx and gx but not fx */ Dsymbol *vparent = v->toParent2(); for (Dsymbol *s = sc->func; s; s = s->toParent2()) { if (s == vparent) break; FuncDeclaration *ff = s->isFuncDeclaration(); if (!ff) break; if (ff->setImpure()) { error("pure nested function '%s' cannot access mutable data '%s'", ff->toChars(), v->toChars()); break; } } } /* Do not allow safe functions to access __gshared data */ if (v->storage_class & STCgshared) { if (sc->func->setUnsafe()) error("safe function '%s' cannot access __gshared data '%s'", sc->func->toChars(), v->toChars()); } } } void Expression::checkSafety(Scope *sc, FuncDeclaration *f) { if (sc->func && !sc->intypeof && !f->isSafe() && !f->isTrusted()) { if (sc->func->setUnsafe()) error("safe function '%s' cannot call system function '%s'", sc->func->toChars(), f->toChars()); } } #endif /***************************** * Check that expression can be tested for true or false. */ Expression *Expression::checkToBoolean(Scope *sc) { // Default is 'yes' - do nothing #ifdef DEBUG if (!type) dump(0); #endif // Structs can be converted to bool using opCast(bool)() Type *tb = type->toBasetype(); if (tb->ty == Tstruct) { AggregateDeclaration *ad = ((TypeStruct *)tb)->sym; /* Don't really need to check for opCast first, but by doing so we * get better error messages if it isn't there. */ Dsymbol *fd = search_function(ad, Id::cast); if (fd) { Expression *e = new CastExp(loc, this, Type::tbool); e = e->semantic(sc); return e; } // Forward to aliasthis. if (ad->aliasthis) { Expression *e = new DotIdExp(loc, this, ad->aliasthis->ident); e = e->semantic(sc); e = resolveProperties(sc, e); e = e->checkToBoolean(sc); return e; } } if (!type->checkBoolean()) { if (type->toBasetype() != Type::terror) error("expression %s of type %s does not have a boolean value", toChars(), type->toChars()); return new ErrorExp(); } return this; } /**************************** */ Expression *Expression::checkToPointer() { //printf("Expression::checkToPointer()\n"); Expression *e = this; #if !SARRAYVALUE // If C static array, convert to pointer Type *tb = type->toBasetype(); if (tb->ty == Tsarray) { TypeSArray *ts = (TypeSArray *)tb; if (ts->size(loc) == 0) e = new NullExp(loc); else e = new AddrExp(loc, this); e->type = ts->next->pointerTo(); } #endif return e; } /****************************** * Take address of expression. */ Expression *Expression::addressOf(Scope *sc) { Expression *e; Type *t = type; //printf("Expression::addressOf()\n"); e = toLvalue(sc, NULL); e = new AddrExp(loc, e); e->type = t->pointerTo(); return e; } /****************************** * If this is a reference, dereference it. */ Expression *Expression::deref() { //printf("Expression::deref()\n"); // type could be null if forward referencing an 'auto' variable if (type && type->ty == Treference) { Expression *e = new PtrExp(loc, this); e->type = ((TypeReference *)type)->next; return e; } return this; } /******************************** * Does this expression statically evaluate to a boolean TRUE or FALSE? */ int Expression::isBool(int result) { return FALSE; } /******************************** * Does this expression result in either a 1 or a 0? */ int Expression::isBit() { return FALSE; } /**************************************** * Resolve __LINE__ and __FILE__ to loc. */ Expression *Expression::resolveLoc(Loc loc, Scope *sc) { return this; } Expressions *Expression::arraySyntaxCopy(Expressions *exps) { Expressions *a = NULL; if (exps) { a = new Expressions(); a->setDim(exps->dim); for (size_t i = 0; i < a->dim; i++) { Expression *e = (*exps)[i]; if (e) e = e->syntaxCopy(); a->tdata()[i] = e; } } return a; } /*************************************************** * Recognize expressions of the form: * ((T v = init), v) * where v is a temp. * This is used in optimizing out unnecessary temporary generation. * Returns initializer expression of v if so, NULL if not. */ Expression *Expression::isTemp() { //printf("isTemp() %s\n", toChars()); if (op == TOKcomma) { CommaExp *ec = (CommaExp *)this; if (ec->e1->op == TOKdeclaration && ec->e2->op == TOKvar) { DeclarationExp *de = (DeclarationExp *)ec->e1; VarExp *ve = (VarExp *)ec->e2; if (ve->var == de->declaration && ve->var->storage_class & STCctfe) { VarDeclaration *v = ve->var->isVarDeclaration(); if (v && v->init) { ExpInitializer *ei = v->init->isExpInitializer(); if (ei) { Expression *e = ei->exp; if (e->op == TOKconstruct) { ConstructExp *ce = (ConstructExp *)e; if (ce->e1->op == TOKvar && ((VarExp *)ce->e1)->var == ve->var) e = ce->e2; } return e; } } } } } return NULL; } /************************************************ * Destructors are attached to VarDeclarations. * Hence, if expression returns a temp that needs a destructor, * make sure and create a VarDeclaration for that temp. */ Expression *Expression::addDtorHook(Scope *sc) { return this; } /******************************** IntegerExp **************************/ IntegerExp::IntegerExp(Loc loc, dinteger_t value, Type *type) : Expression(loc, TOKint64, sizeof(IntegerExp)) { //printf("IntegerExp(value = %lld, type = '%s')\n", value, type ? type->toChars() : ""); if (type && !type->isscalar()) { //printf("%s, loc = %d\n", toChars(), loc.linnum); if (type->ty != Terror) error("integral constant must be scalar type, not %s", type->toChars()); type = Type::terror; } this->type = type; this->value = value; } IntegerExp::IntegerExp(dinteger_t value) : Expression(0, TOKint64, sizeof(IntegerExp)) { this->type = Type::tint32; this->value = value; } int IntegerExp::equals(Object *o) { IntegerExp *ne; if (this == o || (((Expression *)o)->op == TOKint64 && ((ne = (IntegerExp *)o), type->toHeadMutable()->equals(ne->type->toHeadMutable())) && value == ne->value)) return 1; return 0; } char *IntegerExp::toChars() { #if 1 return Expression::toChars(); #else static char buffer[sizeof(value) * 3 + 1]; sprintf(buffer, "%jd", value); return buffer; #endif } dinteger_t IntegerExp::toInteger() { Type *t; t = type; while (t) { switch (t->ty) { case Tbool: value = (value != 0); break; case Tint8: value = (d_int8) value; break; case Tchar: case Tuns8: value = (d_uns8) value; break; case Tint16: value = (d_int16) value; break; case Twchar: case Tuns16: value = (d_uns16) value; break; case Tint32: value = (d_int32) value; break; case Tdchar: case Tuns32: value = (d_uns32) value; break; case Tint64: value = (d_int64) value; break; case Tuns64: value = (d_uns64) value; break; case Tpointer: if (PTRSIZE == 4) value = (d_uns32) value; else if (PTRSIZE == 8) value = (d_uns64) value; else assert(0); break; case Tenum: { TypeEnum *te = (TypeEnum *)t; t = te->sym->memtype; continue; } case Ttypedef: { TypeTypedef *tt = (TypeTypedef *)t; t = tt->sym->basetype; continue; } default: /* This can happen if errors, such as * the type is painted on like in fromConstInitializer(). */ if (!global.errors) { printf("e = %p, ty = %d\n", this, type->ty); type->print(); assert(0); } break; } break; } return value; } real_t IntegerExp::toReal() { Type *t; toInteger(); t = type->toBasetype(); if (t->ty == Tuns64) return (real_t)(d_uns64)value; else return (real_t)(d_int64)value; } real_t IntegerExp::toImaginary() { return (real_t) 0; } complex_t IntegerExp::toComplex() { return toReal(); } int IntegerExp::isBool(int result) { int r = toInteger() != 0; return result ? r : !r; } Expression *IntegerExp::semantic(Scope *sc) { if (!type) { // Determine what the type of this number is dinteger_t number = value; if (number & 0x8000000000000000LL) type = Type::tuns64; else if (number & 0xFFFFFFFF80000000LL) type = Type::tint64; else type = Type::tint32; } else { if (!type->deco) type = type->semantic(loc, sc); } return this; } Expression *IntegerExp::toLvalue(Scope *sc, Expression *e) { if (!e) e = this; else if (!loc.filename) loc = e->loc; e->error("constant %s is not an lvalue", e->toChars()); return new ErrorExp(); } void IntegerExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { dinteger_t v = toInteger(); if (type) { Type *t = type; L1: switch (t->ty) { case Tenum: { TypeEnum *te = (TypeEnum *)t; buf->printf("cast(%s)", te->sym->toChars()); t = te->sym->memtype; goto L1; } case Ttypedef: { TypeTypedef *tt = (TypeTypedef *)t; buf->printf("cast(%s)", tt->sym->toChars()); t = tt->sym->basetype; goto L1; } case Twchar: // BUG: need to cast(wchar) case Tdchar: // BUG: need to cast(dchar) if ((uinteger_t)v > 0xFF) { buf->printf("'\\U%08x'", (unsigned)v); break; } case Tchar: { unsigned o = buf->offset; if (v == '\'') buf->writestring("'\\''"); else if (isprint(v) && v != '\\') buf->printf("'%c'", (int)v); else buf->printf("'\\x%02x'", (int)v); if (hgs->ddoc) escapeDdocString(buf, o); break; } case Tint8: buf->writestring("cast(byte)"); goto L2; case Tint16: buf->writestring("cast(short)"); goto L2; case Tint32: L2: buf->printf("%d", (int)v); break; case Tuns8: buf->writestring("cast(ubyte)"); goto L3; case Tuns16: buf->writestring("cast(ushort)"); goto L3; case Tuns32: L3: buf->printf("%du", (unsigned)v); break; case Tint64: buf->printf("%jdL", v); break; case Tuns64: L4: buf->printf("%juLU", v); break; case Tbool: buf->writestring((char *)(v ? "true" : "false")); break; case Tpointer: buf->writestring("cast("); buf->writestring(t->toChars()); buf->writeByte(')'); if (PTRSIZE == 4) goto L3; else if (PTRSIZE == 8) goto L4; else assert(0); default: /* This can happen if errors, such as * the type is painted on like in fromConstInitializer(). */ if (!global.errors) { #ifdef DEBUG t->print(); #endif assert(0); } break; } } else if (v & 0x8000000000000000LL) buf->printf("0x%jx", v); else buf->printf("%jd", v); } void IntegerExp::toMangleBuffer(OutBuffer *buf) { if ((sinteger_t)value < 0) buf->printf("N%jd", -value); else { /* This is an awful hack to maintain backwards compatibility. * There really always should be an 'i' before a number, but * there wasn't in earlier implementations, so to maintain * backwards compatibility it is only done if necessary to disambiguate. * See bugzilla 3029 */ if (buf->offset > 0 && isdigit(buf->data[buf->offset - 1])) buf->writeByte('i'); buf->printf("%jd", value); } } /******************************** ErrorExp **************************/ /* Use this expression for error recovery. * It should behave as a 'sink' to prevent further cascaded error messages. */ ErrorExp::ErrorExp() : IntegerExp(0, 0, Type::terror) { op = TOKerror; } Expression *ErrorExp::toLvalue(Scope *sc, Expression *e) { return this; } void ErrorExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("__error"); } /******************************** RealExp **************************/ RealExp::RealExp(Loc loc, real_t value, Type *type) : Expression(loc, TOKfloat64, sizeof(RealExp)) { //printf("RealExp::RealExp(%Lg)\n", value); this->value = value; this->type = type; } char *RealExp::toChars() { char buffer[sizeof(value) * 3 + 8 + 1 + 1]; #ifdef IN_GCC value.format(buffer, sizeof(buffer)); if (type->isimaginary()) strcat(buffer, "i"); #else sprintf(buffer, type->isimaginary() ? "%Lgi" : "%Lg", value); #endif assert(strlen(buffer) < sizeof(buffer)); return mem.strdup(buffer); } dinteger_t RealExp::toInteger() { #ifdef IN_GCC return toReal().toInt(); #else return (sinteger_t) toReal(); #endif } uinteger_t RealExp::toUInteger() { #ifdef IN_GCC return (uinteger_t) toReal().toInt(); #else return (uinteger_t) toReal(); #endif } real_t RealExp::toReal() { return type->isreal() ? value : 0; } real_t RealExp::toImaginary() { return type->isreal() ? 0 : value; } complex_t RealExp::toComplex() { #ifdef __DMC__ return toReal() + toImaginary() * I; #else return complex_t(toReal(), toImaginary()); #endif } /******************************** * Test to see if two reals are the same. * Regard NaN's as equivalent. * Regard +0 and -0 as different. */ int RealEquals(real_t x1, real_t x2) { // return (Port::isNan(x1) && Port::isNan(x2)) || #if __APPLE__ return (__inline_isnan(x1) && __inline_isnan(x2)) || #else return // special case nans (isnan(x1) && isnan(x2)) || #endif // and zero, in order to distinguish +0 from -0 (x1 == 0 && x2 == 0 && 1./x1 == 1./x2) || // otherwise just compare (x1 != 0. && x1 == x2); } int RealExp::equals(Object *o) { RealExp *ne; if (this == o || (((Expression *)o)->op == TOKfloat64 && ((ne = (RealExp *)o), type->toHeadMutable()->equals(ne->type->toHeadMutable())) && RealEquals(value, ne->value) ) ) return 1; return 0; } Expression *RealExp::semantic(Scope *sc) { if (!type) type = Type::tfloat64; else type = type->semantic(loc, sc); return this; } int RealExp::isBool(int result) { #ifdef IN_GCC return result ? (! value.isZero()) : (value.isZero()); #else return result ? (value != 0) : (value == 0); #endif } void floatToBuffer(OutBuffer *buf, Type *type, real_t value) { /* In order to get an exact representation, try converting it * to decimal then back again. If it matches, use it. * If it doesn't, fall back to hex, which is * always exact. */ char buffer[25]; sprintf(buffer, "%Lg", value); assert(strlen(buffer) < sizeof(buffer)); #if _WIN32 && __DMC__ char *save = __locale_decpoint; __locale_decpoint = "."; real_t r = strtold(buffer, NULL); __locale_decpoint = save; #else real_t r = strtold(buffer, NULL); #endif if (r == value) // if exact duplication buf->writestring(buffer); else { #ifdef __HAIKU__ // broken printf workaround char buffer2[25]; char *ptr = (char *)&value; for(int i = 0; i < sizeof(value); i++) snprintf(buffer2, sizeof(char), "%x", ptr[i]); buf->writestring(buffer2); #else buf->printf("%La", value); // ensure exact duplication #endif } if (type) { Type *t = type->toBasetype(); switch (t->ty) { case Tfloat32: case Timaginary32: case Tcomplex32: buf->writeByte('F'); break; case Tfloat80: case Timaginary80: case Tcomplex80: buf->writeByte('L'); break; default: break; } if (t->isimaginary()) buf->writeByte('i'); } } void RealExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { floatToBuffer(buf, type, value); } void realToMangleBuffer(OutBuffer *buf, real_t value) { /* Rely on %A to get portable mangling. * Must munge result to get only identifier characters. * * Possible values from %A => mangled result * NAN => NAN * -INF => NINF * INF => INF * -0X1.1BC18BA997B95P+79 => N11BC18BA997B95P79 * 0X1.9P+2 => 19P2 */ // if (Port::isNan(value)) #if __APPLE__ if (__inline_isnan(value)) #else if (isnan(value)) #endif buf->writestring("NAN"); // no -NAN bugs else { char buffer[32]; int n = sprintf(buffer, "%LA", value); assert(n > 0 && n < sizeof(buffer)); for (int i = 0; i < n; i++) { char c = buffer[i]; switch (c) { case '-': buf->writeByte('N'); break; case '+': case 'X': case '.': break; case '0': if (i < 2) break; // skip leading 0X default: buf->writeByte(c); break; } } } } void RealExp::toMangleBuffer(OutBuffer *buf) { buf->writeByte('e'); realToMangleBuffer(buf, value); } /******************************** ComplexExp **************************/ ComplexExp::ComplexExp(Loc loc, complex_t value, Type *type) : Expression(loc, TOKcomplex80, sizeof(ComplexExp)) { this->value = value; this->type = type; //printf("ComplexExp::ComplexExp(%s)\n", toChars()); } char *ComplexExp::toChars() { char buffer[sizeof(value) * 3 + 8 + 1]; #ifdef IN_GCC char buf1[sizeof(value) * 3 + 8 + 1]; char buf2[sizeof(value) * 3 + 8 + 1]; creall(value).format(buf1, sizeof(buf1)); cimagl(value).format(buf2, sizeof(buf2)); sprintf(buffer, "(%s+%si)", buf1, buf2); #else sprintf(buffer, "(%Lg+%Lgi)", creall(value), cimagl(value)); assert(strlen(buffer) < sizeof(buffer)); #endif return mem.strdup(buffer); } dinteger_t ComplexExp::toInteger() { #ifdef IN_GCC return (sinteger_t) toReal().toInt(); #else return (sinteger_t) toReal(); #endif } uinteger_t ComplexExp::toUInteger() { #ifdef IN_GCC return (uinteger_t) toReal().toInt(); #else return (uinteger_t) toReal(); #endif } real_t ComplexExp::toReal() { return creall(value); } real_t ComplexExp::toImaginary() { return cimagl(value); } complex_t ComplexExp::toComplex() { return value; } int ComplexExp::equals(Object *o) { ComplexExp *ne; if (this == o || (((Expression *)o)->op == TOKcomplex80 && ((ne = (ComplexExp *)o), type->toHeadMutable()->equals(ne->type->toHeadMutable())) && RealEquals(creall(value), creall(ne->value)) && RealEquals(cimagl(value), cimagl(ne->value)) ) ) return 1; return 0; } Expression *ComplexExp::semantic(Scope *sc) { if (!type) type = Type::tcomplex80; else type = type->semantic(loc, sc); return this; } int ComplexExp::isBool(int result) { if (result) return (bool)(value); else return !value; } void ComplexExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { /* Print as: * (re+imi) */ #ifdef IN_GCC char buf1[sizeof(value) * 3 + 8 + 1]; char buf2[sizeof(value) * 3 + 8 + 1]; creall(value).format(buf1, sizeof(buf1)); cimagl(value).format(buf2, sizeof(buf2)); buf->printf("(%s+%si)", buf1, buf2); #else buf->writeByte('('); floatToBuffer(buf, type, creall(value)); buf->writeByte('+'); floatToBuffer(buf, type, cimagl(value)); buf->writestring("i)"); #endif } void ComplexExp::toMangleBuffer(OutBuffer *buf) { buf->writeByte('c'); real_t r = toReal(); realToMangleBuffer(buf, r); buf->writeByte('c'); // separate the two r = toImaginary(); realToMangleBuffer(buf, r); } /******************************** IdentifierExp **************************/ IdentifierExp::IdentifierExp(Loc loc, Identifier *ident) : Expression(loc, TOKidentifier, sizeof(IdentifierExp)) { this->ident = ident; } Expression *IdentifierExp::semantic(Scope *sc) { Dsymbol *s; Dsymbol *scopesym; #if LOGSEMANTIC printf("IdentifierExp::semantic('%s')\n", ident->toChars()); #endif s = sc->search(loc, ident, &scopesym); if (s) { Expression *e; WithScopeSymbol *withsym; /* See if the symbol was a member of an enclosing 'with' */ withsym = scopesym->isWithScopeSymbol(); if (withsym) { #if DMDV2 /* Disallow shadowing */ // First find the scope of the with Scope *scwith = sc; while (scwith->scopesym != scopesym) { scwith = scwith->enclosing; assert(scwith); } // Look at enclosing scopes for symbols with the same name, // in the same function for (Scope *scx = scwith; scx && scx->func == scwith->func; scx = scx->enclosing) { Dsymbol *s2; if (scx->scopesym && scx->scopesym->symtab && (s2 = scx->scopesym->symtab->lookup(s->ident)) != NULL && s != s2) { error("with symbol %s is shadowing local symbol %s", s->toPrettyChars(), s2->toPrettyChars()); return new ErrorExp(); } } #endif s = s->toAlias(); // Same as wthis.ident if (s->needThis() || s->isTemplateDeclaration()) { e = new VarExp(loc, withsym->withstate->wthis); e = new DotIdExp(loc, e, ident); } else { Type *t = withsym->withstate->wthis->type; if (t->ty == Tpointer) t = ((TypePointer *)t)->next; e = typeDotIdExp(loc, t, ident); } } else { /* If f is really a function template, * then replace f with the function template declaration. */ FuncDeclaration *f = s->isFuncDeclaration(); if (f) { TemplateDeclaration *tempdecl = getFuncTemplateDecl(f); if (tempdecl) { if (tempdecl->overroot) // if not start of overloaded list of TemplateDeclaration's tempdecl = tempdecl->overroot; // then get the start e = new TemplateExp(loc, tempdecl); e = e->semantic(sc); return e; } } // Haven't done overload resolution yet, so pass 1 e = new DsymbolExp(loc, s, 1); } return e->semantic(sc); } #if DMDV2 if (hasThis(sc)) { AggregateDeclaration *ad = sc->getStructClassScope(); if (ad && ad->aliasthis) { Expression *e; e = new IdentifierExp(loc, Id::This); e = new DotIdExp(loc, e, ad->aliasthis->ident); e = new DotIdExp(loc, e, ident); e = e->trySemantic(sc); if (e) return e; } } if (ident == Id::ctfe) { // Create the magic __ctfe bool variable VarDeclaration *vd = new VarDeclaration(loc, Type::tbool, Id::ctfe, NULL); Expression *e = new VarExp(loc, vd); e = e->semantic(sc); return e; } #endif const char *n = importHint(ident->toChars()); if (n) error("'%s' is not defined, perhaps you need to import %s; ?", ident->toChars(), n); else { s = sc->search_correct(ident); if (s) error("undefined identifier %s, did you mean %s %s?", ident->toChars(), s->kind(), s->toChars()); else error("undefined identifier %s", ident->toChars()); } return new ErrorExp(); } char *IdentifierExp::toChars() { return ident->toChars(); } void IdentifierExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (hgs->hdrgen) buf->writestring(ident->toHChars2()); else buf->writestring(ident->toChars()); } #if DMDV2 int IdentifierExp::isLvalue() { return 1; } #endif Expression *IdentifierExp::toLvalue(Scope *sc, Expression *e) { #if 0 tym = tybasic(e1->ET->Tty); if (!(tyscalar(tym) || tym == TYstruct || tym == TYarray && e->Eoper == TOKaddr)) synerr(EM_lvalue); // lvalue expected #endif return this; } /******************************** DollarExp **************************/ DollarExp::DollarExp(Loc loc) : IdentifierExp(loc, Id::dollar) { } /******************************** DsymbolExp **************************/ DsymbolExp::DsymbolExp(Loc loc, Dsymbol *s, int hasOverloads) : Expression(loc, TOKdsymbol, sizeof(DsymbolExp)) { this->s = s; this->hasOverloads = hasOverloads; } Expression *DsymbolExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("DsymbolExp::semantic('%s')\n", s->toChars()); #endif Lagain: EnumMember *em; Expression *e; VarDeclaration *v; FuncDeclaration *f; FuncLiteralDeclaration *fld; OverloadSet *o; ClassDeclaration *cd; ClassDeclaration *thiscd = NULL; Import *imp; Package *pkg; Type *t; //printf("DsymbolExp:: %p '%s' is a symbol\n", this, toChars()); //printf("s = '%s', s->kind = '%s'\n", s->toChars(), s->kind()); if (type) return this; if (!s->isFuncDeclaration()) // functions are checked after overloading checkDeprecated(sc, s); Dsymbol *olds = s; s = s->toAlias(); //printf("s = '%s', s->kind = '%s', s->needThis() = %p\n", s->toChars(), s->kind(), s->needThis()); if (s != olds && !s->isFuncDeclaration()) checkDeprecated(sc, s); if (sc->func) thiscd = sc->func->parent->isClassDeclaration(); // BUG: This should happen after overload resolution for functions, not before if (s->needThis()) { if (hasThis(sc) #if DMDV2 && !s->isFuncDeclaration() #endif ) { // Supply an implicit 'this', as in // this.ident DotVarExp *de; de = new DotVarExp(loc, new ThisExp(loc), s->isDeclaration()); return de->semantic(sc); } } em = s->isEnumMember(); if (em) { e = em->value; e = e->semantic(sc); return e; } v = s->isVarDeclaration(); if (v) { //printf("Identifier '%s' is a variable, type '%s'\n", toChars(), v->type->toChars()); if (!type) { if ((!v->type || !v->type->deco) && v->scope) v->semantic(v->scope); type = v->type; if (!v->type) { error("forward reference of %s %s", v->kind(), v->toChars()); return new ErrorExp(); } } if ((v->storage_class & STCmanifest) && v->init) { e = v->init->toExpression(); if (!e) { error("cannot make expression out of initializer for %s", v->toChars()); return new ErrorExp(); } e = e->copy(); e->loc = loc; // for better error message e = e->semantic(sc); return e; } e = new VarExp(loc, v); e->type = type; e = e->semantic(sc); return e->deref(); } fld = s->isFuncLiteralDeclaration(); if (fld) { //printf("'%s' is a function literal\n", fld->toChars()); e = new FuncExp(loc, fld); return e->semantic(sc); } f = s->isFuncDeclaration(); if (f) { //printf("'%s' is a function\n", f->toChars()); if (!f->originalType && f->scope) // semantic not yet run f->semantic(f->scope); // if inferring return type, sematic3 needs to be run if (f->inferRetType && f->scope && f->type && !f->type->nextOf()) { TemplateInstance *spec = isSpeculativeFunction(f); int olderrs = global.errors; f->semantic3(f->scope); // Update the template instantiation with the number // of errors which occured. if (spec && global.errors != olderrs) spec->errors = global.errors - olderrs; } if (f->isUnitTestDeclaration()) { error("cannot call unittest function %s", toChars()); return new ErrorExp(); } if (!f->type->deco) { error("forward reference to %s", toChars()); return new ErrorExp(); } return new VarExp(loc, f, hasOverloads); } o = s->isOverloadSet(); if (o) { //printf("'%s' is an overload set\n", o->toChars()); return new OverExp(o); } cd = s->isClassDeclaration(); if (cd && thiscd && cd->isBaseOf(thiscd, NULL) && sc->func->needThis()) { // We need to add an implicit 'this' if cd is this class or a base class. DotTypeExp *dte; dte = new DotTypeExp(loc, new ThisExp(loc), s); return dte->semantic(sc); } imp = s->isImport(); if (imp) { if (!imp->pkg) { error("forward reference of import %s", imp->toChars()); return new ErrorExp(); } ScopeExp *ie = new ScopeExp(loc, imp->pkg); return ie->semantic(sc); } pkg = s->isPackage(); if (pkg) { ScopeExp *ie; ie = new ScopeExp(loc, pkg); return ie->semantic(sc); } Module *mod = s->isModule(); if (mod) { ScopeExp *ie; ie = new ScopeExp(loc, mod); return ie->semantic(sc); } t = s->getType(); if (t) { TypeExp *te = new TypeExp(loc, t); return te->semantic(sc); } TupleDeclaration *tup = s->isTupleDeclaration(); if (tup) { e = new TupleExp(loc, tup); e = e->semantic(sc); return e; } TemplateInstance *ti = s->isTemplateInstance(); if (ti && !global.errors) { if (!ti->semanticRun) ti->semantic(sc); s = ti->inst->toAlias(); if (!s->isTemplateInstance()) goto Lagain; e = new ScopeExp(loc, ti); e = e->semantic(sc); return e; } TemplateDeclaration *td = s->isTemplateDeclaration(); if (td) { Dsymbol *p = td->toParent2(); if (hasThis(sc) && p && p->isAggregateDeclaration()) e = new DotTemplateExp(loc, new ThisExp(loc), td); else e = new TemplateExp(loc, td); e = e->semantic(sc); return e; } error("%s '%s' is not a variable", s->kind(), s->toChars()); return new ErrorExp(); } char *DsymbolExp::toChars() { return s->toChars(); } void DsymbolExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(s->toChars()); } #if DMDV2 int DsymbolExp::isLvalue() { return 1; } #endif Expression *DsymbolExp::toLvalue(Scope *sc, Expression *e) { #if 0 tym = tybasic(e1->ET->Tty); if (!