// Compiler implementation of the D programming language // Copyright (c) 1999-2008 by Digital Mars // All Rights Reserved // written by Walter Bright // http://www.digitalmars.com // License for redistribution is by either the Artistic License // in artistic.txt, or the GNU General Public License in gnu.txt. // See the included readme.txt for details. #include #include #include "init.h" #include "declaration.h" #include "attrib.h" #include "mtype.h" #include "template.h" #include "scope.h" #include "aggregate.h" #include "module.h" #include "id.h" #include "expression.h" #include "hdrgen.h" /********************************* Declaration ****************************/ Declaration::Declaration(Identifier *id) : Dsymbol(id) { type = NULL; originalType = NULL; storage_class = STCundefined; protection = PROTundefined; linkage = LINKdefault; } void Declaration::semantic(Scope *sc) { } const char *Declaration::kind() { return "declaration"; } unsigned Declaration::size(Loc loc) { assert(type); return type->size(); } int Declaration::isStaticConstructor() { return FALSE; } int Declaration::isStaticDestructor() { return FALSE; } int Declaration::isDelete() { return FALSE; } int Declaration::isDataseg() { return FALSE; } int Declaration::isCodeseg() { return FALSE; } enum PROT Declaration::prot() { return protection; } /************************************* * Check to see if declaration can be modified in this context (sc). * Issue error if not. */ #if DMDV2 void Declaration::checkModify(Loc loc, Scope *sc, Type *t) { if (sc->incontract && isParameter()) error(loc, "cannot modify parameter '%s' in contract", toChars()); if (isCtorinit()) { // It's only modifiable if inside the right constructor Dsymbol *s = sc->func; while (1) { FuncDeclaration *fd = NULL; if (s) fd = s->isFuncDeclaration(); if (fd && ((fd->isCtorDeclaration() && storage_class & STCfield) || (fd->isStaticCtorDeclaration() && !(storage_class & STCfield))) && fd->toParent() == toParent() ) { VarDeclaration *v = isVarDeclaration(); assert(v); v->ctorinit = 1; //printf("setting ctorinit\n"); } else { if (s) { s = s->toParent2(); continue; } else { const char *p = isStatic() ? "static " : ""; error(loc, "can only initialize %sconst %s inside %sconstructor", p, toChars(), p); } } break; } } else { VarDeclaration *v = isVarDeclaration(); if (v && v->canassign == 0) { const char *p = NULL; if (isConst()) p = "const"; else if (isInvariant()) p = "invariant"; else if (storage_class & STCmanifest) p = "manifest constant"; else if (!t->isAssignable()) p = "struct with immutable members"; if (p) { error(loc, "cannot modify %s", p); halt(); } } } } #endif /********************************* TupleDeclaration ****************************/ TupleDeclaration::TupleDeclaration(Loc loc, Identifier *id, Objects *objects) : Declaration(id) { this->type = NULL; this->objects = objects; this->isexp = 0; this->tupletype = NULL; } Dsymbol *TupleDeclaration::syntaxCopy(Dsymbol *s) { assert(0); return NULL; } const char *TupleDeclaration::kind() { return "tuple"; } Type *TupleDeclaration::getType() { /* If this tuple represents a type, return that type */ //printf("TupleDeclaration::getType() %s\n", toChars()); if (isexp) return NULL; if (!tupletype) { /* It's only a type tuple if all the Object's are types */ for (size_t i = 0; i < objects->dim; i++) { Object *o = (Object *)objects->data[i]; if (o->dyncast() != DYNCAST_TYPE) { //printf("\tnot[%d], %p, %d\n", i, o, o->dyncast()); return NULL; } } /* We know it's a type tuple, so build the TypeTuple */ Arguments *args = new Arguments(); args->setDim(objects->dim); OutBuffer buf; for (size_t i = 0; i < objects->dim; i++) { Type *t = (Type *)objects->data[i]; //printf("type = %s\n", t->toChars()); #if 0 buf.printf("_%s_%d", ident->toChars(), i); char *name = (char *)buf.extractData(); Identifier *id = new Identifier(name, TOKidentifier); Argument *arg = new Argument(STCin, t, id, NULL); #else Argument *arg = new Argument(0, t, NULL, NULL); #endif args->data[i] = (void *)arg; } tupletype = new TypeTuple(args); } return tupletype; } int TupleDeclaration::needThis() { //printf("TupleDeclaration::needThis(%s)\n", toChars()); for (size_t i = 0; i < objects->dim; i++) { Object *o = (Object *)objects->data[i]; if (o->dyncast() == DYNCAST_EXPRESSION) { Expression *e = (Expression *)o; if (e->op == TOKdsymbol) { DsymbolExp *ve = (DsymbolExp *)e; Declaration *d = ve->s->isDeclaration(); if (d && d->needThis()) { return 