// Backend stubs /* DMDFE backend stubs * This file contains the implementations of the backend routines. * For dmdfe these do nothing but print a message saying the module * has been parsed. Substitute your own behaviors for these routimes. */ #include #include #include #include #include #include "gen/llvm.h" #include "attrib.h" #include "total.h" #include "init.h" #include "mtype.h" #include "hdrgen.h" #include "port.h" #include "gen/irstate.h" #include "gen/logger.h" #include "gen/tollvm.h" #include "gen/llvmhelpers.h" #include "gen/runtime.h" #include "gen/arrays.h" #include "gen/structs.h" #include "gen/classes.h" #include "gen/typeinf.h" #include "gen/complex.h" #include "gen/dvalue.h" #include "gen/aa.h" #include "gen/functions.h" #include "gen/todebug.h" ////////////////////////////////////////////////////////////////////////////////////////// DValue* DeclarationExp::toElem(IRState* p) { Logger::print("DeclarationExp::toElem: %s | T=%s\n", toChars(), type->toChars()); LOG_SCOPE; // variable declaration if (VarDeclaration* vd = declaration->isVarDeclaration()) { Logger::println("VarDeclaration"); // static if (vd->isDataseg()) { vd->toObjFile(); // TODO } else { if (global.params.llvmAnnotate) DtoAnnotation(toChars()); Logger::println("vdtype = %s", vd->type->toChars()); // referenced by nested delegate? if (vd->nestedref) { Logger::println("has nestedref set"); assert(vd->ir.irLocal); vd->ir.irLocal->value = p->func()->decl->ir.irFunc->nestedVar; assert(vd->ir.irLocal->value); assert(vd->ir.irLocal->nestedIndex >= 0); } // normal stack variable else { // allocate storage on the stack const LLType* lltype = DtoType(vd->type); llvm::AllocaInst* allocainst = new llvm::AllocaInst(lltype, vd->toChars(), p->topallocapoint()); //allocainst->setAlignment(vd->type->alignsize()); // TODO assert(!vd->ir.irLocal); vd->ir.irLocal = new IrLocal(vd); vd->ir.irLocal->value = allocainst; if (global.params.symdebug) { DtoDwarfLocalVariable(allocainst, vd); } } Logger::cout() << "llvm value for decl: " << *vd->ir.irLocal->value << '\n'; DValue* ie = DtoInitializer(vd->init); } return new DVarValue(vd, vd->ir.getIrValue(), true); } // struct declaration else if (StructDeclaration* s = declaration->isStructDeclaration()) { Logger::println("StructDeclaration"); DtoForceConstInitDsymbol(s); } // function declaration else if (FuncDeclaration* f = declaration->isFuncDeclaration()) { Logger::println("FuncDeclaration"); DtoForceDeclareDsymbol(f); } // alias declaration else if (AliasDeclaration* a = declaration->isAliasDeclaration()) { Logger::println("AliasDeclaration - no work"); // do nothing } // enum else if (EnumDeclaration* e = declaration->isEnumDeclaration()) { Logger::println("EnumDeclaration - no work"); // do nothing } // class else if (ClassDeclaration* e = declaration->isClassDeclaration()) { Logger::println("ClassDeclaration"); DtoForceConstInitDsymbol(e); } // typedef else if (TypedefDeclaration* tdef = declaration->isTypedefDeclaration()) { Logger::println("TypedefDeclaration"); DtoTypeInfoOf(tdef->type, false); } // attribute declaration else if (AttribDeclaration* a = declaration->isAttribDeclaration()) { Logger::println("AttribDeclaration"); for (int i=0; i < a->decl->dim; ++i) { DtoForceDeclareDsymbol((Dsymbol*)a->decl->data[i]); } } // unsupported declaration else { error("Unimplemented DeclarationExp type. kind: %s", declaration->kind()); assert(0); } return 0; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* VarExp::toElem(IRState* p) { Logger::print("VarExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; assert(var); if (VarDeclaration* vd = var->isVarDeclaration()) { Logger::println("VarDeclaration %s", vd->toChars()); // _arguments if (vd->ident == Id::_arguments) { Logger::println("Id::_arguments"); /*if (!vd->ir.getIrValue()) vd->ir.getIrValue() = p->func()->decl->irFunc->_arguments; assert(vd->ir.getIrValue()); return new DVarValue(vd, vd->ir.getIrValue(), true);*/ LLValue* v = p->func()->decl->ir.irFunc->_arguments; assert(v); return new DVarValue(vd, v, true); } // _argptr else if (vd->ident == Id::_argptr) { Logger::println("Id::_argptr"); /*if (!vd->ir.getIrValue()) vd->ir.getIrValue() = p->func()->decl->irFunc->_argptr; assert(vd->ir.getIrValue()); return new DVarValue(vd, vd->ir.getIrValue(), true);*/ LLValue* v = p->func()->decl->ir.irFunc->_argptr; assert(v); return new DVarValue(vd, v, true); } // _dollar else if (vd->ident == Id::dollar) { Logger::println("Id::dollar"); assert(!p->arrays.empty()); LLValue* tmp = DtoArrayLen(p->arrays.back()); return new DVarValue(vd, tmp, false); } // typeinfo else if (TypeInfoDeclaration* tid = vd->isTypeInfoDeclaration()) { Logger::println("TypeInfoDeclaration"); DtoForceDeclareDsymbol(tid); assert(tid->ir.getIrValue()); const LLType* vartype = DtoType(type); LLValue* m; if (tid->ir.getIrValue()->getType() != getPtrToType(vartype)) m = p->ir->CreateBitCast(tid->ir.getIrValue(), vartype, "tmp"); else m = tid->ir.getIrValue(); return new DVarValue(vd, m, true); } // classinfo else if (ClassInfoDeclaration* cid = vd->isClassInfoDeclaration()) { Logger::println("ClassInfoDeclaration: %s", cid->cd->toChars()); DtoDeclareClassInfo(cid->cd); assert(cid->cd->ir.irStruct->classInfo); return new DVarValue(vd, cid->cd->ir.irStruct->classInfo, true); } // nested variable else if (vd->nestedref) { Logger::println("nested variable"); return new DVarValue(vd, DtoNestedVariable(vd), true); } // function parameter else if (vd->isParameter()) { Logger::println("function param"); if (vd->isRef() || vd->isOut() || DtoIsPassedByRef(vd->type) || llvm::isa(vd->ir.getIrValue())) { return new DVarValue(vd, vd->ir.getIrValue(), true); } else if (llvm::isa(vd->ir.getIrValue())) { return new DImValue(type, vd->ir.getIrValue()); } else assert(0); } else { // take care of forward references of global variables if (vd->isDataseg() || (vd->storage_class & STCextern)) { vd->toObjFile(); DtoConstInitGlobal(vd); } if (!vd->ir.getIrValue() || DtoType(vd->type)->isAbstract()) { Logger::println("global variable not resolved :/ %s", vd->toChars()); Logger::cout() << *DtoType(vd->type) << '\n'; assert(0); } return new DVarValue(vd, vd->ir.getIrValue(), true); } } else if (FuncDeclaration* fdecl = var->isFuncDeclaration()) { Logger::println("FuncDeclaration"); if (fdecl->llvmInternal != LLVMva_arg) {// && fdecl->llvmValue == 0) DtoForceDeclareDsymbol(fdecl); } return new DFuncValue(fdecl, fdecl->ir.irFunc->func); } else if (SymbolDeclaration* sdecl = var->isSymbolDeclaration()) { // this seems to be the static initialiser for structs Type* sdecltype = DtoDType(sdecl->type); Logger::print("Sym: type=%s\n", sdecltype->toChars()); assert(sdecltype->ty == Tstruct); TypeStruct* ts = (TypeStruct*)sdecltype; assert(ts->sym); DtoForceConstInitDsymbol(ts->sym); assert(ts->sym->ir.irStruct->init); return new DVarValue(type, ts->sym->ir.irStruct->init, true); } else { assert(0 && "Unimplemented VarExp type"); } return 0; } ////////////////////////////////////////////////////////////////////////////////////////// LLConstant* VarExp::toConstElem(IRState* p) { Logger::print("VarExp::toConstElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; if (SymbolDeclaration* sdecl = var->isSymbolDeclaration()) { // this seems to be the static initialiser for structs Type* sdecltype = DtoDType(sdecl->type); Logger::print("Sym: type=%s\n", sdecltype->toChars()); assert(sdecltype->ty == Tstruct); TypeStruct* ts = (TypeStruct*)sdecltype; DtoForceConstInitDsymbol(ts->sym); assert(ts->sym->ir.irStruct->constInit); return ts->sym->ir.irStruct->constInit; } else if (TypeInfoDeclaration* ti = var->isTypeInfoDeclaration()) { const LLType* vartype = DtoType(type); LLConstant* m = DtoTypeInfoOf(ti->tinfo, false); if (m->getType() != getPtrToType(vartype)) m = llvm::ConstantExpr::getBitCast(m, vartype); return m; } assert(0 && "Unsupported const VarExp kind"); return NULL; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* IntegerExp::toElem(IRState* p) { Logger::print("IntegerExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; LLConstant* c = toConstElem(p); return new DConstValue(type, c); } ////////////////////////////////////////////////////////////////////////////////////////// LLConstant* IntegerExp::toConstElem(IRState* p) { Logger::print("IntegerExp::toConstElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; const