(tyscalar(tym) || tym == TYstruct || tym == TYarray && e->Eoper == TOKaddr)) synerr(EM_lvalue); // lvalue expected #endif return this; } /******************************** ThisExp **************************/ ThisExp::ThisExp(Loc loc) : Expression(loc, TOKthis, sizeof(ThisExp)) { //printf("ThisExp::ThisExp() loc = %d\n", loc.linnum); var = NULL; } Expression *ThisExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("ThisExp::semantic()\n"); #endif if (type && var) { //assert(global.errors || var); #if IN_LLVM var->isVarDeclaration()->checkNestedReference(sc, loc); #endif return this; } FuncDeclaration *fd = hasThis(sc); // fd is the uplevel function with the 'this' variable /* Special case for typeof(this) and typeof(super) since both * should work even if they are not inside a non-static member function */ if (!fd && sc->intypeof) { // Find enclosing struct or class for (Dsymbol *s = sc->getStructClassScope(); 1; s = s->parent) { if (!s) { error("%s is not in a class or struct scope", toChars()); goto Lerr; } ClassDeclaration *cd = s->isClassDeclaration(); if (cd) { type = cd->type; return this; } StructDeclaration *sd = s->isStructDeclaration(); if (sd) { #if STRUCTTHISREF type = sd->type; #else type = sd->type->pointerTo(); #endif return this; } } } if (!fd) goto Lerr; assert(fd->vthis); var = fd->vthis; assert(var->parent); if (!type) type = var->type; var->isVarDeclaration()->checkNestedReference(sc, loc); if (!sc->intypeof) sc->callSuper |= CSXthis; return this; Lerr: error("'this' is only defined in non-static member functions, not %s", sc->parent->toChars()); return new ErrorExp(); } int ThisExp::isBool(int result) { return result ? TRUE : FALSE; } void ThisExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("this"); } #if DMDV2 int ThisExp::isLvalue() { return 1; } #endif Expression *ThisExp::toLvalue(Scope *sc, Expression *e) { return this; } /******************************** SuperExp **************************/ SuperExp::SuperExp(Loc loc) : ThisExp(loc) { op = TOKsuper; } Expression *SuperExp::semantic(Scope *sc) { ClassDeclaration *cd; Dsymbol *s; #if LOGSEMANTIC printf("SuperExp::semantic('%s')\n", toChars()); #endif if (type) return this; FuncDeclaration *fd = hasThis(sc); /* Special case for typeof(this) and typeof(super) since both * should work even if they are not inside a non-static member function */ if (!fd && sc->intypeof) { // Find enclosing class for (Dsymbol *s = sc->getStructClassScope(); 1; s = s->parent) { if (!s) { error("%s is not in a class scope", toChars()); goto Lerr; } ClassDeclaration *cd = s->isClassDeclaration(); if (cd) { cd = cd->baseClass; if (!cd) { error("class %s has no 'super'", s->toChars()); goto Lerr; } type = cd->type; return this; } } } if (!fd) goto Lerr; assert(fd->vthis); var = fd->vthis; assert(var->parent); s = fd->toParent(); while (s && s->isTemplateInstance()) s = s->toParent(); assert(s); cd = s->isClassDeclaration(); //printf("parent is %s %s\n", fd->toParent()->kind(), fd->toParent()->toChars()); if (!cd) goto Lerr; if (!cd->baseClass) { error("no base class for %s", cd->toChars()); type = fd->vthis->type; } else { type = cd->baseClass->type; type = type->castMod(var->type->mod); } var->isVarDeclaration()->checkNestedReference(sc, loc); if (!sc->intypeof) sc->callSuper |= CSXsuper; return this; Lerr: error("'super' is only allowed in non-static class member functions"); return new ErrorExp(); } void SuperExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("super"); } /******************************** NullExp **************************/ NullExp::NullExp(Loc loc, Type *type) : Expression(loc, TOKnull, sizeof(NullExp)) { committed = 0; this->type = type; } int NullExp::equals(Object *o) { if (o && o->dyncast() == DYNCAST_EXPRESSION) { Expression *e = (Expression *)o; if (e->op == TOKnull) return TRUE; } return FALSE; } Expression *NullExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("NullExp::semantic('%s')\n", toChars()); #endif // NULL is the same as (void *)0 if (!type) type = Type::tnull; return this; } int NullExp::isBool(int result) { return result ? FALSE : TRUE; } StringExp *NullExp::toString() { if (implicitConvTo(Type::tstring)) { StringExp *se = new StringExp(loc, (char*)mem.calloc(1, 1), 0); se->type = Type::tstring; return se; } return NULL; } void NullExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("null"); } void NullExp::toMangleBuffer(OutBuffer *buf) { buf->writeByte('n'); } /******************************** StringExp **************************/ StringExp::StringExp(Loc loc, char *string) : Expression(loc, TOKstring, sizeof(StringExp)) { this->string = string; this->len = strlen(string); this->sz = 1; this->committed = 0; this->postfix = 0; this->ownedByCtfe = false; } StringExp::StringExp(Loc loc, void *string, size_t len) : Expression(loc, TOKstring, sizeof(StringExp)) { this->string = string; this->len = len; this->sz = 1; this->committed = 0; this->postfix = 0; this->ownedByCtfe = false; } StringExp::StringExp(Loc loc, void *string, size_t len, unsigned char postfix) : Expression(loc, TOKstring, sizeof(StringExp)) { this->string = string; this->len = len; this->sz = 1; this->committed = 0; this->postfix = postfix; this->ownedByCtfe = false; } #if 0 Expression *StringExp::syntaxCopy() { printf("StringExp::syntaxCopy() %s\n", toChars()); return copy(); } #endif int StringExp::equals(Object *o) { //printf("StringExp::equals('%s') %s\n", o->toChars(), toChars()); if (o && o->dyncast() == DYNCAST_EXPRESSION) { Expression *e = (Expression *)o; if (e->op == TOKstring) { return compare(o) == 0; } } return FALSE; } char *StringExp::toChars() { OutBuffer buf; HdrGenState hgs; char *p; memset(&hgs, 0, sizeof(hgs)); toCBuffer(&buf, &hgs); buf.writeByte(0); p = (char *)buf.data; buf.data = NULL; return p; } Expression *StringExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("StringExp::semantic() %s\n", toChars()); #endif if (!type) { OutBuffer buffer; size_t newlen = 0; const char *p; size_t u; unsigned c; switch (postfix) { case 'd': for (u = 0; u < len;) { p = utf_decodeChar((unsigned char *)string, len, &u, &c); if (p) { error("%s", p); return new ErrorExp(); } else { buffer.write4(c); newlen++; } } buffer.write4(0); string = buffer.extractData(); len = newlen; sz = 4; //type = new TypeSArray(Type::tdchar, new IntegerExp(loc, len, Type::tindex)); type = new TypeDArray(Type::tdchar->invariantOf()); committed = 1; break; case 'w': for (u = 0; u < len;) { p = utf_decodeChar((unsigned char *)string, len, &u, &c); if (p) { error("%s", p); return new ErrorExp(); } else { buffer.writeUTF16(c); newlen++; if (c >= 0x10000) newlen++; } } buffer.writeUTF16(0); string = buffer.extractData(); len = newlen; sz = 2; //type = new TypeSArray(Type::twchar, new IntegerExp(loc, len, Type::tindex)); type = new TypeDArray(Type::twchar->invariantOf()); committed = 1; break; case 'c': committed = 1; default: //type = new TypeSArray(Type::tchar, new IntegerExp(loc, len, Type::tindex)); type = new TypeDArray(Type::tchar->invariantOf()); break; } type = type->semantic(loc, sc); //type = type->invariantOf(); //printf("type = %s\n", type->toChars()); } return this; } /********************************** * Return length of string. */ size_t StringExp::length() { size_t result = 0; dchar_t c; const char *p; switch (sz) { case 1: for (size_t u = 0; u < len;) { p = utf_decodeChar((unsigned char *)string, len, &u, &c); if (p) { error("%s", p); return 0; } else result++; } break; case 2: for (size_t u = 0; u < len;) { p = utf_decodeWchar((unsigned short *)string, len, &u, &c); if (p) { error("%s", p); return 0; } else result++; } break; case 4: result = len; break; default: assert(0); } return result; } StringExp *StringExp::toString() { return this; } /**************************************** * Convert string to char[]. */ StringExp *StringExp::toUTF8(Scope *sc) { if (sz != 1) { // Convert to UTF-8 string committed = 0; Expression *e = castTo(sc, Type::tchar->arrayOf()); e = e->optimize(WANTvalue); assert(e->op == TOKstring); StringExp *se = (StringExp *)e; assert(se->sz == 1); return se; } return this; } int StringExp::compare(Object *obj) { //printf("StringExp::compare()\n"); // Used to sort case statement expressions so we can do an efficient lookup StringExp *se2 = (StringExp *)(obj); // This is a kludge so isExpression() in template.c will return 5 // for StringExp's. if (!se2) return 5; assert(se2->op == TOKstring); int len1 = len; int len2 = se2->len; //printf("sz = %d, len1 = %d, len2 = %d\n", sz, len1, len2); if (len1 == len2) { switch (sz) { case 1: return memcmp((char *)string, (char *)se2->string, len1); case 2: { unsigned u; d_wchar *s1 = (d_wchar *)string; d_wchar *s2 = (d_wchar *)se2->string; for (u = 0; u < len; u++) { if (s1[u] != s2[u]) return s1[u] - s2[u]; } } case 4: { unsigned u; d_dchar *s1 = (d_dchar *)string; d_dchar *s2 = (d_dchar *)se2->string; for (u = 0; u < len; u++) { if (s1[u] != s2[u]) return s1[u] - s2[u]; } } break; default: assert(0); } } return len1 - len2; } int StringExp::isBool(int result) { return result ? TRUE : FALSE; } #if DMDV2 int StringExp::isLvalue() { /* string literal is rvalue in default, but * conversion to reference of static array is only allowed. */ return 0; } #endif Expression *StringExp::toLvalue(Scope *sc, Expression *e) { //printf("StringExp::toLvalue(%s)\n", toChars()); return this; } Expression *StringExp::modifiableLvalue(Scope *sc, Expression *e) { error("Cannot modify '%s'", toChars()); return new ErrorExp(); } unsigned StringExp::charAt(size_t i) { unsigned value; switch (sz) { case 1: value = ((unsigned char *)string)[i]; break; case 2: value = ((unsigned short *)string)[i]; break; case 4: value = ((unsigned int *)string)[i]; break; default: assert(0); break; } return value; } void StringExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writeByte('"'); unsigned o = buf->offset; for (size_t i = 0; i < len; i++) { unsigned c = charAt(i); switch (c) { case '"': case '\\': if (!hgs->console) buf->writeByte('\\'); default: if (c <= 0xFF) { if (c <= 0x7F && (isprint(c) || hgs->console)) buf->writeByte(c); else buf->printf("\\x%02x", c); } else if (c <= 0xFFFF) buf->printf("\\x%02x\\x%02x", c & 0xFF, c >> 8); else buf->printf("\\x%02x\\x%02x\\x%02x\\x%02x", c & 0xFF, (c >> 8) & 0xFF, (c >> 16) & 0xFF, c >> 24); break; } } if (hgs->ddoc) escapeDdocString(buf, o); buf->writeByte('"'); if (postfix) buf->writeByte(postfix); } void StringExp::toMangleBuffer(OutBuffer *buf) { char m; OutBuffer tmp; const char *p; unsigned c; size_t u; unsigned char *q; unsigned qlen; /* Write string in UTF-8 format */ switch (sz) { case 1: m = 'a'; q = (unsigned char *)string; qlen = len; break; case 2: m = 'w'; for (u = 0; u < len; ) { p = utf_decodeWchar((unsigned short *)string, len, &u, &c); if (p) error("%s", p); else tmp.writeUTF8(c); } q = tmp.data; qlen = tmp.offset; break; case 4: m = 'd'; for (u = 0; u < len; u++) { c = ((unsigned *)string)[u]; if (!utf_isValidDchar(c)) error("invalid UCS-32 char \\U%08x", c); else tmp.writeUTF8(c); } q = tmp.data; qlen = tmp.offset; break; default: assert(0); } buf->reserve(1 + 11 + 2 * qlen); buf->writeByte(m); buf->printf("%d_", qlen); // nbytes <= 11 for (unsigned char *p = buf->data + buf->offset, *pend = p + 2 * qlen; p < pend; p += 2, ++q) { unsigned char hi = *q >> 4 & 0xF; p[0] = (hi < 10 ? hi + '0' : hi - 10 + 'a'); unsigned char lo = *q & 0xF; p[1] = (lo < 10 ? lo + '0' : lo - 10 + 'a'); } buf->offset += 2 * qlen; } /************************ ArrayLiteralExp ************************************/ // [ e1, e2, e3, ... ] ArrayLiteralExp::ArrayLiteralExp(Loc loc, Expressions *elements) : Expression(loc, TOKarrayliteral, sizeof(ArrayLiteralExp)) { this->elements = elements; this->ownedByCtfe = false; } ArrayLiteralExp::ArrayLiteralExp(Loc loc, Expression *e) : Expression(loc, TOKarrayliteral, sizeof(ArrayLiteralExp)) { elements = new Expressions; elements->push(e); } Expression *ArrayLiteralExp::syntaxCopy() { return new ArrayLiteralExp(loc, arraySyntaxCopy(elements)); } Expression *ArrayLiteralExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("ArrayLiteralExp::semantic('%s')\n", toChars()); #endif if (type) return this; /* Perhaps an empty array literal [ ] should be rewritten as null? */ arrayExpressionSemantic(elements, sc); // run semantic() on each element expandTuples(elements); Type *t0; elements = arrayExpressionToCommonType(sc, elements, &t0); type = t0->arrayOf(); //type = new TypeSArray(t0, new IntegerExp(elements->dim)); type = type->semantic(loc, sc); /* Disallow array literals of type void being used. */ if (elements->dim > 0 && t0->ty == Tvoid) { error("%s of type %s has no value", toChars(), type->toChars()); return new ErrorExp(); } return this; } int ArrayLiteralExp::isBool(int result) { size_t dim = elements ? elements->dim : 0; return result ? (dim != 0) : (dim == 0); } StringExp *ArrayLiteralExp::toString() { TY telem = type->nextOf()->toBasetype()->ty; if (telem == Tchar || telem == Twchar || telem == Tdchar || (telem == Tvoid && (!elements || elements->dim == 0))) { OutBuffer buf; if (elements) for (int i = 0; i < elements->dim; ++i) { Expression *ch = elements->tdata()[i]; if (ch->op != TOKint64) return NULL; buf.writedchar(ch->toInteger()); } buf.writebyte(0); char prefix = 'c'; if (telem == Twchar) prefix = 'w'; else if (telem == Tdchar) prefix = 'd'; StringExp *se = new StringExp(loc, buf.extractData(), buf.size - 1, prefix); se->type = type; return se; } return NULL; } void ArrayLiteralExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writeByte('['); argsToCBuffer(buf, elements, hgs); buf->writeByte(']'); } void ArrayLiteralExp::toMangleBuffer(OutBuffer *buf) { size_t dim = elements ? elements->dim : 0; buf->printf("A%zu", dim); for (size_t i = 0; i < dim; i++) { Expression *e = elements->tdata()[i]; e->toMangleBuffer(buf); } } /************************ AssocArrayLiteralExp ************************************/ // [ key0 : value0, key1 : value1, ... ] AssocArrayLiteralExp::AssocArrayLiteralExp(Loc loc, Expressions *keys, Expressions *values) : Expression(loc, TOKassocarrayliteral, sizeof(AssocArrayLiteralExp)) { assert(keys->dim == values->dim); this->keys = keys; this->values = values; this->ownedByCtfe = false; } Expression *AssocArrayLiteralExp::syntaxCopy() { return new AssocArrayLiteralExp(loc, arraySyntaxCopy(keys), arraySyntaxCopy(values)); } Expression *AssocArrayLiteralExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("AssocArrayLiteralExp::semantic('%s')\n", toChars()); #endif if (type) return this; // Run semantic() on each element arrayExpressionSemantic(keys, sc); arrayExpressionSemantic(values, sc); expandTuples(keys); expandTuples(values); if (keys->dim != values->dim) { error("number of keys is %u, must match number of values %u", keys->dim, values->dim); return new ErrorExp(); } Type *tkey = NULL; Type *tvalue = NULL; keys = arrayExpressionToCommonType(sc, keys, &tkey); values = arrayExpressionToCommonType(sc, values, &tvalue); type = new TypeAArray(tvalue, tkey); type = type->semantic(loc, sc); return this; } int AssocArrayLiteralExp::isBool(int result) { size_t dim = keys->dim; return result ? (dim != 0) : (dim == 0); } void AssocArrayLiteralExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writeByte('['); for (size_t i = 0; i < keys->dim; i++) { Expression *key = keys->tdata()[i]; Expression *value = values->tdata()[i]; if (i) buf->writeByte(','); expToCBuffer(buf, hgs, key, PREC_assign); buf->writeByte(':'); expToCBuffer(buf, hgs, value, PREC_assign); } buf->writeByte(']'); } void AssocArrayLiteralExp::toMangleBuffer(OutBuffer *buf) { size_t dim = keys->dim; buf->printf("A%zu", dim); for (size_t i = 0; i < dim; i++) { Expression *key = keys->tdata()[i]; Expression *value = values->tdata()[i]; key->toMangleBuffer(buf); value->toMangleBuffer(buf); } } /************************ StructLiteralExp ************************************/ // sd( e1, e2, e3, ... ) StructLiteralExp::StructLiteralExp(Loc loc, StructDeclaration *sd, Expressions *elements, Type *stype) : Expression(loc, TOKstructliteral, sizeof(StructLiteralExp)) { this->sd = sd; this->elements = elements; this->stype = stype; #if IN_DMD this->sym = NULL; #endif this->soffset = 0; this->fillHoles = 1; this->ownedByCtfe = false; #if IN_LLVM constType = NULL; #endif } Expression *StructLiteralExp::syntaxCopy() { return new StructLiteralExp(loc, sd, arraySyntaxCopy(elements), stype); } Expression *StructLiteralExp::semantic(Scope *sc) { Expression *e; size_t nfields = sd->fields.dim - sd->isnested; #if LOGSEMANTIC printf("StructLiteralExp::semantic('%s')\n", toChars()); #endif if (type) return this; elements = arrayExpressionSemantic(elements, sc); // run semantic() on each element expandTuples(elements); size_t offset = 0; for (size_t i = 0; i < elements->dim; i++) { e = elements->tdata()[i]; if (!e) continue; e = resolveProperties(sc, e); if (i >= nfields) { error("more initializers than fields of %s", sd->toChars()); return new ErrorExp(); } Dsymbol *s = sd->fields.tdata()[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v); if (v->offset < offset) { error("overlapping initialization for %s", v->toChars()); return new ErrorExp(); } offset = v->offset + v->type->size(); Type *telem = v->type; if (stype) telem = telem->addMod(stype->mod); while (!e->implicitConvTo(telem) && telem->toBasetype()->ty == Tsarray) { /* Static array initialization, as in: * T[3][5] = e; */ telem = telem->toBasetype()->nextOf(); } if (e->op == TOKfunction) { e = ((FuncExp *)e)->inferType(sc, telem); if (!e) { error("cannot infer function literal type from %s", telem->toChars()); e = new ErrorExp(); } } e = e->implicitCastTo(sc, telem); elements->tdata()[i] = e; } /* Fill out remainder of elements[] with default initializers for fields[] */ for (size_t i = elements->dim; i < nfields; i++) { Dsymbol *s = sd->fields.tdata()[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v); assert(!v->isThisDeclaration()); if (v->offset < offset) { e = NULL; sd->hasUnions = 1; } else { if (v->init) { if (v->init->isVoidInitializer()) e = NULL; else { e = v->init->toExpression(); if (!e) { error("cannot make expression out of initializer for %s", v->toChars()); return new ErrorExp(); } else if (v->scope) { // Do deferred semantic analysis Initializer *i2 = v->init->syntaxCopy(); i2 = i2->semantic(v->scope, v->type, WANTinterpret); e = i2->toExpression(); // remove v->scope (see bug 3426) // but not if gagged, for we might be called again. if (!global.gag) v->scope = NULL; } } } else e = v->type->defaultInitLiteral(loc); offset = v->offset + v->type->size(); } elements->push(e); } type = stype ? stype : sd->type; /* If struct requires a destructor, rewrite as: * (S tmp = S()),tmp * so that the destructor can be hung on tmp. */ if (sd->dtor && sc->func) { Identifier *idtmp = Lexer::uniqueId("__sl"); VarDeclaration *tmp = new VarDeclaration(loc, type, idtmp, new ExpInitializer(0, this)); tmp->storage_class |= STCctfe; Expression *ae = new DeclarationExp(loc, tmp); Expression *e = new CommaExp(loc, ae, new VarExp(loc, tmp)); e = e->semantic(sc); return e; } return this; } /************************************** * Gets expression at offset of type. * Returns NULL if not found. */ Expression *StructLiteralExp::getField(Type *type, unsigned offset) { //printf("StructLiteralExp::getField(this = %s, type = %s, offset = %u)\n", // /*toChars()*/"", type->toChars(), offset); Expression *e = NULL; int i = getFieldIndex(type, offset); if (i != -1) { //printf("\ti = %d\n", i); assert(i < elements->dim); e = elements->tdata()[i]; if (e) { //printf("e = %s, e->type = %s\n", e->toChars(), e->type->toChars()); /* If type is a static array, and e is an initializer for that array, * then the field initializer should be an array literal of e. */ if (e->type->castMod(0) != type->castMod(0) && type->ty == Tsarray) { TypeSArray *tsa = (TypeSArray *)type; uinteger_t length = tsa->dim->toInteger(); Expressions *z = new Expressions; z->setDim(length); for (int q = 0; q < length; ++q) z->tdata()[q] = e->copy(); e = new ArrayLiteralExp(loc, z); e->type = type; } else { e = e->copy(); e->type = type; } } } return e; } /************************************ * Get index of field. * Returns -1 if not found. */ int StructLiteralExp::getFieldIndex(Type *type, unsigned offset) { /* Find which field offset is by looking at the field offsets */ if (elements->dim) { for (size_t i = 0; i < sd->fields.dim; i++) { Dsymbol *s = sd->fields.tdata()[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v); if (offset == v->offset && type->size() == v->type->size()) { Expression *e = elements->tdata()[i]; if (e) { return i; } break; } } } return -1; } #if DMDV2 int StructLiteralExp::isLvalue() { return 1; } #endif Expression *StructLiteralExp::toLvalue(Scope *sc, Expression *e) { return this; } void StructLiteralExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(sd->toChars()); buf->writeByte('('); argsToCBuffer(buf, elements, hgs); buf->writeByte(')'); } void StructLiteralExp::toMangleBuffer(OutBuffer *buf) { size_t dim = elements ? elements->dim : 0; buf->printf("S%zu", dim); for (size_t i = 0; i < dim; i++) { Expression *e = elements->tdata()[i]; if (e) e->toMangleBuffer(buf); else buf->writeByte('v'); // 'v' for void } } /************************ TypeDotIdExp ************************************/ /* Things like: * int.size * foo.size * (foo).size * cast(foo).size */ Expression *typeDotIdExp(Loc loc, Type *type, Identifier *ident) { return new DotIdExp(loc, new TypeExp(loc, type), ident); } /************************************************************/ // Mainly just a placeholder TypeExp::TypeExp(Loc loc, Type *type) : Expression(loc, TOKtype, sizeof(TypeExp)) { //printf("TypeExp::TypeExp(%s)\n", type->toChars()); this->type = type; } Expression *TypeExp::syntaxCopy() { //printf("TypeExp::syntaxCopy()\n"); return new TypeExp(loc, type->syntaxCopy()); } Expression *TypeExp::semantic(Scope *sc) { //printf("TypeExp::semantic(%s)\n", type->toChars()); type = type->semantic(loc, sc); return this; } int TypeExp::rvalue() { error("type %s has no value", toChars()); return 0; } void TypeExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { type->toCBuffer(buf, NULL, hgs); } /************************************************************/ // Mainly just a placeholder ScopeExp::ScopeExp(Loc loc, ScopeDsymbol *pkg) : Expression(loc, TOKimport, sizeof(ScopeExp)) { //printf("ScopeExp::ScopeExp(pkg = '%s')\n", pkg->toChars()); //static int count; if (++count == 38) *(char*)0=0; this->sds = pkg; } Expression *ScopeExp::syntaxCopy() { ScopeExp *se = new ScopeExp(loc, (ScopeDsymbol *)sds->syntaxCopy(NULL)); return se; } Expression *ScopeExp::semantic(Scope *sc) { TemplateInstance *ti; ScopeDsymbol *sds2; #if LOGSEMANTIC printf("+ScopeExp::semantic('%s')\n", toChars()); #endif Lagain: ti = sds->isTemplateInstance(); if (ti && !global.errors) { if (!ti->semanticRun) ti->semantic(sc); if (ti->inst) { Dsymbol *s = ti->inst->toAlias(); sds2 = s->isScopeDsymbol(); if (!sds2) { Expression *e; //printf("s = %s, '%s'\n", s->kind(), s->toChars()); if (ti->withsym) { // Same as wthis.s e = new VarExp(loc, ti->withsym->withstate->wthis); e = new DotVarExp(loc, e, s->isDeclaration()); } else e = new DsymbolExp(loc, s); e = e->semantic(sc); //printf("-1ScopeExp::semantic()\n"); return e; } if (sds2 != sds) { sds = sds2; goto Lagain; } //printf("sds = %s, '%s'\n", sds->kind(), sds->toChars()); } if (global.errors) return new ErrorExp(); } else { //printf("sds = %s, '%s'\n", sds->kind(), sds->toChars()); //printf("\tparent = '%s'\n", sds->parent->toChars()); sds->semantic(sc); AggregateDeclaration *ad = sds->isAggregateDeclaration(); if (ad) return (new TypeExp(loc, ad->type))->semantic(sc); } type = Type::tvoid; //printf("-2ScopeExp::semantic() %s\n", toChars()); return this; } void ScopeExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (sds->isTemplateInstance()) { sds->toCBuffer(buf, hgs); } else if (hgs != NULL && hgs->ddoc) { // fixes bug 6491 Module *module = sds->isModule(); if (module) buf->writestring(module->md->toChars()); else buf->writestring(sds->toChars()); } else { buf->writestring(sds->kind()); buf->writestring(" "); buf->writestring(sds->toChars()); } } /********************** TemplateExp **************************************/ // Mainly just a placeholder TemplateExp::TemplateExp(Loc loc, TemplateDeclaration *td) : Expression(loc, TOKtemplate, sizeof(TemplateExp)) { //printf("TemplateExp(): %s\n", td->toChars()); this->td = td; } void TemplateExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(td->toChars()); } int TemplateExp::rvalue() { error("template %s has no value", toChars()); return 0; } /********************** NewExp **************************************/ /* thisexp.new(newargs) newtype(arguments) */ NewExp::NewExp(Loc loc, Expression *thisexp, Expressions *newargs, Type *newtype, Expressions *arguments) : Expression(loc, TOKnew, sizeof(NewExp)) { this->thisexp = thisexp; this->newargs = newargs; this->newtype = newtype; this->arguments = arguments; member = NULL; allocator = NULL; onstack = 0; } Expression *NewExp::syntaxCopy() { return new NewExp(loc, thisexp ? thisexp->syntaxCopy() : NULL, arraySyntaxCopy(newargs), newtype->syntaxCopy(), arraySyntaxCopy(arguments)); } Expression *NewExp::semantic(Scope *sc) { Type *tb; ClassDeclaration *cdthis = NULL; #if LOGSEMANTIC printf("NewExp::semantic() %s\n", toChars()); if (thisexp) printf("\tthisexp = %s\n", thisexp->toChars()); printf("\tnewtype: %s\n", newtype->toChars()); #endif if (type) // if semantic() already run return this; Lagain: if (thisexp) { thisexp = thisexp->semantic(sc); cdthis = thisexp->type->isClassHandle(); if (cdthis) { sc = sc->push(cdthis); type = newtype->semantic(loc, sc); sc = sc->pop(); } else { error("'this' for nested class must be a class type, not %s", thisexp->type->toChars()); goto Lerr; } } else type = newtype->semantic(loc, sc); newtype = type; // in case type gets cast to something else tb = type->toBasetype(); //printf("tb: %s, deco = %s\n", tb->toChars(), tb->deco); arrayExpressionSemantic(newargs, sc); preFunctionParameters(loc, sc, newargs); arrayExpressionSemantic(arguments, sc); preFunctionParameters(loc, sc, arguments); if (thisexp && tb->ty != Tclass) { error("e.new is only for allocating nested classes, not %s", tb->toChars()); goto Lerr; } if (tb->ty == Tclass) { TypeClass *tc = (TypeClass *)(tb); ClassDeclaration *cd = tc->sym->isClassDeclaration(); if (cd->isInterfaceDeclaration()) { error("cannot create instance of interface %s", cd->toChars()); goto Lerr; } else if (cd->isAbstract()) { error("cannot create instance of abstract class %s", cd->toChars()); for (size_t i = 0; i < cd->vtbl.dim; i++) { FuncDeclaration *fd = cd->vtbl.tdata()[i]->isFuncDeclaration(); if (fd && fd->isAbstract()) error("function %s is abstract", fd->toChars()); } goto Lerr; } if (cd->noDefaultCtor && (!arguments || !arguments->dim)) { error("default construction is disabled for type %s", cd->toChars()); goto Lerr; } checkDeprecated(sc, cd); if (cd->isNested()) { /* We need a 'this' pointer for the nested class. * Ensure we have the right one. */ Dsymbol *s = cd->toParent2(); ClassDeclaration *cdn = s->isClassDeclaration(); FuncDeclaration *fdn = s->isFuncDeclaration(); //printf("cd isNested, cdn = %s\n", cdn ? cdn->toChars() : "null"); if (cdn) { if (!cdthis) { // Supply an implicit 'this' and try again thisexp = new ThisExp(loc); for (Dsymbol *sp = sc->parent; 1; sp = sp->parent) { if (!sp) { error("outer class %s 'this' needed to 'new' nested class %s", cdn->toChars(), cd->toChars()); goto Lerr; } ClassDeclaration *cdp = sp->isClassDeclaration(); if (!cdp) continue; if (cdp == cdn || cdn->isBaseOf(cdp, NULL)) break; // Add a '.outer' and try again thisexp = new DotIdExp(loc, thisexp, Id::outer); } if (!global.errors) goto Lagain; } if (cdthis) { //printf("cdthis = %s\n", cdthis->toChars()); if (cdthis != cdn && !cdn->isBaseOf(cdthis, NULL)) { error("'this' for nested class must be of type %s, not %s", cdn->toChars(), thisexp->type->toChars()); goto Lerr; } } #if 0 else { for (Dsymbol *sf = sc->func; 1; sf= sf->toParent2()->isFuncDeclaration()) { if (!sf) { error("outer class %s 'this' needed to 'new' nested class %s", cdn->toChars(), cd->toChars()); goto Lerr; } printf("sf = %s\n", sf->toChars()); AggregateDeclaration *ad = sf->isThis(); if (ad && (ad == cdn || cdn->isBaseOf(ad->isClassDeclaration(), NULL))) break; } } #endif } #if 1 else if (thisexp) { error("e.new is only for allocating nested classes"); goto Lerr; } else if (fdn) { // make sure the parent context fdn of cd is reachable from sc for (Dsymbol *sp = sc->parent; 1; sp = sp->parent) { if (fdn == sp) break; FuncDeclaration *fsp = sp ? sp->isFuncDeclaration() : NULL; if (!sp || (fsp && fsp->isStatic())) { error("outer function context of %s is needed to 'new' nested class %s", fdn->toPrettyChars(), cd->toPrettyChars()); goto Lerr; } } } #else else if (fdn) { /* The nested class cd is nested inside a function, * we'll let getEthis() look for errors. */ //printf("nested class %s is nested inside function %s, we're in %s\n", cd->toChars(), fdn->toChars(), sc->func->toChars()); if (thisexp) { // Because thisexp cannot be a function frame pointer error("e.new is only for allocating nested classes"); goto Lerr; } } #endif else assert(0); } else if (thisexp) { error("e.new is only for allocating nested classes"); goto Lerr; } FuncDeclaration *f = NULL; if (cd->ctor) f = resolveFuncCall(sc, loc, cd->ctor, NULL, NULL, arguments, 0); if (f) { checkDeprecated(sc, f); member = f->isCtorDeclaration(); assert(member); cd->accessCheck(loc, sc, member); TypeFunction *tf = (TypeFunction *)f->type; if (!arguments) arguments = new Expressions(); unsigned olderrors = global.errors; functionParameters(loc, sc, tf, NULL, arguments, f); if (olderrors != global.errors) return new ErrorExp(); type = type->addMod(tf->nextOf()->mod); } else { if (arguments && arguments->dim) { error("no constructor for %s", cd->toChars()); goto Lerr; } } if (cd->aggNew) { // Prepend the size argument to newargs[] Expression *e = new IntegerExp(loc, cd->size(loc), Type::tsize_t); if (!newargs) newargs = new Expressions(); newargs->shift(e); f = cd->aggNew->overloadResolve(loc, NULL, newargs); allocator = f->isNewDeclaration(); assert(allocator); TypeFunction *tf = (TypeFunction *)f->type; unsigned olderrors = global.errors; functionParameters(loc, sc, tf, NULL, newargs, f); if (olderrors != global.errors) return new ErrorExp(); } else { if (newargs && newargs->dim) { error("no allocator for %s", cd->toChars()); goto Lerr; } } } else if (tb->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tb; StructDeclaration *sd = ts->sym; TypeFunction *tf; if (sd->noDefaultCtor && (!arguments || !arguments->dim)) { error("default construction is disabled for type %s", sd->toChars()); goto Lerr; } FuncDeclaration *f = NULL; if (sd->ctor) f = resolveFuncCall(sc, loc, sd->ctor, NULL, NULL, arguments, 0); if (f) { checkDeprecated(sc, f); member = f->isCtorDeclaration(); assert(member); sd->accessCheck(loc, sc, member); tf = (TypeFunction *)f->type; type = tf->next; if (!arguments) arguments = new Expressions(); unsigned olderrors = global.errors; functionParameters(loc, sc, tf, NULL, arguments, f); if (olderrors != global.errors) return new ErrorExp(); } else { if (arguments && arguments->dim) { error("no constructor for %s", sd->toChars()); goto Lerr; } } if (sd->aggNew) { // Prepend the uint size argument to newargs[] Expression *e = new IntegerExp(loc, sd->size(loc), Type::tuns32); if (!newargs) newargs = new Expressions(); newargs->shift(e); f = sd->aggNew->overloadResolve(loc, NULL, newargs); allocator = f->isNewDeclaration(); assert(allocator); tf = (TypeFunction *)f->type; unsigned olderrors = global.errors; functionParameters(loc, sc, tf, NULL, newargs, f); if (olderrors != global.errors) return new ErrorExp(); #if 0 e = new VarExp(loc, f); e = new CallExp(loc, e, newargs); e = e->semantic(sc); e->type = type->pointerTo(); return e; #endif } else { if (newargs && newargs->dim) { error("no allocator for %s", sd->toChars()); goto Lerr; } } type = type->pointerTo(); } else if (tb->ty == Tarray && (arguments && arguments->dim)) { for (size_t i = 0; i < arguments->dim; i++) { if (tb->ty != Tarray) { error("too many arguments for array"); goto Lerr; } Expression *arg = arguments->tdata()[i]; arg = resolveProperties(sc, arg); arg = arg->implicitCastTo(sc, Type::tsize_t); arg = arg->optimize(WANTvalue); if (arg->op == TOKint64 && (sinteger_t)arg->toInteger() < 0) { error("negative array index %s", arg->toChars()); goto Lerr; } arguments->tdata()[i] = arg; tb = ((TypeDArray *)tb)->next->toBasetype(); } } else if (tb->isscalar()) { if (arguments && arguments->dim) { error("no constructor for %s", type->toChars()); goto Lerr; } type = type->pointerTo(); } else { error("new can only create structs, dynamic arrays or class objects, not %s's", type->toChars()); goto Lerr; } //printf("NewExp: '%s'\n", toChars()); //printf("NewExp:type '%s'\n", type->toChars()); return this; Lerr: return new ErrorExp(); } void NewExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (thisexp) { expToCBuffer(buf, hgs, thisexp, PREC_primary); buf->writeByte('.'); } buf->writestring("new "); if (newargs && newargs->dim) { buf->writeByte('('); argsToCBuffer(buf, newargs, hgs); buf->writeByte(')'); } newtype->toCBuffer(buf, NULL, hgs); if (arguments && arguments->dim) { buf->writeByte('('); argsToCBuffer(buf, arguments, hgs); buf->writeByte(')'); } } /********************** NewAnonClassExp **************************************/ NewAnonClassExp::NewAnonClassExp(Loc loc, Expression *thisexp, Expressions *newargs, ClassDeclaration *cd, Expressions *arguments) : Expression(loc, TOKnewanonclass, sizeof(NewAnonClassExp)) { this->thisexp = thisexp; this->newargs = newargs; this->cd = cd; this->arguments = arguments; } Expression *NewAnonClassExp::syntaxCopy() { return new NewAnonClassExp(loc, thisexp ? thisexp->syntaxCopy() : NULL, arraySyntaxCopy(newargs), (ClassDeclaration *)cd->syntaxCopy(NULL), arraySyntaxCopy(arguments)); } Expression *NewAnonClassExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("NewAnonClassExp::semantic() %s\n", toChars()); //printf("thisexp = %p\n", thisexp); //printf("type: %s\n", type->toChars()); #endif Expression *d = new DeclarationExp(loc, cd); d = d->semantic(sc); Expression *n = new NewExp(loc, thisexp, newargs, cd->type, arguments); Expression *c = new CommaExp(loc, d, n); return c->semantic(sc); } void NewAnonClassExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (thisexp) { expToCBuffer(buf, hgs, thisexp, PREC_primary); buf->writeByte('.'); } buf->writestring("new"); if (newargs && newargs->dim) { buf->writeByte('('); argsToCBuffer(buf, newargs, hgs); buf->writeByte(')'); } buf->writestring(" class "); if (arguments && arguments->dim) { buf->writeByte('('); argsToCBuffer(buf, arguments, hgs); buf->writeByte(')'); } //buf->writestring(" { }"); if (cd) { cd->toCBuffer(buf, hgs); } } /********************** SymbolExp **************************************/ #if DMDV2 SymbolExp::SymbolExp(Loc loc, enum TOK op, int size, Declaration *var, int hasOverloads) : Expression(loc, op, size) { assert(var); this->var = var; this->hasOverloads = hasOverloads; } #endif /********************** SymOffExp **************************************/ SymOffExp::SymOffExp(Loc loc, Declaration *var, unsigned offset, int hasOverloads) : SymbolExp(loc, TOKsymoff, sizeof(SymOffExp), var, hasOverloads) { this->offset = offset; m = NULL; VarDeclaration *v = var->isVarDeclaration(); if (v && v->needThis()) error("need 'this' for address of %s", v->toChars()); } Expression *SymOffExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("SymOffExp::semantic('%s')\n", toChars()); #endif //var->semantic(sc); m = sc->module; if (!type) type = var->type->pointerTo(); VarDeclaration *v = var->isVarDeclaration(); if (v) v->checkNestedReference(sc, loc); FuncDeclaration *f = var->isFuncDeclaration(); if (f) f->checkNestedReference(sc, loc); return this; } int SymOffExp::isBool(int result) { return result ? TRUE : FALSE; } void SymOffExp::checkEscape() { VarDeclaration *v = var->isVarDeclaration(); if (v) { if (!v->isDataseg() && !(v->storage_class & (STCref | STCout))) { /* BUG: This should be allowed: * void foo() * { int a; * int* bar() { return &a; } * } */ error("escaping reference to local %s", v->toChars()); } } } void SymOffExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (offset) buf->printf("(& %s+%u)", var->toChars(), offset); else buf->printf("& %s", var->toChars()); } /******************************** VarExp **************************/ VarExp::VarExp(Loc loc, Declaration *var, int hasOverloads) : SymbolExp(loc, TOKvar, sizeof(VarExp), var, hasOverloads) { //printf("VarExp(this = %p, '%s', loc = %s)\n", this, var->toChars(), loc.toChars()); //if (strcmp(var->ident->toChars(), "func") == 0) halt(); this->type = var->type; } int VarExp::equals(Object *o) { VarExp *ne; if (this == o || (((Expression *)o)->op == TOKvar && ((ne = (VarExp *)o), type->toHeadMutable()->equals(ne->type->toHeadMutable())) && var == ne->var)) return 1; return 0; } Expression *VarExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("VarExp::semantic(%s)\n", toChars()); #endif // if (var->sem == SemanticStart && var->scope) // if forward referenced // var->semantic(sc); if (!type) { type = var->type; #if 0 if (var->storage_class & STClazy) { TypeFunction *tf = new TypeFunction(NULL, type, 0, LINKd); type = new TypeDelegate(tf); type = type->semantic(loc, sc); } #endif } if (type && !type->deco) type = type->semantic(loc, sc); /* Fix for 1161 doesn't work because it causes protection * problems when instantiating imported templates passing private * variables as alias template parameters. */ //accessCheck(loc, sc, NULL, var); VarDeclaration *v = var->isVarDeclaration(); if (v) { v->checkNestedReference(sc, loc); #if DMDV2 checkPurity(sc, v, NULL); #endif } FuncDeclaration *f = var->isFuncDeclaration(); if (f) f->checkNestedReference(sc, loc); #if 0 else if ((fd = var->isFuncLiteralDeclaration()) != NULL) { Expression *e; e = new FuncExp(loc, fd); e->type = type; return e; } #endif return this; } char *VarExp::toChars() { return var->toChars(); } void VarExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(var->toChars()); } void VarExp::checkEscape() { VarDeclaration *v = var->isVarDeclaration(); if (v) { Type *tb = v->type->toBasetype(); // if reference type if (tb->ty == Tarray || tb->ty == Tsarray || tb->ty == Tclass || tb->ty == Tdelegate) { if (v->isScope() && (!v->noscope || tb->ty == Tclass)) error("escaping reference to scope local %s", v->toChars()); else if (v->storage_class & STCvariadic) error("escaping reference to variadic parameter %s", v->toChars()); } } } void VarExp::checkEscapeRef() { VarDeclaration *v = var->isVarDeclaration(); if (v) { if (!v->isDataseg() && !(v->storage_class & (STCref | STCout))) error("escaping reference to local variable %s", v->toChars()); } } #if DMDV2 int VarExp::isLvalue() { if (var->storage_class & STClazy) return 0; return 1; } #endif Expression *VarExp::toLvalue(Scope *sc, Expression *e) { #if 0 tym = tybasic(e1->ET->Tty); if (!(tyscalar(tym) || tym == TYstruct || tym == TYarray && e->Eoper == TOKaddr)) synerr(EM_lvalue); // lvalue expected #endif if (var->storage_class & STClazy) { error("lazy variables cannot be lvalues"); return new ErrorExp(); } return this; } Expression *VarExp::modifiableLvalue(Scope *sc, Expression *e) { //printf("VarExp::modifiableLvalue('%s')\n", var->toChars()); //if (type && type->toBasetype()->ty == Tsarray) //error("cannot change reference to static array '%s'", var->toChars()); var->checkModify(loc, sc, type); // See if this expression is a modifiable lvalue (i.e. not const) return toLvalue(sc, e); } /******************************** OverExp **************************/ #if DMDV2 OverExp::OverExp(OverloadSet *s) : Expression(loc, TOKoverloadset, sizeof(OverExp)) { //printf("OverExp(this = %p, '%s')\n", this, var->toChars()); vars = s; type = Type::tvoid; } int OverExp::isLvalue() { return 1; } Expression *OverExp::toLvalue(Scope *sc, Expression *e) { return this; } #endif /******************************** TupleExp **************************/ TupleExp::TupleExp(Loc loc, Expressions *exps) : Expression(loc, TOKtuple, sizeof(TupleExp)) { //printf("TupleExp(this = %p)\n", this); this->exps = exps; this->type = NULL; } TupleExp::TupleExp(Loc loc, TupleDeclaration *tup) : Expression(loc, TOKtuple, sizeof(TupleExp)) { exps = new Expressions(); type = NULL; exps->reserve(tup->objects->dim); for (size_t i = 0; i < tup->objects->dim; i++) { Object *o = tup->objects->tdata()[i]; if (o->dyncast() == DYNCAST_EXPRESSION) { Expression *e = (Expression *)o; if (e->op == TOKdsymbol) e = e->syntaxCopy(); exps->push(e); } else if (o->dyncast() == DYNCAST_DSYMBOL) { Dsymbol *s = (Dsymbol *)o; Expression *e = new DsymbolExp(loc, s); exps->push(e); } else if (o->dyncast() == DYNCAST_TYPE) { Type *t = (Type *)o; Expression *e = new TypeExp(loc, t); exps->push(e); } else { error("%s is not an expression", o->toChars()); } } } int TupleExp::equals(Object *o) { if (this == o) return 1; if (((Expression *)o)->op == TOKtuple) { TupleExp *te = (TupleExp *)o; if (exps->dim != te->exps->dim) return 0; for (size_t i = 0; i < exps->dim; i++) { Expression *e1 = (*exps)[i]; Expression *e2 = (*te->exps)[i]; if (!e1->equals(e2)) return 0; } return 1; } return 0; } Expression *TupleExp::syntaxCopy() { return new TupleExp(loc, arraySyntaxCopy(exps)); } Expression *TupleExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("+TupleExp::semantic(%s)\n", toChars()); #endif if (type) return this; // Run semantic() on each argument for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; e = e->semantic(sc); if (!e->type) { error("%s has no value", e->toChars()); return new ErrorExp(); } (*exps)[i] = e; } expandTuples(exps); type = new TypeTuple(exps); type = type->semantic(loc, sc); //printf("-TupleExp::semantic(%s)\n", toChars()); return this; } void TupleExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("tuple("); argsToCBuffer(buf, exps, hgs); buf->writeByte(')'); } void TupleExp::checkEscape() { for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; e->checkEscape(); } } /******************************** FuncExp *********************************/ FuncExp::FuncExp(Loc loc, FuncLiteralDeclaration *fd, TemplateDeclaration *td) : Expression(loc, TOKfunction, sizeof(FuncExp)) { this->fd = fd; this->td = td; tok = fd->tok; // save original kind of function/delegate/(infer) tded = NULL; scope = NULL; } Expression *FuncExp::syntaxCopy() { return new FuncExp(loc, (FuncLiteralDeclaration *)fd->syntaxCopy(NULL)); } Expression *FuncExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("FuncExp::semantic(%s)\n", toChars()); #endif if (!type || type == Type::tvoid) { // save for later use scope = sc; //printf("td = %p, tded = %p\n", td, tded); if (td) { assert(td->parameters && td->parameters->dim); td->semantic(sc); if (!tded) { // defer type determination type = Type::tvoid; // temporary type return this; } else { Expression *e = inferType(sc, tded); if (e) { e = e->castTo(sc, tded); e = e->semantic(sc); } if (!e) { error("cannot infer function literal type"); e = new ErrorExp(); } return e; } } unsigned olderrors = global.errors; fd->semantic(sc); //fd->parent = sc->parent; if (olderrors != global.errors) { } else { fd->semantic2(sc); if ( (olderrors == global.errors) || // need to infer return type (fd->type && fd->type->ty == Tfunction && !fd->type->nextOf())) { fd->semantic3(sc); if ( (olderrors == global.errors) && global.params.useInline) fd->inlineScan(); } } // need to infer return type if ((olderrors != global.errors) && fd->type && fd->type->ty == Tfunction && !fd->type->nextOf()) ((TypeFunction *)fd->type)->next = Type::terror; // Type is a "delegate to" or "pointer to" the function literal if ((fd->isNested() && fd->tok == TOKdelegate) || (tok == TOKreserved && tded && tded->ty == Tdelegate)) { type = new TypeDelegate(fd->type); type = type->semantic(loc, sc); } else { type = fd->type->pointerTo(); } fd->tookAddressOf++; } return this; } // used from CallExp::semantic() Expression *FuncExp::semantic(Scope *sc, Expressions *arguments) { assert(!tded); assert(!scope); if ((!type || type == Type::tvoid) && td && arguments && arguments->dim) { for (size_t k = 0; k < arguments->dim; k++) { Expression *checkarg = arguments->tdata()[k]; if (checkarg->op == TOKerror) return checkarg; } assert(td->parameters && td->parameters->dim); td->semantic(sc); TypeFunction *tfl = (TypeFunction *)fd->type; size_t dim = Parameter::dim(tfl->parameters); if ((!tfl->varargs && arguments->dim == dim) || ( tfl->varargs && arguments->dim >= dim)) { Objects *tiargs = new Objects(); tiargs->reserve(td->parameters->dim); for (size_t i = 0; i < td->parameters->dim; i++) { TemplateParameter *tp = (*td->parameters)[i]; for (size_t u = 0; u < dim; u++) { Parameter *p = Parameter::getNth(tfl->parameters, u); if (p->type->ty == Tident && ((TypeIdentifier *)p->type)->ident == tp->ident) { Expression *e = (*arguments)[u]; tiargs->push(e->type); u = dim; // break inner loop } } } TemplateInstance *ti = new TemplateInstance(loc, td, tiargs); return (new ScopeExp(loc, ti))->semantic(sc); } error("cannot infer function literal type"); return new ErrorExp(); } return semantic(sc); } Expression *FuncExp::inferType(Scope *sc, Type *to) { //printf("inferType sc = %p, to = %s\n", sc, to->toChars()); if (!sc) { // used from TypeFunction::callMatch() assert(scope); sc = scope; } Expression *e = NULL; if (td) { /// Parameter types inference from assert(!type || type == Type::tvoid); Type *t = to; if (t->ty == Tdelegate || t->ty == Tpointer && t->nextOf()->ty == Tfunction) { t = t->nextOf(); } if (t->ty == Tfunction) { TypeFunction *tfv = (TypeFunction *)t; TypeFunction *tfl = (TypeFunction *)fd->type; size_t dim = Parameter::dim(tfl->parameters); if (Parameter::dim(tfv->parameters) == dim && tfv->varargs == tfl->varargs) { Objects *tiargs = new Objects(); tiargs->reserve(td->parameters->dim); for (size_t i = 0; i < td->parameters->dim; i++) { TemplateParameter *tp = (*td->parameters)[i]; for (size_t u = 0; u < dim; u++) { Parameter *p = Parameter::getNth(tfl->parameters, u); if (p->type->ty == Tident && ((TypeIdentifier *)p->type)->ident == tp->ident) { p = Parameter::getNth(tfv->parameters, u); if (p->type->ty == Tident) return NULL; tiargs->push(p->type); u = dim; // break inner loop } } } TemplateInstance *ti = new TemplateInstance(loc, td, tiargs); e = (new ScopeExp(loc, ti))->semantic(sc); } } } else { assert(type && type != Type::tvoid); // semantic is already done e = this; } if (e) { // Check implicit function to delegate conversion if (e->implicitConvTo(to)) e = e->castTo(sc, to); else e = NULL; } return e; } void FuncExp::setType(Type *t) { assert(t); if (t->ty == Tdelegate || t->ty == Tpointer && t->nextOf()->ty == Tfunction) { tded = t; } } char *FuncExp::toChars() { return fd->toChars(); } void FuncExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { fd->toCBuffer(buf, hgs); //buf->writestring(fd->toChars()); } /******************************** DeclarationExp **************************/ DeclarationExp::DeclarationExp(Loc loc, Dsymbol *declaration) : Expression(loc, TOKdeclaration, sizeof(DeclarationExp)) { this->declaration = declaration; } Expression *DeclarationExp::syntaxCopy() { return new DeclarationExp(loc, declaration->syntaxCopy(NULL)); } Expression *DeclarationExp::semantic(Scope *sc) { if (type) return this; #if LOGSEMANTIC printf("DeclarationExp::semantic() %s\n", toChars()); #endif unsigned olderrors = global.errors; /* This is here to support extern(linkage) declaration, * where the extern(linkage) winds up being an AttribDeclaration * wrapper. */ Dsymbol *s = declaration; AttribDeclaration *ad = declaration->isAttribDeclaration(); if (ad) { if (ad->decl && ad->decl->dim == 1) s = ad->decl->tdata()[0]; } if (s->isVarDeclaration()) { // Do semantic() on initializer first, so: // int a = a; // will be illegal. declaration->semantic(sc); s->parent = sc->parent; } //printf("inserting '%s' %p into sc = %p\n", s->toChars(), s, sc); // Insert into both local scope and function scope. // Must be unique in both. if (s->ident) { if (!sc->insert(s)) { error("declaration %s is already defined", s->toPrettyChars()); return new ErrorExp(); } else if (sc->func) { VarDeclaration *v = s->isVarDeclaration(); if ( (s->isFuncDeclaration() || s->isTypedefDeclaration() || s->isAggregateDeclaration() || s->isEnumDeclaration() || s->isInterfaceDeclaration()) && !sc->func->localsymtab->insert(s)) { error("declaration %s is already defined in another scope in %s", s->toPrettyChars(), sc->func->toChars()); return new ErrorExp(); } else if (!global.params.useDeprecated) { // Disallow shadowing for (Scope *scx = sc->enclosing; scx && scx->func == sc->func; scx = scx->enclosing) { Dsymbol *s2; if (scx->scopesym && scx->scopesym->symtab && (s2 = scx->scopesym->symtab->lookup(s->ident)) != NULL && s != s2) { error("shadowing declaration %s is deprecated", s->toPrettyChars()); return new ErrorExp(); } } } } } if (!s->isVarDeclaration()) { Scope *sc2 = sc; if (sc2->stc & (STCpure | STCnothrow)) sc2 = sc->push(); sc2->stc &= ~(STCpure | STCnothrow); declaration->semantic(sc2); if (sc2 != sc) sc2->pop(); s->parent = sc->parent; } if (global.errors == olderrors) { declaration->semantic2(sc); if (global.errors == olderrors) { declaration->semantic3(sc); if ((global.errors == olderrors) && global.params.useInline) declaration->inlineScan(); } } type = Type::tvoid; return this; } void DeclarationExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { declaration->toCBuffer(buf, hgs); } /************************ TypeidExp ************************************/ /* * typeid(int) */ TypeidExp::TypeidExp(Loc loc, Object *o) : Expression(loc, TOKtypeid, sizeof(TypeidExp)) { this->obj = o; } Expression *TypeidExp::syntaxCopy() { return new TypeidExp(loc, objectSyntaxCopy(obj)); } Expression *TypeidExp::semantic(Scope *sc) { Expression *e; #if LOGSEMANTIC printf("TypeidExp::semantic() %s\n", toChars()); #endif Type *ta = isType(obj); Expression *ea = isExpression(obj); Dsymbol *sa = isDsymbol(obj); //printf("ta %p ea %p sa %p\n", ta, ea, sa); if (ta) { ta->resolve(loc, sc, &ea, &ta, &sa); } if (ea) { ea = ea->semantic(sc); ea = resolveProperties(sc, ea); ta = ea->type; if (ea->op == TOKtype) ea = NULL; } if (!ta) { //printf("ta %p ea %p sa %p\n", ta, ea, sa); error("no type for typeid(%s)", ea ? ea->toChars() : (sa ? sa->toChars() : "")); return new ErrorExp(); } if (ea && ta->toBasetype()->ty == Tclass) { /* Get the dynamic type, which is .classinfo */ e = new DotIdExp(ea->loc, ea, Id::classinfo); e = e->semantic(sc); } else { /* Get the static type */ e = ta->getTypeInfo(sc); if (e->loc.linnum == 0) e->loc = loc; // so there's at least some line number info if (ea) { e = new CommaExp(loc, ea, e); // execute ea e = e->semantic(sc); } } return e; } void TypeidExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("typeid("); ObjectToCBuffer(buf, hgs, obj); buf->writeByte(')'); } /************************ TraitsExp ************************************/ #if DMDV2 /* * __traits(identifier, args...) */ TraitsExp::TraitsExp(Loc loc, Identifier *ident, Objects *args) : Expression(loc, TOKtraits, sizeof(TraitsExp)) { this->ident = ident; this->args = args; } Expression *TraitsExp::syntaxCopy() { return new TraitsExp(loc, ident, TemplateInstance::arraySyntaxCopy(args)); } void TraitsExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("__traits("); buf->writestring(ident->toChars()); if (args) { for (size_t i = 0; i < args->dim; i++) { buf->writeByte(','); Object *oarg = args->tdata()[i]; ObjectToCBuffer(buf, hgs, oarg); } } buf->writeByte(')'); } #endif /************************************************************/ HaltExp::HaltExp(Loc loc) : Expression(loc, TOKhalt, sizeof(HaltExp)) { } Expression *HaltExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("HaltExp::semantic()\n"); #endif type = Type::tvoid; return this; } void HaltExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("halt"); } /************************************************************/ IsExp::IsExp(Loc loc, Type *targ, Identifier *id, enum TOK tok, Type *tspec, enum TOK tok2, TemplateParameters *parameters) : Expression(loc, TOKis, sizeof(IsExp)) { this->targ = targ; this->id = id; this->tok = tok; this->tspec = tspec; this->tok2 = tok2; this->parameters = parameters; } Expression *IsExp::syntaxCopy() { // This section is identical to that in TemplateDeclaration::syntaxCopy() TemplateParameters *p = NULL; if (parameters) { p = new TemplateParameters(); p->setDim(parameters->dim); for (size_t i = 0; i < p->dim; i++) { TemplateParameter *tp = parameters->tdata()[i]; p->tdata()[i] = tp->syntaxCopy(); } } return new IsExp(loc, targ->syntaxCopy(), id, tok, tspec ? tspec->syntaxCopy() : NULL, tok2, p); } Expression *IsExp::semantic(Scope *sc) { Type *tded; /* is(targ id tok tspec) * is(targ id : tok2) * is(targ id == tok2) */ //printf("IsExp::semantic(%s)\n", toChars()); if (id && !(sc->flags & (SCOPEstaticif | SCOPEstaticassert))) { error("can only declare type aliases within static if conditionals or static asserts"); return new ErrorExp(); } Type *t = targ->trySemantic(loc, sc); if (!t) goto Lno; // errors, so condition is false targ = t; if (tok2 != TOKreserved) { switch (tok2) { case TOKtypedef: if (targ->ty != Ttypedef) goto Lno; tded = ((TypeTypedef *)targ)->sym->basetype; break; case TOKstruct: if (targ->ty != Tstruct) goto Lno; if (((TypeStruct *)targ)->sym->isUnionDeclaration()) goto Lno; tded = targ; break; case TOKunion: if (targ->ty != Tstruct) goto Lno; if (!((TypeStruct *)targ)->sym->isUnionDeclaration()) goto Lno; tded = targ; break; case TOKclass: if (targ->ty != Tclass) goto Lno; if (((TypeClass *)targ)->sym->isInterfaceDeclaration()) goto Lno; tded = targ; break; case TOKinterface: if (targ->ty != Tclass) goto Lno; if (!