1; } } } } return 0; } /********************************* TypedefDeclaration ****************************/ TypedefDeclaration::TypedefDeclaration(Loc loc, Identifier *id, Type *basetype, Initializer *init) : Declaration(id) { this->type = new TypeTypedef(this); this->basetype = basetype->toBasetype(); this->init = init; #ifdef _DH this->htype = NULL; this->hbasetype = NULL; #endif this->sem = 0; this->inuse = 0; this->loc = loc; this->sinit = NULL; } Dsymbol *TypedefDeclaration::syntaxCopy(Dsymbol *s) { Type *basetype = this->basetype->syntaxCopy(); Initializer *init = NULL; if (this->init) init = this->init->syntaxCopy(); assert(!s); TypedefDeclaration *st; st = new TypedefDeclaration(loc, ident, basetype, init); #ifdef _DH // Syntax copy for header file if (!htype) // Don't overwrite original { if (type) // Make copy for both old and new instances { htype = type->syntaxCopy(); st->htype = type->syntaxCopy(); } } else // Make copy of original for new instance st->htype = htype->syntaxCopy(); if (!hbasetype) { if (basetype) { hbasetype = basetype->syntaxCopy(); st->hbasetype = basetype->syntaxCopy(); } } else st->hbasetype = hbasetype->syntaxCopy(); #endif return st; } void TypedefDeclaration::semantic(Scope *sc) { //printf("TypedefDeclaration::semantic(%s) sem = %d\n", toChars(), sem); if (sem == 0) { sem = 1; basetype = basetype->semantic(loc, sc); sem = 2; type = type->semantic(loc, sc); if (sc->parent->isFuncDeclaration() && init) semantic2(sc); storage_class |= sc->stc & STCdeprecated; } else if (sem == 1) { error("circular definition"); } } void TypedefDeclaration::semantic2(Scope *sc) { //printf("TypedefDeclaration::semantic2(%s) sem = %d\n", toChars(), sem); if (sem == 2) { sem = 3; if (init) { init = init->semantic(sc, basetype); ExpInitializer *ie = init->isExpInitializer(); if (ie) { if (ie->exp->type == basetype) ie->exp->type = type; } } } } const char *TypedefDeclaration::kind() { return "typedef"; } Type *TypedefDeclaration::getType() { return type; } void TypedefDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("typedef "); basetype->toCBuffer(buf, ident, hgs); if (init) { buf->writestring(" = "); init->toCBuffer(buf, hgs); } buf->writeByte(';'); buf->writenl(); } /********************************* AliasDeclaration ****************************/ AliasDeclaration::AliasDeclaration(Loc loc, Identifier *id, Type *type) : Declaration(id) { //printf("AliasDeclaration(id = '%s', type = %p)\n", id->toChars(), type); //printf("type = '%s'\n", type->toChars()); this->loc = loc; this->type = type; this->aliassym = NULL; #ifdef _DH this->htype = NULL; this->haliassym = NULL; #endif this->overnext = NULL; this->inSemantic = 0; assert(type); } AliasDeclaration::AliasDeclaration(Loc loc, Identifier *id, Dsymbol *s) : Declaration(id) { //printf("AliasDeclaration(id = '%s', s = %p)\n", id->toChars(), s); assert(s != this); this->loc = loc; this->type = NULL; this->aliassym = s; #ifdef _DH this->htype = NULL; this->haliassym = NULL; #endif this->overnext = NULL; this->inSemantic = 0; assert(s); } Dsymbol *AliasDeclaration::syntaxCopy(Dsymbol *s) { //printf("AliasDeclaration::syntaxCopy()\n"); assert(!s); AliasDeclaration *sa; if (type) sa = new AliasDeclaration(loc, ident, type->syntaxCopy()); else sa = new AliasDeclaration(loc, ident, aliassym->syntaxCopy(NULL)); #ifdef _DH // Syntax copy for header file if (!htype) // Don't overwrite original { if (type) // Make copy for both old and new instances { htype = type->syntaxCopy(); sa->htype = type->syntaxCopy(); } } else // Make copy of original for new instance sa->htype = htype->syntaxCopy(); if (!haliassym) { if (aliassym) { haliassym = aliassym->syntaxCopy(s); sa->haliassym = aliassym->syntaxCopy(s); } } else sa->haliassym = haliassym->syntaxCopy(s); #endif return sa; } void AliasDeclaration::semantic(Scope *sc) { //printf("AliasDeclaration::semantic() %s\n", toChars()); if (aliassym) { if (aliassym->isTemplateInstance()) aliassym->semantic(sc); return; } this->inSemantic = 1; if (storage_class & STCconst) error("cannot be const"); storage_class |= sc->stc & STCdeprecated; // Given: // alias foo.bar.abc def; // it is not knowable from the syntax whether this is an alias // for a type or an alias for a symbol. It is up to the semantic() // pass to distinguish. // If it is a type, then type is set and getType() will return that // type. If it is a symbol, then aliassym is set and type is NULL - // toAlias() will