LLType* t = DtoType(type); if (isaPointer(t)) { Logger::println("pointer"); LLConstant* i = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)value,false); return llvm::ConstantExpr::getIntToPtr(i, t); } assert(llvm::isa(t)); LLConstant* c = llvm::ConstantInt::get(t,(uint64_t)value,!type->isunsigned()); assert(c); Logger::cout() << "value = " << *c << '\n'; return c; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* RealExp::toElem(IRState* p) { Logger::print("RealExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; LLConstant* c = toConstElem(p); return new DConstValue(type, c); } ////////////////////////////////////////////////////////////////////////////////////////// LLConstant* RealExp::toConstElem(IRState* p) { Logger::print("RealExp::toConstElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; Type* t = DtoDType(type); return DtoConstFP(t, value); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* NullExp::toElem(IRState* p) { Logger::print("NullExp::toElem(type=%s): %s\n", type->toChars(),toChars()); LOG_SCOPE; LLConstant* c = toConstElem(p); return new DNullValue(type, c); } ////////////////////////////////////////////////////////////////////////////////////////// LLConstant* NullExp::toConstElem(IRState* p) { Logger::print("NullExp::toConstElem(type=%s): %s\n", type->toChars(),toChars()); LOG_SCOPE; const LLType* t = DtoType(type); if (type->ty == Tarray) { assert(isaStruct(t)); return llvm::ConstantAggregateZero::get(t); } else { return llvm::Constant::getNullValue(t); } assert(0); return NULL; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* ComplexExp::toElem(IRState* p) { Logger::print("ComplexExp::toElem(): %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; LLConstant* c = toConstElem(p); if (c->isNullValue()) { Type* t = DtoDType(type); if (t->ty == Tcomplex32) c = DtoConstFP(Type::tfloat32, 0); else c = DtoConstFP(Type::tfloat64, 0); return new DComplexValue(type, c, c); } return new DComplexValue(type, c->getOperand(0), c->getOperand(1)); } ////////////////////////////////////////////////////////////////////////////////////////// LLConstant* ComplexExp::toConstElem(IRState* p) { Logger::print("ComplexExp::toConstElem(): %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; return DtoConstComplex(type, value.re, value.im); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* StringExp::toElem(IRState* p) { Logger::print("StringExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; Type* dtype = DtoDType(type); Type* cty = DtoDType(dtype->next); const LLType* ct = DtoType(cty); if (ct == LLType::VoidTy) ct = LLType::Int8Ty; //printf("ct = %s\n", type->next->toChars()); const LLArrayType* at = LLArrayType::get(ct,len+1); LLConstant* _init; if (cty->size() == 1) { uint8_t* str = (uint8_t*)string; std::string cont((char*)str, len); _init = llvm::ConstantArray::get(cont,true); } else if (cty->size() == 2) { uint16_t* str = (uint16_t*)string; std::vector vals; for(size_t i=0; isize() == 4) { uint32_t* str = (uint32_t*)string; std::vector vals; for(size_t i=0; imodule); llvm::ConstantInt* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false); LLConstant* idxs[2] = { zero, zero }; LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar,idxs,2); if (dtype->ty == Tarray) { LLConstant* clen = llvm::ConstantInt::get(DtoSize_t(),len,false); if (!p->topexp() || p->topexp()->e2 != this) { LLValue* tmpmem = new llvm::AllocaInst(DtoType(dtype),"tempstring",p->topallocapoint()); DtoSetArray(tmpmem, clen, arrptr); return new DVarValue(type, tmpmem, true); } else if (p->topexp()->e2 == this) { DValue* arr = p->topexp()->v; assert(arr); if (arr->isSlice()) { return new DSliceValue(type, clen, arrptr); } else { DtoSetArray(arr->getRVal(), clen, arrptr); return new DImValue(type, arr->getLVal(), true); } } assert(0); } else if (dtype->ty == Tsarray) { const LLType* dstType = getPtrToType(LLArrayType::get(ct, len)); LLValue* emem = (gvar->getType() == dstType) ? gvar : DtoBitCast(gvar, dstType); return new DVarValue(type, emem, true); } else if (dtype->ty == Tpointer) { return new DImValue(type, arrptr); } assert(0); return 0; } ////////////////////////////////////////////////////////////////////////////////////////// LLConstant* StringExp::toConstElem(IRState* p) { Logger::print("StringExp::toConstElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; Type* t = DtoDType(type); Type* cty = DtoDType(t->next); bool nullterm = (t->ty != Tsarray); size_t endlen = nullterm ? len+1 : len; const LLType* ct = DtoType(cty); const LLArrayType* at = LLArrayType::get(ct,endlen); LLConstant* _init; if (cty->size() == 1) { uint8_t* str = (uint8_t*)string; std::string cont((char*)str, len); _init = llvm::ConstantArray::get(cont, nullterm); } else if (cty->size() == 2) { uint16_t* str = (uint16_t*)string; std::vector vals; for(size_t i=0; isize() == 4) { uint32_t* str = (uint32_t*)string; std::vector vals; for(size_t i=0; ity == Tsarray) { return _init; } llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;//WeakLinkage; llvm::GlobalVariable* gvar = new llvm::GlobalVariable(_init->getType(),true,_linkage,_init,".stringliteral",gIR->module); llvm::ConstantInt* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false); LLConstant* idxs[2] = { zero, zero }; LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar,idxs,2); if (t->ty == Tpointer) { return arrptr; } else if (t->ty == Tarray) { LLConstant* clen = llvm::ConstantInt::get(DtoSize_t(),len,false); return DtoConstSlice(clen, arrptr); } assert(0); return NULL; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* AssignExp::toElem(IRState* p) { Logger::print("AssignExp::toElem: %s | %s = %s\n", toChars(), e1->type->toChars(), e2->type ? e2->type->toChars() : 0); LOG_SCOPE; p->exps.push_back(IRExp(e1,e2,NULL)); DValue* l = e1->toElem(p); p->topexp()->v = l; DValue* r = e2->toElem(p); p->exps.pop_back(); Logger::println("performing assignment"); DImValue* im = r->isIm(); if (!im || !im->inPlace()) { Logger::println("assignment not inplace"); if (DArrayLenValue* al = l->isArrayLen()) { DSliceValue* slice = DtoResizeDynArray(l->getType(), l, r); DtoAssign(l, slice); } else { DtoAssign(l, r); } } if (l->isSlice() || l->isComplex()) return l; LLValue* v; if (l->isVar() && l->isVar()->lval) v = l->getLVal(); else v = l->getRVal(); return new DVarValue(type, v, true); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* AddExp::toElem(IRState* p) { Logger::print("AddExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); DValue* r = e2->toElem(p); Type* t = DtoDType(type); Type* e1type = DtoDType(e1->type); Type* e1next = e1type->next ? DtoDType(e1type->next) : NULL; Type* e2type = DtoDType(e2->type); if (e1type != e2type) { if (llvmFieldIndex) { assert(e1type->ty == Tpointer && e1next && e1next->ty == Tstruct); Logger::println("add to AddrExp of struct"); assert(r->isConst()); llvm::ConstantInt* cofs = llvm::cast(r->isConst()->c); TypeStruct* ts = (TypeStruct*)e1next; DStructIndexVector offsets; LLValue* v = DtoIndexStruct(l->getRVal(), ts->sym, t->next, cofs->getZExtValue(), offsets); return new DFieldValue(type, v, true); } else if (e1type->ty == Tpointer) { Logger::println("add to pointer"); if (r->isConst()) { llvm::ConstantInt* cofs = llvm::cast(r->isConst()->c); if (cofs->isZero()) { Logger::println("is zero"); return new DImValue(type, l->getRVal()); } } LLValue* v = llvm::GetElementPtrInst::Create(l->getRVal(), r->getRVal(), "tmp", p->scopebb()); return new DImValue(type, v); } else if (t->iscomplex()) { return DtoComplexAdd(type, l, r); } assert(0); } else if (t->iscomplex()) { return DtoComplexAdd(type, l, r); } else { return DtoBinAdd(l,r); } } ////////////////////////////////////////////////////////////////////////////////////////// DValue* AddAssignExp::toElem(IRState* p) { Logger::print("AddAssignExp::toElem: %s\n", toChars()); LOG_SCOPE; p->exps.push_back(IRExp(e1,e2,NULL)); DValue* l = e1->toElem(p); DValue* r = e2->toElem(p); p->exps.pop_back(); Type* t = DtoDType(type); DValue* res; if (DtoDType(e1->type)->ty == Tpointer) { LLValue* gep = llvm::GetElementPtrInst::Create(l->getRVal(),r->getRVal(),"tmp",p->scopebb()); res = new DImValue(type, gep); } else if (t->iscomplex()) { res = DtoComplexAdd(e1->type, l, r); } else { res = DtoBinAdd(l,r); } DtoAssign(l, res); // used