((TypeClass *)targ)->sym->isInterfaceDeclaration()) goto Lno; tded = targ; break; #if DMDV2 case TOKconst: if (!targ->isConst()) goto Lno; tded = targ; break; case TOKinvariant: if (!global.params.useDeprecated) error("use of 'invariant' rather than 'immutable' is deprecated"); case TOKimmutable: if (!targ->isImmutable()) goto Lno; tded = targ; break; case TOKshared: if (!targ->isShared()) goto Lno; tded = targ; break; case TOKwild: if (!targ->isWild()) goto Lno; tded = targ; break; #endif case TOKsuper: // If class or interface, get the base class and interfaces if (targ->ty != Tclass) goto Lno; else { ClassDeclaration *cd = ((TypeClass *)targ)->sym; Parameters *args = new Parameters; args->reserve(cd->baseclasses->dim); for (size_t i = 0; i < cd->baseclasses->dim; i++) { BaseClass *b = cd->baseclasses->tdata()[i]; args->push(new Parameter(STCin, b->type, NULL, NULL)); } tded = new TypeTuple(args); } break; case TOKenum: if (targ->ty != Tenum) goto Lno; tded = ((TypeEnum *)targ)->sym->memtype; break; case TOKdelegate: if (targ->ty != Tdelegate) goto Lno; tded = ((TypeDelegate *)targ)->next; // the underlying function type break; case TOKfunction: { if (targ->ty != Tfunction) goto Lno; tded = targ; /* Generate tuple from function parameter types. */ assert(tded->ty == Tfunction); Parameters *params = ((TypeFunction *)tded)->parameters; size_t dim = Parameter::dim(params); Parameters *args = new Parameters; args->reserve(dim); for (size_t i = 0; i < dim; i++) { Parameter *arg = Parameter::getNth(params, i); assert(arg && arg->type); args->push(new Parameter(arg->storageClass, arg->type, NULL, NULL)); } tded = new TypeTuple(args); break; } case TOKreturn: /* Get the 'return type' for the function, * delegate, or pointer to function. */ if (targ->ty == Tfunction) tded = ((TypeFunction *)targ)->next; else if (targ->ty == Tdelegate) { tded = ((TypeDelegate *)targ)->next; tded = ((TypeFunction *)tded)->next; } else if (targ->ty == Tpointer && ((TypePointer *)targ)->next->ty == Tfunction) { tded = ((TypePointer *)targ)->next; tded = ((TypeFunction *)tded)->next; } else goto Lno; break; case TOKargTypes: /* Generate a type tuple of the equivalent types used to determine if a * function argument of this type can be passed in registers. * The results of this are highly platform dependent, and intended * primarly for use in implementing va_arg(). */ tded = targ->toArgTypes(); if (!tded) goto Lno; // not valid for a parameter break; default: assert(0); } goto Lyes; } else if (id && tspec) { /* Evaluate to TRUE if targ matches tspec. * If TRUE, declare id as an alias for the specialized type. */ assert(parameters && parameters->dim); Objects dedtypes; dedtypes.setDim(parameters->dim); dedtypes.zero(); MATCH m = targ->deduceType(sc, tspec, parameters, &dedtypes); //printf("targ: %s\n", targ->toChars()); //printf("tspec: %s\n", tspec->toChars()); if (m == MATCHnomatch || (m != MATCHexact && tok == TOKequal)) { goto Lno; } else { tded = (Type *)dedtypes.tdata()[0]; if (!tded) tded = targ; #if DMDV2 Objects tiargs; tiargs.setDim(1); tiargs.tdata()[0] = targ; /* Declare trailing parameters */ for (size_t i = 1; i < parameters->dim; i++) { TemplateParameter *tp = (*parameters)[i]; Declaration *s = NULL; m = tp->matchArg(sc, &tiargs, i, parameters, &dedtypes, &s); if (m == MATCHnomatch) goto Lno; s->semantic(sc); if (sc->sd) s->addMember(sc, sc->sd, 1); else if (!sc->insert(s)) error("declaration %s is already defined", s->toChars()); } #endif goto Lyes; } } else if (id) { /* Declare id as an alias for type targ. Evaluate to TRUE */ tded = targ; goto Lyes; } else if (tspec) { /* Evaluate to TRUE if targ matches tspec * is(targ == tspec) * is(targ : tspec) */ tspec = tspec->semantic(loc, sc); //printf("targ = %s, %s\n", targ->toChars(), targ->deco); //printf("tspec = %s, %s\n", tspec->toChars(), tspec->deco); if (tok == TOKcolon) { if (targ->implicitConvTo(tspec)) goto Lyes; else goto Lno; } else /* == */ { if (targ->equals(tspec)) goto Lyes; else goto Lno; } } Lyes: if (id) { Dsymbol *s; Tuple *tup = isTuple(tded); if (tup) s = new TupleDeclaration(loc, id, &(tup->objects)); else s = new AliasDeclaration(loc, id, tded); s->semantic(sc); /* The reason for the !tup is unclear. It fails Phobos unittests if it is not there. * More investigation is needed. */ if (!tup && !sc->insert(s)) error("declaration %s is already defined", s->toChars()); if (sc->sd) s->addMember(sc, sc->sd, 1); } //printf("Lyes\n"); return new IntegerExp(loc, 1, Type::tbool); Lno: //printf("Lno\n"); return new IntegerExp(loc, 0, Type::tbool); } void IsExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("is("); targ->toCBuffer(buf, id, hgs); if (tok2 != TOKreserved) { buf->printf(" %s %s", Token::toChars(tok), Token::toChars(tok2)); } else if (tspec) { if (tok == TOKcolon) buf->writestring(" : "); else buf->writestring(" == "); tspec->toCBuffer(buf, NULL, hgs); } #if DMDV2 if (parameters) { // First parameter is already output, so start with second for (size_t i = 1; i < parameters->dim; i++) { buf->writeByte(','); TemplateParameter *tp = parameters->tdata()[i]; tp->toCBuffer(buf, hgs); } } #endif buf->writeByte(')'); } /************************************************************/ UnaExp::UnaExp(Loc loc, enum TOK op, int size, Expression *e1) : Expression(loc, op, size) { this->e1 = e1; } Expression *UnaExp::syntaxCopy() { UnaExp *e = (UnaExp *)copy(); e->type = NULL; e->e1 = e->e1->syntaxCopy(); return e; } Expression *UnaExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("UnaExp::semantic('%s')\n", toChars()); #endif e1 = e1->semantic(sc); // if (!e1->type) // error("%s has no value", e1->toChars()); return this; } Expression *UnaExp::resolveLoc(Loc loc, Scope *sc) { e1 = e1->resolveLoc(loc, sc); return this; } void UnaExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(Token::toChars(op)); expToCBuffer(buf, hgs, e1, precedence[op]); } /************************************************************/ BinExp::BinExp(Loc loc, enum TOK op, int size, Expression *e1, Expression *e2) : Expression(loc, op, size) { this->e1 = e1; this->e2 = e2; } Expression *BinExp::syntaxCopy() { BinExp *e = (BinExp *)copy(); e->type = NULL; e->e1 = e->e1->syntaxCopy(); e->e2 = e->e2->syntaxCopy(); return e; } Expression *BinExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("BinExp::semantic('%s')\n", toChars()); #endif e1 = e1->semantic(sc); e2 = e2->semantic(sc); if (e1->op == TOKerror || e2->op == TOKerror) return new ErrorExp(); return this; } Expression *BinExp::semanticp(Scope *sc) { BinExp::semantic(sc); e1 = resolveProperties(sc, e1); e2 = resolveProperties(sc, e2); return this; } // generate an error if this is a nonsensical *=,/=, or %=, eg real *= imaginary void BinExp::checkComplexMulAssign() { // Any multiplication by an imaginary or complex number yields a complex result. // r *= c, i*=c, r*=i, i*=i are all forbidden operations. const char *opstr = Token::toChars(op); if ( e1->type->isreal() && e2->type->iscomplex()) { error("%s %s %s is undefined. Did you mean %s %s %s.re ?", e1->type->toChars(), opstr, e2->type->toChars(), e1->type->toChars(), opstr, e2->type->toChars()); } else if (e1->type->isimaginary() && e2->type->iscomplex()) { error("%s %s %s is undefined. Did you mean %s %s %s.im ?", e1->type->toChars(), opstr, e2->type->toChars(), e1->type->toChars(), opstr, e2->type->toChars()); } else if ((e1->type->isreal() || e1->type->isimaginary()) && e2->type->isimaginary()) { error("%s %s %s is an undefined operation", e1->type->toChars(), opstr, e2->type->toChars()); } } // generate an error if this is a nonsensical += or -=, eg real += imaginary void BinExp::checkComplexAddAssign() { // Addition or subtraction of a real and an imaginary is a complex result. // Thus, r+=i, r+=c, i+=r, i+=c are all forbidden operations. if ( (e1->type->isreal() && (e2->type->isimaginary() || e2->type->iscomplex())) || (e1->type->isimaginary() && (e2->type->isreal() || e2->type->iscomplex())) ) { error("%s %s %s is undefined (result is complex)", e1->type->toChars(), Token::toChars(op), e2->type->toChars()); } } void BinExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, precedence[op]); buf->writeByte(' '); buf->writestring(Token::toChars(op)); buf->writeByte(' '); expToCBuffer(buf, hgs, e2, (enum PREC)(precedence[op] + 1)); } int BinExp::isunsigned() { return e1->type->isunsigned() || e2->type->isunsigned(); } Expression *BinExp::incompatibleTypes() { if (e1->type->toBasetype() != Type::terror && e2->type->toBasetype() != Type::terror ) { error("incompatible types for ((%s) %s (%s)): '%s' and '%s'", e1->toChars(), Token::toChars(op), e2->toChars(), e1->type->toChars(), e2->type->toChars()); return new ErrorExp(); } return this; } /********************** BinAssignExp **************************************/ /*************************** * Common semantic routine for some xxxAssignExp's. */ Expression *BinAssignExp::commonSemanticAssign(Scope *sc) { Expression *e; if (!type) { if (e1->op == TOKarraylength) { e = ArrayLengthExp::rewriteOpAssign(this); e = e->semantic(sc); return e; } if (e1->op == TOKslice) { // T[] op= ... e = typeCombine(sc); if (e->op == TOKerror) return e; type = e1->type; return arrayOp(sc); } e1 = e1->modifiableLvalue(sc, e1); e1->checkScalar(); type = e1->type; if (type->toBasetype()->ty == Tbool) { error("operator not allowed on bool expression %s", toChars()); return new ErrorExp(); } typeCombine(sc); e1->checkArithmetic(); e2->checkArithmetic(); if (op == TOKmodass) { if (e2->type->iscomplex()) { error("cannot perform modulo complex arithmetic"); return new ErrorExp(); } else if (type->toBasetype()->ty == Tvector) return incompatibleTypes(); } } return this; } Expression *BinAssignExp::commonSemanticAssignIntegral(Scope *sc) { Expression *e; if (!type) { e = op_overload(sc); if (e) return e; if (e1->op == TOKarraylength) { e = ArrayLengthExp::rewriteOpAssign(this); e = e->semantic(sc); return e; } if (e1->op == TOKslice) { // T[] op= ... e = typeCombine(sc); if (e->op == TOKerror) return e; type = e1->type; return arrayOp(sc); } e1 = e1->modifiableLvalue(sc, e1); e1->checkScalar(); type = e1->type; if (type->toBasetype()->ty == Tbool) { e2 = e2->implicitCastTo(sc, type); } typeCombine(sc); e1->checkIntegral(); e2->checkIntegral(); } return this; } #if DMDV2 int BinAssignExp::isLvalue() { return 1; } Expression *BinAssignExp::toLvalue(Scope *sc, Expression *ex) { Expression *e; if (e1->op == TOKvar) { /* Convert (e1 op= e2) to * e1 op= e2; * e1 */ e = e1->copy(); e = new CommaExp(loc, this, e); e = e->semantic(sc); } else { /* Convert (e1 op= e2) to * ref v = e1; * v op= e2; * v */ // ref v = e1; Identifier *id = Lexer::uniqueId("__assignop"); ExpInitializer *ei = new ExpInitializer(loc, e1); VarDeclaration *v = new VarDeclaration(loc, e1->type, id, ei); v->storage_class |= STCref | STCforeach; Expression *de = new DeclarationExp(loc, v); // v op= e2 e1 = new VarExp(e1->loc, v); e = new CommaExp(loc, de, this); e = new CommaExp(loc, e, new VarExp(loc, v)); e = e->semantic(sc); } return e; } Expression *BinAssignExp::modifiableLvalue(Scope *sc, Expression *e) { return toLvalue(sc, this); } #endif /************************************************************/ CompileExp::CompileExp(Loc loc, Expression *e) : UnaExp(loc, TOKmixin, sizeof(CompileExp), e) { } Expression *CompileExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("CompileExp::semantic('%s')\n", toChars()); #endif UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); if (e1->op == TOKerror) return e1; if (!e1->type->isString()) { error("argument to mixin must be a string type, not %s\n", e1->type->toChars()); return new ErrorExp(); } e1 = e1->optimize(WANTvalue | WANTinterpret); StringExp *se = e1->toString(); if (!se) { error("argument to mixin must be a string, not (%s)", e1->toChars()); return new ErrorExp(); } se = se->toUTF8(sc); Parser p(sc->module, (unsigned char *)se->string, se->len, 0); p.loc = loc; p.nextToken(); //printf("p.loc.linnum = %d\n", p.loc.linnum); Expression *e = p.parseExpression(); if (p.token.value != TOKeof) { error("incomplete mixin expression (%s)", se->toChars()); return new ErrorExp(); } return e->semantic(sc); } void CompileExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("mixin("); expToCBuffer(buf, hgs, e1, PREC_assign); buf->writeByte(')'); } /************************************************************/ FileExp::FileExp(Loc loc, Expression *e) : UnaExp(loc, TOKmixin, sizeof(FileExp), e) { } Expression *FileExp::semantic(Scope *sc) { char *name; StringExp *se; #if LOGSEMANTIC printf("FileExp::semantic('%s')\n", toChars()); #endif UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); e1 = e1->optimize(WANTvalue | WANTinterpret); if (e1->op != TOKstring) { error("file name argument must be a string, not (%s)", e1->toChars()); goto Lerror; } se = (StringExp *)e1; se = se->toUTF8(sc); name = (char *)se->string; if (!global.params.fileImppath) { error("need -Jpath switch to import text file %s", name); goto Lerror; } /* Be wary of CWE-22: Improper Limitation of a Pathname to a Restricted Directory * ('Path Traversal') attacks. * http://cwe.mitre.org/data/definitions/22.html */ name = FileName::safeSearchPath(global.filePath, name); if (!name) { error("file %s cannot be found or not in a path specified with -J", se->toChars()); goto Lerror; } if (global.params.verbose) printf("file %s\t(%s)\n", (char *)se->string, name); { File f(name); if (f.read()) { error("cannot read file %s", f.toChars()); goto Lerror; } else { f.ref = 1; se = new StringExp(loc, f.buffer, f.len); } } return se->semantic(sc); Lerror: return new ErrorExp(); } void FileExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("import("); expToCBuffer(buf, hgs, e1, PREC_assign); buf->writeByte(')'); } /************************************************************/ AssertExp::AssertExp(Loc loc, Expression *e, Expression *msg) : UnaExp(loc, TOKassert, sizeof(AssertExp), e) { this->msg = msg; } Expression *AssertExp::syntaxCopy() { AssertExp *ae = new AssertExp(loc, e1->syntaxCopy(), msg ? msg->syntaxCopy() : NULL); return ae; } Expression *AssertExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("AssertExp::semantic('%s')\n", toChars()); #endif UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); // BUG: see if we can do compile time elimination of the Assert e1 = e1->optimize(WANTvalue); e1 = e1->checkToBoolean(sc); if (msg) { msg = msg->semantic(sc); msg = resolveProperties(sc, msg); msg = msg->implicitCastTo(sc, Type::tchar->constOf()->arrayOf()); msg = msg->optimize(WANTvalue); } if (e1->isBool(FALSE)) { FuncDeclaration *fd = sc->parent->isFuncDeclaration(); if (fd) fd->hasReturnExp |= 4; if (!global.params.useAssert) { Expression *e = new HaltExp(loc); e = e->semantic(sc); return e; } } type = Type::tvoid; return this; } void AssertExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("assert("); expToCBuffer(buf, hgs, e1, PREC_assign); if (msg) { buf->writeByte(','); expToCBuffer(buf, hgs, msg, PREC_assign); } buf->writeByte(')'); } /************************************************************/ DotIdExp::DotIdExp(Loc loc, Expression *e, Identifier *ident) : UnaExp(loc, TOKdot, sizeof(DotIdExp), e) { this->ident = ident; } Expression *DotIdExp::semantic(Scope *sc) { // Indicate we didn't come from CallExp::semantic() return semantic(sc, 0); } Expression *DotIdExp::semantic(Scope *sc, int flag) { Expression *e; Expression *eleft; Expression *eright; #if LOGSEMANTIC printf("DotIdExp::semantic(this = %p, '%s')\n", this, toChars()); //printf("e1->op = %d, '%s'\n", e1->op, Token::toChars(e1->op)); #endif //{ static int z; fflush(stdout); if (++z == 10) *(char*)0=0; } #if 0 /* Don't do semantic analysis if we'll be converting * it to a string. */ if (ident == Id::stringof) { char *s = e1->toChars(); e = new StringExp(loc, s, strlen(s), 'c'); e = e->semantic(sc); return e; } #endif /* Special case: rewrite this.id and super.id * to be classtype.id and baseclasstype.id * if we have no this pointer. */ if ((e1->op == TOKthis || e1->op == TOKsuper) && !hasThis(sc)) { ClassDeclaration *cd; StructDeclaration *sd; AggregateDeclaration *ad; ad = sc->getStructClassScope(); if (ad) { cd = ad->isClassDeclaration(); if (cd) { if (e1->op == TOKthis) { e = typeDotIdExp(loc, cd->type, ident); return e->semantic(sc); } else if (cd->baseClass && e1->op == TOKsuper) { e = typeDotIdExp(loc, cd->baseClass->type, ident); return e->semantic(sc); } } else { sd = ad->isStructDeclaration(); if (sd) { if (e1->op == TOKthis) { e = typeDotIdExp(loc, sd->type, ident); return e->semantic(sc); } } } } } UnaExp::semantic(sc); if (ident == Id::mangleof) { // symbol.mangleof Dsymbol *ds; switch (e1->op) { case TOKimport: ds = ((ScopeExp *)e1)->sds; goto L1; case TOKvar: ds = ((VarExp *)e1)->var; goto L1; case TOKdotvar: ds = ((DotVarExp *)e1)->var; goto L1; L1: char* s = ds->mangle(); e = new StringExp(loc, s, strlen(s), 'c'); e = e->semantic(sc); return e; } } if (e1->op == TOKdotexp) { DotExp *de = (DotExp *)e1; eleft = de->e1; eright = de->e2; } else { if (e1->op != TOKtype) e1 = resolveProperties(sc, e1); eleft = NULL; eright = e1; } #if DMDV2 if (e1->op == TOKtuple && ident == Id::offsetof) { /* 'distribute' the .offsetof to each of the tuple elements. */ TupleExp *te = (TupleExp *)e1; Expressions *exps = new Expressions(); exps->setDim(te->exps->dim); for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*te->exps)[i]; e = e->semantic(sc); e = new DotIdExp(e->loc, e, Id::offsetof); (*exps)[i] = e; } e = new TupleExp(loc, exps); e = e->semantic(sc); return e; } #endif if (e1->op == TOKtuple && ident == Id::length) { TupleExp *te = (TupleExp *)e1; e = new IntegerExp(loc, te->exps->dim, Type::tsize_t); return e; } if (e1->op == TOKdottd) { error("template %s does not have property %s", e1->toChars(), ident->toChars()); return new ErrorExp(); } if (!e1->type) { error("expression %s does not have property %s", e1->toChars(), ident->toChars()); return new ErrorExp(); } Type *t1b = e1->type->toBasetype(); if (eright->op == TOKimport) // also used for template alias's { ScopeExp *ie = (ScopeExp *)eright; /* Disable access to another module's private imports. * The check for 'is sds our current module' is because * the current module should have access to its own imports. */ Dsymbol *s = ie->sds->search(loc, ident, (ie->sds->isModule() && ie->sds != sc->module) ? 1 : 0); if (s) { /* Check for access before resolving aliases because public * aliases to private symbols are public. */ if (Declaration *d = s->isDeclaration()) accessCheck(loc, sc, 0, d); s = s->toAlias(); checkDeprecated(sc, s); EnumMember *em = s->isEnumMember(); if (em) { e = em->value; e = e->semantic(sc); return e; } VarDeclaration *v = s->isVarDeclaration(); if (v) { //printf("DotIdExp:: Identifier '%s' is a variable, type '%s'\n", toChars(), v->type->toChars()); if (v->inuse) { error("circular reference to '%s'", v->toChars()); return new ErrorExp(); } type = v->type; if (v->needThis()) { if (!eleft) eleft = new ThisExp(loc); e = new DotVarExp(loc, eleft, v); e = e->semantic(sc); } else { e = new VarExp(loc, v); if (eleft) { e = new CommaExp(loc, eleft, e); e->type = v->type; } } e = e->deref(); return e->semantic(sc); } FuncDeclaration *f = s->isFuncDeclaration(); if (f) { //printf("it's a function\n"); if (f->needThis()) { if (!eleft) eleft = new ThisExp(loc); e = new DotVarExp(loc, eleft, f); e = e->semantic(sc); } else { e = new VarExp(loc, f, 1); if (eleft) { e = new CommaExp(loc, eleft, e); e->type = f->type; } } return e; } #if DMDV2 OverloadSet *o = s->isOverloadSet(); if (o) { //printf("'%s' is an overload set\n", o->toChars()); return new OverExp(o); } #endif Type *t = s->getType(); if (t) { return new TypeExp(loc, t); } TupleDeclaration *tup = s->isTupleDeclaration(); if (tup) { if (eleft) { error("cannot have e.tuple"); return new ErrorExp(); } e = new TupleExp(loc, tup); e = e->semantic(sc); return e; } ScopeDsymbol *sds = s->isScopeDsymbol(); if (sds) { //printf("it's a ScopeDsymbol\n"); e = new ScopeExp(loc, sds); e = e->semantic(sc); if (eleft) e = new DotExp(loc, eleft, e); return e; } Import *imp = s->isImport(); if (imp) { ScopeExp *ie; ie = new ScopeExp(loc, imp->pkg); return ie->semantic(sc); } // BUG: handle other cases like in IdentifierExp::semantic() #ifdef DEBUG printf("s = '%s', kind = '%s'\n", s->toChars(), s->kind()); #endif assert(0); } else if (ident == Id::stringof) { char *s = ie->toChars(); e = new StringExp(loc, s, strlen(s), 'c'); e = e->semantic(sc); return e; } error("undefined identifier %s", toChars()); return new ErrorExp(); } else if (t1b->ty == Tpointer && ident != Id::init && ident != Id::__sizeof && ident != Id::__xalignof && ident != Id::offsetof && ident != Id::mangleof && ident != Id::stringof) { /* Rewrite: * p.ident * as: * (*p).ident */ e = new PtrExp(loc, e1); e->type = ((TypePointer *)t1b)->next; return e->type->dotExp(sc, e, ident); } #if DMDV2 else if ((t1b->ty == Tarray || t1b->ty == Tsarray || t1b->ty == Taarray) && ident != Id::sort && ident != Id::reverse && ident != Id::dup && ident != Id::idup) { /* If ident is not a valid property, rewrite: * e1.ident * as: * .ident(e1) */ unsigned errors = global.startGagging(); Type *t1 = e1->type; e = e1->type->dotExp(sc, e1, ident); if (global.endGagging(errors)) // if failed to find the property { e1->type = t1; // kludge to restore type e = new DotIdExp(loc, new IdentifierExp(loc, Id::empty), ident); e = new CallExp(loc, e, e1); } e = e->semantic(sc); return e; } #endif else { e = e1->type->dotExp(sc, e1, ident); if (!(flag && e->op == TOKdotti)) // let CallExp::semantic() handle this e = e->semantic(sc); return e; } } void DotIdExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { //printf("DotIdExp::toCBuffer()\n"); expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); buf->writestring(ident->toChars()); } /********************** DotTemplateExp ***********************************/ // Mainly just a placeholder DotTemplateExp::DotTemplateExp(Loc loc, Expression *e, TemplateDeclaration *td) : UnaExp(loc, TOKdottd, sizeof(DotTemplateExp), e) { this->td = td; } void DotTemplateExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); buf->writestring(td->toChars()); } /************************************************************/ DotVarExp::DotVarExp(Loc loc, Expression *e, Declaration *v, int hasOverloads) : UnaExp(loc, TOKdotvar, sizeof(DotVarExp), e) { //printf("DotVarExp()\n"); this->var = v; this->hasOverloads = hasOverloads; } Expression *DotVarExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("DotVarExp::semantic('%s')\n", toChars()); #endif if (!type) { var = var->toAlias()->isDeclaration(); TupleDeclaration *tup = var->isTupleDeclaration(); if (tup) { /* Replace: * e1.tuple(a, b, c) * with: * tuple(e1.a, e1.b, e1.c) */ Expressions *exps = new Expressions; Expression *ev = e1; exps->reserve(tup->objects->dim); for (size_t i = 0; i < tup->objects->dim; i++) { Object *o = tup->objects->tdata()[i]; if (o->dyncast() != DYNCAST_EXPRESSION) { error("%s is not an expression", o->toChars()); goto Lerr; } Expression *e = (Expression *)o; if (e->op != TOKdsymbol) { error("%s is not a member", e->toChars()); goto Lerr; } Dsymbol *s = ((DsymbolExp *)e)->s; if (i == 0 && sc->func && tup->objects->dim > 1 && e1->hasSideEffect()) { Identifier *id = Lexer::uniqueId("__tup"); ExpInitializer *ei = new ExpInitializer(e1->loc, e1); VarDeclaration *v = new VarDeclaration(e1->loc, NULL, id, ei); v->storage_class |= STCctfe | STCref | STCforeach; ev = new VarExp(e->loc, v); e = new CommaExp(e1->loc, new DeclarationExp(e1->loc, v), ev); e = new DotVarExp(loc, e, s->isDeclaration()); } else e = new DotVarExp(loc, ev, s->isDeclaration()); exps->push(e); } Expression *e = new TupleExp(loc, exps); e = e->semantic(sc); return e; } e1 = e1->semantic(sc); e1 = e1->addDtorHook(sc); type = var->type; if (!type && global.errors) { // var is goofed up, just return 0 return new ErrorExp(); } assert(type); Type *t1 = e1->type; if (!var->isFuncDeclaration()) // for functions, do checks after overload resolution { if (t1->ty == Tpointer) t1 = t1->nextOf(); type = type->addMod(t1->mod); Dsymbol *vparent = var->toParent(); AggregateDeclaration *ad = vparent ? vparent->isAggregateDeclaration() : NULL; e1 = getRightThis(loc, sc, ad, e1, var); if (!sc->noaccesscheck) accessCheck(loc, sc, e1, var); VarDeclaration *v = var->isVarDeclaration(); Expression *e = expandVar(WANTvalue, v); if (e) return e; } Dsymbol *s; if (sc->func && !sc->intypeof && t1->hasPointers() && (s = t1->toDsymbol(sc)) != NULL) { AggregateDeclaration *ad = s->isAggregateDeclaration(); if (ad && ad->hasUnions) { if (sc->func->setUnsafe()) { error("union %s containing pointers are not allowed in @safe functions", t1->toChars()); goto Lerr; } } } } //printf("-DotVarExp::semantic('%s')\n", toChars()); return this; Lerr: return new ErrorExp(); } #if DMDV2 int DotVarExp::isLvalue() { return 1; } #endif Expression *DotVarExp::toLvalue(Scope *sc, Expression *e) { //printf("DotVarExp::toLvalue(%s)\n", toChars()); return this; } /*********************************************** * Mark variable v as modified if it is inside a constructor that var * is a field in. */ void modifyFieldVar(Loc loc, Scope *sc, VarDeclaration *var, Expression *e1) { //printf("modifyFieldVar(var = %s)\n", var->toChars()); Dsymbol *s = sc->func; while (1) { FuncDeclaration *fd = NULL; if (s) fd = s->isFuncDeclaration(); if (fd && ((fd->isCtorDeclaration() && var->storage_class & STCfield) || (fd->isStaticCtorDeclaration() && !(var->storage_class & STCfield))) && fd->toParent2() == var->toParent2() && (!e1 || e1->op == TOKthis) ) { var->ctorinit = 1; //printf("setting ctorinit\n"); } else { if (s) { s = s->toParent2(); continue; } else if (var->storage_class & STCctorinit) { const char *p = var->isStatic() ? "static " : ""; error(loc, "can only initialize %sconst member %s inside %sconstructor", p, var->toChars(), p); } } break; } } Expression *DotVarExp::modifiableLvalue(Scope *sc, Expression *e) { #if 0 printf("DotVarExp::modifiableLvalue(%s)\n", toChars()); printf("e1->type = %s\n", e1->type->toChars()); printf("var->type = %s\n", var->type->toChars()); #endif Type *t1 = e1->type->toBasetype(); if (!t1->isMutable() || (t1->ty == Tpointer && !t1->nextOf()->isMutable()) || !var->type->isMutable() || !var->type->isAssignable() || var->storage_class & STCmanifest ) { if (var->isCtorinit()) { // It's only modifiable if inside the right constructor modifyFieldVar(loc, sc, var->isVarDeclaration(), e1); } else { error("cannot modify const/immutable/inout expression %s", toChars()); } } else if (var->storage_class & STCnodefaultctor) { modifyFieldVar(loc, sc, var->isVarDeclaration(), e1); } return this; } void DotVarExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); buf->writestring(var->toChars()); } /************************************************************/ /* Things like: * foo.bar!(args) */ DotTemplateInstanceExp::DotTemplateInstanceExp(Loc loc, Expression *e, Identifier *name, Objects *tiargs) : UnaExp(loc, TOKdotti, sizeof(DotTemplateInstanceExp), e) { //printf("DotTemplateInstanceExp()\n"); this->ti = new TemplateInstance(loc, name); this->ti->tiargs = tiargs; } Expression *DotTemplateInstanceExp::syntaxCopy() { DotTemplateInstanceExp *de = new DotTemplateInstanceExp(loc, e1->syntaxCopy(), ti->name, TemplateInstance::arraySyntaxCopy(ti->tiargs)); return de; } TemplateDeclaration *DotTemplateInstanceExp::getTempdecl(Scope *sc) { #if LOGSEMANTIC printf("DotTemplateInstanceExp::getTempdecl('%s')\n", toChars()); #endif if (!ti->tempdecl) { Expression *e = new DotIdExp(loc, e1, ti->name); e = e->semantic(sc); if (e->op == TOKdottd) { DotTemplateExp *dte = (DotTemplateExp *)e; ti->tempdecl = dte->td; } else if (e->op == TOKimport) { ScopeExp *se = (ScopeExp *)e; ti->tempdecl = se->sds->isTemplateDeclaration(); } } return ti->tempdecl; } Expression *DotTemplateInstanceExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("DotTemplateInstanceExp::semantic('%s')\n", toChars()); #endif Expression *eleft; Expression *e = new DotIdExp(loc, e1, ti->name); L1: e = e->semantic(sc); if (e->op == TOKerror) return e; if (e->op == TOKdottd) { if (global.errors) return new ErrorExp(); // TemplateInstance::semantic() will fail anyway DotTemplateExp *dte = (DotTemplateExp *)e; TemplateDeclaration *td = dte->td; eleft = dte->e1; ti->tempdecl = td; if (ti->needsTypeInference(sc)) { e1 = eleft; // save result of semantic() return this; } else ti->semantic(sc); if (!ti->inst) // if template failed to expand return new ErrorExp(); Dsymbol *s = ti->inst->toAlias(); Declaration *v = s->isDeclaration(); if (v) { /* Fix for Bugzilla 4003 * The problem is a class template member function v returning a reference to the same * type as the enclosing template instantiation. This results in a nested instantiation, * which of course gets short circuited. The return type then gets set to * the template instance type before instantiation, rather than after. * We can detect this by the deco not being set. If so, go ahead and retry * the return type semantic. * The offending code is the return type from std.typecons.Tuple.slice: * ref Tuple!(Types[from .. to]) slice(uint from, uint to)() * { * return *cast(typeof(return) *) &(field[from]); * } * and this line from the following unittest: * auto s = a.slice!