return aliasssym. Dsymbol *s; Type *t; Expression *e; /* This section is needed because resolve() will: * const x = 3; * alias x y; * try to alias y to 3. */ s = type->toDsymbol(sc); if (s && ((s->getType() && type->equals(s->getType())) || s->isEnumMember())) goto L2; // it's a symbolic alias //printf("alias type is %s\n", type->toChars()); type->resolve(loc, sc, &e, &t, &s); if (s) { goto L2; } else if (e) { // Try to convert Expression to Dsymbol s = getDsymbol(e); if (s) goto L2; error("cannot alias an expression %s", e->toChars()); t = e->type; } else if (t) type = t; if (overnext) ScopeDsymbol::multiplyDefined(0, this, overnext); this->inSemantic = 0; return; L2: //printf("alias is a symbol %s %s\n", s->kind(), s->toChars()); type = NULL; VarDeclaration *v = s->isVarDeclaration(); if (v && v->linkage == LINKdefault) { error("forward reference of %s", v->toChars()); s = NULL; } else { FuncDeclaration *f = s->toAlias()->isFuncDeclaration(); if (f) { if (overnext) { FuncAliasDeclaration *fa = new FuncAliasDeclaration(f); if (!fa->overloadInsert(overnext)) ScopeDsymbol::multiplyDefined(0, f, overnext); overnext = NULL; s = fa; s->parent = sc->parent; } } if (overnext) ScopeDsymbol::multiplyDefined(0, s, overnext); if (s == this) { assert(global.errors); s = NULL; } } aliassym = s; this->inSemantic = 0; } int AliasDeclaration::overloadInsert(Dsymbol *s) { /* Don't know yet what the aliased symbol is, so assume it can * be overloaded and check later for correctness. */ //printf("AliasDeclaration::overloadInsert('%s')\n", s->toChars()); if (overnext == NULL) { overnext = s; return TRUE; } else { return overnext->overloadInsert(s); } } const char *AliasDeclaration::kind() { return "alias"; } Type *AliasDeclaration::getType() { return type; } Dsymbol *AliasDeclaration::toAlias() { //printf("AliasDeclaration::toAlias('%s', this = %p, aliassym = %p, kind = '%s')\n", toChars(), this, aliassym, aliassym ? aliassym->kind() : ""); assert(this != aliassym); //static int count; if (++count == 10) *(char*)0=0; if (inSemantic) { error("recursive alias declaration"); // return this; } Dsymbol *s = aliassym ? aliassym->toAlias() : this; return s; } void AliasDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("alias "); #if 0 && _DH if (hgs->hdrgen) { if (haliassym) { haliassym->toCBuffer(buf, hgs); buf->writeByte(' '); buf->writestring(ident->toChars()); } else htype->toCBuffer(buf, ident, hgs); } else #endif { if (aliassym) { aliassym->toCBuffer(buf, hgs); buf->writeByte(' '); buf->writestring(ident->toChars()); } else type->toCBuffer(buf, ident, hgs); } buf->writeByte(';'); buf->writenl(); } /********************************* VarDeclaration ****************************/ VarDeclaration::VarDeclaration(Loc loc, Type *type, Identifier *id, Initializer *init) : Declaration(id) { //printf("VarDeclaration('%s')\n", id->toChars()); #ifdef DEBUG if (!type && !init) { printf("VarDeclaration('%s')\n", id->toChars()); //*(char*)0=0; } #endif assert(type || init); this->type = type; this->init = init; #ifdef _DH this->htype = NULL; this->hinit = NULL; #endif this->loc = loc; offset = 0; noauto = 0; inuse = 0; ctorinit = 0; aliassym = NULL; onstack = 0; canassign = 0; value = NULL; scope = NULL; // LDC anonDecl = NULL; offset2 = 0; nakedUse = false; } Dsymbol *VarDeclaration::syntaxCopy(Dsymbol *s) { //printf("VarDeclaration::syntaxCopy(%s)\n", toChars()); VarDeclaration *sv; if (s) { sv = (VarDeclaration *)s; } else { Initializer *init = NULL; if (this->init) { init = this->init->syntaxCopy(); //init->isExpInitializer()->exp->print(); //init->isExpInitializer()->exp->dump(0); } sv = new VarDeclaration(loc, type ? type->syntaxCopy() : NULL, ident, init); sv->storage_class = storage_class; } #ifdef _DH // Syntax copy for header file if (!htype) // Don't overwrite original { if (type) // Make copy for both old and new instances { htype = type->syntaxCopy(); sv->htype = type->syntaxCopy(); } } else // Make copy of original for new instance sv->htype = htype->syntaxCopy(); if (!hinit) { if (init) { hinit = init->syntaxCopy(); sv->hinit = init->syntaxCopy(); } } else sv->hinit = hinit->syntaxCopy(); #endif return sv; } void VarDeclaration::semantic(Scope *sc) { #if 0 printf("VarDeclaration::semantic('%s', parent = '%s')\n", toChars(), sc->parent->toChars()); printf(" type = %s\n", type ? type->toChars() : "null"); printf(" stc = x%x\n", sc->stc); printf(" storage_class = x%x\n", storage_class); printf("linkage = %d\n", sc->linkage); //if (strcmp(toChars(), "mul") == 0) halt(); #endif storage_class |= sc->stc; if (storage_class & STCextern && init) error("extern symbols cannot have initializers"); /* If auto type inference, do the inference */ int inferred = 0; if (!type) { inuse++; type = init->inferType(sc); inuse--; inferred = 1; /* This is a kludge to support the existing syntax for RAII * declarations. */ storage_class &= ~STCauto; originalType = type; } else { if (!originalType) originalType = type; type = type->semantic(loc, sc); } //printf(" semantic type = %s\n", type ? type->toChars() : "null"); type->checkDeprecated(loc, sc); linkage = sc->linkage; this->parent = sc->parent; //printf("this = %p, parent = %p, '%s'\n", this, parent, parent->toChars()); protection = sc->protection; //printf("sc->stc = %x\n", sc->stc); //printf("storage_class = x%x\n", storage_class); Dsymbol *parent = toParent(); FuncDeclaration *fd = parent->isFuncDeclaration(); Type *tb = type->toBasetype(); if (tb->ty == Tvoid && !(storage_class & STClazy)) { error("voids have no value"); type = Type::terror; tb = type; } if (tb->ty == Tfunction) { error("cannot be declared to be a function"); type = Type::terror; tb = type; } if (tb->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tb; if (!ts->sym->members) { error("no definition of struct %s", ts->toChars()); } } if (tb->ty == Ttuple) { /* Instead, declare variables for each of the tuple elements * and add those. */ TypeTuple *tt = (TypeTuple *)tb; size_t nelems = Argument::dim(tt->arguments); Objects *exps = new Objects(); exps->setDim(nelems); Expression *ie = init ? init->toExpression() : NULL; for (size_t i = 0; i < nelems; i++) { Argument *arg = Argument::getNth(tt->arguments, i); OutBuffer buf; buf.printf("_%s_field_%"PRIuSIZE, ident->toChars(), i); buf.writeByte(0); char *name = (char *)buf.extractData(); Identifier *id = new Identifier(name, TOKidentifier); Expression *einit = ie; if (ie && ie->op == TOKtuple) { einit = (Expression *)((TupleExp *)ie)->exps->data[i]; } Initializer *ti = init; if (einit) { ti = new ExpInitializer(einit->loc, einit); } VarDeclaration *v = new VarDeclaration(loc, arg->type, id, ti); //printf("declaring field %s of type %s\n", v->toChars(), v->type->toChars()); v->semantic(sc); if (sc->scopesym) { //printf("adding %s to %s\n", v->toChars(), sc->scopesym->toChars()); if (sc->scopesym->members) sc->scopesym->members->push(v); } Expression *e = new DsymbolExp(loc, v); exps->data[i] = e; } TupleDeclaration *v2 = new TupleDeclaration(loc, ident, exps); v2->isexp = 1; aliassym = v2; return; } Lagain: if (storage_class & STCinvariant) { type = type->invariantOf(); } else if (storage_class & (STCconst | STCin)) { if (!type->isInvariant()) type = type->constOf(); } else if (type->isConst()) storage_class |= STCconst; else if (type->isInvariant()) storage_class |= STCinvariant; if (isSynchronized()) { error("variable %s cannot be synchronized", toChars()); } else if (isOverride()) { error("override cannot be applied to variable"); } else if (isAbstract()) { error("abstract cannot be applied to variable"); } else if (storage_class & STCfinal) { error("final cannot be applied to variable"); } if (storage_class & (STCstatic | STCextern | STCmanifest | STCtemplateparameter | STCtls)) { } else { AggregateDeclaration *aad = sc->anonAgg; if (!aad) aad = parent->isAggregateDeclaration(); if (aad) { assert(!(storage_class & (STCextern | STCstatic | STCtls))); if (storage_class & (STCconst | STCinvariant) && init) { if (!type->toBasetype()->isTypeBasic()) storage_class |= STCstatic; } else aad->addField(sc, this); } InterfaceDeclaration *id = parent->isInterfaceDeclaration(); if (id) { error("field not allowed in interface"); } /* Templates cannot add fields to aggregates */ TemplateInstance *ti = parent->isTemplateInstance(); if (ti) { // Take care of nested templates while (1) { TemplateInstance *ti2 = ti->tempdecl->parent->isTemplateInstance(); if (!ti2) break; ti = ti2; } // If it's a member template AggregateDeclaration *ad = ti->tempdecl->isMember(); if (ad && storage_class != STCundefined) { error("cannot use template to add field to aggregate '%s'", ad->toChars()); } } } if ((storage_class & (STCref | STCparameter | STCforeach)) == STCref) error("only parameters or foreach declarations can be ref"); if (type->isauto() && !noauto) { if (storage_class & (STCfield | STCout | STCref | STCstatic | STCmanifest | STCtls) || !fd) { error("globals, statics, fields, manifest constants, ref and out parameters cannot be auto"); } if (!