as lvalue :/ if (p->topexp() && p->topexp()->e1 == this) { assert(!l->isLRValue()); return l; } else { return res; } } ////////////////////////////////////////////////////////////////////////////////////////// DValue* MinExp::toElem(IRState* p) { Logger::print("MinExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); DValue* r = e2->toElem(p); Type* t = DtoDType(type); Type* t1 = DtoDType(e1->type); Type* t2 = DtoDType(e2->type); if (t1->ty == Tpointer && t2->ty == Tpointer) { LLValue* lv = l->getRVal(); LLValue* rv = r->getRVal(); Logger::cout() << "lv: " << *lv << " rv: " << *rv << '\n'; lv = p->ir->CreatePtrToInt(lv, DtoSize_t(), "tmp"); rv = p->ir->CreatePtrToInt(rv, DtoSize_t(), "tmp"); LLValue* diff = p->ir->CreateSub(lv,rv,"tmp"); if (diff->getType() != DtoType(type)) diff = p->ir->CreateIntToPtr(diff, DtoType(type), "tmp"); return new DImValue(type, diff); } else if (t1->ty == Tpointer) { LLValue* idx = p->ir->CreateNeg(r->getRVal(), "tmp"); LLValue* v = llvm::GetElementPtrInst::Create(l->getRVal(), idx, "tmp", p->scopebb()); return new DImValue(type, v); } else if (t->iscomplex()) { return DtoComplexSub(type, l, r); } else { return DtoBinSub(l,r); } } ////////////////////////////////////////////////////////////////////////////////////////// DValue* MinAssignExp::toElem(IRState* p) { Logger::print("MinAssignExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); DValue* r = e2->toElem(p); Type* t = DtoDType(type); DValue* res; if (DtoDType(e1->type)->ty == Tpointer) { Logger::println("ptr"); LLValue* tmp = r->getRVal(); LLValue* zero = llvm::ConstantInt::get(tmp->getType(),0,false); tmp = llvm::BinaryOperator::createSub(zero,tmp,"tmp",p->scopebb()); tmp = llvm::GetElementPtrInst::Create(l->getRVal(),tmp,"tmp",p->scopebb()); res = new DImValue(type, tmp); } else if (t->iscomplex()) { Logger::println("complex"); res = DtoComplexSub(type, l, r); } else { Logger::println("basic"); res = DtoBinSub(l,r); } DtoAssign(l, res); return l; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* MulExp::toElem(IRState* p) { Logger::print("MulExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); DValue* r = e2->toElem(p); if (type->iscomplex()) { return DtoComplexMul(type, l, r); } return DtoBinMul(l,r); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* MulAssignExp::toElem(IRState* p) { Logger::print("MulAssignExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); DValue* r = e2->toElem(p); DValue* res; if (type->iscomplex()) { res = DtoComplexMul(type, l, r); } else { res = DtoBinMul(l,r); } DtoAssign(l, res); return l; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* DivExp::toElem(IRState* p) { Logger::print("DivExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); DValue* r = e2->toElem(p); if (type->iscomplex()) { return DtoComplexDiv(type, l, r); } return DtoBinDiv(l, r); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* DivAssignExp::toElem(IRState* p) { Logger::print("DivAssignExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); DValue* r = e2->toElem(p); DValue* res; if (type->iscomplex()) { res = DtoComplexDiv(type, l, r); } else { res = DtoBinDiv(l,r); } DtoAssign(l, res); return l; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* ModExp::toElem(IRState* p) { Logger::print("ModExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); DValue* r = e2->toElem(p); return DtoBinRem(l, r); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* ModAssignExp::toElem(IRState* p) { Logger::print("ModAssignExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); DValue* r = e2->toElem(p); DValue* res = DtoBinRem(l, r); DtoAssign(l, res); return l; } ////////////////////////////////////////////////////////////////////////////////////////// // TODO: the method below could really use a cleanup/splitup DValue* CallExp::toElem(IRState* p) { Logger::print("CallExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* fn = e1->toElem(p); TypeFunction* tf = 0; Type* e1type = DtoDType(e1->type); bool delegateCall = false; LINK dlink = LINKd; // hidden struct return parameter handling bool retinptr = false; // regular functions if (e1type->ty == Tfunction) { tf = (TypeFunction*)e1type; if (tf->llvmRetInPtr) { retinptr = true; } dlink = tf->linkage; } // delegates else if (e1type->ty == Tdelegate) { Logger::println("delegateTy = %s\n", e1type->toChars()); assert(e1type->next->ty == Tfunction); tf = (TypeFunction*)e1type->next; if (tf->llvmRetInPtr) { retinptr = true; } dlink = tf->linkage; delegateCall = true; } // invalid else { assert(tf); } // handling of special intrinsics bool va_magic = false; bool va_intrinsic = false; DFuncValue* dfv = fn->isFunc(); if (dfv && dfv->func) { FuncDeclaration* fndecl = dfv->func; // vararg intrinsic if (fndecl->llvmInternal == LLVMva_intrinsic) { va_magic = true; va_intrinsic = true; } // va_start instruction else if (fndecl->llvmInternal == LLVMva_start) { va_magic = true; } // va_arg instruction else if (fndecl->llvmInternal == LLVMva_arg) { //Argument* fnarg = Argument::getNth(tf->parameters, 0); Expression* exp = (Expression*)arguments->data[0]; DValue* expelem = exp->toElem(p); Type* t = DtoDType(type); const LLType* llt = DtoType(type); if (DtoIsPassedByRef(t)) llt = getPtrToType(llt); // TODO // issue a warning for broken va_arg instruction. if (strcmp(global.params.llvmArch, "x86") != 0) { warning("%s: va_arg for C variadic functions is probably broken for anything but x86", loc.toChars()); } // done return new DImValue(type, p->ir->CreateVAArg(expelem->getLVal(),llt,"tmp")); } // alloca else if (fndecl->llvmInternal == LLVMalloca) { //Argument* fnarg = Argument::getNth(tf->parameters, 0); Expression* exp = (Expression*)arguments->data[0]; DValue* expv = exp->toElem(p); if (expv->getType()->toBasetype()->ty != Tint32) expv = DtoCast(expv, Type::tint32); LLValue* alloc = new llvm::AllocaInst(LLType::Int8Ty, expv->getRVal(), "alloca", p->scopebb()); // done return new DImValue(type, alloc); } } // args size_t n = arguments->dim; DFuncValue* dfn = fn->isFunc(); if (dfn && dfn->func && dfn->func->llvmInternal == LLVMva_start) n = 1; if (delegateCall || (dfn && dfn->vthis)) n++; if (retinptr) n++; if (tf->linkage == LINKd && tf->varargs == 1) n+=2; if (dfn && dfn->func && dfn->func->isNested()) n++; LLValue* funcval = fn->getRVal(); assert(funcval != 0); std::vector llargs(n, 0); const LLFunctionType* llfnty = 0; // TODO: review the stuff below, using the llvm type to choose seem like a bad idea. the D type should be used. // // normal function call if (llvm::isa(funcval->getType())) { llfnty = llvm::cast(funcval->getType()); } // pointer to something else if (isaPointer(funcval->getType())) { // pointer to function pointer - I think this not really supposed to happen, but does :/ // seems like sometimes we get a func* other times a func** if (isaPointer(funcval->getType()->getContainedType(0))) { funcval = DtoLoad(funcval); } // function pointer if (llvm::isa(funcval->getType()->getContainedType(0))) { //Logger::cout() << "function pointer type:\n" << *funcval << '\n'; llfnty = llvm::cast(funcval->getType()->getContainedType(0)); } // struct pointer - delegate else if (isaStruct(funcval->getType()->getContainedType(0))) { funcval = DtoGEPi(funcval,0,1); funcval = DtoLoad(funcval); const LLType* ty = funcval->getType()->getContainedType(0); llfnty = llvm::cast(ty); } // unknown else { Logger::cout() << "what kind of pointer are we calling? : " << *funcval->getType() << '\n'; } } else { Logger::cout() << "what are we calling? : " << *funcval << '\n'; } assert(llfnty); //Logger::cout() << "Function LLVM type: " << *llfnty << '\n'; // argument handling LLFunctionType::param_iterator argiter = llfnty->param_begin(); int j = 0; IRExp* topexp = p->topexp(); bool isInPlace = false; // attrs llvm::PAListPtr palist; // hidden struct return arguments // TODO: use sret param attr if (retinptr) { if (topexp && topexp->e2 == this) { assert(topexp->v); LLValue* tlv = topexp->v->getLVal(); assert(isaStruct(tlv->getType()->getContainedType(0))); llargs[j] = tlv; isInPlace = true; /*if (DtoIsPassedByRef(tf->next)) { isInPlace = true; } else assert(0);*/ } else { llargs[j] = new llvm::AllocaInst(argiter->get()->getContainedType(0),"rettmp",p->topallocapoint()); } if (dfn && dfn->func && dfn->func->runTimeHack) { const