(1, 3); * where s's type wound up not having semantic() run on it. */ if (v->type && !v->type->deco) v->type = v->type->semantic(v->loc, sc); e = new DotVarExp(loc, eleft, v); e = e->semantic(sc); return e; } e = new ScopeExp(loc, ti); e = new DotExp(loc, eleft, e); e = e->semantic(sc); return e; } else if (e->op == TOKimport) { ScopeExp *se = (ScopeExp *)e; TemplateDeclaration *td = se->sds->isTemplateDeclaration(); if (!td) { error("%s is not a template", e->toChars()); return new ErrorExp(); } ti->tempdecl = td; e = new ScopeExp(loc, ti); e = e->semantic(sc); return e; } else if (e->op == TOKdotexp) { DotExp *de = (DotExp *)e; if (de->e2->op == TOKoverloadset) { return e; } if (de->e2->op == TOKimport) { // This should *really* be moved to ScopeExp::semantic() ScopeExp *se = (ScopeExp *)de->e2; de->e2 = new DsymbolExp(loc, se->sds); de->e2 = de->e2->semantic(sc); } if (de->e2->op == TOKtemplate) { TemplateExp *te = (TemplateExp *) de->e2; e = new DotTemplateExp(loc,de->e1,te->td); } goto L1; } error("%s isn't a template", e->toChars()); return new ErrorExp(); } void DotTemplateInstanceExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); ti->toCBuffer(buf, hgs); } /************************************************************/ DelegateExp::DelegateExp(Loc loc, Expression *e, FuncDeclaration *f, int hasOverloads) : UnaExp(loc, TOKdelegate, sizeof(DelegateExp), e) { this->func = f; this->hasOverloads = hasOverloads; } Expression *DelegateExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("DelegateExp::semantic('%s')\n", toChars()); #endif if (!type) { m = sc->module; e1 = e1->semantic(sc); #if IN_LLVM // LDC we need a copy as we store the LLVM type in TypeFunction, // and delegate/members have different types for 'this' Type *funcType = func->type->syntaxCopy(); funcType->deco = func->type->deco; type = new TypeDelegate(funcType); #else type = new TypeDelegate(func->type); #endif type = type->semantic(loc, sc); AggregateDeclaration *ad = func->toParent()->isAggregateDeclaration(); if (func->needThis()) e1 = getRightThis(loc, sc, ad, e1, func); if (ad && ad->isClassDeclaration() && ad->type != e1->type) { // A downcast is required for interfaces, see Bugzilla 3706 e1 = new CastExp(loc, e1, ad->type); e1 = e1->semantic(sc); } } return this; } void DelegateExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writeByte('&'); if (!func->isNested()) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); } buf->writestring(func->toChars()); } /************************************************************/ DotTypeExp::DotTypeExp(Loc loc, Expression *e, Dsymbol *s) : UnaExp(loc, TOKdottype, sizeof(DotTypeExp), e) { this->sym = s; this->type = s->getType(); } Expression *DotTypeExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("DotTypeExp::semantic('%s')\n", toChars()); #endif UnaExp::semantic(sc); return this; } void DotTypeExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); buf->writestring(sym->toChars()); } /************************************************************/ CallExp::CallExp(Loc loc, Expression *e, Expressions *exps) : UnaExp(loc, TOKcall, sizeof(CallExp), e) { this->arguments = exps; this->f = NULL; } CallExp::CallExp(Loc loc, Expression *e) : UnaExp(loc, TOKcall, sizeof(CallExp), e) { this->arguments = NULL; } CallExp::CallExp(Loc loc, Expression *e, Expression *earg1) : UnaExp(loc, TOKcall, sizeof(CallExp), e) { Expressions *arguments = new Expressions(); if (earg1) { arguments->setDim(1); arguments->tdata()[0] = earg1; } this->arguments = arguments; } CallExp::CallExp(Loc loc, Expression *e, Expression *earg1, Expression *earg2) : UnaExp(loc, TOKcall, sizeof(CallExp), e) { Expressions *arguments = new Expressions(); arguments->setDim(2); arguments->tdata()[0] = earg1; arguments->tdata()[1] = earg2; this->arguments = arguments; } Expression *CallExp::syntaxCopy() { return new CallExp(loc, e1->syntaxCopy(), arraySyntaxCopy(arguments)); } Expression *CallExp::resolveUFCS(Scope *sc) { Expression *ethis = NULL; DotIdExp *dotid; DotTemplateInstanceExp *dotti; Identifier *ident; if (e1->op == TOKdot) { dotid = (DotIdExp *)e1; ident = dotid->ident; ethis = dotid->e1 = dotid->e1->semantic(sc); if (ethis->op == TOKdotexp) return NULL; ethis = resolveProperties(sc, ethis); } else if (e1->op == TOKdotti) { dotti = (DotTemplateInstanceExp *)e1; ident = dotti->ti->name; ethis = dotti->e1 = dotti->e1->semantic(sc); if (ethis->op == TOKdotexp) return NULL; ethis = resolveProperties(sc, ethis); } if (ethis && ethis->type) { AggregateDeclaration *ad; Lagain: Type *tthis = ethis->type->toBasetype(); if (tthis->ty == Tclass) { ad = ((TypeClass *)tthis)->sym; if (search_function(ad, ident)) return NULL; goto L1; } else if (tthis->ty == Tstruct) { ad = ((TypeStruct *)tthis)->sym; if (search_function(ad, ident)) return NULL; L1: if (ad->aliasthis) { ethis = new DotIdExp(ethis->loc, ethis, ad->aliasthis->ident); ethis = ethis->semantic(sc); ethis = resolveProperties(sc, ethis); goto Lagain; } } else if (tthis->ty == Taarray && e1->op == TOKdot) { if (ident == Id::remove) { /* Transform: * aa.remove(arg) into delete aa[arg] */ if (!arguments || arguments->dim != 1) { error("expected key as argument to aa.remove()"); return new ErrorExp(); } Expression *key = arguments->tdata()[0]; key = key->semantic(sc); key = resolveProperties(sc, key); if (!key->rvalue()) return new ErrorExp(); TypeAArray *taa = (TypeAArray *)tthis; key = key->implicitCastTo(sc, taa->index); return new RemoveExp(loc, ethis, key); } else if (ident == Id::apply || ident == Id::applyReverse) { return NULL; } else { TypeAArray *taa = (TypeAArray *)tthis; assert(taa->ty == Taarray); StructDeclaration *sd = taa->getImpl(); Dsymbol *s = sd->search(0, ident, 2); if (s) return NULL; goto Lshift; } } else if (tthis->ty == Tarray || tthis->ty == Tsarray) { Lshift: if (!arguments) arguments = new Expressions(); arguments->shift(ethis); if (e1->op == TOKdot) { /* Transform: * array.id(args) into .id(array,args) */ #if DMDV2 e1 = new DotIdExp(dotid->loc, new IdentifierExp(dotid->loc, Id::empty), ident); #else e1 = new IdentifierExp(dotid->loc, ident); #endif } else if (e1->op == TOKdotti) { /* Transform: * array.foo!(tiargs)(args) into .foo!(tiargs)(array,args) */ #if DMDV2 e1 = new DotTemplateInstanceExp(dotti->loc, new IdentifierExp(dotti->loc, Id::empty), dotti->ti->name, dotti->ti->tiargs); #else e1 = new ScopeExp(dotti->loc, dotti->ti); #endif } //printf("-> this = %s\n", toChars()); } } return NULL; } Expression *CallExp::semantic(Scope *sc) { TypeFunction *tf; Type *t1; int istemp; Objects *targsi = NULL; // initial list of template arguments TemplateInstance *tierror = NULL; Expression *ethis = NULL; #if LOGSEMANTIC printf("CallExp::semantic() %s\n", toChars()); #endif if (type) return this; // semantic() already run #if 0 if (arguments && arguments->dim) { Expression *earg = arguments->tdata()[0]; earg->print(); if (earg->type) earg->type->print(); } #endif if (e1->op == TOKcomma) { /* Rewrite (a,b)(args) as (a,(b(args))) */ CommaExp *ce = (CommaExp *)e1; e1 = ce->e2; e1->type = ce->type; ce->e2 = this; ce->type = NULL; return ce->semantic(sc); } if (e1->op == TOKdelegate) { DelegateExp *de = (DelegateExp *)e1; e1 = new DotVarExp(de->loc, de->e1, de->func); return semantic(sc); } if (e1->op == TOKfunction) { FuncExp *fe = (FuncExp *)e1; arguments = arrayExpressionSemantic(arguments, sc); preFunctionParameters(loc, sc, arguments); e1 = fe->semantic(sc, arguments); if (e1->op == TOKerror) return e1; } Expression *e = resolveUFCS(sc); if (e) return e; #if 1 /* This recognizes: * foo!(tiargs)(funcargs) */ if (e1->op == TOKimport && !e1->type) { ScopeExp *se = (ScopeExp *)e1; TemplateInstance *ti = se->sds->isTemplateInstance(); if (ti && !ti->semanticRun) { /* Attempt to instantiate ti. If that works, go with it. * If not, go with partial explicit specialization. */ ti->semanticTiargs(sc); if (ti->needsTypeInference(sc)) { /* Go with partial explicit specialization */ targsi = ti->tiargs; tierror = ti; // for error reporting e1 = new IdentifierExp(loc, ti->name); } else { ti->semantic(sc); } } } /* This recognizes: * expr.foo!(tiargs)(funcargs) */ Ldotti: if (e1->op == TOKdotti && !e1->type) { DotTemplateInstanceExp *se = (DotTemplateInstanceExp *)e1; TemplateInstance *ti = se->ti; if (!ti->semanticRun) { /* Attempt to instantiate ti. If that works, go with it. * If not, go with partial explicit specialization. */ ti->semanticTiargs(sc); #if 0 Expression *etmp = e1->trySemantic(sc); if (etmp) e1 = etmp; // it worked else // didn't work { targsi = ti->tiargs; tierror = ti; // for error reporting e1 = new DotIdExp(loc, se->e1, ti->name); } #else if (!ti->tempdecl) { se->getTempdecl(sc); } if (ti->tempdecl && ti->needsTypeInference(sc)) { /* Go with partial explicit specialization */ targsi = ti->tiargs; tierror = ti; // for error reporting e1 = new DotIdExp(loc, se->e1, ti->name); } else { e1 = e1->semantic(sc); } #endif } } #endif istemp = 0; Lagain: //printf("Lagain: %s\n", toChars()); f = NULL; if (e1->op == TOKthis || e1->op == TOKsuper) { // semantic() run later for these } else { if (e1->op == TOKdot) { DotIdExp *die = (DotIdExp *)e1; e1 = die->semantic(sc, 1); /* Look for e1 having been rewritten to expr.opDispatch!(string) * We handle such earlier, so go back. * Note that in the rewrite, we carefully did not run semantic() on e1 */ if (e1->op == TOKdotti && !e1->type) { goto Ldotti; } } else { static int nest; if (++nest > 500) { error("recursive evaluation of %s", toChars()); --nest; return new ErrorExp(); } UnaExp::semantic(sc); --nest; } /* Look for e1 being a lazy parameter */ if (e1->op == TOKvar) { VarExp *ve = (VarExp *)e1; if (ve->var->storage_class & STClazy) { // lazy paramaters can be called without violating purity and safety TypeFunction *tf = new TypeFunction(NULL, ve->var->type, 0, LINKd, STCsafe | STCpure); TypeDelegate *t = new TypeDelegate(tf); ve->type = t->semantic(loc, sc); } } if (e1->op == TOKimport) { // Perhaps this should be moved to ScopeExp::semantic() ScopeExp *se = (ScopeExp *)e1; e1 = new DsymbolExp(loc, se->sds); e1 = e1->semantic(sc); } else if (e1->op == TOKsymoff && ((SymOffExp *)e1)->hasOverloads) { SymOffExp *se = (SymOffExp *)e1; e1 = new VarExp(se->loc, se->var, 1); e1 = e1->semantic(sc); } #if 1 // patch for #540 by Oskar Linde else if (e1->op == TOKdotexp) { DotExp *de = (DotExp *) e1; if (de->e2->op == TOKoverloadset) { ethis = de->e1; e1 = de->e2; } if (de->e2->op == TOKimport) { // This should *really* be moved to ScopeExp::semantic() ScopeExp *se = (ScopeExp *)de->e2; de->e2 = new DsymbolExp(loc, se->sds); de->e2 = de->e2->semantic(sc); } if (de->e2->op == TOKtemplate) { TemplateExp *te = (TemplateExp *) de->e2; e1 = new DotTemplateExp(loc,de->e1,te->td); } } #endif } t1 = NULL; if (e1->type) t1 = e1->type->toBasetype(); // Check for call operator overload if (t1) { AggregateDeclaration *ad; if (t1->ty == Tstruct) { ad = ((TypeStruct *)t1)->sym; #if DMDV2 // First look for constructor if (ad->ctor && arguments && arguments->dim) { // Create variable that will get constructed Identifier *idtmp = Lexer::uniqueId("__ctmp"); VarDeclaration *tmp = new VarDeclaration(loc, t1, idtmp, NULL); tmp->storage_class |= STCctfe; Expression *av = new DeclarationExp(loc, tmp); av = new CommaExp(loc, av, new VarExp(loc, tmp)); Expression *e; CtorDeclaration *cf = ad->ctor->isCtorDeclaration(); if (cf) e = new DotVarExp(loc, av, cf, 1); else { TemplateDeclaration *td = ad->ctor->isTemplateDeclaration(); assert(td); e = new DotTemplateExp(loc, av, td); } e = new CallExp(loc, e, arguments); #if !STRUCTTHISREF /* Constructors return a pointer to the instance */ e = new PtrExp(loc, e); #endif e = e->semantic(sc); return e; } #endif // No constructor, look for overload of opCall if (search_function(ad, Id::call)) goto L1; // overload of opCall, therefore it's a call if (e1->op != TOKtype) { error("%s %s does not overload ()", ad->kind(), ad->toChars()); return new ErrorExp(); } /* It's a struct literal */ Expression *e = new StructLiteralExp(loc, (StructDeclaration *)ad, arguments, e1->type); e = e->semantic(sc); return e; } else if (t1->ty == Tclass) { ad = ((TypeClass *)t1)->sym; goto L1; L1: // Rewrite as e1.call(arguments) Expression *e = new DotIdExp(loc, e1, Id::call); e = new CallExp(loc, e, arguments); e = e->semantic(sc); return e; } } arguments = arrayExpressionSemantic(arguments, sc); preFunctionParameters(loc, sc, arguments); // If there was an error processing any argument, or the call, // return an error without trying to resolve the function call. if (arguments && arguments->dim) { for (size_t k = 0; k < arguments->dim; k++) { Expression *checkarg = arguments->tdata()[k]; if (checkarg->op == TOKerror) return checkarg; } } if (e1->op == TOKerror) return e1; if (e1->op == TOKdotvar && t1->ty == Tfunction || e1->op == TOKdottd) { DotVarExp *dve; DotTemplateExp *dte; AggregateDeclaration *ad; UnaExp *ue = (UnaExp *)(e1); if (e1->op == TOKdotvar) { // Do overload resolution dve = (DotVarExp *)(e1); f = dve->var->isFuncDeclaration(); assert(f); f = f->overloadResolve(loc, ue->e1, arguments); ad = f->toParent()->isAggregateDeclaration(); } else { dte = (DotTemplateExp *)(e1); TemplateDeclaration *td = dte->td; assert(td); if (!arguments) // Should fix deduceFunctionTemplate() so it works on NULL argument arguments = new Expressions(); f = td->deduceFunctionTemplate(sc, loc, targsi, ue->e1, arguments); if (!f) return new ErrorExp(); ad = td->toParent()->isAggregateDeclaration(); } if (f->needThis()) { ue->e1 = getRightThis(loc, sc, ad, ue->e1, f); ethis = ue->e1; } /* Cannot call public functions from inside invariant * (because then the invariant would have infinite recursion) */ if (sc->func && sc->func->isInvariantDeclaration() && ue->e1->op == TOKthis && f->addPostInvariant() ) { error("cannot call public/export function %s from invariant", f->toChars()); return new ErrorExp(); } checkDeprecated(sc, f); #if DMDV2 checkPurity(sc, f); checkSafety(sc, f); #endif accessCheck(loc, sc, ue->e1, f); if (!f->needThis()) { VarExp *ve = new VarExp(loc, f); if ((ue->e1)->op == TOKtype) // just a FQN e1 = ve; else // things like (new Foo).bar() e1 = new CommaExp(loc, ue->e1, ve); e1->type = f->type; } else { if (e1->op == TOKdotvar) { dve->var = f; e1->type = f->type; } else { e1 = new DotVarExp(loc, dte->e1, f); e1 = e1->semantic(sc); } #if 0 printf("ue->e1 = %s\n", ue->e1->toChars()); printf("f = %s\n", f->toChars()); printf("t = %s\n", t->toChars()); printf("e1 = %s\n", e1->toChars()); printf("e1->type = %s\n", e1->type->toChars()); #endif // Const member function can take const/immutable/mutable/inout this if (!(f->type->isConst())) { // Check for const/immutable compatibility Type *tthis = ue->e1->type->toBasetype(); if (tthis->ty == Tpointer) tthis = tthis->nextOf()->toBasetype(); #if 0 // this checking should have been already done if (f->type->isImmutable()) { if (tthis->mod != MODimmutable) error("%s can only be called with an immutable object", e1->toChars()); } else if (f->type->isShared()) { if (tthis->mod != MODimmutable && tthis->mod != MODshared && tthis->mod != (MODshared | MODconst)) error("shared %s can only be called with a shared or immutable object", e1->toChars()); } else { if (tthis->mod != 0) { //printf("mod = %x\n", tthis->mod); error("%s can only be called with a mutable object, not %s", e1->toChars(), tthis->toChars()); } } #endif /* Cannot call mutable method on a final struct */ if (tthis->ty == Tstruct && ue->e1->op == TOKvar) { VarExp *v = (VarExp *)ue->e1; if (v->var->storage_class & STCfinal) error("cannot call mutable method on final struct"); } } // See if we need to adjust the 'this' pointer AggregateDeclaration *ad = f->isThis(); ClassDeclaration *cd = ue->e1->type->isClassHandle(); if (ad && cd && ad->isClassDeclaration() && ad != cd && ue->e1->op != TOKsuper) { ue->e1 = ue->e1->castTo(sc, ad->type); //new CastExp(loc, ue->e1, ad->type); ue->e1 = ue->e1->semantic(sc); } } t1 = e1->type; } else if (e1->op == TOKsuper) { // Base class constructor call ClassDeclaration *cd = NULL; if (sc->func) cd = sc->func->toParent()->isClassDeclaration(); if (!cd || !cd->baseClass || !sc->func->isCtorDeclaration()) { error("super class constructor call must be in a constructor"); return new ErrorExp(); } else { if (!cd->baseClass->ctor) { error("no super class constructor for %s", cd->baseClass->toChars()); return new ErrorExp(); } else { if (!sc->intypeof) { #if 0 if (sc->callSuper & (CSXthis | CSXsuper)) error("reference to this before super()"); #endif if (sc->noctor || sc->callSuper & CSXlabel) error("constructor calls not allowed in loops or after labels"); if (sc->callSuper & (CSXsuper_ctor | CSXthis_ctor)) error("multiple constructor calls"); sc->callSuper |= CSXany_ctor | CSXsuper_ctor; } f = resolveFuncCall(sc, loc, cd->baseClass->ctor, NULL, NULL, arguments, 0); accessCheck(loc, sc, NULL, f); checkDeprecated(sc, f); #if DMDV2 checkPurity(sc, f); checkSafety(sc, f); #endif e1 = new DotVarExp(e1->loc, e1, f); e1 = e1->semantic(sc); t1 = e1->type; } } } else if (e1->op == TOKthis) { // same class constructor call AggregateDeclaration *cd = NULL; if (sc->func) cd = sc->func->toParent()->isAggregateDeclaration(); if (!cd || !sc->func->isCtorDeclaration()) { error("constructor call must be in a constructor"); return new ErrorExp(); } else { if (!sc->intypeof) { #if 0 if (sc->callSuper & (CSXthis | CSXsuper)) error("reference to this before super()"); #endif if (sc->noctor || sc->callSuper & CSXlabel) error("constructor calls not allowed in loops or after labels"); if (sc->callSuper & (CSXsuper_ctor | CSXthis_ctor)) error("multiple constructor calls"); sc->callSuper |= CSXany_ctor | CSXthis_ctor; } f = resolveFuncCall(sc, loc, cd->ctor, NULL, NULL, arguments, 0); checkDeprecated(sc, f); #if DMDV2 checkPurity(sc, f); checkSafety(sc, f); #endif e1 = new DotVarExp(e1->loc, e1, f); e1 = e1->semantic(sc); t1 = e1->type; // BUG: this should really be done by checking the static // call graph if (f == sc->func) { error("cyclic constructor call"); return new ErrorExp(); } } } else if (e1->op == TOKoverloadset) { OverExp *eo = (OverExp *)e1; FuncDeclaration *f = NULL; Dsymbol *s = NULL; for (size_t i = 0; i < eo->vars->a.dim; i++) { s = eo->vars->a.tdata()[i]; FuncDeclaration *f2 = s->isFuncDeclaration(); if (f2) { f2 = f2->overloadResolve(loc, ethis, arguments, 1); } else { TemplateDeclaration *td = s->isTemplateDeclaration(); assert(td); f2 = td->deduceFunctionTemplate(sc, loc, targsi, ethis, arguments, 1); } if (f2) { if (f) /* Error if match in more than one overload set, * even if one is a 'better' match than the other. */ ScopeDsymbol::multiplyDefined(loc, f, f2); else f = f2; } } if (!f) { /* No overload matches */ error("no overload matches for %s", s->toChars()); return new ErrorExp(); } if (ethis) e1 = new DotVarExp(loc, ethis, f); else e1 = new VarExp(loc, f); goto Lagain; } else if (!t1) { error("function expected before (), not '%s'", e1->toChars()); return new ErrorExp(); } else if (t1->ty != Tfunction) { if (t1->ty == Tdelegate) { TypeDelegate *td = (TypeDelegate *)t1; assert(td->next->ty == Tfunction); tf = (TypeFunction *)(td->next); if (sc->func && !tf->purity && !(sc->flags & SCOPEdebug)) { if (sc->func->setImpure()) error("pure function '%s' cannot call impure delegate '%s'", sc->func->toChars(), e1->toChars()); } if (sc->func && tf->trust <= TRUSTsystem) { if (sc->func->setUnsafe()) error("safe function '%s' cannot call system delegate '%s'", sc->func->toChars(), e1->toChars()); } goto Lcheckargs; } else if (t1->ty == Tpointer && ((TypePointer *)t1)->next->ty == Tfunction) { Expression *e = new PtrExp(loc, e1); t1 = ((TypePointer *)t1)->next; if (sc->func && !((TypeFunction *)t1)->purity && !(sc->flags & SCOPEdebug)) { if (sc->func->setImpure()) error("pure function '%s' cannot call impure function pointer '%s'", sc->func->toChars(), e1->toChars()); } if (sc->func && ((TypeFunction *)t1)->trust <= TRUSTsystem) { if (sc->func->setUnsafe()) error("safe function '%s' cannot call system function pointer '%s'", sc->func->toChars(), e1->toChars()); } e->type = t1; e1 = e; } else if (e1->op == TOKtemplate) { TemplateExp *te = (TemplateExp *)e1; f = te->td->deduceFunctionTemplate(sc, loc, targsi, NULL, arguments); if (!f) { if (tierror) tierror->error("errors instantiating template"); // give better error message return new ErrorExp(); } if (f->needThis() && hasThis(sc)) { // Supply an implicit 'this', as in // this.ident e1 = new DotTemplateExp(loc, (new ThisExp(loc))->semantic(sc), te->td); goto Lagain; } e1 = new VarExp(loc, f); goto Lagain; } else { error("function expected before (), not %s of type %s", e1->toChars(), e1->type->toChars()); return new ErrorExp(); } } else if (e1->op == TOKvar) { // Do overload resolution VarExp *ve = (VarExp *)e1; f = ve->var->isFuncDeclaration(); assert(f); if (ve->hasOverloads) f = f->overloadResolve(loc, NULL, arguments); checkDeprecated(sc, f); #if DMDV2 checkPurity(sc, f); checkSafety(sc, f); #endif f->checkNestedReference(sc, loc); if (f->needThis() && hasThis(sc)) { // Supply an implicit 'this', as in // this.ident e1 = new DotVarExp(loc, new ThisExp(loc), f); goto Lagain; } accessCheck(loc, sc, NULL, f); ethis = NULL; ve->var = f; // ve->hasOverloads = 0; ve->type = f->type; t1 = f->type; } assert(t1->ty == Tfunction); tf = (TypeFunction *)(t1); Lcheckargs: assert(tf->ty == Tfunction); if (!arguments) arguments = new Expressions(); int olderrors = global.errors; type = functionParameters(loc, sc, tf, ethis, arguments, f); if (olderrors != global.errors) return new ErrorExp(); if (!type) { error("forward reference to inferred return type of function call %s", toChars()); return new ErrorExp(); } if (f && f->tintro) { Type *t = type; int offset = 0; TypeFunction *tf = (TypeFunction *)f->tintro; if (tf->next->isBaseOf(t, &offset) && offset) { type = tf->next; return castTo(sc, t); } } return this; } #if DMDV2 int CallExp::isLvalue() { // if (type->toBasetype()->ty == Tstruct) // return 1; Type *tb = e1->type->toBasetype(); if (tb->ty == Tfunction && ((TypeFunction *)tb)->isref) return 1; // function returns a reference return 0; } #endif Expression *CallExp::toLvalue(Scope *sc, Expression *e) { if (isLvalue()) return this; return Expression::toLvalue(sc, e); } Expression *CallExp::addDtorHook(Scope *sc) { /* Only need to add dtor hook if it's a type that needs destruction. * Use same logic as VarDeclaration::callScopeDtor() */ if (e1->type && e1->type->ty == Tfunction) { TypeFunction *tf = (TypeFunction *)e1->type; if (tf->isref) return this; } Type *tv = type->toBasetype(); while (tv->ty == Tsarray) { TypeSArray *ta = (TypeSArray *)tv; tv = tv->nextOf()->toBasetype(); } if (tv->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tv; StructDeclaration *sd = ts->sym; if (sd->dtor) { /* Type needs destruction, so declare a tmp * which the back end will recognize and call dtor on */ Identifier *idtmp = Lexer::uniqueId("__tmpfordtor"); VarDeclaration *tmp = new VarDeclaration(loc, type, idtmp, new ExpInitializer(loc, this)); tmp->storage_class |= STCctfe; Expression *ae = new DeclarationExp(loc, tmp); Expression *e = new CommaExp(loc, ae, new VarExp(loc, tmp)); e = e->semantic(sc); return e; } } Lnone: return this; } void CallExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (e1->op == TOKtype) /* Avoid parens around type to prevent forbidden cast syntax: * (sometype)(arg1) * This is ok since types in constructor calls * can never depend on parens anyway */ e1->toCBuffer(buf, hgs); else expToCBuffer(buf, hgs, e1, precedence[op]); buf->writeByte('('); argsToCBuffer(buf, arguments, hgs); buf->writeByte(')'); } /************************************************************/ AddrExp::AddrExp(Loc loc, Expression *e) : UnaExp(loc, TOKaddress, sizeof(AddrExp), e) { #if IN_LLVM m = NULL; #endif } Expression *AddrExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("AddrExp::semantic('%s')\n", toChars()); #endif if (!type) { #if IN_LLVM m = sc->module; #endif UnaExp::semantic(sc); if (e1->type == Type::terror) return new ErrorExp(); e1 = e1->toLvalue(sc, NULL); if (e1->op == TOKerror) return e1; if (!e1->type) { error("cannot take address of %s", e1->toChars()); return new ErrorExp(); } if (!e1->type->deco) { /* No deco means semantic() was not run on the type. * We have to run semantic() on the symbol to get the right type: * auto x = &bar; * pure: int bar() { return 1;} * otherwise the 'pure' is missing from the type assigned to x. */ error("forward reference to %s", e1->toChars()); return new ErrorExp(); } type = e1->type->pointerTo(); // See if this should really be a delegate if (e1->op == TOKdotvar) { DotVarExp *dve = (DotVarExp *)e1; FuncDeclaration *f = dve->var->isFuncDeclaration(); if (f) { if (!dve->hasOverloads) f->tookAddressOf++; Expression *e = new DelegateExp(loc, dve->e1, f, dve->hasOverloads); e = e->semantic(sc); return e; } } else if (e1->op == TOKvar) { VarExp *ve = (VarExp *)e1; VarDeclaration *v = ve->var->isVarDeclaration(); if (v) { if (!v->canTakeAddressOf()) { error("cannot take address of %s", e1->toChars()); return new ErrorExp(); } if (sc->func && !sc->intypeof && !v->isDataseg()) { if (sc->func->setUnsafe()) { error("cannot take address of %s %s in @safe function %s", v->isParameter() ? "parameter" : "local", v->toChars(), sc->func->toChars()); } } } FuncDeclaration *f = ve->var->isFuncDeclaration(); if (f) { #if IN_LLVM if (f->isIntrinsic()) { error("cannot take the address of intrinsic function %s", e1->toChars()); return this; } #endif if (!ve->hasOverloads || /* Because nested functions cannot be overloaded, * mark here that we took its address because castTo() * may not be called with an exact match. */ f->toParent2()->isFuncDeclaration()) f->tookAddressOf++; if (f->isNested()) { Expression *e = new DelegateExp(loc, e1, f, ve->hasOverloads); e = e->semantic(sc); return e; } if (f->needThis() && hasThis(sc)) { /* Should probably supply 'this' after overload resolution, * not before. */ Expression *ethis = new ThisExp(loc); Expression *e = new DelegateExp(loc, ethis, f, ve->hasOverloads); e = e->semantic(sc); return e; } } } return optimize(WANTvalue); } return this; } void AddrExp::checkEscape() { e1->checkEscapeRef(); } /************************************************************/ PtrExp::PtrExp(Loc loc, Expression *e) : UnaExp(loc, TOKstar, sizeof(PtrExp), e) { // if (e->type) // type = ((TypePointer *)e->type)->next; } PtrExp::PtrExp(Loc loc, Expression *e, Type *t) : UnaExp(loc, TOKstar, sizeof(PtrExp), e) { type = t; } Expression *PtrExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("PtrExp::semantic('%s')\n", toChars()); #endif if (!type) { Expression *e = op_overload(sc); if (e) return e; Type *tb = e1->type->toBasetype(); switch (tb->ty) { case Tpointer: type = ((TypePointer *)tb)->next; break; case Tsarray: case Tarray: if (!global.params.useDeprecated) error("using * on an array is deprecated; use *(%s).ptr instead", e1->toChars()); type = ((TypeArray *)tb)->next; e1 = e1->castTo(sc, type->pointerTo()); break; default: error("can only * a pointer, not a '%s'", e1->type->toChars()); case Terror: return new ErrorExp(); } if (!rvalue()) return new ErrorExp(); } return this; } #if DMDV2 int PtrExp::isLvalue() { return 1; } #endif void PtrExp::checkEscapeRef() { e1->checkEscape(); } Expression *PtrExp::toLvalue(Scope *sc, Expression *e) { #if 0 tym = tybasic(e1->ET->Tty); if (!