(storage_class & (STCauto | STCscope))) { if (!(storage_class & STCparameter) && ident != Id::withSym) error("reference to scope class must be scope"); } } if ((isConst() || isInvariant()) && !init && !fd) { // Initialize by constructor only storage_class |= STCctorinit; } if (init) storage_class |= STCinit; // remember we had an explicit initializer else if (storage_class & STCmanifest) error("manifest constants must have initializers"); enum TOK op = TOKconstruct; if (!init && !sc->inunion && !isStatic() && fd && (!(storage_class & (STCfield | STCin | STCforeach | STCparameter)) || (storage_class & STCout)) && type->size() != 0) { // Provide a default initializer //printf("Providing default initializer for '%s'\n", toChars()); if (type->ty == Tstruct && ((TypeStruct *)type)->sym->zeroInit == 1) { /* If a struct is all zeros, as a special case * set it's initializer to the integer 0. * In AssignExp::toElem(), we check for this and issue * a memset() to initialize the struct. * Must do same check in interpreter. */ Expression *e = new IntegerExp(loc, 0, Type::tint32); Expression *e1; e1 = new VarExp(loc, this); e = new AssignExp(loc, e1, e); e->type = e1->type; // don't type check this, it would fail init = new ExpInitializer(loc, e); return; } else if (type->ty == Ttypedef) { TypeTypedef *td = (TypeTypedef *)type; if (td->sym->init) { init = td->sym->init; ExpInitializer *ie = init->isExpInitializer(); if (ie) // Make copy so we can modify it init = new ExpInitializer(ie->loc, ie->exp); } else init = getExpInitializer(); } else { init = getExpInitializer(); } // Default initializer is always a blit op = TOKblit; } if (init) { sc = sc->push(); sc->stc &= ~(STCconst | STCinvariant | STCpure | STCnothrow | STCref | STCshared); ArrayInitializer *ai = init->isArrayInitializer(); if (ai && tb->ty == Taarray) { init = ai->toAssocArrayInitializer(); } StructInitializer *si = init->isStructInitializer(); ExpInitializer *ei = init->isExpInitializer(); // See if initializer is a NewExp that can be allocated on the stack if (ei && isScope() && ei->exp->op == TOKnew) { NewExp *ne = (NewExp *)ei->exp; if (!(ne->newargs && ne->newargs->dim)) { ne->onstack = 1; onstack = 1; if (type->isBaseOf(ne->newtype->semantic(loc, sc), NULL)) onstack = 2; } } // If inside function, there is no semantic3() call if (sc->func) { // If local variable, use AssignExp to handle all the various // possibilities. if (fd && !isStatic() && !(storage_class & STCmanifest) && !init->isVoidInitializer()) { //printf("fd = '%s', var = '%s'\n", fd->toChars(), toChars()); if (!ei) { Expression *e = init->toExpression(); if (!e) { init = init->semantic(sc, type); e = init->toExpression(); if (!e) { error("is not a static and cannot have static initializer"); return; } } ei = new ExpInitializer(init->loc, e); init = ei; } Expression *e1 = new VarExp(loc, this); Type *t = type->toBasetype(); if (t->ty == Tsarray) { ei->exp = ei->exp->semantic(sc); if (!ei->exp->implicitConvTo(type)) { int dim = ((TypeSArray *)t)->dim->toInteger(); // If multidimensional static array, treat as one large array while (1) { t = t->nextOf()->toBasetype(); if (t->ty != Tsarray) break; dim *= ((TypeSArray *)t)->dim->toInteger(); e1->type = new TypeSArray(t->nextOf(), new IntegerExp(0, dim, Type::tindex)); } } e1 = new SliceExp(loc, e1, NULL, NULL); } else if (t->ty == Tstruct) { ei->exp = ei->exp->semantic(sc); /* Look to see if initializer is a call to the constructor */ StructDeclaration *sd = ((TypeStruct *)t)->sym; if (sd->ctor && // there are constructors ei->exp->type->ty == Tstruct && // rvalue is the same struct ((TypeStruct *)ei->exp->type)->sym == sd && ei->exp->op == TOKstar) { /* Look for form of constructor call which is: * *__ctmp.ctor(arguments...) */ PtrExp *pe = (PtrExp *)ei->exp; if (pe->e1->op == TOKcall) { CallExp *ce = (CallExp *)pe->e1; if (ce->e1->op == TOKdotvar) { DotVarExp *dve = (DotVarExp *)ce->e1; if (dve->var->isCtorDeclaration()) { /* It's a constructor call, currently constructing * a temporary __ctmp. */ /* Before calling the constructor, initialize * variable with a bit copy of the default * initializer */ Expression *e = new AssignExp(loc, new VarExp(loc, this), t->defaultInit(loc)); e->op = TOKblit; e->type = t; ei->exp = new CommaExp(loc, e, ei->exp); /* Replace __ctmp being constructed with e1 */ dve->e1 = e1; return; } } } } if (!ei->exp->implicitConvTo(type)) { Type *ti = ei->exp->type->toBasetype(); // Don't cast away invariant or mutability in initializer if (!