LLType* rettype = getPtrToType(DtoType(type)); if (llargs[j]->getType() != llfnty->getParamType(j)) { Logger::println("llvmRunTimeHack==true - force casting return value param"); Logger::cout() << "casting: " << *llargs[j] << " to type: " << *llfnty->getParamType(j) << '\n'; llargs[j] = DtoBitCast(llargs[j], llfnty->getParamType(j)); } } ++j; ++argiter; } // this arguments if (dfn && dfn->vthis) { Logger::cout() << "This Call" << '\n';// func val:" << *funcval << '\n'; if (dfn->vthis->getType() != argiter->get()) { //Logger::cout() << "value: " << *dfn->vthis << " totype: " << *argiter->get() << '\n'; llargs[j] = DtoBitCast(dfn->vthis, argiter->get()); } else { llargs[j] = dfn->vthis; } ++j; ++argiter; } // delegate context arguments else if (delegateCall) { Logger::println("Delegate Call"); LLValue* contextptr = DtoGEPi(fn->getRVal(),0,0); llargs[j] = DtoLoad(contextptr); ++j; ++argiter; } // nested call else if (dfn && dfn->func && dfn->func->isNested()) { Logger::println("Nested Call"); LLValue* contextptr = DtoNestedContext(dfn->func->toParent2()->isFuncDeclaration()); if (!contextptr) contextptr = llvm::ConstantPointerNull::get(getPtrToType(LLType::Int8Ty)); llargs[j] = DtoBitCast(contextptr, getPtrToType(LLType::Int8Ty)); ++j; ++argiter; } // va arg function special argument passing if (va_magic) { size_t n = va_intrinsic ? arguments->dim : 1; for (int i=0; iparameters, i); Expression* exp = (Expression*)arguments->data[i]; DValue* expelem = exp->toElem(p); llargs[j] = DtoBitCast(expelem->getLVal(), getPtrToType(LLType::Int8Ty)); } } // d variadic function else if (tf->linkage == LINKd && tf->varargs == 1) { Logger::println("doing d-style variadic arguments"); size_t nimplicit = j; std::vector vtypes; // number of non variadic args int begin = tf->parameters->dim; Logger::println("num non vararg params = %d", begin); // build struct with argument types for (int i=begin; idim; i++) { Argument* argu = Argument::getNth(tf->parameters, i); Expression* argexp = (Expression*)arguments->data[i]; vtypes.push_back(DtoType(argexp->type)); size_t sz = getABITypeSize(vtypes.back()); if (sz < PTRSIZE) vtypes.back() = DtoSize_t(); } const LLStructType* vtype = LLStructType::get(vtypes); Logger::cout() << "d-variadic argument struct type:\n" << *vtype << '\n'; LLValue* mem = new llvm::AllocaInst(vtype,"_argptr_storage",p->topallocapoint()); // store arguments in the struct for (int i=begin,k=0; idim; i++,k++) { Expression* argexp = (Expression*)arguments->data[i]; if (global.params.llvmAnnotate) DtoAnnotation(argexp->toChars()); LLValue* argdst = DtoGEPi(mem,0,k); argdst = DtoBitCast(argdst, getPtrToType(DtoType(argexp->type))); DtoVariadicArgument(argexp, argdst); } // build type info array assert(Type::typeinfo->ir.irStruct->constInit); const LLType* typeinfotype = DtoType(Type::typeinfo->type); const LLArrayType* typeinfoarraytype = LLArrayType::get(typeinfotype,vtype->getNumElements()); llvm::GlobalVariable* typeinfomem = new llvm::GlobalVariable(typeinfoarraytype, true, llvm::GlobalValue::InternalLinkage, NULL, "._arguments.storage", gIR->module); Logger::cout() << "_arguments storage: " << *typeinfomem << '\n'; std::vector vtypeinfos; for (int i=begin,k=0; idim; i++,k++) { Expression* argexp = (Expression*)arguments->data[i]; vtypeinfos.push_back(DtoTypeInfoOf(argexp->type)); } // apply initializer LLConstant* tiinits = llvm::ConstantArray::get(typeinfoarraytype, vtypeinfos); typeinfomem->setInitializer(tiinits); // put data in d-array std::vector pinits; pinits.push_back(DtoConstSize_t(vtype->getNumElements())); pinits.push_back(llvm::ConstantExpr::getBitCast(typeinfomem, getPtrToType(typeinfotype))); const LLType* tiarrty = llfnty->getParamType(j)->getContainedType(0); tiinits = llvm::ConstantStruct::get(pinits); LLValue* typeinfoarrayparam = new llvm::GlobalVariable(tiarrty, true, llvm::GlobalValue::InternalLinkage, tiinits, "._arguments.array", gIR->module); // specify arguments llargs[j] = typeinfoarrayparam;; j++; llargs[j] = p->ir->CreateBitCast(mem, getPtrToType(LLType::Int8Ty), "tmp"); j++; // pass non variadic args for (int i=0; iparameters, i); DValue* argval = DtoArgument(fnarg, (Expression*)arguments->data[i]); llargs[j] = argval->getRVal(); if (fnarg->llvmByVal) palist = palist.addAttr(j, llvm::ParamAttr::ByVal); j++; } // make sure arg vector has the right size llargs.resize(nimplicit+begin+2); } // normal function call else { Logger::println("doing normal arguments"); for (int i=0; idim; i++,j++) { Argument* fnarg = Argument::getNth(tf->parameters, i); if (global.params.llvmAnnotate) DtoAnnotation(((Expression*)arguments->data[i])->toChars()); DValue* argval = DtoArgument(fnarg, (Expression*)arguments->data[i]); llargs[j] = argval->getRVal(); if (fnarg && llargs[j]->getType() != llfnty->getParamType(j)) { llargs[j] = DtoBitCast(llargs[j], llfnty->getParamType(j)); } if (fnarg && fnarg->llvmByVal) palist = palist.addAttr(j+1, llvm::ParamAttr::ByVal); // this hack is necessary :/ // thing is DMD doesn't create correct signatures for the DMD generated calls to the runtime. // only the return type is right, no arguments (parameters==NULL) ... if (dfn && dfn->func && dfn->func->runTimeHack) { llvm::Function* fn = dfn->func->ir.irFunc->func; assert(fn); if (fn->getParamAttrs().paramHasAttr(j+1, llvm::ParamAttr::ByVal)) palist = palist.addAttr(j+1, llvm::ParamAttr::ByVal); if (llfnty->getParamType(j) != NULL) { if (llargs[j]->getType() != llfnty->getParamType(j)) { Logger::println("llvmRunTimeHack==true - force casting argument"); Logger::cout() << "casting: " << *llargs[j] << " to type: " << *llfnty->getParamType(j) << '\n'; llargs[j] = DtoBitCast(llargs[j], llfnty->getParamType(j)); } } } } } #if 0 Logger::println("%d params passed", n); for (int i=0; igetReturnType() != LLType::VoidTy) varname = "tmp"; //Logger::cout() << "Calling: " << *funcval << '\n'; // call the function llvm::CallInst* call = llvm::CallInst::Create(funcval, llargs.begin(), llargs.end(), varname, p->scopebb()); LLValue* retllval = (retinptr) ? llargs[0] : call; if (retinptr && dfn && dfn->func && dfn->func->runTimeHack) { const LLType* rettype = getPtrToType(DtoType(type)); if (retllval->getType() != rettype) { Logger::println("llvmRunTimeHack==true - force casting return value"); Logger::cout() << "from: " << *retllval->getType() << " to: " << *rettype << '\n'; retllval = DtoBitCast(retllval, rettype); } } // set calling convention if (dfn && dfn->func) { int li = dfn->func->llvmInternal; if (li != LLVMintrinsic && li != LLVMva_start && li != LLVMva_intrinsic) { call->setCallingConv(DtoCallingConv(dlink)); } } /*else if (delegateCall) { call->setCallingConv(DtoCallingConv(dlink)); }*/ else if (dfn && dfn->cc != (unsigned)-1) { call->setCallingConv(dfn->cc); } else { call->setCallingConv(DtoCallingConv(dlink)); } // param attrs call->setParamAttrs(palist); return new DImValue(type, retllval, isInPlace); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* CastExp::toElem(IRState* p) { Logger::print("CastExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* u = e1->toElem(p); DValue* v = DtoCast(u, to); if (v->isSlice()) { assert(!gIR->topexp() || gIR->topexp()->e1 != this); return v; } else if (DLRValue* lr = u->isLRValue()) return new DLRValue(lr->getLType(), lr->getLVal(), to, v->getRVal()); else if (u->isVar() && u->isVar()->lval) return new DLRValue(e1->type, u->getLVal(), to, v->getRVal()); else if (gIR->topexp() && gIR->topexp()->e1 == this) return new DLRValue(e1->type, u->getLVal(), to, v->getRVal()); return v; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* SymOffExp::toElem(IRState* p) { Logger::print("SymOffExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; assert(0 && "SymOffExp::toElem should no longer be called :/"); return 0; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* AddrExp::toElem(IRState* p) { Logger::println("AddrExp::toElem: %s | %s", toChars(), type->toChars()); LOG_SCOPE; DValue* v = e1->toElem(p); if (v->isField()) { Logger::println("is field"); return v; } else if (DFuncValue* fv = v->isFunc()) { Logger::println("is func"); //Logger::println("FuncDeclaration"); FuncDeclaration* fd = fv->func; assert(fd); DtoForceDeclareDsymbol(fd); return new DFuncValue(fd, fd->ir.irFunc->func); } else if (DImValue* im = v->isIm()) { Logger::println("is immediate"); return