(tyscalar(tym) || tym == TYstruct || tym == TYarray && e->Eoper == TOKaddr)) synerr(EM_lvalue); // lvalue expected #endif return this; } #if DMDV2 Expression *PtrExp::modifiableLvalue(Scope *sc, Expression *e) { //printf("PtrExp::modifiableLvalue() %s, type %s\n", toChars(), type->toChars()); if (e1->op == TOKsymoff) { SymOffExp *se = (SymOffExp *)e1; se->var->checkModify(loc, sc, type); //return toLvalue(sc, e); } return Expression::modifiableLvalue(sc, e); } #endif void PtrExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writeByte('*'); expToCBuffer(buf, hgs, e1, precedence[op]); } /************************************************************/ NegExp::NegExp(Loc loc, Expression *e) : UnaExp(loc, TOKneg, sizeof(NegExp), e) { } Expression *NegExp::semantic(Scope *sc) { Expression *e; #if LOGSEMANTIC printf("NegExp::semantic('%s')\n", toChars()); #endif if (!type) { e = op_overload(sc); if (e) return e; e1->checkNoBool(); if (!e1->isArrayOperand()) e1->checkArithmetic(); type = e1->type; } return this; } /************************************************************/ UAddExp::UAddExp(Loc loc, Expression *e) : UnaExp(loc, TOKuadd, sizeof(UAddExp), e) { } Expression *UAddExp::semantic(Scope *sc) { Expression *e; #if LOGSEMANTIC printf("UAddExp::semantic('%s')\n", toChars()); #endif assert(!type); e = op_overload(sc); if (e) return e; e1->checkNoBool(); e1->checkArithmetic(); return e1; } /************************************************************/ ComExp::ComExp(Loc loc, Expression *e) : UnaExp(loc, TOKtilde, sizeof(ComExp), e) { } Expression *ComExp::semantic(Scope *sc) { Expression *e; if (!type) { e = op_overload(sc); if (e) return e; e1->checkNoBool(); if (!e1->isArrayOperand()) e1 = e1->checkIntegral(); type = e1->type; } return this; } /************************************************************/ NotExp::NotExp(Loc loc, Expression *e) : UnaExp(loc, TOKnot, sizeof(NotExp), e) { } Expression *NotExp::semantic(Scope *sc) { if (!type) { // Note there is no operator overload UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); e1 = e1->checkToBoolean(sc); type = Type::tboolean; } return this; } int NotExp::isBit() { return TRUE; } /************************************************************/ BoolExp::BoolExp(Loc loc, Expression *e, Type *t) : UnaExp(loc, TOKtobool, sizeof(BoolExp), e) { type = t; } Expression *BoolExp::semantic(Scope *sc) { if (!type) { // Note there is no operator overload UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); e1 = e1->checkToBoolean(sc); type = Type::tboolean; } return this; } int BoolExp::isBit() { return TRUE; } /************************************************************/ DeleteExp::DeleteExp(Loc loc, Expression *e) : UnaExp(loc, TOKdelete, sizeof(DeleteExp), e) { } Expression *DeleteExp::semantic(Scope *sc) { Type *tb; UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); e1 = e1->modifiableLvalue(sc, NULL); if (e1->op == TOKerror) return e1; type = Type::tvoid; tb = e1->type->toBasetype(); switch (tb->ty) { case Tclass: { TypeClass *tc = (TypeClass *)tb; ClassDeclaration *cd = tc->sym; if (cd->isCOMinterface()) { /* Because COM classes are deleted by IUnknown.Release() */ error("cannot delete instance of COM interface %s", cd->toChars()); } break; } case Tpointer: tb = ((TypePointer *)tb)->next->toBasetype(); if (tb->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tb; StructDeclaration *sd = ts->sym; FuncDeclaration *f = sd->aggDelete; FuncDeclaration *fd = sd->dtor; if (!f && !fd) break; /* Construct: * ea = copy e1 to a tmp to do side effects only once * eb = call destructor * ec = call deallocator */ Expression *ea = NULL; Expression *eb = NULL; Expression *ec = NULL; VarDeclaration *v; if (fd && f) { Identifier *id = Lexer::idPool("__tmp"); v = new VarDeclaration(loc, e1->type, id, new ExpInitializer(loc, e1)); v->semantic(sc); v->parent = sc->parent; ea = new DeclarationExp(loc, v); ea->type = v->type; } if (fd) { Expression *e = ea ? new VarExp(loc, v) : e1; e = new DotVarExp(0, e, fd, 0); eb = new CallExp(loc, e); eb = eb->semantic(sc); } if (f) { Type *tpv = Type::tvoid->pointerTo(); Expression *e = ea ? new VarExp(loc, v) : e1->castTo(sc, tpv); e = new CallExp(loc, new VarExp(loc, f), e); ec = e->semantic(sc); } ea = combine(ea, eb); ea = combine(ea, ec); assert(ea); return ea; } break; case Tarray: /* BUG: look for deleting arrays of structs with dtors. */ break; default: if (e1->op == TOKindex) { IndexExp *ae = (IndexExp *)(e1); Type *tb1 = ae->e1->type->toBasetype(); if (tb1->ty == Taarray) break; } error("cannot delete type %s", e1->type->toChars()); return new ErrorExp(); } if (e1->op == TOKindex) { IndexExp *ae = (IndexExp *)(e1); Type *tb1 = ae->e1->type->toBasetype(); if (tb1->ty == Taarray) { if (!global.params.useDeprecated) error("delete aa[key] deprecated, use aa.remove(key)"); } } return this; } Expression *DeleteExp::checkToBoolean(Scope *sc) { error("delete does not give a boolean result"); return new ErrorExp(); } void DeleteExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("delete "); expToCBuffer(buf, hgs, e1, precedence[op]); } /************************************************************/ CastExp::CastExp(Loc loc, Expression *e, Type *t) : UnaExp(loc, TOKcast, sizeof(CastExp), e) { to = t; this->mod = ~0; #if IN_LLVM disableOptimization = false; #endif } #if DMDV2 /* For cast(const) and cast(immutable) */ CastExp::CastExp(Loc loc, Expression *e, unsigned mod) : UnaExp(loc, TOKcast, sizeof(CastExp), e) { to = NULL; this->mod = mod; #if IN_LLVM disableOptimization = false; #endif } #endif Expression *CastExp::syntaxCopy() { return to ? new CastExp(loc, e1->syntaxCopy(), to->syntaxCopy()) : new CastExp(loc, e1->syntaxCopy(), mod); } Expression *CastExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("CastExp::semantic('%s')\n", toChars()); #endif //static int x; assert(++x < 10); if (type) return this; UnaExp::semantic(sc); if (e1->type) // if not a tuple { e1 = resolveProperties(sc, e1); if (!to) { /* Handle cast(const) and cast(immutable), etc. */ to = e1->type->castMod(mod); } else to = to->semantic(loc, sc); if (!to->equals(e1->type)) { #if 0 // attempt at fixing 6720 if (e1->type->ty == Tvoid) { error("cannot cast from void to %s", to->toChars()); return new ErrorExp(); } #endif Expression *e = op_overload(sc); if (e) { return e->implicitCastTo(sc, to); } } if (e1->op == TOKtemplate) { error("cannot cast template %s to type %s", e1->toChars(), to->toChars()); return new ErrorExp(); } Type *t1b = e1->type->toBasetype(); Type *tob = to->toBasetype(); if (e1->op == TOKfunction && (tob->ty == Tdelegate || tob->ty == Tpointer && tob->nextOf()->ty == Tfunction)) { FuncExp *fe = (FuncExp *)e1; Expression *e = NULL; if (e1->type == Type::tvoid) { e = fe->inferType(sc, tob); } else if (e1->type->ty == Tpointer && e1->type->nextOf()->ty == Tfunction && fe->tok == TOKreserved && tob->ty == Tdelegate) { if (fe->implicitConvTo(tob)) e = fe->castTo(sc, tob); } if (e) e1 = e->semantic(sc); } if (tob->ty == Tstruct && !tob->equals(t1b) ) { /* Look to replace: * cast(S)t * with: * S(t) */ // Rewrite as to.call(e1) Expression *e = new TypeExp(loc, to); e = new CallExp(loc, e, e1); e = e->trySemantic(sc); if (e) return e; } // Struct casts are possible only when the sizes match // Same with static array -> static array if (tob->ty == Tstruct || t1b->ty == Tstruct || (tob->ty == Tsarray && t1b->ty == Tsarray)) { size_t fromsize = t1b->size(loc); size_t tosize = tob->size(loc); if (fromsize != tosize) { error("cannot cast from %s to %s", e1->type->toChars(), to->toChars()); return new ErrorExp(); } } // Look for casting to a vector type if (tob->ty == Tvector && t1b->ty != Tvector) { return new VectorExp(loc, e1, to); } } else if (!to) { error("cannot cast tuple"); return new ErrorExp(); } if (!e1->type) { error("cannot cast %s", e1->toChars()); return new ErrorExp(); } // Check for unsafe casts if (sc->func && !sc->intypeof) { // Disallow unsafe casts Type *tob = to->toBasetype(); Type *t1b = e1->type->toBasetype(); // Implicit conversions are always safe if (t1b->implicitConvTo(tob)) goto Lsafe; if (!t1b->isMutable() && tob->isMutable()) goto Lunsafe; if (t1b->isShared() && !tob->isShared()) // Cast away shared goto Lunsafe; if (!tob->hasPointers()) goto Lsafe; if (tob->ty == Tclass && t1b->ty == Tclass) { ClassDeclaration *cdfrom = t1b->isClassHandle(); ClassDeclaration *cdto = tob->isClassHandle(); int offset; if (!cdfrom->isBaseOf(cdto, &offset)) goto Lunsafe; if (cdfrom->isCPPinterface() || cdto->isCPPinterface()) goto Lunsafe; goto Lsafe; } if (tob->ty == Tarray && t1b->ty == Tarray) { Type* tobn = tob->nextOf()->toBasetype(); Type* t1bn = t1b->nextOf()->toBasetype(); if (!tobn->hasPointers() && MODimplicitConv(t1bn->mod, tobn->mod)) goto Lsafe; } if (tob->ty == Tpointer && t1b->ty == Tpointer) { Type* tobn = tob->nextOf()->toBasetype(); Type* t1bn = t1b->nextOf()->toBasetype(); if (!tobn->hasPointers() && tobn->ty != Tfunction && t1bn->ty != Tfunction && tobn->size() <= t1bn->size() && MODimplicitConv(t1bn->mod, tobn->mod)) goto Lsafe; } Lunsafe: if (sc->func->setUnsafe()) { error("cast from %s to %s not allowed in safe code", e1->type->toChars(), to->toChars()); return new ErrorExp(); } } Lsafe: Expression *e = e1->castTo(sc, to); return e; } void CastExp::checkEscape() { Type *tb = type->toBasetype(); #if IN_LLVM if (e1->op == TOKvar && tb->ty == Tpointer && e1->type->toBasetype()->ty == Tsarray) { VarDeclaration *v = ((VarExp*)e1)->var->isVarDeclaration(); if (v) { if (!v->isDataseg() && !(v->storage_class & (STCref | STCout))) error("escaping reference to local variable %s", v->toChars()); } } #endif if (tb->ty == Tarray && e1->op == TOKvar && e1->type->toBasetype()->ty == Tsarray) { VarExp *ve = (VarExp *)e1; VarDeclaration *v = ve->var->isVarDeclaration(); if (v) { if (!v->isDataseg() && !v->isParameter()) error("escaping reference to local %s", v->toChars()); } } } void CastExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("cast("); #if DMDV1 to->toCBuffer(buf, NULL, hgs); #else if (to) to->toCBuffer(buf, NULL, hgs); else { MODtoBuffer(buf, mod); } #endif buf->writeByte(')'); expToCBuffer(buf, hgs, e1, precedence[op]); } /************************************************************/ VectorExp::VectorExp(Loc loc, Expression *e, Type *t) : UnaExp(loc, TOKvector, sizeof(VectorExp), e) { assert(t->ty == Tvector); to = t; dim = ~0; } Expression *VectorExp::syntaxCopy() { return new VectorExp(loc, e1->syntaxCopy(), to->syntaxCopy()); } Expression *VectorExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("VectorExp::semantic('%s')\n", toChars()); #endif if (type) return this; e1 = e1->semantic(sc); type = to->semantic(loc, sc); if (e1->op == TOKerror || type->ty == Terror) return e1; Type *tb = type->toBasetype(); assert(tb->ty == Tvector); TypeVector *tv = (TypeVector *)tb; Type *te = tv->elementType(); dim = tv->size(loc) / te->size(loc); return this; } void VectorExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("cast("); to->toCBuffer(buf, NULL, hgs); buf->writeByte(')'); expToCBuffer(buf, hgs, e1, precedence[op]); } /************************************************************/ SliceExp::SliceExp(Loc loc, Expression *e1, Expression *lwr, Expression *upr) : UnaExp(loc, TOKslice, sizeof(SliceExp), e1) { this->upr = upr; this->lwr = lwr; lengthVar = NULL; } Expression *SliceExp::syntaxCopy() { Expression *lwr = NULL; if (this->lwr) lwr = this->lwr->syntaxCopy(); Expression *upr = NULL; if (this->upr) upr = this->upr->syntaxCopy(); return new SliceExp(loc, e1->syntaxCopy(), lwr, upr); } Expression *SliceExp::semantic(Scope *sc) { Expression *e; AggregateDeclaration *ad; //FuncDeclaration *fd; ScopeDsymbol *sym; #if LOGSEMANTIC printf("SliceExp::semantic('%s')\n", toChars()); #endif if (type) return this; Lagain: UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); e = this; Type *t = e1->type->toBasetype(); if (t->ty == Tpointer) { if (!lwr || !upr) { error("need upper and lower bound to slice pointer"); return new ErrorExp(); } } else if (t->ty == Tarray) { } else if (t->ty == Tsarray) { } else if (t->ty == Tclass) { ad = ((TypeClass *)t)->sym; goto L1; } else if (t->ty == Tstruct) { ad = ((TypeStruct *)t)->sym; L1: if (search_function(ad, Id::slice)) { // Rewrite as e1.slice(lwr, upr) e = new DotIdExp(loc, e1, Id::slice); if (lwr) { assert(upr); e = new CallExp(loc, e, lwr, upr); } else { assert(!upr); e = new CallExp(loc, e); } e = e->semantic(sc); return e; } if (ad->aliasthis) { e1 = new DotIdExp(e1->loc, e1, ad->aliasthis->ident); goto Lagain; } goto Lerror; } else if (t->ty == Ttuple) { if (!lwr && !upr) return e1; if (!lwr || !upr) { error("need upper and lower bound to slice tuple"); goto Lerror; } } else if (t == Type::terror) goto Lerr; else goto Lerror; { Scope *sc2 = sc; if (t->ty == Tsarray || t->ty == Tarray || t->ty == Ttuple) { sym = new ArrayScopeSymbol(sc, this); sym->loc = loc; sym->parent = sc->scopesym; sc2 = sc->push(sym); } if (lwr) { lwr = lwr->semantic(sc2); lwr = resolveProperties(sc2, lwr); lwr = lwr->implicitCastTo(sc2, Type::tsize_t); if (lwr->type == Type::terror) goto Lerr; } if (upr) { upr = upr->semantic(sc2); upr = resolveProperties(sc2, upr); upr = upr->implicitCastTo(sc2, Type::tsize_t); if (upr->type == Type::terror) goto Lerr; } if (sc2 != sc) sc2->pop(); } if (t->ty == Ttuple) { lwr = lwr->optimize(WANTvalue | WANTinterpret); upr = upr->optimize(WANTvalue | WANTinterpret); uinteger_t i1 = lwr->toUInteger(); uinteger_t i2 = upr->toUInteger(); size_t length; TupleExp *te; TypeTuple *tup; if (e1->op == TOKtuple) // slicing an expression tuple { te = (TupleExp *)e1; length = te->exps->dim; } else if (e1->op == TOKtype) // slicing a type tuple { tup = (TypeTuple *)t; length = Parameter::dim(tup->arguments); } else assert(0); if (i1 <= i2 && i2 <= length) { size_t j1 = (size_t) i1; size_t j2 = (size_t) i2; if (e1->op == TOKtuple) { Expressions *exps = new Expressions; exps->setDim(j2 - j1); for (size_t i = 0; i < j2 - j1; i++) { Expression *e = (*te->exps)[j1 + i]; (*exps)[i] = e; } if (j1 > 0 && j2 - j1 > 0 && sc->func && (*te->exps)[0]->op == TOKdotvar) { Expression *einit = ((DotVarExp *)(*te->exps)[0])->e1->isTemp(); if (einit) ((DotVarExp *)(*exps)[0])->e1 = einit; } e = new TupleExp(loc, exps); } else { Parameters *args = new Parameters; args->reserve(j2 - j1); for (size_t i = j1; i < j2; i++) { Parameter *arg = Parameter::getNth(tup->arguments, i); args->push(arg); } e = new TypeExp(e1->loc, new TypeTuple(args)); } e = e->semantic(sc); } else { error("string slice [%ju .. %ju] is out of bounds", i1, i2); goto Lerr; } return e; } type = t->nextOf()->arrayOf(); // Allow typedef[] -> typedef[] if (type->equals(t)) type = e1->type; return e; Lerror: if (e1->op == TOKerror) return e1; char *s; if (t->ty == Tvoid) s = e1->toChars(); else s = t->toChars(); error("%s cannot be sliced with []", s); Lerr: e = new ErrorExp(); return e; } void SliceExp::checkEscape() { e1->checkEscape(); } void SliceExp::checkEscapeRef() { e1->checkEscapeRef(); } #if DMDV2 int SliceExp::isLvalue() { return 1; } #endif Expression *SliceExp::toLvalue(Scope *sc, Expression *e) { return this; } Expression *SliceExp::modifiableLvalue(Scope *sc, Expression *e) { error("slice expression %s is not a modifiable lvalue", toChars()); return this; } int SliceExp::isBool(int result) { return e1->isBool(result); } void SliceExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, precedence[op]); buf->writeByte('['); if (upr || lwr) { if (lwr) expToCBuffer(buf, hgs, lwr, PREC_assign); else buf->writeByte('0'); buf->writestring(".."); if (upr) expToCBuffer(buf, hgs, upr, PREC_assign); else buf->writestring("length"); // BUG: should be array.length } buf->writeByte(']'); } /********************** ArrayLength **************************************/ ArrayLengthExp::ArrayLengthExp(Loc loc, Expression *e1) : UnaExp(loc, TOKarraylength, sizeof(ArrayLengthExp), e1) { } Expression *ArrayLengthExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("ArrayLengthExp::semantic('%s')\n", toChars()); #endif if (!type) { UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); type = Type::tsize_t; } return this; } Expression *opAssignToOp(Loc loc, enum TOK op, Expression *e1, Expression *e2) { Expression *e; switch (op) { case TOKaddass: e = new AddExp(loc, e1, e2); break; case TOKminass: e = new MinExp(loc, e1, e2); break; case TOKmulass: e = new MulExp(loc, e1, e2); break; case TOKdivass: e = new DivExp(loc, e1, e2); break; case TOKmodass: e = new ModExp(loc, e1, e2); break; case TOKandass: e = new AndExp(loc, e1, e2); break; case TOKorass: e = new OrExp (loc, e1, e2); break; case TOKxorass: e = new XorExp(loc, e1, e2); break; case TOKshlass: e = new ShlExp(loc, e1, e2); break; case TOKshrass: e = new ShrExp(loc, e1, e2); break; case TOKushrass: e = new UshrExp(loc, e1, e2); break; default: assert(0); } return e; } /********************* * Rewrite: * array.length op= e2 * as: * array.length = array.length op e2 * or: * auto tmp = &array; * (*tmp).length = (*tmp).length op e2 */ Expression *ArrayLengthExp::rewriteOpAssign(BinExp *exp) { Expression *e; assert(exp->e1->op == TOKarraylength); ArrayLengthExp *ale = (ArrayLengthExp *)exp->e1; if (ale->e1->op == TOKvar) { e = opAssignToOp(exp->loc, exp->op, ale, exp->e2); e = new AssignExp(exp->loc, ale->syntaxCopy(), e); } else { /* auto tmp = &array; * (*tmp).length = (*tmp).length op e2 */ Identifier *id = Lexer::uniqueId("__arraylength"); ExpInitializer *ei = new ExpInitializer(ale->loc, new AddrExp(ale->loc, ale->e1)); VarDeclaration *tmp = new VarDeclaration(ale->loc, ale->e1->type->pointerTo(), id, ei); Expression *e1 = new ArrayLengthExp(ale->loc, new PtrExp(ale->loc, new VarExp(ale->loc, tmp))); Expression *elvalue = e1->syntaxCopy(); e = opAssignToOp(exp->loc, exp->op, e1, exp->e2); e = new AssignExp(exp->loc, elvalue, e); e = new CommaExp(exp->loc, new DeclarationExp(ale->loc, tmp), e); } return e; } void ArrayLengthExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writestring(".length"); } /*********************** ArrayExp *************************************/ // e1 [ i1, i2, i3, ... ] ArrayExp::ArrayExp(Loc loc, Expression *e1, Expressions *args) : UnaExp(loc, TOKarray, sizeof(ArrayExp), e1) { arguments = args; lengthVar = NULL; currentDimension = 0; } Expression *ArrayExp::syntaxCopy() { return new ArrayExp(loc, e1->syntaxCopy(), arraySyntaxCopy(arguments)); } Expression *ArrayExp::semantic(Scope *sc) { Expression *e; Type *t1; #if LOGSEMANTIC printf("ArrayExp::semantic('%s')\n", toChars()); #endif UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); t1 = e1->type->toBasetype(); if (t1->ty != Tclass && t1->ty != Tstruct) { // Convert to IndexExp if (arguments->dim != 1) { error("only one index allowed to index %s", t1->toChars()); goto Lerr; } e = new IndexExp(loc, e1, arguments->tdata()[0]); return e->semantic(sc); } e = op_overload(sc); if (!e) { error("no [] operator overload for type %s", e1->type->toChars()); goto Lerr; } return e; Lerr: return new ErrorExp(); } #if DMDV2 int ArrayExp::isLvalue() { if (type && type->toBasetype()->ty == Tvoid) return 0; return 1; } #endif Expression *ArrayExp::toLvalue(Scope *sc, Expression *e) { if (type && type->toBasetype()->ty == Tvoid) error("voids have no value"); return this; } void ArrayExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('['); argsToCBuffer(buf, arguments, hgs); buf->writeByte(']'); } /************************* DotExp ***********************************/ DotExp::DotExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKdotexp, sizeof(DotExp), e1, e2) { } Expression *DotExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("DotExp::semantic('%s')\n", toChars()); if (type) printf("\ttype = %s\n", type->toChars()); #endif e1 = e1->semantic(sc); e2 = e2->semantic(sc); if (e2->op == TOKimport) { ScopeExp *se = (ScopeExp *)e2; TemplateDeclaration *td = se->sds->isTemplateDeclaration(); if (td) { Expression *e = new DotTemplateExp(loc, e1, td); e = e->semantic(sc); return e; } } if (!type) type = e2->type; return this; } void DotExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); expToCBuffer(buf, hgs, e2, PREC_primary); } /************************* CommaExp ***********************************/ CommaExp::CommaExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKcomma, sizeof(CommaExp), e1, e2) { } Expression *CommaExp::semantic(Scope *sc) { if (!type) { BinExp::semanticp(sc); e1 = e1->addDtorHook(sc); type = e2->type; } return this; } void CommaExp::checkEscape() { e2->checkEscape(); } void CommaExp::checkEscapeRef() { e2->checkEscapeRef(); } #if DMDV2 int CommaExp::isLvalue() { return e2->isLvalue(); } #endif Expression *CommaExp::toLvalue(Scope *sc, Expression *e) { e2 = e2->toLvalue(sc, NULL); return this; } Expression *CommaExp::modifiableLvalue(Scope *sc, Expression *e) { e2 = e2->modifiableLvalue(sc, e); return this; } int CommaExp::isBool(int result) { return e2->isBool(result); } Expression *CommaExp::addDtorHook(Scope *sc) { e2 = e2->addDtorHook(sc); return this; } /************************** IndexExp **********************************/ // e1 [ e2 ] IndexExp::IndexExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKindex, sizeof(IndexExp), e1, e2) { //printf("IndexExp::IndexExp('%s')\n", toChars()); lengthVar = NULL; modifiable = 0; // assume it is an rvalue } Expression *IndexExp::semantic(Scope *sc) { Expression *e; Type *t1; ScopeDsymbol *sym; #if LOGSEMANTIC printf("IndexExp::semantic('%s')\n", toChars()); #endif if (type) return this; if (!e1->type) e1 = e1->semantic(sc); assert(e1->type); // semantic() should already be run on it if (e1->op == TOKerror) goto Lerr; e = this; // Note that unlike C we do not implement the int[ptr] t1 = e1->type->toBasetype(); if (t1->ty == Tsarray || t1->ty == Tarray || t1->ty == Ttuple) { // Create scope for 'length' variable sym = new ArrayScopeSymbol(sc, this); sym->loc = loc; sym->parent = sc->scopesym; sc = sc->push(sym); } e2 = e2->semantic(sc); e2 = resolveProperties(sc, e2); if (e2->type == Type::terror) goto Lerr; if (e2->type->ty == Ttuple && ((TupleExp *)e2)->exps->dim == 1) // bug 4444 fix e2 = ((TupleExp *)e2)->exps->tdata()[0]; if (t1->ty == Tsarray || t1->ty == Tarray || t1->ty == Ttuple) sc = sc->pop(); switch (t1->ty) { case Tpointer: case Tarray: e2 = e2->implicitCastTo(sc, Type::tsize_t); e->type = ((TypeNext *)t1)->next; break; case Tsarray: { e2 = e2->implicitCastTo(sc, Type::tsize_t); TypeSArray *tsa = (TypeSArray *)t1; #if 0 // Don't do now, because it might be short-circuit evaluated // Do compile time array bounds checking if possible e2 = e2->optimize(WANTvalue); if (e2->op == TOKint64) { dinteger_t index = e2->toInteger(); dinteger_t length = tsa->dim->toInteger(); if (index < 0 || index >= length) error("array index [%lld] is outside array bounds [0 .. %lld]", index, length); } #endif e->type = t1->nextOf(); break; } case Taarray: { TypeAArray *taa = (TypeAArray *)t1; /* We can skip the implicit conversion if they differ only by * constness (Bugzilla 2684, see also bug 2954b) */ if (!arrayTypeCompatibleWithoutCasting(e2->loc, e2->type, taa->index)) { e2 = e2->implicitCastTo(sc, taa->index); // type checking } type = taa->next; break; } case Ttuple: { e2 = e2->implicitCastTo(sc, Type::tsize_t); e2 = e2->optimize(WANTvalue | WANTinterpret); uinteger_t index = e2->toUInteger(); size_t length; TupleExp *te; TypeTuple *tup; if (e1->op == TOKtuple) { te = (TupleExp *)e1; length = te->exps->dim; } else if (e1->op == TOKtype) { tup = (TypeTuple *)t1; length = Parameter::dim(tup->arguments); } else assert(0); if (index < length) { if (e1->op == TOKtuple) { e = (*te->exps)[(size_t)index]; if (sc->func && (*te->exps)[0]->op == TOKdotvar) { Expression *einit = ((DotVarExp *)(*te->exps)[0])->e1->isTemp(); if (einit) ((DotVarExp *)e)->e1 = einit; } } else e = new TypeExp(e1->loc, Parameter::getNth(tup->arguments, (size_t)index)->type); } else { error("array index [%ju] is outside array bounds [0 .. %zu]", index, length); e = e1; } break; } default: if (e1->op == TOKerror) goto Lerr; error("%s must be an array or pointer type, not %s", e1->toChars(), e1->type->toChars()); case Terror: goto Lerr; } return e; Lerr: return new ErrorExp(); } #if DMDV2 int IndexExp::isLvalue() { return 1; } #endif Expression *IndexExp::toLvalue(Scope *sc, Expression *e) { // if (type && type->toBasetype()->ty == Tvoid) // error("voids have no value"); return this; } Expression *IndexExp::modifiableLvalue(Scope *sc, Expression *e) { //printf("IndexExp::modifiableLvalue(%s)\n", toChars()); modifiable = 1; if (e1->op == TOKstring) error("string literals are immutable"); if (type && (!type->isMutable() || !type->isAssignable())) error("%s isn't mutable", e->toChars()); Type *t1 = e1->type->toBasetype(); if (t1->ty == Taarray) { TypeAArray *taa = (TypeAArray *)t1; Type *t2b = e2->type->toBasetype(); if (t2b->ty == Tarray && t2b->nextOf()->isMutable()) error("associative arrays can only be assigned values with immutable keys, not %s", e2->type->toChars()); e1 = e1->modifiableLvalue(sc, e1); } return toLvalue(sc, e); } void IndexExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('['); expToCBuffer(buf, hgs, e2, PREC_assign); buf->writeByte(']'); } /************************* PostExp ***********************************/ PostExp::PostExp(enum TOK op, Loc loc, Expression *e) : BinExp(loc, op, sizeof(PostExp), e, new IntegerExp(loc, 1, Type::tint32)) { } Expression *PostExp::semantic(Scope *sc) { Expression *e = this; if (!type) { BinExp::semantic(sc); e1 = resolveProperties(sc, e1); e = op_overload(sc); if (e) return e; e1 = e1->modifiableLvalue(sc, e1); Type *t1 = e1->type->toBasetype(); if (t1->ty == Tclass || t1->ty == Tstruct) { /* Check for operator overloading, * but rewrite in terms of ++e instead of e++ */ /* If e1 is not trivial, take a reference to it */ Expression *de = NULL; if (e1->op != TOKvar) { // ref v = e1; Identifier *id = Lexer::uniqueId("__postref"); ExpInitializer *ei = new ExpInitializer(loc, e1); VarDeclaration *v = new VarDeclaration(loc, e1->type, id, ei); v->storage_class |= STCref | STCforeach; de = new DeclarationExp(loc, v); e1 = new VarExp(e1->loc, v); } /* Rewrite as: * auto tmp = e1; ++e1; tmp */ Identifier *id = Lexer::uniqueId("__pitmp"); ExpInitializer *ei = new ExpInitializer(loc, e1); VarDeclaration *tmp = new VarDeclaration(loc, e1->type, id, ei); Expression *ea = new DeclarationExp(loc, tmp); Expression *eb = e1->syntaxCopy(); eb = new PreExp(op == TOKplusplus ? TOKpreplusplus : TOKpreminusminus, loc, eb); Expression *ec = new VarExp(loc, tmp); // Combine de,ea,eb,ec if (de) ea = new CommaExp(loc, de, ea); e = new CommaExp(loc, ea, eb); e = new CommaExp(loc, e, ec); e = e->semantic(sc); return e; } e = this; e1->checkScalar(); e1->checkNoBool(); if (e1->type->ty == Tpointer) e = scaleFactor(sc); else e2 = e2->castTo(sc, e1->type); e->type = e1->type; } return e; } void PostExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, precedence[op]); buf->writestring(Token::toChars(op)); } /************************* PreExp ***********************************/ PreExp::PreExp(enum TOK op, Loc loc, Expression *e) : UnaExp(loc, op, sizeof(PreExp), e) { } Expression *PreExp::semantic(Scope *sc) { Expression *e; e = op_overload(sc); if (e) return e; // Rewrite as e1+=1 or e1-=1 if (op == TOKpreplusplus) e = new AddAssignExp(loc, e1, new IntegerExp(loc, 1, Type::tint32)); else e = new MinAssignExp(loc, e1, new IntegerExp(loc, 1, Type::tint32)); return e->semantic(sc); } void PreExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(Token::toChars(op)); expToCBuffer(buf, hgs, e1, precedence[op]); } /************************************************************/ /* op can be TOKassign, TOKconstruct, or TOKblit */ AssignExp::AssignExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKassign, sizeof(AssignExp), e1, e2) { ismemset = 0; } Expression *AssignExp::semantic(Scope *sc) { Expression *e1old = e1; #if LOGSEMANTIC printf("AssignExp::semantic('%s')\n", toChars()); #endif //printf("e1->op = %d, '%s'\n", e1->op, Token::toChars(e1->op)); //printf("e2->op = %d, '%s'\n", e2->op, Token::toChars(e2->op)); if (type) return this; if (e2->op == TOKcomma) { /* Rewrite to get rid of the comma from rvalue */ AssignExp *ea = new AssignExp(loc, e1, ((CommaExp *)e2)->e2); ea->op = op; Expression *e = new CommaExp(loc, ((CommaExp *)e2)->e1, ea); return e->semantic(sc); } /* Look for operator overloading of a[i]=value. * Do it before semantic() otherwise the a[i] will have been * converted to a.opIndex() already. */ if (e1->op == TOKarray) { ArrayExp *ae = (ArrayExp *)e1; AggregateDeclaration *ad = NULL; Identifier *id = Id::index; ae->e1 = ae->e1->semantic(sc); Type *t1 = ae->e1->type->toBasetype(); if (t1->ty == Tstruct) { ad = ((TypeStruct *)t1)->sym; goto L1; } else if (t1->ty == Tclass) { ad = ((TypeClass *)t1)->sym; L1: // Rewrite (a[i] = value) to (a.opIndexAssign(value, i)) if (search_function(ad, Id::indexass)) { Expression *e = new DotIdExp(loc, ae->e1, Id::indexass); // Deal with $ for (size_t i = 0; i < ae->arguments->dim; i++) { Expression *x = ae->arguments->tdata()[i]; // Create scope for '$' variable for this dimension ArrayScopeSymbol *sym = new ArrayScopeSymbol(sc, ae); sym->loc = loc; sym->parent = sc->scopesym; sc = sc->push(sym); ae->lengthVar = NULL; // Create it only if required ae->currentDimension = i; // Dimension for $, if required x = x->semantic(sc); if (!x->type) ae->error("%s has no value", x->toChars()); if (ae->lengthVar) { // If $ was used, declare it now Expression *av = new DeclarationExp(ae->loc, ae->lengthVar); x = new CommaExp(0, av, x); x->semantic(sc); } ae->arguments->tdata()[i] = x; sc = sc->pop(); } Expressions *a = (Expressions *)ae->arguments->copy(); a->insert(0, e2); e = new CallExp(loc, e, a); e = e->semantic(sc); return e; } #if 0 // Turned off to allow rewriting (a[i]=value) to (a.opIndex(i)=value) else { // Rewrite (a[i] = value) to (a.opIndex(i, value)) if (search_function(ad, id)) { Expression *e = new DotIdExp(loc, ae->e1, id); if (1 || !global.params.useDeprecated) { error("operator [] assignment overload with opIndex(i, value) illegal, use opIndexAssign(value, i)"); return new ErrorExp(); } e = new CallExp(loc, e, ae->arguments->tdata()[0], e2); e = e->semantic(sc); return e; } } #endif } // No opIndexAssign found yet, but there might be an alias this to try. if (ad && ad->aliasthis) { Expression *at = new DotIdExp(loc, ae->e1, ad->aliasthis->ident); at = at->semantic(sc); Type *attype = at->type->toBasetype(); if (attype->ty == Tstruct) { ad = ((TypeStruct *)attype)->sym; goto L1; } else if (attype->ty == Tclass) { ad = ((TypeClass *)attype)->sym; goto L1; } } } /* Look for operator overloading of a[i..j]=value. * Do it before semantic() otherwise the a[i..j] will have been * converted to a.opSlice() already. */ if (e1->op == TOKslice) { Type *t1; SliceExp *ae = (SliceExp *)e1; AggregateDeclaration *ad = NULL; Identifier *id = Id::index; ae->e1 = ae->e1->semantic(sc); ae->e1 = resolveProperties(sc, ae->e1); t1 = ae->e1->type->toBasetype(); if (t1->ty == Tstruct) { ad = ((TypeStruct *)t1)->sym; goto L2; } else if (t1->ty == Tclass) { ad = ((TypeClass *)t1)->sym; L2: // Rewrite (a[i..j] = value) to (a.opSliceAssign(value, i, j)) if (search_function(ad, Id::sliceass)) { Expression *e = new DotIdExp(loc, ae->e1, Id::sliceass); Expressions *a = new Expressions(); a->push(e2); if (ae->lwr) { a->push(ae->lwr); assert(ae->upr); a->push(ae->upr); } else assert(!ae->upr); e = new CallExp(loc, e, a); e = e->semantic(sc); return e; } } // No opSliceAssign found yet, but there might be an alias this to try. if (ad && ad->aliasthis) { Expression *at = new DotIdExp(loc, ae->e1, ad->aliasthis->ident); at = at->semantic(sc); Type *attype = at->type->toBasetype(); if (attype->ty == Tstruct) { ad = ((TypeStruct *)attype)->sym; goto L2; } else if (attype->ty == Tclass) { ad = ((TypeClass *)attype)->sym; goto L2; } } } { Expression *e = BinExp::semantic(sc); if (e->op == TOKerror) return e; } e2 = resolveProperties(sc, e2); /* We have f = value. * Could mean: * f(value) * or: * f() = value */ TemplateDeclaration *td; Objects *targsi; FuncDeclaration *fd; Expression *ethis; if (e1->op == TOKdotti) { DotTemplateInstanceExp* dti = (DotTemplateInstanceExp *)e1; td = dti->getTempdecl(sc); dti->ti->semanticTiargs(sc); targsi = dti->ti->tiargs; ethis = dti->e1; goto L3; } else if (e1->op == TOKdottd) { DotTemplateExp *dte = (DotTemplateExp *)e1; td = dte->td; targsi = NULL; ethis = dte->e1; goto L3; } else if (e1->op == TOKtemplate) { td = ((TemplateExp *)e1)->td; targsi = NULL; ethis = NULL; L3: { assert(td); Expressions a; a.push(e2); fd = td->deduceFunctionTemplate(sc, loc, targsi, ethis, &a, 1); if (fd && fd->type) goto Lsetter; fd = td->deduceFunctionTemplate(sc, loc, targsi, ethis, NULL, 1); if (fd && fd->type) goto Lgetter; } goto Leprop; } else if (e1->op == TOKdotvar && e1->type->toBasetype()->ty == Tfunction) { DotVarExp *dve = (DotVarExp *)e1; fd = dve->var->isFuncDeclaration(); ethis = dve->e1; goto L4; } else if (e1->op == TOKvar && e1->type->toBasetype()->ty == Tfunction) { fd = ((VarExp *)e1)->var->isFuncDeclaration(); ethis = NULL; L4: { assert(fd); FuncDeclaration *f = fd; Expressions a; a.push(e2); fd = f->overloadResolve(loc, ethis, &a, 1); if (fd && fd->type) goto Lsetter; fd = f->overloadResolve(loc, ethis, NULL, 1); if (fd && fd->type) goto Lgetter; goto Leprop; } Expression *e; TypeFunction *tf; Lsetter: assert(fd->type->ty == Tfunction); tf = (TypeFunction *)fd->type; if (!tf->isproperty && global.params.enforcePropertySyntax) goto Leprop; e = new CallExp(loc, e1, e2); return e->semantic(sc); Lgetter: assert(fd->type->ty == Tfunction); tf = (TypeFunction *)fd->type; if (!tf->isref) goto Leprop; if (!tf->isproperty && global.params.enforcePropertySyntax) goto Leprop; e = new CallExp(loc, e1); e = new AssignExp(loc, e, e2); return e->semantic(sc); Leprop: ::error(e1->loc, "not a property %s", e1->toChars()); return new ErrorExp(); } assert(e1->type); /* Rewrite tuple assignment as a tuple of assignments. */ Ltupleassign: if (e1->op == TOKtuple && e2->op == TOKtuple) { TupleExp *tup1 = (TupleExp *)e1; TupleExp *tup2 = (TupleExp *)e2; size_t dim = tup1->exps->dim; if (dim != tup2->exps->dim) { error("mismatched tuple lengths, %d and %d", (int)dim, (int)tup2->exps->dim); return new ErrorExp(); } else { Expressions *exps = new Expressions; exps->setDim(dim); for (size_t i = 0; i < dim; i++) { Expression *ex1 = (*tup1->exps)[i]; Expression *ex2 = (*tup2->exps)[i]; (*exps)[i] = new AssignExp(loc, ex1, ex2); } Expression *e = new TupleExp(loc, exps); e = e->semantic(sc); return e; } } if (e1->op == TOKtuple) { if (TupleDeclaration *td = isAliasThisTuple(e2)) { assert(e1->type->ty == Ttuple); TypeTuple *tt = (TypeTuple *)e1->type; Identifier *id = Lexer::uniqueId("__tup"); VarDeclaration *v = new VarDeclaration(e2->loc, NULL, id, new ExpInitializer(e2->loc, e2)); v->storage_class = STCctfe | STCref | STCforeach; Expression *ve = new VarExp(e2->loc, v); ve->type = e2->type; Expressions *iexps = new Expressions(); iexps->push(ve); for (size_t u = 0; u < iexps->dim ; u++) { Lexpand: Expression *e = iexps->tdata()[u]; Parameter *arg = Parameter::getNth(tt->arguments, u); //printf("[%d] iexps->dim = %d, ", u, iexps->dim); //printf("e = (%s %s, %s), ", Token::tochars[e->op], e->toChars(), e->type->toChars()); //printf("arg = (%s, %s)\n", arg->toChars(), arg->type->toChars()); if (!e->type->implicitConvTo(arg->type)) { // expand initializer to tuple if (expandAliasThisTuples(iexps, u) != -1) goto Lexpand; goto Lnomatch; } } iexps->tdata()[0] = new CommaExp(loc, new DeclarationExp(e2->loc, v), iexps->tdata()[0]); e2 = new TupleExp(e2->loc, iexps); e2 = e2->semantic(sc); goto Ltupleassign; Lnomatch: ; } } // Determine if this is an initialization of a reference int refinit = 0; if (op == TOKconstruct && e1->op == TOKvar) { VarExp *ve = (VarExp *)e1; VarDeclaration *v = ve->var->isVarDeclaration(); if (v->storage_class & (STCout | STCref)) refinit = 1; } Type *t1 = e1->type->toBasetype(); if (t1->ty == Tdelegate || (t1->ty == Tpointer && t1->nextOf()->ty == Tfunction) && e2->op == TOKfunction) { FuncExp *fe = (FuncExp *)e2; if (e2->type == Type::tvoid) { e2 = fe->inferType(sc, t1); } else if (e2->type->ty == Tpointer && e2->type->nextOf()->ty == Tfunction && fe->tok == TOKreserved && t1->ty == Tdelegate) { if (fe->implicitConvTo(t1)) e2 = fe->castTo(sc, t1); } if (!e2) { error("cannot infer function literal type from %s", t1->toChars()); e2 = new ErrorExp(); } } /* If it is an assignment from a 'foreign' type, * check for operator overloading. */ if (t1->ty == Tstruct) { StructDeclaration *sd = ((TypeStruct *)t1)->sym; if (op == TOKassign) { /* See if we need to set ctorinit, i.e. track * assignments to fields. An assignment to a field counts even * if done through an opAssign overload. */ if (e1->op == TOKdotvar) { DotVarExp *dve = (DotVarExp *)e1; VarDeclaration *v = dve->var->isVarDeclaration(); if (v && v->storage_class & STCnodefaultctor) modifyFieldVar(loc, sc, v, dve->e1); } Expression *e = op_overload(sc); if (e && e1->op == TOKindex && ((IndexExp *)e1)->e1->type->toBasetype()->ty == Taarray) { // Deal with AAs (Bugzilla 2451) // Rewrite as: // e1 = (typeof(aa.value) tmp = void, tmp = e2, tmp); Type * aaValueType = ((TypeAArray *)((IndexExp*)e1)->e1->type->toBasetype())->next; Identifier *id = Lexer::uniqueId("__aatmp"); VarDeclaration *v = new VarDeclaration(loc, aaValueType, id, new VoidInitializer(0)); v->storage_class |= STCctfe; v->semantic(sc); v->parent = sc->parent; Expression *de = new DeclarationExp(loc, v); VarExp *ve = new VarExp(loc, v); AssignExp *ae = new AssignExp(loc, ve, e2); e = ae->op_overload(sc); e2 = new CommaExp(loc, new CommaExp(loc, de, e), ve); e2 = e2->semantic(sc); } else if (e) return e; } else if (op == TOKconstruct && !refinit) { Type *t2 = e2->type->toBasetype(); if (t2->ty == Tstruct && sd == ((TypeStruct *)t2)->sym && sd->cpctor) { /* We have a copy constructor for this */ // Scan past commma's Expression *ec = NULL; while (e2->op == TOKcomma) { CommaExp *ecomma = (CommaExp *)e2; e2 = ecomma->e2; if (ec) ec = new CommaExp(ecomma->loc, ec, ecomma->e1); else ec = ecomma->e1; } if (e2->op == TOKquestion) { /* Write as: * a ? e1 = b : e1 = c; */ CondExp *econd = (CondExp *)e2; AssignExp *ea1 = new AssignExp(econd->e1->loc, e1, econd->e1); ea1->op = op; AssignExp *ea2 = new AssignExp(econd->e1->loc, e1, econd->e2); ea2->op = op; Expression *e = new CondExp(loc, econd->econd, ea1, ea2); if (ec) e = new CommaExp(loc, ec, e); return e->semantic(sc); } else if (e2->op == TOKvar || e2->op == TOKdotvar || e2->op == TOKstar || e2->op == TOKthis || e2->op == TOKindex) { /* Write as: * e1.cpctor(e2); */ if (!e2->type->implicitConvTo(e1->type)) error("conversion error from %s to %s", e2->type->toChars(), e1->type->toChars()); Expression *e = new DotVarExp(loc, e1, sd->cpctor, 0); e = new CallExp(loc, e, e2); if (ec) e = new CommaExp(loc, ec, e); return e->semantic(sc); } else if (e2->op == TOKcall) { /* The struct value returned from the function is transferred * so should not call the destructor on it. */ valueNoDtor(e2); } } } } else if (t1->ty == Tclass) { // Disallow assignment operator overloads for same type if (!e2->implicitConvTo(e1->type)) { Expression *e = op_overload(sc); if (e) return e; } } if (t1->ty == Tsarray && !refinit) { if (e1->op == TOKindex && ((IndexExp *)e1)->e1->type->toBasetype()->ty == Taarray) { // Assignment to an AA of fixed-length arrays. // Convert T[n][U] = T[] into T[n][U] = T[n] e2 = e2->implicitCastTo(sc, e1->type); if (e2->type == Type::terror) return e2; } else { Type *t2 = e2->type->toBasetype(); // Convert e2 to e2[], unless e2-> e1[0] if (t2->ty == Tsarray && !t2->implicitConvTo(t1->nextOf())) { e2 = new SliceExp(e2->loc, e2, NULL, NULL); e2 = e2->semantic(sc); } // Convert e1 to e1[] Expression *e = new SliceExp(e1->loc, e1, NULL, NULL); e1 = e->semantic(sc); t1 = e1->type->toBasetype(); } } if (!e2->rvalue()) return new ErrorExp(); if (e1->op == TOKarraylength) { // e1 is not an lvalue, but we let code generator handle it ArrayLengthExp *ale = (ArrayLengthExp *)e1; ale->e1 = ale->e1->modifiableLvalue(sc, e1); } else if (e1->op == TOKslice) { Type *tn = e1->type->nextOf(); if (op == TOKassign && tn && (!tn->isMutable() || !tn->isAssignable())) { error("slice %s is not mutable", e1->toChars()); return new ErrorExp(); } } else { // Try to do a decent error message with the expression // before it got constant folded if (e1->op != TOKvar) e1 = e1->optimize(WANTvalue); if (op != TOKconstruct) e1 = e1->modifiableLvalue(sc, e1old); } Type *t2 = e2->type->toBasetype(); #if 0 if (t1->ty == Tvector && t2->ty != Tvector && e2->implicitConvTo(((TypeVector *)t1)->basetype->nextOf()) ) { // memset ismemset = 1; // make it easy for back end to tell what this is e2 = e2->implicitCastTo(sc, ((TypeVector *)t1)->basetype->nextOf()); } else #endif if (e1->op == TOKslice && t1->nextOf() && e2->implicitConvTo(t1->nextOf()) ) { // memset ismemset = 1; // make it easy for back end to tell what this is e2 = e2->implicitCastTo(sc, t1->nextOf()); } else if (t1->ty == Tsarray) { /* Should have already converted e1 => e1[] * unless it is an AA */ if (!(e1->op == TOKindex && t2->ty == Tsarray && ((IndexExp *)e1)->e1->type->toBasetype()->ty == Taarray)) { assert(op == TOKconstruct); } //error("cannot assign to static array %s", e1->toChars()); } else if (e1->op == TOKslice && t2->ty == Tarray && t2->nextOf()->implicitConvTo(t1->nextOf())) { e2 = e2->implicitCastTo(sc, e1->type->constOf()); } else { e2 = e2->implicitCastTo(sc, e1->type); } /* Look for array operations */ if (e1->op == TOKslice && !ismemset && (e2->op == TOKadd || e2->op == TOKmin || e2->op == TOKmul || e2->op == TOKdiv || e2->op == TOKmod || e2->op == TOKxor || e2->op == TOKand || e2->op == TOKor || #if DMDV2 e2->op == TOKpow || #endif e2->op == TOKtilde || e2->op == TOKneg)) { type = e1->type; return arrayOp(sc); } if (e1->op == TOKvar && (((VarExp *)e1)->var->storage_class & STCscope) && op == TOKassign) { error("cannot rebind scope variables"); } type = e1->type; assert(type); return this; } Expression *AssignExp::checkToBoolean(Scope *sc) { // Things like: // if (a = b) ... // are usually mistakes. error("assignment cannot be used as a condition, perhaps == was meant?"); return new ErrorExp(); } /************************************************************/ ConstructExp::ConstructExp(Loc loc, Expression *e1, Expression *e2) : AssignExp(loc, e1, e2) { op = TOKconstruct; } /************************************************************/ AddAssignExp::AddAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKaddass, sizeof(AddAssignExp), e1, e2) { } Expression *AddAssignExp::semantic(Scope *sc) { Expression *e; if (type) return this; e = op_overload(sc); if (e) return e; Type *tb1 = e1->type->toBasetype(); Type *tb2 = e2->type->toBasetype(); if (e1->op == TOKarraylength) { e = ArrayLengthExp::rewriteOpAssign(this); e = e->semantic(sc); return e; } if (e1->op == TOKslice) { e = typeCombine(sc); if (e->op == TOKerror) return e; type = e1->type; return arrayOp(sc); } else { e1 = e1->modifiableLvalue(sc, e1); } if ((tb1->ty == Tarray || tb1->ty == Tsarray) && (tb2->ty == Tarray || tb2->ty == Tsarray) && tb1->nextOf()->equals(tb2->nextOf()) ) { type = e1->type; typeCombine(sc); e = this; } else { e1->checkScalar(); e1->checkNoBool(); if (tb1->ty == Tpointer && tb2->isintegral()) e = scaleFactor(sc); else if (tb1->ty == Tbool) { #if 0 // Need to rethink this if (e1->op != TOKvar) { // Rewrite e1+=e2 to (v=&e1),*v=*v+e2 VarDeclaration *v; Expression *ea; Expression *ex; Identifier *id = Lexer::uniqueId("__name"); v = new VarDeclaration(loc, tb1->pointerTo(), id, NULL); v->semantic(sc); if (!sc->insert(v)) assert(0); v->parent = sc->func; ea = new AddrExp(loc, e1); ea = new AssignExp(loc, new VarExp(loc, v), ea); ex = new VarExp(loc, v); ex = new PtrExp(loc, ex); e = new AddExp(loc, ex, e2); e = new CastExp(loc, e, e1->type); e = new AssignExp(loc, ex->syntaxCopy(), e); e = new CommaExp(loc, ea, e); } else #endif { // Rewrite e1+=e2 to e1=e1+e2 // BUG: doesn't account for side effects in e1 // BUG: other assignment operators for bits aren't handled at all e = new AddExp(loc, e1, e2); e = new CastExp(loc, e, e1->type); e = new AssignExp(loc, e1->syntaxCopy(), e); } e = e->semantic(sc); } else { type = e1->type; typeCombine(sc); e1->checkArithmetic(); e2->checkArithmetic(); checkComplexAddAssign(); if (type->isreal() || type->isimaginary()) { assert(global.errors || e2->type->isfloating()); e2 = e2->castTo(sc, e1->type); } e = this; if (e2->type->iscomplex() && !type->iscomplex()) error("Cannot assign %s to %s", e2->type->toChars(), type->toChars()); } } return e; } /************************************************************/ MinAssignExp::MinAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKminass, sizeof(MinAssignExp), e1, e2) { } Expression *MinAssignExp::semantic(Scope *sc) { Expression *e; if (type) return this; e = op_overload(sc); if (e) return e; if (e1->op == TOKarraylength) { e = ArrayLengthExp::rewriteOpAssign(this); e = e->semantic(sc); return e; } if (e1->op == TOKslice) { // T[] -= ... e = typeCombine(sc); if (e->op == TOKerror) return e; type = e1->type; return arrayOp(sc); } e1 = e1->modifiableLvalue(sc, e1); e1->checkScalar(); e1->checkNoBool(); if (e1->type->ty == Tpointer && e2->type->isintegral()) e = scaleFactor(sc); else { e1 = e1->checkArithmetic(); e2 = e2->checkArithmetic(); checkComplexAddAssign(); type = e1->type; typeCombine(sc); if (type->isreal() || type->isimaginary()) { assert(e2->type->isfloating()); e2 = e2->castTo(sc, e1->type); } e = this; if (e2->type->iscomplex() && !type->iscomplex()) error("Cannot assign %s to %s", e2->type->toChars(), type->toChars()); } return e; } /************************************************************/ CatAssignExp::CatAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKcatass, sizeof(CatAssignExp), e1, e2) { } Expression *CatAssignExp::semantic(Scope *sc) { Expression *e; //printf("CatAssignExp::semantic() %s\n", toChars()); e = op_overload(sc); if (e) return e; if (e1->op == TOKslice) { SliceExp *se = (SliceExp *)e1; if (se->e1->type->toBasetype()->ty == Tsarray) { error("cannot append to static array %s", se->e1->type->toChars()); return new ErrorExp(); } } e1 = e1->modifiableLvalue(sc, e1); Type *tb1 = e1->type->toBasetype(); Type *tb2 = e2->type->toBasetype(); if (!e2->rvalue()) return new ErrorExp(); Type *tb1next = tb1->nextOf(); if ((tb1->ty == Tarray) && (tb2->ty == Tarray || tb2->ty == Tsarray) && (e2->implicitConvTo(e1->type) #if DMDV2 || tb2->nextOf()->implicitConvTo(tb1next) #endif ) ) { // Append array e2 = e2->castTo(sc, e1->type); type = e1->type; e = this; } else if ((tb1->ty == Tarray) && e2->implicitConvTo(tb1next) ) { // Append element e2 = e2->castTo(sc, tb1next); type = e1->type; e = this; } else if (tb1->ty == Tarray && (tb1next->ty == Tchar || tb1next->ty == Twchar) && e2->type->ty != tb1next->ty && e2->implicitConvTo(Type::tdchar) ) { // Append dchar to char[] or wchar[] e2 = e2->castTo(sc, Type::tdchar); type = e1->type; e = this; /* Do not allow appending wchar to char[] because if wchar happens * to be a surrogate pair, nothing good can result. */ } else { if (tb1 != Type::terror && tb2 != Type::terror) error("cannot append type %s to type %s", tb2->toChars(), tb1->toChars()); e = new ErrorExp(); } return e; } /************************************************************/ MulAssignExp::MulAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKmulass, sizeof(MulAssignExp), e1, e2) { } Expression *MulAssignExp::semantic(Scope *sc) { Expression *e; e = op_overload(sc); if (e) return e; #if DMDV2 if (e1->op == TOKarraylength) { e = ArrayLengthExp::rewriteOpAssign(this); e = e->semantic(sc); return e; } #endif if (e1->op == TOKslice) { // T[] *= ... e = typeCombine(sc); if (e->op == TOKerror) return e; return arrayOp(sc); } e1 = e1->modifiableLvalue(sc, e1); e1->checkScalar(); e1->checkNoBool(); type = e1->type; typeCombine(sc); e1->checkArithmetic(); e2->checkArithmetic(); checkComplexMulAssign(); if (e2->type->isfloating()) { Type *t1 = e1->type; Type *t2 = e2->type; if (t1->isreal()) { if (t2->isimaginary() || t2->iscomplex()) { e2 = e2->castTo(sc, t1); } } else if (t1->isimaginary()) { if (t2->isimaginary() || t2->iscomplex()) { switch (t1->ty) { case Timaginary32: t2 = Type::tfloat32; break; case Timaginary64: t2 = Type::tfloat64; break; case Timaginary80: t2 = Type::tfloat80; break; default: assert(0); } e2 = e2->castTo(sc, t2); } } if (e2->type->iscomplex() && !type->iscomplex()) error("Cannot assign %s to %s", e2->type->toChars(), type->toChars()); } else if (type->toBasetype()->ty == Tvector && ((TypeVector *)type->toBasetype())->elementType()->size(loc) != 2) { // Only short[8] and ushort[8] work with multiply return incompatibleTypes(); } return this; } /************************************************************/ DivAssignExp::DivAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKdivass, sizeof(DivAssignExp), e1, e2) { } Expression *DivAssignExp::semantic(Scope *sc) { Expression *e; e = op_overload(sc); if (e) return e; #if DMDV2 if (e1->op == TOKarraylength) { e = ArrayLengthExp::rewriteOpAssign(this); e = e->semantic(sc); return e; } #endif if (e1->op == TOKslice) { // T[] /= ... e = typeCombine(sc); if (e->op == TOKerror) return e; type = e1->type; return arrayOp(sc); } e1 = e1->modifiableLvalue(sc, e1); e1->checkScalar(); e1->checkNoBool(); type = e1->type; typeCombine(sc); e1->checkArithmetic(); e2->checkArithmetic(); checkComplexMulAssign(); if (e2->type->isimaginary()) { Type *t1 = e1->type; if (t1->isreal()) { // x/iv = i(-x/v) // Therefore, the result is 0 e2 = new CommaExp(loc, e2, new RealExp(loc, 0, t1)); e2->type = t1; e = new AssignExp(loc, e1, e2); e->type = t1; return e; } else if (t1->isimaginary()) { Type *t2; switch (t1->ty) { case Timaginary32: t2 = Type::tfloat32; break; case Timaginary64: t2 = Type::tfloat64; break; case Timaginary80: t2 = Type::tfloat80; break; default: assert(0); } e2 = e2->castTo(sc, t2); Expression *e = new AssignExp(loc, e1, e2); e->type = t1; return e; } } else if (type->toBasetype()->ty == Tvector && !e1->type->isfloating()) return incompatibleTypes(); if (e2->type->iscomplex() && !type->iscomplex()) error("Cannot assign %s to %s", e2->type->toChars(), type->toChars()); return this; } /************************************************************/ ModAssignExp::ModAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKmodass, sizeof(ModAssignExp), e1, e2) { } Expression *ModAssignExp::semantic(Scope *sc) { if (!type) { Expression *e = op_overload(sc); if (e) return e; checkComplexMulAssign(); return commonSemanticAssign(sc); } return this; } /************************************************************/ ShlAssignExp::ShlAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKshlass, sizeof(ShlAssignExp), e1, e2) { } Expression *ShlAssignExp::semantic(Scope *sc) { Expression *e; //printf("ShlAssignExp::semantic()\n"); e = op_overload(sc); if (e) return e; if (e1->op == TOKarraylength) { e = ArrayLengthExp::rewriteOpAssign(this); e = e->semantic(sc); return e; } e1 = e1->modifiableLvalue(sc, e1); e1->checkScalar(); e1->checkNoBool(); type = e1->type; if (e1->type->toBasetype()->ty == Tvector || e2->type->toBasetype()->ty == Tvector) return incompatibleTypes(); typeCombine(sc); e1->checkIntegral(); e2 = e2->checkIntegral(); #if IN_DMD e2 = e2->castTo(sc, Type::tshiftcnt); #elif IN_LLVM e2 = e2->castTo(sc, e1->type); #endif return this; } /************************************************************/ ShrAssignExp::ShrAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKshrass, sizeof(ShrAssignExp), e1, e2) { } Expression *ShrAssignExp::semantic(Scope *sc) { Expression *e; e = op_overload(sc); if (e) return e; if (e1->op == TOKarraylength) { e = ArrayLengthExp::rewriteOpAssign(this); e = e->semantic(sc); return e; } e1 = e1->modifiableLvalue(sc, e1); e1->checkScalar(); e1->checkNoBool(); type = e1->type; if (e1->type->toBasetype()->ty == Tvector || e2->type->toBasetype()->ty == Tvector) return incompatibleTypes(); typeCombine(sc); e1->checkIntegral(); e2 = e2->checkIntegral(); #if IN_DMD e2 = e2->castTo(sc, Type::tshiftcnt); #elif IN_LLVM e2 = e2->castTo(sc, e1->type); #endif return this; } /************************************************************/ UshrAssignExp::UshrAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKushrass, sizeof(UshrAssignExp), e1, e2) { } Expression *UshrAssignExp::semantic(Scope *sc) { Expression *e; e = op_overload(sc); if (e) return e; if (e1->op == TOKarraylength) { e = ArrayLengthExp::rewriteOpAssign(this); e = e->semantic(sc); return e; } e1 = e1->modifiableLvalue(sc, e1); e1->checkScalar(); e1->checkNoBool(); type = e1->type; if (e1->type->toBasetype()->ty == Tvector || e2->type->toBasetype()->ty == Tvector) return incompatibleTypes(); typeCombine(sc); e1->checkIntegral(); e2 = e2->checkIntegral(); //e2 = e2->castTo(sc, Type::tshiftcnt); e2 = e2->castTo(sc, e1->type); // LDC return this; } /************************************************************/ AndAssignExp::AndAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKandass, sizeof(AndAssignExp), e1, e2) { } Expression *AndAssignExp::semantic(Scope *sc) { return commonSemanticAssignIntegral(sc); } /************************************************************/ OrAssignExp::OrAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKorass, sizeof(OrAssignExp), e1, e2) { } Expression *OrAssignExp::semantic(Scope *sc) { return commonSemanticAssignIntegral(sc); } /************************************************************/ XorAssignExp::XorAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKxorass, sizeof(XorAssignExp), e1, e2) { } Expression *XorAssignExp::semantic(Scope *sc) { return commonSemanticAssignIntegral(sc); } /***************** PowAssignExp *******************************************/ PowAssignExp::PowAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKpowass, sizeof(PowAssignExp), e1, e2) { } Expression *PowAssignExp::semantic(Scope *sc) { Expression *e; if (type) return this; e = op_overload(sc); if (e) return e; assert(e1->type && e2->type); if (e1->op == TOKslice) { // T[] ^^= ... e = typeCombine(sc); if (e->op == TOKerror) return e; // Check element types are arithmetic Type *tb1 = e1->type->nextOf()->toBasetype(); Type *tb2 = e2->type->toBasetype(); if (tb2->ty == Tarray || tb2->ty == Tsarray) tb2 = tb2->nextOf()->toBasetype(); if ( (tb1->isintegral() || tb1->isfloating()) && (tb2->isintegral() || tb2->isfloating())) { type = e1->type; return arrayOp(sc); } } else { e1 = e1->modifiableLvalue(sc, e1); } if ( (e1->type->isintegral() || e1->type->isfloating()) && (e2->type->isintegral() || e2->type->isfloating())) { if (e1->op == TOKvar) { // Rewrite: e1 = e1 ^^ e2 e = new PowExp(loc, e1->syntaxCopy(), e2); e = new AssignExp(loc, e1, e); } else { // Rewrite: ref tmp = e1; tmp = tmp ^^ e2 Identifier *id = Lexer::uniqueId("__powtmp"); VarDeclaration *v = new VarDeclaration(e1->loc, e1->type, id, new ExpInitializer(loc, e1)); v->storage_class |= STCref | STCforeach; Expression *de = new DeclarationExp(e1->loc, v); VarExp *ve = new VarExp(e1->loc, v); e = new PowExp(loc, ve, e2); e = new AssignExp(loc, new VarExp(e1->loc, v), e); e = new CommaExp(loc, de, e); } e = e->semantic(sc); if (e->type->toBasetype()->ty == Tvector) return incompatibleTypes(); return e; } return incompatibleTypes(); } /************************* AddExp *****************************/ AddExp::AddExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKadd, sizeof(AddExp), e1, e2) { } Expression *AddExp::semantic(Scope *sc) { Expression *e; #if LOGSEMANTIC printf("AddExp::semantic('%s')\n", toChars()); #endif if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; Type *tb1 = e1->type->toBasetype(); Type *tb2 = e2->type->toBasetype(); if ((tb1->ty == Tarray || tb1->ty == Tsarray) && (tb2->ty == Tarray || tb2->ty == Tsarray) && tb1->nextOf()->equals(tb2->nextOf()) ) { type = e1->type; e = this; } else if (tb1->ty == Tpointer && e2->type->isintegral() || tb2->ty == Tpointer && e1->type->isintegral()) e = scaleFactor(sc); else if (tb1->ty == Tpointer && tb2->ty == Tpointer) { return incompatibleTypes(); } else { typeCombine(sc); Type *tb1 = e1->type->toBasetype(); if (tb1->ty == Tvector && !tb1->isscalar()) { return incompatibleTypes(); } if ((tb1->isreal() && e2->type->isimaginary()) || (tb1->isimaginary() && e2->type->isreal())) { switch (type->toBasetype()->ty) { case Tfloat32: case Timaginary32: type = Type::tcomplex32; break; case Tfloat64: case Timaginary64: type = Type::tcomplex64; break; case Tfloat80: case Timaginary80: type = Type::tcomplex80; break; default: assert(0); } } e = this; } return e; } return this; } /************************************************************/ MinExp::MinExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKmin, sizeof(MinExp), e1, e2) { } Expression *MinExp::semantic(Scope *sc) { Expression *e; #if LOGSEMANTIC printf("MinExp::semantic('%s')\n", toChars()); #endif if (type) return this; BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; e = this; Type *t1 = e1->type->toBasetype(); Type *t2 = e2->type->toBasetype(); if (t1->ty == Tpointer) { if (t2->ty == Tpointer) { // Need to divide the result by the stride // Replace (ptr - ptr) with (ptr - ptr) / stride d_int64 stride; Expression *e; typeCombine(sc); // make sure pointer types are compatible type = Type::tptrdiff_t; stride = t2->nextOf()->size(); if (stride == 0) { e = new IntegerExp(loc, 0, Type::tptrdiff_t); } else { e = new DivExp(loc, this, new IntegerExp(0, stride, Type::tptrdiff_t)); e->type = Type::tptrdiff_t; } return e; } else if (t2->isintegral()) e = scaleFactor(sc); else { error("can't subtract %s from pointer", t2->toChars()); return new ErrorExp(); } } else if (t2->ty == Tpointer) { type = e2->type; error("can't subtract pointer from %s", e1->type->toChars()); return new ErrorExp(); } else { typeCombine(sc); t1 = e1->type->toBasetype(); t2 = e2->type->toBasetype(); if (t1->ty == Tvector && !t1->isscalar()) { return incompatibleTypes(); } if ((t1->isreal() && t2->isimaginary()) || (t1->isimaginary() && t2->isreal())) { switch (type->ty) { case Tfloat32: case Timaginary32: type = Type::tcomplex32; break; case Tfloat64: case Timaginary64: type = Type::tcomplex64; break; case Tfloat80: case Timaginary80: type = Type::tcomplex80; break; default: assert(0); } } } return e; } /************************* CatExp *****************************/ CatExp::CatExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKcat, sizeof(CatExp), e1, e2) { } Expression *CatExp::semantic(Scope *sc) { Expression *e; //printf("CatExp::semantic() %s\n", toChars()); if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; Type *tb1 = e1->type->toBasetype(); Type *tb2 = e2->type->toBasetype(); /* BUG: Should handle things like: * char c; * c ~ ' ' * ' ' ~ c; */ #if 0 e1->type->print(); e2->type->print(); #endif Type *tb1next = tb1->nextOf(); Type *tb2next = tb2->nextOf(); if ((tb1->ty == Tsarray || tb1->ty == Tarray) && e2->implicitConvTo(tb1next) >= MATCHconvert) { e2 = e2->implicitCastTo(sc, tb1next); type = tb1next->arrayOf(); if (tb2->ty == Tarray) { // Make e2 into [e2] e2 = new ArrayLiteralExp(e2->loc, e2); e2->type = type; } return this; } else if ((tb2->ty == Tsarray || tb2->ty == Tarray) && e1->implicitConvTo(tb2next) >= MATCHconvert) { e1 = e1->implicitCastTo(sc, tb2next); type = tb2next->arrayOf(); if (tb1->ty == Tarray) { // Make e1 into [e1] e1 = new ArrayLiteralExp(e1->loc, e1); e1->type = type; } return this; } if ((tb1->ty == Tsarray || tb1->ty == Tarray) && (tb2->ty == Tsarray || tb2->ty == Tarray) && (tb1next->mod || tb2next->mod) && (tb1next->mod != tb2next->mod) ) { Type *t1 = tb1next->mutableOf()->constOf()->arrayOf(); Type *t2 = tb2next->mutableOf()->constOf()->arrayOf(); if (e1->op == TOKstring && !