(ti->ty == Tstruct && t->toDsymbol(sc) == ti->toDsymbol(sc))) ei->exp = new CastExp(loc, ei->exp, type); } } ei->exp = new AssignExp(loc, e1, ei->exp); ei->exp->op = op; canassign++; ei->exp = ei->exp->semantic(sc); canassign--; ei->exp->optimize(WANTvalue); } else { init = init->semantic(sc, type); } } else if (storage_class & (STCconst | STCinvariant | STCmanifest) || type->isConst() || type->isInvariant()) { /* Because we may need the results of a const declaration in a * subsequent type, such as an array dimension, before semantic2() * gets ordinarily run, try to run semantic2() now. * Ignore failure. */ if (!global.errors && !inferred) { unsigned errors = global.errors; global.gag++; //printf("+gag\n"); Expression *e; Initializer *i2 = init; inuse++; if (ei) { e = ei->exp->syntaxCopy(); e = e->semantic(sc); e = e->implicitCastTo(sc, type); } else if (si || ai) { i2 = init->syntaxCopy(); i2 = i2->semantic(sc, type); } inuse--; global.gag--; //printf("-gag\n"); if (errors != global.errors) // if errors happened { if (global.gag == 0) global.errors = errors; // act as if nothing happened /* Save scope for later use, to try again */ scope = new Scope(*sc); scope->setNoFree(); } else if (ei) { if (isDataseg()) /* static const/invariant does CTFE */ e = e->optimize(WANTvalue | WANTinterpret); else e = e->optimize(WANTvalue); if (e->op == TOKint64 || e->op == TOKstring) { ei->exp = e; // no errors, keep result } else { /* Save scope for later use, to try again */ scope = new Scope(*sc); scope->setNoFree(); } } else init = i2; // no errors, keep result } } sc = sc->pop(); } } void VarDeclaration::semantic2(Scope *sc) { //printf("VarDeclaration::semantic2('%s')\n", toChars()); if (init && !toParent()->isFuncDeclaration()) { inuse++; #if 0 ExpInitializer *ei = init->isExpInitializer(); if (ei) { ei->exp->dump(0); printf("type = %p\n", ei->exp->type); } #endif init = init->semantic(sc, type); inuse--; } } const char *VarDeclaration::kind() { return "variable"; } Dsymbol *VarDeclaration::toAlias() { //printf("VarDeclaration::toAlias('%s', this = %p, aliassym = %p)\n", toChars(), this, aliassym); assert(this != aliassym); Dsymbol *s = aliassym ? aliassym->toAlias() : this; return s; } void VarDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (storage_class & STCconst) buf->writestring("const "); if (storage_class & STCstatic) buf->writestring("static "); if (storage_class & STCauto) buf->writestring("auto "); #if DMDV2 if (storage_class & STCmanifest) buf->writestring("manifest "); if (storage_class & STCinvariant) buf->writestring("invariant "); if (storage_class & STCtls) buf->writestring("__thread "); #endif if (type) type->toCBuffer(buf, ident, hgs); else buf->writestring(ident->toChars()); if (init) { buf->writestring(" = "); ExpInitializer *ie = init->isExpInitializer(); if (ie && (ie->exp->op == TOKconstruct || ie->exp->op == TOKblit)) ((AssignExp *)ie->exp)->e2->toCBuffer(buf, hgs); else init->toCBuffer(buf, hgs); } buf->writeByte(';'); buf->writenl(); } int VarDeclaration::needThis() { //printf("VarDeclaration::needThis(%s, x%x)\n", toChars(), storage_class); return storage_class & STCfield; } int VarDeclaration::isImportedSymbol() { if (protection == PROTexport && !init && (storage_class & STCstatic || parent->isModule())) return TRUE; return FALSE; } void VarDeclaration::checkCtorConstInit() { #if 0 /* doesn't work if more than one static ctor */ if (ctorinit == 0 && isCtorinit() && !(storage_class & STCfield)) error("missing initializer in static constructor for const variable"); #endif } /************************************ * Check to see if this variable is actually in an enclosing function * rather than the current one. */ void VarDeclaration::checkNestedReference(Scope *sc, Loc loc) { if (parent && !isDataseg() && parent != sc->parent && !