v; } Logger::println("is nothing special"); return new DFieldValue(type, v->getLVal(), false); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* PtrExp::toElem(IRState* p) { Logger::println("PtrExp::toElem: %s | %s", toChars(), type->toChars()); LOG_SCOPE; DValue* a = e1->toElem(p); if (p->topexp() && p->topexp()->e1 == this) { Logger::println("lval PtrExp"); return new DVarValue(type, a->getRVal(), true); } // this should be deterministic but right now lvalue casts don't propagate lvalueness !?! LLValue* lv = a->getRVal(); LLValue* v = lv; if (DtoCanLoad(v)) v = DtoLoad(v); return new DLRValue(e1->type, lv, type, v); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* DotVarExp::toElem(IRState* p) { Logger::print("DotVarExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); Type* t = DtoDType(type); Type* e1type = DtoDType(e1->type); //Logger::println("e1type=%s", e1type->toChars()); //Logger::cout() << *DtoType(e1type) << '\n'; if (VarDeclaration* vd = var->isVarDeclaration()) { LLValue* arrptr; if (e1type->ty == Tpointer) { assert(e1type->next->ty == Tstruct); TypeStruct* ts = (TypeStruct*)e1type->next; Logger::println("Struct member offset:%d", vd->offset); LLValue* src = l->getRVal(); DStructIndexVector vdoffsets; arrptr = DtoIndexStruct(src, ts->sym, vd->type, vd->offset, vdoffsets); } else if (e1type->ty == Tclass) { TypeClass* tc = (TypeClass*)e1type; Logger::println("Class member offset: %d", vd->offset); LLValue* src = l->getRVal(); DStructIndexVector vdoffsets; arrptr = DtoIndexClass(src, tc->sym, vd->type, vd->offset, vdoffsets); } else assert(0); //Logger::cout() << "mem: " << *arrptr << '\n'; return new DVarValue(vd, arrptr, true); } else if (FuncDeclaration* fdecl = var->isFuncDeclaration()) { DtoResolveDsymbol(fdecl); LLValue* funcval; LLValue* vthis2 = 0; if (e1type->ty == Tclass) { TypeClass* tc = (TypeClass*)e1type; if (tc->sym->isInterfaceDeclaration()) { vthis2 = DtoCastInterfaceToObject(l, NULL)->getRVal(); } } LLValue* vthis = l->getRVal(); if (!vthis2) vthis2 = vthis; //unsigned cc = (unsigned)-1; // super call if (e1->op == TOKsuper) { DtoForceDeclareDsymbol(fdecl); funcval = fdecl->ir.irFunc->func; assert(funcval); } // normal virtual call else if (fdecl->isAbstract() || (!fdecl->isFinal() && fdecl->isVirtual())) { assert(fdecl->vtblIndex > 0); assert(e1type->ty == Tclass); LLValue* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false); LLValue* vtblidx = llvm::ConstantInt::get(LLType::Int32Ty, (size_t)fdecl->vtblIndex, false); //Logger::cout() << "vthis: " << *vthis << '\n'; funcval = DtoGEP(vthis, zero, zero); funcval = DtoLoad(funcval); funcval = DtoGEP(funcval, zero, vtblidx, toChars()); funcval = DtoLoad(funcval); #if OPAQUE_VTBLS funcval = DtoBitCast(funcval, getPtrToType(DtoType(fdecl->type))); Logger::cout() << "funcval casted: " << *funcval << '\n'; #endif } // static call else { DtoForceDeclareDsymbol(fdecl); funcval = fdecl->ir.irFunc->func; assert(funcval); //assert(funcval->getType() == DtoType(fdecl->type)); } return new DFuncValue(fdecl, funcval, vthis2); } else { printf("unsupported dotvarexp: %s\n", var->toChars()); } assert(0); return 0; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* ThisExp::toElem(IRState* p) { Logger::print("ThisExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; if (VarDeclaration* vd = var->isVarDeclaration()) { LLValue* v; v = p->func()->decl->ir.irFunc->thisVar; if (llvm::isa(v)) v = DtoLoad(v); const LLType* t = DtoType(type); if (v->getType() != t) v = DtoBitCast(v, t); return new DThisValue(vd, v); } assert(0); return 0; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* IndexExp::toElem(IRState* p) { Logger::print("IndexExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); Type* e1type = DtoDType(e1->type); p->arrays.push_back(l); // if $ is used it must be an array so this is fine. DValue* r = e2->toElem(p); p->arrays.pop_back(); LLValue* zero = DtoConstUint(0); LLValue* one = DtoConstUint(1); LLValue* arrptr = 0; if (e1type->ty == Tpointer) { arrptr = DtoGEP1(l->getRVal(),r->getRVal()); } else if (e1type->ty == Tsarray) { arrptr = DtoGEP(l->getRVal(), zero, r->getRVal()); } else if (e1type->ty == Tarray) { arrptr = DtoArrayPtr(l); arrptr = DtoGEP1(arrptr,r->getRVal()); } else if (e1type->ty == Taarray) { return DtoAAIndex(type, l, r); } else { Logger::println("invalid index exp! e1type: %s", e1type->toChars()); assert(0); } return new DVarValue(type, arrptr, true); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* SliceExp::toElem(IRState* p) { Logger::print("SliceExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; // this is the new slicing code, it's different in that a full slice will no longer retain the original pointer. // but this was broken if there *was* no original pointer, ie. a slice of a slice... // now all slices have *both* the 'len' and 'ptr' fields set to != null. // value being sliced LLValue* elen; LLValue* eptr; DValue* e = e1->toElem(p); // handle pointer slicing Type* etype = e1->type->toBasetype(); if (etype->ty == Tpointer) { assert(lwr); eptr = e->getRVal(); } // array slice else { eptr = DtoArrayPtr(e); } // has lower bound, pointer needs adjustment if (lwr) { // must have upper bound too then assert(upr); // get bounds (make sure $ works) p->arrays.push_back(e); DValue* lo = lwr->toElem(p); DValue* up = upr->toElem(p); p->arrays.pop_back(); LLValue* vlo = lo->getRVal(); LLValue* vup = up->getRVal(); // offset by lower eptr = DtoGEP1(eptr, vlo); // adjust length elen = p->ir->CreateSub(vup, vlo, "tmp"); } // no bounds or full slice -> just convert to slice else { assert(e1->type->toBasetype()->ty != Tpointer); elen = DtoArrayLen(e); } return new DSliceValue(type, elen, eptr); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* CmpExp::toElem(IRState* p) { Logger::print("CmpExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); DValue* r = e2->toElem(p); Type* t = DtoDType(e1->type); Type* e2t = DtoDType(e2->type); assert(DtoType(t) == DtoType(e2t)); LLValue* eval = 0; if (t->isintegral() || t->ty == Tpointer) { llvm::ICmpInst::Predicate cmpop; bool skip = false; switch(op) { case TOKlt: case TOKul: cmpop = t->isunsigned() ? llvm::ICmpInst::ICMP_ULT : llvm::ICmpInst::ICMP_SLT; break; case TOKle: case TOKule: cmpop = t->isunsigned() ? llvm::ICmpInst::ICMP_ULE : llvm::ICmpInst::ICMP_SLE; break; case TOKgt: case TOKug: cmpop = t->isunsigned() ? llvm::ICmpInst::ICMP_UGT : llvm::ICmpInst::ICMP_SGT; break; case TOKge: case TOKuge: cmpop = t->isunsigned() ? llvm::ICmpInst::ICMP_UGE : llvm::ICmpInst::ICMP_SGE; break; case TOKue: cmpop = llvm::ICmpInst::ICMP_EQ; break; case TOKlg: cmpop = llvm::ICmpInst::ICMP_NE; break; case TOKleg: skip = true; eval = llvm::ConstantInt::getTrue(); break; case TOKunord: skip = true; eval = llvm::ConstantInt::getFalse(); break; default: assert(0); } if (!skip) { LLValue* a = l->getRVal(); LLValue* b = r->getRVal(); Logger::cout() << "type 1: " << *a << '\n'; Logger::cout() << "type 2: " << *b << '\n'; eval = new llvm::ICmpInst(cmpop, a, b, "tmp", p->scopebb()); } } else if (t->isfloating()) { llvm::FCmpInst::Predicate cmpop; switch(op) { case TOKlt: cmpop = llvm::FCmpInst::FCMP_OLT;break; case TOKle: cmpop = llvm::FCmpInst::FCMP_OLE;break; case TOKgt: cmpop = llvm::FCmpInst::FCMP_OGT;break; case TOKge: cmpop = llvm::FCmpInst::FCMP_OGE;break; case TOKunord: cmpop = llvm::FCmpInst::FCMP_UNO;break; case TOKule: cmpop = llvm::FCmpInst::FCMP_ULE;break; case TOKul: cmpop = llvm::FCmpInst::FCMP_ULT;break; case TOKuge: cmpop = llvm::FCmpInst::FCMP_UGE;break; case TOKug: cmpop = llvm::FCmpInst::FCMP_UGT;break; case TOKue: cmpop = llvm::FCmpInst::FCMP_UEQ;break; case TOKlg: cmpop = llvm::FCmpInst::FCMP_ONE;break; case TOKleg: cmpop = llvm::FCmpInst::FCMP_ORD;break; default: assert(0); } eval = new llvm::FCmpInst(cmpop, l->getRVal(), r->getRVal(), "tmp", p->scopebb()); } else if (t->ty == Tsarray || t->ty == Tarray) { Logger::println("static or dynamic array"); eval = DtoArrayCompare(op,l,r); } else { assert(0 && "Unsupported CmpExp type"); } return new DImValue(type, eval); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* EqualExp::toElem(IRState* p) { Logger::print("EqualExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); DValue* r = e2->toElem(p); Type* t = DtoDType(e1->type); Type* e2t = DtoDType(e2->type); //assert(t == e2t); LLValue* eval = 0; if (t->isintegral() || t->ty == Tpointer) { Logger::println("integral or pointer"); llvm::ICmpInst::Predicate cmpop; switch(op) { case TOKequal: cmpop = llvm::ICmpInst::ICMP_EQ; break; case TOKnotequal: cmpop = llvm::ICmpInst::ICMP_NE; break; default: assert(0); } LLValue* lv = l->getRVal(); LLValue* rv = r->getRVal(); if (rv->getType() != lv->getType()) { rv = DtoBitCast(rv, lv->getType()); } eval = new llvm::ICmpInst(cmpop, lv, rv, "tmp", p->scopebb()); } else if (t->iscomplex()) { Logger::println("complex"); eval = DtoComplexEquals(op, l, r); } else if (t->isfloating()) { Logger::println("floating"); llvm::FCmpInst::Predicate cmpop; switch(op) { case TOKequal: cmpop = llvm::FCmpInst::FCMP_OEQ; break; case TOKnotequal: cmpop = llvm::FCmpInst::FCMP_UNE; break; default: assert(0); } eval = new llvm::FCmpInst(cmpop, l->getRVal(), r->getRVal(), "tmp", p->scopebb()); } else if (t->ty == Tsarray || t->ty == Tarray) { Logger::println("static or dynamic array"); eval = DtoArrayEquals(op,l,r); } else if (t->ty == Tdelegate) { Logger::println("delegate"); eval = DtoDelegateCompare(op,l->getRVal(),r->getRVal()); } else { assert(0 && "Unsupported EqualExp type"); } return new DImValue(type, eval); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* PostExp::toElem(IRState* p) { Logger::print("PostExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); DValue* r = e2->toElem(p); LLValue* val = l->getRVal(); LLValue* post = 0; Type* e1type = DtoDType(e1->type); Type* e2type = DtoDType(e2->type); if (e1type->isintegral()) { assert(e2type->isintegral()); LLValue* one = llvm::ConstantInt::get(val->getType(), 1, !e2type->isunsigned()); if (op == TOKplusplus) { post = llvm::BinaryOperator::createAdd(val,one,"tmp",p->scopebb()); } else if (op == TOKminusminus) { post = llvm::BinaryOperator::createSub(val,one,"tmp",p->scopebb()); } } else if (e1type->ty == Tpointer) { assert(e2type->isintegral()); LLConstant* minusone = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)-1,true); LLConstant* plusone = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)1,false); LLConstant* whichone = (op == TOKplusplus) ? plusone : minusone; post = llvm::GetElementPtrInst::Create(val, whichone, "tmp", p->scopebb()); } else if (e1type->isfloating()) { assert(e2type->isfloating()); LLValue* one = DtoConstFP(e1type, 1.0); if (op == TOKplusplus) { post = llvm::BinaryOperator::createAdd(val,one,"tmp",p->scopebb()); } else if (op == TOKminusminus) { post = llvm::BinaryOperator::createSub(val,one,"tmp",p->scopebb()); } } else assert(post); DtoStore(post,l->getLVal()); return new DImValue(type,val,true); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* NewExp::toElem(IRState* p) { Logger::print("NewExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; assert(newtype); Type* ntype = DtoDType(newtype); // new class if (ntype->ty == Tclass) { Logger::println("new class"); return DtoNewClass((TypeClass*)ntype, this); } // new dynamic array else if (ntype->ty == Tarray) { Logger::println("new dynamic array: %s", newtype->toChars()); // get dim assert(arguments); assert(arguments->dim >= 1); if (arguments->dim == 1) { DValue* sz = ((Expression*)arguments->data[0])->toElem(p); // allocate & init return DtoNewDynArray(newtype, sz, true); } else { size_t ndims = arguments->dim; std::vector dims(ndims); for (size_t i=0; idata[i])->toElem(p); return DtoNewMulDimDynArray(newtype, &dims[0], ndims, true); } } // new static array else if (ntype->ty == Tsarray) { assert(0); } // new struct else if (ntype->ty == Tstruct) { Logger::println("new struct on heap: %s\n", newtype->toChars()); // allocate LLValue* mem = DtoNew(newtype); // init TypeStruct* ts = (TypeStruct*)ntype; if (ts->isZeroInit()) { DtoAggrZeroInit(mem); } else { assert(ts->sym); DtoAggrCopy(mem,ts->sym->ir.irStruct->init); } return new DImValue(type, mem, false); } // new basic type else { // allocate LLValue* mem = DtoNew(newtype); DVarValue tmpvar(newtype, mem, true); // default initialize Expression* exp = newtype->defaultInit(loc); DValue* iv = exp->toElem(gIR); DtoAssign(&tmpvar, iv); // return as pointer-to return new DImValue(type, mem, false); } assert(0); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* DeleteExp::toElem(IRState* p) { Logger::print("DeleteExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* dval = e1->toElem(p); Type* et = DtoDType(e1->type); // simple pointer if (et->ty == Tpointer) { LLValue* rval = dval->getRVal(); DtoDeleteMemory(rval); if (dval->isVar() && dval->isVar()->lval) DtoStore(llvm::Constant::getNullValue(rval->getType()), dval->getLVal()); } // class else if (et->ty == Tclass) { bool onstack = false; TypeClass* tc = (TypeClass*)et; if (tc->sym->isInterfaceDeclaration()) { DtoDeleteInterface(dval->getRVal()); onstack = true; } else if (DVarValue* vv = dval->isVar()) { if (vv->var && vv->var->onstack) { if (tc->sym->dtors.dim > 0) DtoFinalizeClass(dval->getRVal()); onstack = true; } } if (!onstack) { LLValue* rval = dval->getRVal(); DtoDeleteClass(rval); } if (!dval->isThis() && dval->isVar() && dval->isVar()->lval) { LLValue* lval = dval->getLVal(); DtoStore(llvm::Constant::getNullValue(lval->getType()->getContainedType(0)), lval); } } // dyn array else if (et->ty == Tarray) { DtoDeleteArray(dval); if (!dval->isSlice()) DtoSetArrayToNull(dval->getRVal()); } // unknown/invalid else { assert(0 && "invalid delete"); } // no value to return return NULL; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* ArrayLengthExp::toElem(IRState* p) { Logger::print("ArrayLengthExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* u = e1->toElem(p); Logger::println("e1 = %s", e1->type->toChars()); if (p->topexp() && p->topexp()->e1 == this) { return new DArrayLenValue(e1->type, u->getLVal()); } else { return new DImValue(type, DtoArrayLen(u)); } } ////////////////////////////////////////////////////////////////////////////////////////// DValue* AssertExp::toElem(IRState* p) { Logger::print("AssertExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; // condition DValue* cond = e1->toElem(p); // create basic blocks llvm::BasicBlock* oldend = p->scopeend(); llvm::BasicBlock* assertbb = llvm::BasicBlock::Create("assert", p->topfunc(), oldend); llvm::BasicBlock* endbb = llvm::BasicBlock::Create("noassert", p->topfunc(), oldend); // test condition LLValue* condval = cond->getRVal(); condval = DtoBoolean(condval); // branch llvm::BranchInst::Create(endbb, assertbb, condval, p->scopebb()); // call assert runtime functions p->scope() = IRScope(assertbb,endbb); DtoAssert(&loc, msg ? msg->toElem(p) : NULL); // assert inserts unreachable terminator // if (!gIR->scopereturned()) // llvm::BranchInst::Create(endbb, p->scopebb()); // rewrite the scope p->scope() = IRScope(endbb,oldend); // no meaningful return value return NULL; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* NotExp::toElem(IRState* p) { Logger::print("NotExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* u = e1->toElem(p); LLValue* b = DtoBoolean(u->getRVal()); LLConstant* zero = llvm::ConstantInt::get(LLType::Int1Ty, 0, true); b = p->ir->CreateICmpEQ(b,zero); return new DImValue(type, b); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* AndAndExp::toElem(IRState* p) { Logger::print("AndAndExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; // allocate a temporary for the final result. failed to come up with a better way :/ LLValue* resval = 0; llvm::BasicBlock* entryblock = &p->topfunc()->front(); resval = new llvm::AllocaInst(LLType::Int1Ty,"andandtmp",p->topallocapoint()); DValue* u = e1->toElem(p); llvm::BasicBlock* oldend = p->scopeend(); llvm::BasicBlock* andand = llvm::BasicBlock::Create("andand", gIR->topfunc(), oldend); llvm::BasicBlock* andandend = llvm::BasicBlock::Create("andandend", gIR->topfunc(), oldend); LLValue* ubool = DtoBoolean(u->getRVal()); DtoStore(ubool,resval); llvm::BranchInst::Create(andand,andandend,ubool,p->scopebb()); p->scope() = IRScope(andand, andandend); DValue* v = e2->toElem(p); LLValue* vbool = DtoBoolean(v->getRVal()); LLValue* uandvbool = llvm::BinaryOperator::create(llvm::BinaryOperator::And, ubool, vbool,"tmp",p->scopebb()); DtoStore(uandvbool,resval); llvm::BranchInst::Create(andandend,p->scopebb()); p->scope() = IRScope(andandend, oldend); resval = DtoLoad(resval); return