((StringExp *)e1)->committed) e1->type = t1; else e1 = e1->castTo(sc, t1); if (e2->op == TOKstring && !((StringExp *)e2)->committed) e2->type = t2; else e2 = e2->castTo(sc, t2); } typeCombine(sc); type = type->toHeadMutable(); Type *tb = type->toBasetype(); if (tb->ty == Tsarray) type = tb->nextOf()->arrayOf(); if (type->ty == Tarray && tb1next && tb2next && tb1next->mod != tb2next->mod) { type = type->nextOf()->toHeadMutable()->arrayOf(); } #if 0 e1->type->print(); e2->type->print(); type->print(); print(); #endif Type *t1 = e1->type->toBasetype(); Type *t2 = e2->type->toBasetype(); if (e1->op == TOKstring && e2->op == TOKstring) e = optimize(WANTvalue); else if ((t1->ty == Tarray || t1->ty == Tsarray) && (t2->ty == Tarray || t2->ty == Tsarray)) { e = this; } else { //printf("(%s) ~ (%s)\n", e1->toChars(), e2->toChars()); incompatibleTypes(); return new ErrorExp(); } e->type = e->type->semantic(loc, sc); return e; } return this; } /************************************************************/ MulExp::MulExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKmul, sizeof(MulExp), e1, e2) { } Expression *MulExp::semantic(Scope *sc) { Expression *e; #if 0 printf("MulExp::semantic() %s\n", toChars()); #endif if (type) { return this; } BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; typeCombine(sc); if (!e1->isArrayOperand()) e1->checkArithmetic(); if (!e2->isArrayOperand()) e2->checkArithmetic(); if (type->isfloating()) { Type *t1 = e1->type; Type *t2 = e2->type; if (t1->isreal()) { type = t2; } else if (t2->isreal()) { type = t1; } else if (t1->isimaginary()) { if (t2->isimaginary()) { Expression *e; switch (t1->toBasetype()->ty) { case Timaginary32: type = Type::tfloat32; break; case Timaginary64: type = Type::tfloat64; break; case Timaginary80: type = Type::tfloat80; break; default: assert(0); } // iy * iv = -yv e1->type = type; e2->type = type; e = new NegExp(loc, this); e = e->semantic(sc); return e; } else type = t2; // t2 is complex } else if (t2->isimaginary()) { type = t1; // t1 is complex } } else if (type->toBasetype()->ty == Tvector && ((TypeVector *)type->toBasetype())->elementType()->size(loc) != 2) { // Only short[8] and ushort[8] work with multiply return incompatibleTypes(); } return this; } /************************************************************/ DivExp::DivExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKdiv, sizeof(DivExp), e1, e2) { } Expression *DivExp::semantic(Scope *sc) { Expression *e; if (type) return this; BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; typeCombine(sc); if (!e1->isArrayOperand()) e1->checkArithmetic(); if (!e2->isArrayOperand()) e2->checkArithmetic(); if (type->isfloating()) { Type *t1 = e1->type; Type *t2 = e2->type; if (t1->isreal()) { type = t2; if (t2->isimaginary()) { Expression *e; // x/iv = i(-x/v) e2->type = t1; e = new NegExp(loc, this); e = e->semantic(sc); return e; } } else if (t2->isreal()) { type = t1; } else if (t1->isimaginary()) { if (t2->isimaginary()) { switch (t1->toBasetype()->ty) { case Timaginary32: type = Type::tfloat32; break; case Timaginary64: type = Type::tfloat64; break; case Timaginary80: type = Type::tfloat80; break; default: assert(0); } } else type = t2; // t2 is complex } else if (t2->isimaginary()) { type = t1; // t1 is complex } } else if (type->toBasetype()->ty == Tvector) { incompatibleTypes(); return new ErrorExp(); } return this; } /************************************************************/ ModExp::ModExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKmod, sizeof(ModExp), e1, e2) { } Expression *ModExp::semantic(Scope *sc) { Expression *e; if (type) return this; BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; typeCombine(sc); if (!e1->isArrayOperand()) e1->checkArithmetic(); if (!e2->isArrayOperand()) e2->checkArithmetic(); if (type->toBasetype()->ty == Tvector) { incompatibleTypes(); return new ErrorExp(); } if (type->isfloating()) { type = e1->type; if (e2->type->iscomplex()) { error("cannot perform modulo complex arithmetic"); return new ErrorExp(); } } return this; } /************************************************************/ PowExp::PowExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKpow, sizeof(PowExp), e1, e2) { } Expression *PowExp::semantic(Scope *sc) { Expression *e; if (type) return this; //printf("PowExp::semantic() %s\n", toChars()); BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; assert(e1->type && e2->type); typeCombine(sc); if (e1->op == TOKslice) { // Check element types are arithmetic Type *tb1 = e1->type->nextOf()->toBasetype(); Type *tb2 = e2->type->toBasetype(); if (tb2->ty == Tarray || tb2->ty == Tsarray) tb2 = tb2->nextOf()->toBasetype(); if ( (tb1->isintegral() || tb1->isfloating()) && (tb2->isintegral() || tb2->isfloating())) { type = e1->type; return this; } } if ( (e1->type->isintegral() || e1->type->isfloating()) && (e2->type->isintegral() || e2->type->isfloating())) { // For built-in numeric types, there are several cases. // TODO: backend support, especially for e1 ^^ 2. bool wantSqrt = false; // First, attempt to fold the expression. e = optimize(WANTvalue); if (e->op != TOKpow) { e = e->semantic(sc); return e; } // Determine if we're raising to an integer power. sinteger_t intpow = 0; if (e2->op == TOKint64 && ((sinteger_t)e2->toInteger() == 2 || (sinteger_t)e2->toInteger() == 3)) intpow = e2->toInteger(); else if (e2->op == TOKfloat64 && (e2->toReal() == (sinteger_t)(e2->toReal()))) intpow = (sinteger_t)(e2->toReal()); // Deal with x^^2, x^^3 immediately, since they are of practical importance. if (intpow == 2 || intpow == 3) { // Replace x^^2 with (tmp = x, tmp*tmp) // Replace x^^3 with (tmp = x, tmp*tmp*tmp) Identifier *idtmp = Lexer::uniqueId("__powtmp"); VarDeclaration *tmp = new VarDeclaration(loc, e1->type->toBasetype(), idtmp, new ExpInitializer(0, e1)); tmp->storage_class = STCctfe; Expression *ve = new VarExp(loc, tmp); Expression *ae = new DeclarationExp(loc, tmp); /* Note that we're reusing ve. This should be ok. */ Expression *me = new MulExp(loc, ve, ve); if (intpow == 3) me = new MulExp(loc, me, ve); e = new CommaExp(loc, ae, me); e = e->semantic(sc); return e; } static int importMathChecked = 0; if (!importMathChecked) { importMathChecked = 1; for (size_t i = 0; i < Module::amodules.dim; i++) { Module *mi = Module::amodules.tdata()[i]; //printf("\t[%d] %s\n", i, mi->toChars()); if (mi->ident == Id::math && mi->parent->ident == Id::std && !mi->parent->parent) goto L1; } error("must import std.math to use ^^ operator"); return new ErrorExp(); L1: ; } e = new IdentifierExp(loc, Id::empty); e = new DotIdExp(loc, e, Id::std); e = new DotIdExp(loc, e, Id::math); if (e2->op == TOKfloat64 && e2->toReal() == 0.5) { // Replace e1 ^^ 0.5 with .std.math.sqrt(x) e = new CallExp(loc, new DotIdExp(loc, e, Id::_sqrt), e1); } else { // Replace e1 ^^ e2 with .std.math.pow(e1, e2) e = new CallExp(loc, new DotIdExp(loc, e, Id::_pow), e1, e2); } e = e->semantic(sc); return e; } return incompatibleTypes(); } /************************************************************/ ShlExp::ShlExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKshl, sizeof(ShlExp), e1, e2) { } Expression *ShlExp::semantic(Scope *sc) { Expression *e; //printf("ShlExp::semantic(), type = %p\n", type); if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; e1 = e1->checkIntegral(); e2 = e2->checkIntegral(); if (e1->type->toBasetype()->ty == Tvector || e2->type->toBasetype()->ty == Tvector) return incompatibleTypes(); e1 = e1->integralPromotions(sc); //e2 = e2->castTo(sc, Type::tshiftcnt); e2 = e2->castTo(sc, e1->type); // LDC type = e1->type; } return this; } /************************************************************/ ShrExp::ShrExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKshr, sizeof(ShrExp), e1, e2) { } Expression *ShrExp::semantic(Scope *sc) { Expression *e; if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; e1 = e1->checkIntegral(); e2 = e2->checkIntegral(); if (e1->type->toBasetype()->ty == Tvector || e2->type->toBasetype()->ty == Tvector) return incompatibleTypes(); e1 = e1->integralPromotions(sc); //e2 = e2->castTo(sc, Type::tshiftcnt); e2 = e2->castTo(sc, e1->type); // LDC type = e1->type; } return this; } /************************************************************/ UshrExp::UshrExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKushr, sizeof(UshrExp), e1, e2) { } Expression *UshrExp::semantic(Scope *sc) { Expression *e; if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; e1 = e1->checkIntegral(); e2 = e2->checkIntegral(); if (e1->type->toBasetype()->ty == Tvector || e2->type->toBasetype()->ty == Tvector) return incompatibleTypes(); e1 = e1->integralPromotions(sc); //e2 = e2->castTo(sc, Type::tshiftcnt); e2 = e2->castTo(sc, e1->type); // LDC type = e1->type; } return this; } /************************************************************/ AndExp::AndExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKand, sizeof(AndExp), e1, e2) { } Expression *AndExp::semantic(Scope *sc) { Expression *e; if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; if (e1->type->toBasetype()->ty == Tbool && e2->type->toBasetype()->ty == Tbool) { type = e1->type; e = this; } else { typeCombine(sc); if (!e1->isArrayOperand()) e1->checkIntegral(); if (!e2->isArrayOperand()) e2->checkIntegral(); } } return this; } /************************************************************/ OrExp::OrExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKor, sizeof(OrExp), e1, e2) { } Expression *OrExp::semantic(Scope *sc) { Expression *e; if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; if (e1->type->toBasetype()->ty == Tbool && e2->type->toBasetype()->ty == Tbool) { type = e1->type; e = this; } else { typeCombine(sc); if (!e1->isArrayOperand()) e1->checkIntegral(); if (!e2->isArrayOperand()) e2->checkIntegral(); } } return this; } /************************************************************/ XorExp::XorExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKxor, sizeof(XorExp), e1, e2) { } Expression *XorExp::semantic(Scope *sc) { Expression *e; if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; if (e1->type->toBasetype()->ty == Tbool && e2->type->toBasetype()->ty == Tbool) { type = e1->type; e = this; } else { typeCombine(sc); if (!e1->isArrayOperand()) e1->checkIntegral(); if (!e2->isArrayOperand()) e2->checkIntegral(); } } return this; } /************************************************************/ OrOrExp::OrOrExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKoror, sizeof(OrOrExp), e1, e2) { } Expression *OrOrExp::semantic(Scope *sc) { unsigned cs1; // same as for AndAnd e1 = e1->semantic(sc); e1 = resolveProperties(sc, e1); e1 = e1->checkToPointer(); e1 = e1->checkToBoolean(sc); cs1 = sc->callSuper; if (sc->flags & SCOPEstaticif) { /* If in static if, don't evaluate e2 if we don't have to. */ e1 = e1->optimize(WANTflags); if (e1->isBool(TRUE)) { return new IntegerExp(loc, 1, Type::tboolean); } } e2 = e2->semantic(sc); sc->mergeCallSuper(loc, cs1); e2 = resolveProperties(sc, e2); e2 = e2->checkToPointer(); if (e2->type->ty == Tvoid) type = Type::tvoid; else { e2 = e2->checkToBoolean(sc); type = Type::tboolean; } if (e2->op == TOKtype || e2->op == TOKimport) { error("%s is not an expression", e2->toChars()); return new ErrorExp(); } if (e1->op == TOKerror) return e1; if (e2->op == TOKerror) return e2; return this; } Expression *OrOrExp::checkToBoolean(Scope *sc) { e2 = e2->checkToBoolean(sc); return this; } int OrOrExp::isBit() { return TRUE; } /************************************************************/ AndAndExp::AndAndExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKandand, sizeof(AndAndExp), e1, e2) { } Expression *AndAndExp::semantic(Scope *sc) { unsigned cs1; // same as for OrOr e1 = e1->semantic(sc); e1 = resolveProperties(sc, e1); e1 = e1->checkToPointer(); e1 = e1->checkToBoolean(sc); cs1 = sc->callSuper; if (sc->flags & SCOPEstaticif) { /* If in static if, don't evaluate e2 if we don't have to. */ e1 = e1->optimize(WANTflags); if (e1->isBool(FALSE)) { return new IntegerExp(loc, 0, Type::tboolean); } } e2 = e2->semantic(sc); sc->mergeCallSuper(loc, cs1); e2 = resolveProperties(sc, e2); e2 = e2->checkToPointer(); if (e2->type->ty == Tvoid) type = Type::tvoid; else { e2 = e2->checkToBoolean(sc); type = Type::tboolean; } if (e2->op == TOKtype || e2->op == TOKimport) { error("%s is not an expression", e2->toChars()); return new ErrorExp(); } if (e1->op == TOKerror) return e1; if (e2->op == TOKerror) return e2; return this; } Expression *AndAndExp::checkToBoolean(Scope *sc) { e2 = e2->checkToBoolean(sc); return this; } int AndAndExp::isBit() { return TRUE; } /************************************************************/ InExp::InExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKin, sizeof(InExp), e1, e2) { } Expression *InExp::semantic(Scope *sc) { Expression *e; if (type) return this; BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; //type = Type::tboolean; Type *t2b = e2->type->toBasetype(); switch (t2b->ty) { case Taarray: { TypeAArray *ta = (TypeAArray *)t2b; #if DMDV2 // Special handling for array keys if (!arrayTypeCompatible(e1->loc, e1->type, ta->index)) #endif { // Convert key to type of key e1 = e1->implicitCastTo(sc, ta->index); } // Return type is pointer to value type = ta->nextOf()->pointerTo(); break; } default: error("rvalue of in expression must be an associative array, not %s", e2->type->toChars()); case Terror: return new ErrorExp(); } return this; } int InExp::isBit() { return FALSE; } /************************************************************/ /* This deletes the key e1 from the associative array e2 */ RemoveExp::RemoveExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKremove, sizeof(RemoveExp), e1, e2) { type = Type::tboolean; } void RemoveExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writestring(".remove("); expToCBuffer(buf, hgs, e2, PREC_assign); buf->writestring(")"); } /************************************************************/ CmpExp::CmpExp(enum TOK op, Loc loc, Expression *e1, Expression *e2) : BinExp(loc, op, sizeof(CmpExp), e1, e2) { } Expression *CmpExp::semantic(Scope *sc) { Expression *e; #if LOGSEMANTIC printf("CmpExp::semantic('%s')\n", toChars()); #endif if (type) return this; BinExp::semanticp(sc); Type *t1 = e1->type->toBasetype(); Type *t2 = e2->type->toBasetype(); if (t1->ty == Tclass && e2->op == TOKnull || t2->ty == Tclass && e1->op == TOKnull) { error("do not use null when comparing class types"); return new ErrorExp(); } e = op_overload(sc); if (e) { if (!e->type->isscalar() && e->type->equals(e1->type)) { error("recursive opCmp expansion"); e = new ErrorExp(); } else if (e->op == TOKcall) { e = new CmpExp(op, loc, e, new IntegerExp(loc, 0, Type::tint32)); e = e->semantic(sc); } return e; } /* Disallow comparing T[]==T and T==T[] */ if (e1->op == TOKslice && t1->ty == Tarray && e2->implicitConvTo(t1->nextOf()) || e2->op == TOKslice && t2->ty == Tarray && e1->implicitConvTo(t2->nextOf())) { incompatibleTypes(); return new ErrorExp(); } Expression *eb1 = e1; Expression *eb2 = e2; e = typeCombine(sc); if (e->op == TOKerror) return e; #if 0 // For integer comparisons, ensure the combined type can hold both arguments. if (type && type->isintegral() && (op == TOKlt || op == TOKle || op == TOKgt || op == TOKge)) { IntRange trange = IntRange::fromType(type); Expression *errorexp = 0; if (!trange.contains(eb1->getIntRange())) errorexp = eb1; if (!trange.contains(eb2->getIntRange())) errorexp = eb2; if (errorexp) { error("implicit conversion of '%s' to '%s' is unsafe in '(%s) %s (%s)'", errorexp->toChars(), type->toChars(), eb1->toChars(), Token::toChars(op), eb2->toChars()); return new ErrorExp(); } } #endif type = Type::tboolean; // Special handling for array comparisons t1 = e1->type->toBasetype(); t2 = e2->type->toBasetype(); if ((t1->ty == Tarray || t1->ty == Tsarray || t1->ty == Tpointer) && (t2->ty == Tarray || t2->ty == Tsarray || t2->ty == Tpointer)) { if (t1->nextOf()->implicitConvTo(t2->nextOf()) < MATCHconst && t2->nextOf()->implicitConvTo(t1->nextOf()) < MATCHconst && (t1->nextOf()->ty != Tvoid && t2->nextOf()->ty != Tvoid)) error("array comparison type mismatch, %s vs %s", t1->nextOf()->toChars(), t2->nextOf()->toChars()); e = this; } else if (t1->ty == Tstruct || t2->ty == Tstruct || (t1->ty == Tclass && t2->ty == Tclass)) { if (t2->ty == Tstruct) error("need member function opCmp() for %s %s to compare", t2->toDsymbol(sc)->kind(), t2->toChars()); else error("need member function opCmp() for %s %s to compare", t1->toDsymbol(sc)->kind(), t1->toChars()); e = new ErrorExp(); } #if 1 else if (t1->iscomplex() || t2->iscomplex()) { error("compare not defined for complex operands"); e = new ErrorExp(); } #endif else if (t1->ty == Tvector) return incompatibleTypes(); else { if (!e1->rvalue() || !e2->rvalue()) return new ErrorExp(); e = this; } //printf("CmpExp: %s, type = %s\n", e->toChars(), e->type->toChars()); return e; } int CmpExp::isBit() { return TRUE; } /************************************************************/ EqualExp::EqualExp(enum TOK op, Loc loc, Expression *e1, Expression *e2) : BinExp(loc, op, sizeof(EqualExp), e1, e2) { assert(op == TOKequal || op == TOKnotequal); } int needDirectEq(Type *t1, Type *t2) { assert(t1->ty == Tarray || t1->ty == Tsarray); assert(t2->ty == Tarray || t2->ty == Tsarray); Type *t1n = t1->nextOf()->toBasetype(); Type *t2n = t2->nextOf()->toBasetype(); if (((t1n->ty == Tchar || t1n->ty == Twchar || t1n->ty == Tdchar) && (t2n->ty == Tchar || t2n->ty == Twchar || t2n->ty == Tdchar)) || (t1n->ty == Tvoid || t2n->ty == Tvoid)) { return FALSE; } if (t1n->constOf() != t2n->constOf()) return TRUE; Type *t = t1n; while (t->toBasetype()->nextOf()) t = t->nextOf()->toBasetype(); if (t->ty != Tstruct) return FALSE; return ((TypeStruct *)t)->sym->xeq == StructDeclaration::xerreq; } Expression *EqualExp::semantic(Scope *sc) { Expression *e; //printf("EqualExp::semantic('%s')\n", toChars()); if (type) return this; BinExp::semanticp(sc); /* Before checking for operator overloading, check to see if we're * comparing the addresses of two statics. If so, we can just see * if they are the same symbol. */ if (e1->op == TOKaddress && e2->op == TOKaddress) { AddrExp *ae1 = (AddrExp *)e1; AddrExp *ae2 = (AddrExp *)e2; if (ae1->e1->op == TOKvar && ae2->e1->op == TOKvar) { VarExp *ve1 = (VarExp *)ae1->e1; VarExp *ve2 = (VarExp *)ae2->e1; if (ve1->var == ve2->var /*|| ve1->var->toSymbol() == ve2->var->toSymbol()*/) { // They are the same, result is 'true' for ==, 'false' for != e = new IntegerExp(loc, (op == TOKequal), Type::tboolean); return e; } } } Type *t1 = e1->type->toBasetype(); Type *t2 = e2->type->toBasetype(); if (t1->ty == Tclass && e2->op == TOKnull || t2->ty == Tclass && e1->op == TOKnull) { error("use '%s' instead of '%s' when comparing with null", Token::toChars(op == TOKequal ? TOKidentity : TOKnotidentity), Token::toChars(op)); return new ErrorExp(); } if ((t1->ty == Tarray || t1->ty == Tsarray) && (t2->ty == Tarray || t2->ty == Tsarray)) { if (needDirectEq(t1, t2)) { /* Rewrite as: * _ArrayEq(e1, e2) */ Expression *eq = new IdentifierExp(loc, Id::_ArrayEq); Expressions *args = new Expressions(); args->push(e1); args->push(e2); e = new CallExp(loc, eq, args); if (op == TOKnotequal) e = new NotExp(loc, e); e = e->trySemantic(sc); // for better error message if (!e) { error("cannot compare %s and %s", t1->toChars(), t2->toChars()); return new ErrorExp(); } return e; } } //if (e2->op != TOKnull) { e = op_overload(sc); if (e) { if (e->op == TOKcall && op == TOKnotequal) { e = new NotExp(e->loc, e); e = e->semantic(sc); } return e; } } /* Disallow comparing T[]==T and T==T[] */ if (e1->op == TOKslice && t1->ty == Tarray && e2->implicitConvTo(t1->nextOf()) || e2->op == TOKslice && t2->ty == Tarray && e1->implicitConvTo(t2->nextOf())) { incompatibleTypes(); return new ErrorExp(); } e = typeCombine(sc); if (e->op == TOKerror) return e; type = Type::tboolean; // Special handling for array comparisons if (!arrayTypeCompatible(loc, e1->type, e2->type)) { if (e1->type != e2->type && e1->type->isfloating() && e2->type->isfloating()) { // Cast both to complex e1 = e1->castTo(sc, Type::tcomplex80); e2 = e2->castTo(sc, Type::tcomplex80); } } if (e1->type->toBasetype()->ty == Tvector) return incompatibleTypes(); return e; } int EqualExp::isBit() { return TRUE; } /************************************************************/ IdentityExp::IdentityExp(enum TOK op, Loc loc, Expression *e1, Expression *e2) : BinExp(loc, op, sizeof(IdentityExp), e1, e2) { } Expression *IdentityExp::semantic(Scope *sc) { if (type) return this; BinExp::semanticp(sc); type = Type::tboolean; Expression *e = typeCombine(sc); if (e->op == TOKerror) return e; if (e1->type != e2->type && e1->type->isfloating() && e2->type->isfloating()) { // Cast both to complex e1 = e1->castTo(sc, Type::tcomplex80); e2 = e2->castTo(sc, Type::tcomplex80); } if (e1->type->toBasetype()->ty == Tvector) return incompatibleTypes(); return this; } int IdentityExp::isBit() { return TRUE; } /****************************************************************/ CondExp::CondExp(Loc loc, Expression *econd, Expression *e1, Expression *e2) : BinExp(loc, TOKquestion, sizeof(CondExp), e1, e2) { this->econd = econd; } Expression *CondExp::syntaxCopy() { return new CondExp(loc, econd->syntaxCopy(), e1->syntaxCopy(), e2->syntaxCopy()); } Expression *CondExp::semantic(Scope *sc) { Type *t1; Type *t2; unsigned cs0; unsigned cs1; #if LOGSEMANTIC printf("CondExp::semantic('%s')\n", toChars()); #endif if (type) return this; econd = econd->semantic(sc); econd = resolveProperties(sc, econd); econd = econd->checkToPointer(); econd = econd->checkToBoolean(sc); #if 0 /* this cannot work right because the types of e1 and e2 * both contribute to the type of the result. */ if (sc->flags & SCOPEstaticif) { /* If in static if, don't evaluate what we don't have to. */ econd = econd->optimize(WANTflags); if (econd->isBool(TRUE)) { e1 = e1->semantic(sc); e1 = resolveProperties(sc, e1); return e1; } else if (econd->isBool(FALSE)) { e2 = e2->semantic(sc); e2 = resolveProperties(sc, e2); return e2; } } #endif cs0 = sc->callSuper; e1 = e1->semantic(sc); e1 = resolveProperties(sc, e1); cs1 = sc->callSuper; sc->callSuper = cs0; e2 = e2->semantic(sc); e2 = resolveProperties(sc, e2); sc->mergeCallSuper(loc, cs1); // If either operand is void, the result is void t1 = e1->type; t2 = e2->type; if (t1->ty == Tvoid || t2->ty == Tvoid) type = Type::tvoid; else if (t1 == t2) type = t1; else { typeCombine(sc); switch (e1->type->toBasetype()->ty) { case Tcomplex32: case Tcomplex64: case Tcomplex80: e2 = e2->castTo(sc, e1->type); break; } switch (e2->type->toBasetype()->ty) { case Tcomplex32: case Tcomplex64: case Tcomplex80: e1 = e1->castTo(sc, e2->type); break; } if (type->toBasetype()->ty == Tarray) { e1 = e1->castTo(sc, type); e2 = e2->castTo(sc, type); } } #if 0 printf("res: %s\n", type->toChars()); printf("e1 : %s\n", e1->type->toChars()); printf("e2 : %s\n", e2->type->toChars()); #endif return this; } #if DMDV2 int CondExp::isLvalue() { return e1->isLvalue() && e2->isLvalue(); } #endif Expression *CondExp::toLvalue(Scope *sc, Expression *ex) { PtrExp *e; // convert (econd ? e1 : e2) to *(econd ? &e1 : &e2) e = new PtrExp(loc, this, type); e1 = e1->addressOf(sc); e2 = e2->addressOf(sc); typeCombine(sc); type = e2->type; return e; } Expression *CondExp::modifiableLvalue(Scope *sc, Expression *e) { //error("conditional expression %s is not a modifiable lvalue", toChars()); e1 = e1->modifiableLvalue(sc, e1); e2 = e2->modifiableLvalue(sc, e1); return toLvalue(sc, this); } void CondExp::checkEscape() { e1->checkEscape(); e2->checkEscape(); } void CondExp::checkEscapeRef() { e1->checkEscapeRef(); e2->checkEscapeRef(); } Expression *CondExp::checkToBoolean(Scope *sc) { e1 = e1->checkToBoolean(sc); e2 = e2->checkToBoolean(sc); return this; } void CondExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, econd, PREC_oror); buf->writestring(" ? "); expToCBuffer(buf, hgs, e1, PREC_expr); buf->writestring(" : "); expToCBuffer(buf, hgs, e2, PREC_cond); } /************************************************************/ #if IN_LLVM // Strictly LDC specific stuff GEPExp::GEPExp(Loc loc, Expression* e, Identifier* id, unsigned idx) : UnaExp(loc, TOKgep, sizeof(GEPExp), e) { index = idx; ident = id; } void GEPExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); buf->writestring(ident->toChars()); } Expression* GEPExp::toLvalue(Scope* sc, Expression* e) { // GEP's are always lvalues, at least in the "LLVM sense" ... return this; } #endif /****************************************************************/ DefaultInitExp::DefaultInitExp(Loc loc, enum TOK subop, int size) : Expression(loc, TOKdefault, size) { this->subop = subop; } void DefaultInitExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(Token::toChars(subop)); } /****************************************************************/ FileInitExp::FileInitExp(Loc loc) : DefaultInitExp(loc, TOKfile, sizeof(FileInitExp)) { } Expression *FileInitExp::semantic(Scope *sc) { //printf("FileInitExp::semantic()\n"); type = Type::tchar->invariantOf()->arrayOf(); return this; } Expression *FileInitExp::resolveLoc(Loc loc, Scope *sc) { //printf("FileInitExp::resolve() %s\n", toChars()); const char *s = loc.filename ? loc.filename : sc->module->ident->toChars(); Expression *e = new StringExp(loc, (char *)s); e = e->semantic(sc); e = e->castTo(sc, type); return e; } /****************************************************************/ LineInitExp::LineInitExp(Loc loc) : DefaultInitExp(loc, TOKline, sizeof(LineInitExp)) { } Expression *LineInitExp::semantic(Scope *sc) { type = Type::tint32; return this; } Expression *LineInitExp::resolveLoc(Loc loc, Scope *sc) { Expression *e = new IntegerExp(loc, loc.linnum, Type::tint32); e = e->castTo(sc, type); return e; }