(storage_class & STCmanifest)) { // The function that this variable is in FuncDeclaration *fdv = toParent()->isFuncDeclaration(); // The current function FuncDeclaration *fdthis = sc->parent->isFuncDeclaration(); if (fdv && fdthis && fdv != fdthis) { if (loc.filename) fdthis->getLevel(loc, fdv); for (int i = 0; i < nestedrefs.dim; i++) { FuncDeclaration *f = (FuncDeclaration *)nestedrefs.data[i]; if (f == fdthis) goto L1; } fdv->nestedVars.insert(this); nestedrefs.push(fdthis); L1: ; for (int i = 0; i < fdv->closureVars.dim; i++) { Dsymbol *s = (Dsymbol *)fdv->closureVars.data[i]; if (s == this) goto L2; } fdv->closureVars.push(this); L2: ; //printf("var %s in function %s is nested ref\n", toChars(), fdv->toChars()); } } } /**************************** * Get ExpInitializer for a variable, if there is one. */ ExpInitializer *VarDeclaration::getExpInitializer() { ExpInitializer *ei; if (init) ei = init->isExpInitializer(); else { Expression *e = type->defaultInit(loc); if (e) ei = new ExpInitializer(loc, e); else ei = NULL; } return ei; } /******************************************* * If variable has a constant expression initializer, get it. * Otherwise, return NULL. */ Expression *VarDeclaration::getConstInitializer() { if ((isConst() || isInvariant() || storage_class & STCmanifest) && storage_class & STCinit) { ExpInitializer *ei = getExpInitializer(); if (ei) return ei->exp; } return NULL; } /************************************* * Return !=0 if we can take the address of this variable. */ int VarDeclaration::canTakeAddressOf() { #if 0 /* Global variables and struct/class fields of the form: * const int x = 3; * are not stored and hence cannot have their address taken. */ if ((isConst() || isInvariant()) && storage_class & STCinit && (!(storage_class & (STCstatic | STCextern)) || (storage_class & STCfield)) && (!parent || toParent()->isModule() || toParent()->isTemplateInstance()) && type->toBasetype()->isTypeBasic() ) { return 0; } #else if (storage_class & STCmanifest) return 0; #endif return 1; } /******************************* * Does symbol go into data segment? * Includes extern variables. */ int VarDeclaration::isDataseg() { #if 0 printf("VarDeclaration::isDataseg(%p, '%s')\n", this, toChars()); printf("%x, %p, %p\n", storage_class & (STCstatic | STCconst), parent->isModule(), parent->isTemplateInstance()); printf("parent = '%s'\n", parent->toChars()); #endif if (storage_class & STCmanifest) return 0; Dsymbol *parent = this->toParent(); if (!parent && !(storage_class & STCstatic)) { error("forward referenced"); type = Type::terror; return 0; } return canTakeAddressOf() && (storage_class & (STCstatic | STCextern | STCtls) || toParent()->isModule() || toParent()->isTemplateInstance()); } int VarDeclaration::hasPointers() { //printf("VarDeclaration::hasPointers() %s, ty = %d\n", toChars(), type->ty); return (!isDataseg() && type->hasPointers()); } /****************************************** * Return TRUE if variable needs to call the destructor. */ int VarDeclaration::needsAutoDtor() { //printf("VarDeclaration::needsAutoDtor() %s\n", toChars()); if (noauto || storage_class & STCnodtor) return FALSE; // Destructors for structs and arrays of structs Type *tv = type->toBasetype(); while (tv->ty == Tsarray) { TypeSArray *ta = (TypeSArray *)tv; tv = tv->nextOf()->toBasetype(); } if (tv->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tv; StructDeclaration *sd = ts->sym; if (sd->dtor) return TRUE; } // Destructors for classes if (storage_class & (STCauto | STCscope)) { if (type->isClassHandle()) return TRUE; } return FALSE; } /****************************************** * If a variable has an auto destructor call, return call for it. * Otherwise, return NULL. */ Expression *VarDeclaration::callAutoDtor(Scope *sc) { Expression *e = NULL; //printf("VarDeclaration::callAutoDtor() %s\n", toChars()); if (noauto || storage_class & STCnodtor) return NULL; // Destructors for structs and arrays of structs bool array = false; Type *tv = type->toBasetype(); while (tv->ty == Tsarray) { TypeSArray *ta = (TypeSArray *)tv; array = true; tv = tv->nextOf()->toBasetype(); } if (tv->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tv; StructDeclaration *sd = ts->sym; if (sd->dtor) { if (array) { // Typeinfo.destroy(cast(void*)&v); Expression *ea = new SymOffExp(loc, this, 0, 0); ea = new CastExp(loc, ea, Type::tvoid->pointerTo()); Expressions *args = new Expressions(); args->push(ea); Expression *et = type->getTypeInfo(sc); et = new DotIdExp(loc, et, Id::destroy); e = new CallExp(loc, et, args); } else { e = new VarExp(loc, this); e = new DotVarExp(loc, e, sd->dtor, 0); e = new CallExp(loc, e); } return e; } } // Destructors for classes if (storage_class & (STCauto | STCscope)) { for (ClassDeclaration *cd = type->isClassHandle(); cd; cd = cd->baseClass) { /* We can do better if there's a way with onstack * classes to determine if there's no way the monitor * could be set. */ //if (cd->isInterfaceDeclaration()) //error("interface %s cannot be scope", cd->toChars()); if (1 || onstack || cd->dtors.dim) // if any destructors { // delete this; Expression *ec; ec = new VarExp(loc, this); e = new DeleteExp(loc, ec); e->type = Type::tvoid; break; } } } return e; } /********************************* ClassInfoDeclaration ****************************/ ClassInfoDeclaration::ClassInfoDeclaration(ClassDeclaration *cd) : VarDeclaration(0, ClassDeclaration::classinfo->type, cd->ident, NULL) { this->cd = cd; storage_class = STCstatic; } Dsymbol *ClassInfoDeclaration::syntaxCopy(Dsymbol *s) { assert(0); // should never be produced by syntax return NULL; } void ClassInfoDeclaration::semantic(Scope *sc) { } /********************************* ModuleInfoDeclaration ****************************/ ModuleInfoDeclaration::ModuleInfoDeclaration(Module *mod) : VarDeclaration(0, Module::moduleinfo->type, mod->ident, NULL) { this->mod = mod; storage_class = STCstatic; } Dsymbol *ModuleInfoDeclaration::syntaxCopy(Dsymbol *s) { assert(0); // should never be produced by syntax return NULL; } void ModuleInfoDeclaration::semantic(Scope *sc) { } /********************************* TypeInfoDeclaration ****************************/ TypeInfoDeclaration::TypeInfoDeclaration(Type *tinfo, int internal) : VarDeclaration(0, Type::typeinfo->type, tinfo->getTypeInfoIdent(internal), NULL) { this->tinfo = tinfo; storage_class = STCstatic; protection = PROTpublic; linkage = LINKc; } Dsymbol *TypeInfoDeclaration::syntaxCopy(Dsymbol *s) { assert(0); // should never be produced by syntax return NULL; } void TypeInfoDeclaration::semantic(Scope *sc) { assert(linkage == LINKc); } /***************************** TypeInfoConstDeclaration **********************/ #if DMDV2 TypeInfoConstDeclaration::TypeInfoConstDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } #endif /***************************** TypeInfoInvariantDeclaration **********************/ #if DMDV2 TypeInfoInvariantDeclaration::TypeInfoInvariantDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } #endif /***************************** TypeInfoStructDeclaration **********************/ TypeInfoStructDeclaration::TypeInfoStructDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoClassDeclaration ***********************/ TypeInfoClassDeclaration::TypeInfoClassDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoInterfaceDeclaration *******************/ TypeInfoInterfaceDeclaration::TypeInfoInterfaceDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoTypedefDeclaration *********************/ TypeInfoTypedefDeclaration::TypeInfoTypedefDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoPointerDeclaration *********************/ TypeInfoPointerDeclaration::TypeInfoPointerDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoArrayDeclaration ***********************/ TypeInfoArrayDeclaration::TypeInfoArrayDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoStaticArrayDeclaration *****************/ TypeInfoStaticArrayDeclaration::TypeInfoStaticArrayDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoAssociativeArrayDeclaration ************/ TypeInfoAssociativeArrayDeclaration::TypeInfoAssociativeArrayDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoEnumDeclaration ***********************/ TypeInfoEnumDeclaration::TypeInfoEnumDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoFunctionDeclaration ********************/ TypeInfoFunctionDeclaration::TypeInfoFunctionDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoDelegateDeclaration ********************/ TypeInfoDelegateDeclaration::TypeInfoDelegateDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoTupleDeclaration **********************/ TypeInfoTupleDeclaration::TypeInfoTupleDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /********************************* ThisDeclaration ****************************/ // For the "this" parameter to member functions ThisDeclaration::ThisDeclaration(Type *t) : VarDeclaration(0, t, Id::This, NULL) { noauto = 1; } Dsymbol *ThisDeclaration::syntaxCopy(Dsymbol *s) { assert(0); // should never be produced by syntax return NULL; } /********************** StaticStructInitDeclaration ***************************/ StaticStructInitDeclaration::StaticStructInitDeclaration(Loc loc, StructDeclaration *dsym) : Declaration(new Identifier("", TOKidentifier)) { this->loc = loc; this->dsym = dsym; storage_class |= STCconst; }