new DImValue(type, resval); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* OrOrExp::toElem(IRState* p) { Logger::print("OrOrExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; // allocate a temporary for the final result. failed to come up with a better way :/ LLValue* resval = 0; llvm::BasicBlock* entryblock = &p->topfunc()->front(); resval = new llvm::AllocaInst(LLType::Int1Ty,"orortmp",p->topallocapoint()); DValue* u = e1->toElem(p); llvm::BasicBlock* oldend = p->scopeend(); llvm::BasicBlock* oror = llvm::BasicBlock::Create("oror", gIR->topfunc(), oldend); llvm::BasicBlock* ororend = llvm::BasicBlock::Create("ororend", gIR->topfunc(), oldend); LLValue* ubool = DtoBoolean(u->getRVal()); DtoStore(ubool,resval); llvm::BranchInst::Create(ororend,oror,ubool,p->scopebb()); p->scope() = IRScope(oror, ororend); DValue* v = e2->toElem(p); LLValue* vbool = DtoBoolean(v->getRVal()); DtoStore(vbool,resval); llvm::BranchInst::Create(ororend,p->scopebb()); p->scope() = IRScope(ororend, oldend); resval = new llvm::LoadInst(resval,"tmp",p->scopebb()); return new DImValue(type, resval); } ////////////////////////////////////////////////////////////////////////////////////////// #define BinBitExp(X,Y) \ DValue* X##Exp::toElem(IRState* p) \ { \ Logger::print("%sExp::toElem: %s | %s\n", #X, toChars(), type->toChars()); \ LOG_SCOPE; \ DValue* u = e1->toElem(p); \ DValue* v = e2->toElem(p); \ LLValue* x = llvm::BinaryOperator::create(llvm::Instruction::Y, u->getRVal(), v->getRVal(), "tmp", p->scopebb()); \ return new DImValue(type, x); \ } \ \ DValue* X##AssignExp::toElem(IRState* p) \ { \ Logger::print("%sAssignExp::toElem: %s | %s\n", #X, toChars(), type->toChars()); \ LOG_SCOPE; \ p->exps.push_back(IRExp(e1,e2,NULL)); \ DValue* u = e1->toElem(p); \ p->topexp()->v = u; \ DValue* v = e2->toElem(p); \ p->exps.pop_back(); \ LLValue* uval = u->getRVal(); \ LLValue* vval = v->getRVal(); \ LLValue* tmp = llvm::BinaryOperator::create(llvm::Instruction::Y, uval, vval, "tmp", p->scopebb()); \ DtoStore(DtoPointedType(u->getLVal(), tmp), u->getLVal()); \ return u; \ } BinBitExp(And,And); BinBitExp(Or,Or); BinBitExp(Xor,Xor); BinBitExp(Shl,Shl); //BinBitExp(Shr,AShr); BinBitExp(Ushr,LShr); DValue* ShrExp::toElem(IRState* p) { Logger::print("ShrExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* u = e1->toElem(p); DValue* v = e2->toElem(p); LLValue* x; if (e1->type->isunsigned()) x = p->ir->CreateLShr(u->getRVal(), v->getRVal(), "tmp"); else x = p->ir->CreateAShr(u->getRVal(), v->getRVal(), "tmp"); return new DImValue(type, x); } DValue* ShrAssignExp::toElem(IRState* p) { Logger::print("ShrAssignExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; p->exps.push_back(IRExp(e1,e2,NULL)); DValue* u = e1->toElem(p); p->topexp()->v = u; DValue* v = e2->toElem(p); p->exps.pop_back(); LLValue* uval = u->getRVal(); LLValue* vval = v->getRVal(); LLValue* tmp; if (e1->type->isunsigned()) tmp = p->ir->CreateLShr(uval, vval, "tmp"); else tmp = p->ir->CreateAShr(uval, vval, "tmp"); DtoStore(DtoPointedType(u->getLVal(), tmp), u->getLVal()); return u; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* HaltExp::toElem(IRState* p) { Logger::print("HaltExp::toElem: %s\n", toChars()); LOG_SCOPE; #if 1 DtoAssert(&loc, NULL); #else // call the new (?) trap intrinsic p->ir->CreateCall(GET_INTRINSIC_DECL(trap),""); new llvm::UnreachableInst(p->scopebb()); #endif // this terminated the basicblock, start a new one // this is sensible, since someone might goto behind the assert // and prevents compiler errors if a terminator follows the assert llvm::BasicBlock* oldend = gIR->scopeend(); llvm::BasicBlock* bb = llvm::BasicBlock::Create("afterhalt", p->topfunc(), oldend); p->scope() = IRScope(bb,oldend); return 0; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* DelegateExp::toElem(IRState* p) { Logger::print("DelegateExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; const LLPointerType* int8ptrty = getPtrToType(LLType::Int8Ty); LLValue* lval; bool inplace = false; if (p->topexp() && p->topexp()->e2 == this) { assert(p->topexp()->v); lval = p->topexp()->v->getLVal(); inplace = true; } else { lval = new llvm::AllocaInst(DtoType(type), "tmpdelegate", p->topallocapoint()); } DValue* u = e1->toElem(p); LLValue* uval; if (DFuncValue* f = u->isFunc()) { assert(f->func); LLValue* contextptr = DtoNestedContext(f->func->toParent2()->isFuncDeclaration()); if (!contextptr) uval = LLConstant::getNullValue(getVoidPtrType()); else uval = DtoBitCast(contextptr, getVoidPtrType()); } else { DValue* src = u; if (ClassDeclaration* cd = u->getType()->isClassHandle()) { Logger::println("context type is class handle"); if (cd->isInterfaceDeclaration()) { Logger::println("context type is interface"); src = DtoCastInterfaceToObject(u, ClassDeclaration::object->type); } } uval = src->getRVal(); } Logger::cout() << "context = " << *uval << '\n'; LLValue* context = DtoGEPi(lval,0,0); LLValue* castcontext = DtoBitCast(uval, int8ptrty); DtoStore(castcontext, context); LLValue* fptr = DtoGEPi(lval,0,1); Logger::println("func: '%s'", func->toPrettyChars()); LLValue* castfptr; if (func->isVirtual()) castfptr = DtoVirtualFunctionPointer(u, func); else if (func->isAbstract()) assert(0 && "TODO delegate to abstract method"); else if (func->toParent()->isInterfaceDeclaration()) assert(0 && "TODO delegate to interface method"); else { DtoForceDeclareDsymbol(func); castfptr = func->ir.irFunc->func; } castfptr = DtoBitCast(castfptr, fptr->getType()->getContainedType(0)); DtoStore(castfptr, fptr); return new DImValue(type, lval, inplace); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* IdentityExp::toElem(IRState* p) { Logger::print("IdentityExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* u = e1->toElem(p); DValue* v = e2->toElem(p); Type* t1 = e1->type->toBasetype(); // handle dynarray specially if (t1->ty == Tarray) return new DImValue(type, DtoDynArrayIs(op,u,v)); LLValue* l = u->getRVal(); LLValue* r = v->getRVal(); LLValue* eval = 0; if (t1->ty == Tdelegate) { if (v->isNull()) { r = NULL; } else { assert(l->getType() == r->getType()); } eval = DtoDelegateCompare(op,l,r); } else if (t1->isfloating()) { llvm::FCmpInst::Predicate pred = (op == TOKidentity) ? llvm::FCmpInst::FCMP_OEQ : llvm::FCmpInst::FCMP_ONE; eval = new llvm::FCmpInst(pred, l, r, "tmp", p->scopebb()); } else if (t1->ty == Tpointer) { if (l->getType() != r->getType()) { if (v->isNull()) r = llvm::ConstantPointerNull::get(isaPointer(l->getType())); else r = DtoBitCast(r, l->getType()); } llvm::ICmpInst::Predicate pred = (op == TOKidentity) ? llvm::ICmpInst::ICMP_EQ : llvm::ICmpInst::ICMP_NE; eval = new llvm::ICmpInst(pred, l, r, "tmp", p->scopebb()); } else { llvm::ICmpInst::Predicate pred = (op == TOKidentity) ? llvm::ICmpInst::ICMP_EQ : llvm::ICmpInst::ICMP_NE; //Logger::cout() << "l = " << *l << " r = " << *r << '\n'; eval = new llvm::ICmpInst(pred, l, r, "tmp", p->scopebb()); } return new DImValue(type, eval); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* CommaExp::toElem(IRState* p) { Logger::print("CommaExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* u = e1->toElem(p); DValue* v = e2->toElem(p); assert(e2->type == type); return v; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* CondExp::toElem(IRState* p) { Logger::print("CondExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; Type* dtype = DtoDType(type); const LLType* resty = DtoType(dtype); // allocate a temporary for the final result. failed to come up with a better way :/ llvm::BasicBlock* entryblock = &p->topfunc()->front(); LLValue* resval = new llvm::AllocaInst(resty,"condtmp",p->topallocapoint()); DVarValue* dvv = new DVarValue(type, resval, true); llvm::BasicBlock* oldend = p->scopeend(); llvm::BasicBlock* condtrue = llvm::BasicBlock::Create("condtrue", gIR->topfunc(), oldend); llvm::BasicBlock* condfalse = llvm::BasicBlock::Create("condfalse", gIR->topfunc(), oldend); llvm::BasicBlock* condend = llvm::BasicBlock::Create("condend", gIR->topfunc(), oldend); DValue* c = econd->toElem(p); LLValue* cond_val = DtoBoolean(c->getRVal()); llvm::BranchInst::Create(condtrue,condfalse,cond_val,p->scopebb()); p->scope() = IRScope(condtrue, condfalse); DValue* u = e1->toElem(p); DtoAssign(dvv, u); llvm::BranchInst::Create(condend,p->scopebb()); p->scope() = IRScope(condfalse, condend); DValue* v = e2->toElem(p); DtoAssign(dvv, v); llvm::BranchInst::Create(condend,p->scopebb()); p->scope() = IRScope(condend, oldend); return dvv; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* ComExp::toElem(IRState* p) { Logger::print("ComExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* u = e1->toElem(p); LLValue* value = u->getRVal(); LLValue* minusone = llvm::ConstantInt::get(value->getType(), -1, true); value = llvm::BinaryOperator::create(llvm::Instruction::Xor, value, minusone, "tmp", p->scopebb()); return new DImValue(type, value); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* NegExp::toElem(IRState* p) { Logger::print("NegExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); if (type->iscomplex()) { return DtoComplexNeg(type, l); } LLValue* val = l->getRVal(); Type* t = DtoDType(type); LLValue* zero = 0; if (t->isintegral()) zero = llvm::ConstantInt::get(val->getType(), 0, true); else if (t->isfloating()) { zero = DtoConstFP(type, 0.0); } else assert(0); val = llvm::BinaryOperator::createSub(zero,val,"tmp",p->scopebb()); return new DImValue(type, val); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* CatExp::toElem(IRState* p) { Logger::print("CatExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; Type* t = DtoDType(type); bool arrNarr = DtoDType(e1->type) == DtoDType(e2->type); // array ~ array if (arrNarr) { return DtoCatArrays(type, e1, e2); } // array ~ element // element ~ array else { return DtoCatArrayElement(type, e1, e2); } } ////////////////////////////////////////////////////////////////////////////////////////// DValue* CatAssignExp::toElem(IRState* p) { Logger::print("CatAssignExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* l = e1->toElem(p); Type* e1type = DtoDType(e1->type); Type* elemtype = DtoDType(e1type->next); Type* e2type = DtoDType(e2->type); if (e2type == elemtype) { DSliceValue* slice = DtoCatAssignElement(l,e2); DtoAssign(l, slice); } else if (e1type == e2type) { DSliceValue* slice = DtoCatAssignArray(l,e2); DtoAssign(l, slice); } else assert(0 && "only one element at a time right now"); return l; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* FuncExp::toElem(IRState* p) { Logger::print("FuncExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; assert(fd); if (fd->isNested()) Logger::println("nested"); Logger::println("kind = %s\n", fd->kind()); DtoForceDefineDsymbol(fd); bool temp = false; LLValue* lval = NULL; if (p->topexp() && p->topexp()->e2 == this) { assert(p->topexp()->v); lval = p->topexp()->v->getLVal(); } else { const LLType* dgty = DtoType(type); Logger::cout() << "delegate without explicit storage:" << '\n' << *dgty << '\n'; lval = new llvm::AllocaInst(dgty,"dgstorage",p->topallocapoint()); temp = true; } LLValue* context = DtoGEPi(lval,0,0); const LLPointerType* pty = isaPointer(context->getType()->getContainedType(0)); LLValue* llvmNested = p->func()->decl->ir.irFunc->nestedVar; if (llvmNested == NULL) { LLValue* nullcontext = llvm::ConstantPointerNull::get(pty); DtoStore(nullcontext, context); } else { LLValue* nestedcontext = DtoBitCast(llvmNested, pty); DtoStore(nestedcontext, context); } LLValue* fptr = DtoGEPi(lval,0,1,"tmp",p->scopebb()); assert(fd->ir.irFunc->func); LLValue* castfptr = DtoBitCast(fd->ir.irFunc->func, fptr->getType()->getContainedType(0)); DtoStore(castfptr, fptr); if (temp) return new DVarValue(type, lval, true); else return new DImValue(type, lval, true); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* ArrayLiteralExp::toElem(IRState* p) { Logger::print("ArrayLiteralExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; // D types Type* arrayType = type->toBasetype(); Type* elemType = arrayType->nextOf()->toBasetype(); // is dynamic ? bool dyn = (arrayType->ty == Tarray); // length size_t len = elements->dim; // store into slice? bool sliceInPlace = false; // llvm target type const LLType* llType = DtoType(arrayType); Logger::cout() << (dyn?"dynamic":"static") << " array literal with length " << len << " of D type: '" << arrayType->toChars() << "' has llvm type: '" << *llType << "'\n"; // llvm storage type const LLType* llStoType = LLArrayType::get(DtoType(elemType), len); Logger::cout() << "llvm storage type: '" << *llStoType << "'\n"; // dst pointer LLValue* dstMem = 0; // rvalue of assignment if (p->topexp() && p->topexp()->e2 == this) { DValue* topval = p->topexp()->v; // slice assignment (copy) if (DSliceValue* s = topval->isSlice()) { assert(s->ptr->getType()->getContainedType(0) == llStoType->getContainedType(0)); dstMem = DtoBitCast(s->ptr, getPtrToType(llStoType)); sliceInPlace = true; // FIXME: insert bounds checks } // static array assignment else if (topval->getType()->toBasetype()->ty == Tsarray) { dstMem = topval->getLVal(); } // otherwise we still need to alloca storage } // alloca storage if not found already if (!dstMem) { dstMem = new llvm::AllocaInst(llStoType, "arrayliteral", p->topallocapoint()); } Logger::cout() << "using dest mem: " << *dstMem << '\n'; // store elements for (size_t i=0; idata[i]; LLValue* elemAddr = DtoGEPi(dstMem,0,i,"tmp",p->scopebb()); // emulate assignment DVarValue* vv = new DVarValue(expr->type, elemAddr, true); p->exps.push_back(IRExp(NULL, expr, vv)); DValue* e = expr->toElem(p); p->exps.pop_back(); DImValue* im = e->isIm(); if (!im || !im->inPlace()) { DtoAssign(vv, e); } } // return storage directly ? if (!dyn || (dyn && sliceInPlace)) return new DImValue(type, dstMem, true); // wrap in a slice return new DSliceValue(type, DtoConstSize_t(len), DtoGEPi(dstMem,0,0,"tmp")); } ////////////////////////////////////////////////////////////////////////////////////////// LLConstant* ArrayLiteralExp::toConstElem(IRState* p) { Logger::print("ArrayLiteralExp::toConstElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; const LLType* t = DtoType(type); Logger::cout() << "array literal has llvm type: " << *t << '\n'; assert(isaArray(t)); const LLArrayType* arrtype = isaArray(t); assert(arrtype->getNumElements() == elements->dim); std::vector vals(elements->dim, NULL); for (unsigned i=0; idim; ++i) { Expression* expr = (Expression*)elements->data[i]; vals[i] = expr->toConstElem(p); } return llvm::ConstantArray::get(arrtype, vals); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* StructLiteralExp::toElem(IRState* p) { Logger::print("StructLiteralExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; LLValue* sptr; const LLType* llt = DtoType(type); LLValue* mem = 0; bool isinplace = true; // already has memory (r-value of assignment) IRExp* topexp = p->topexp(); if (topexp && topexp->e2 == this && !topexp->v->isSlice()) { assert(topexp->e2 == this); sptr = topexp->v->getLVal(); } // temporary struct literal else { sptr = new llvm::AllocaInst(llt,"tmpstructliteral",p->topallocapoint()); isinplace = false; } // num elements in literal unsigned n = elements->dim; // unions might have different types for each literal if (sd->ir.irStruct->hasUnions) { // build the type of the literal std::vector tys; for (unsigned i=0; idata[i]; if (!vx) continue; tys.push_back(DtoType(vx->type)); } const LLStructType* t = LLStructType::get(tys); if (t != llt) { if (getABITypeSize(t) != getABITypeSize(llt)) { Logger::cout() << "got size " << getABITypeSize(t) << ", expected " << getABITypeSize(llt) << '\n'; assert(0 && "type size mismatch"); } sptr = DtoBitCast(sptr, getPtrToType(t)); Logger::cout() << "sptr type is now: " << *t << '\n'; } } // build unsigned j = 0; for (unsigned i=0; idata[i]; if (!vx) continue; Logger::cout() << "getting index " << j << " of " << *sptr << '\n'; LLValue* arrptr = DtoGEPi(sptr,0,j); DValue* darrptr = new DVarValue(vx->type, arrptr, true); p->exps.push_back(IRExp(NULL,vx,darrptr)); DValue* ve = vx->toElem(p); p->exps.pop_back(); if (!ve->inPlace()) DtoAssign(darrptr, ve); j++; } return new DImValue(type, sptr, isinplace); } ////////////////////////////////////////////////////////////////////////////////////////// LLConstant* StructLiteralExp::toConstElem(IRState* p) { Logger::print("StructLiteralExp::toConstElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; unsigned n = elements->dim; std::vector vals(n, NULL); for (unsigned i=0; idata[i]; vals[i] = vx->toConstElem(p); } assert(DtoDType(type)->ty == Tstruct); const LLType* t = DtoType(type); const LLStructType* st = isaStruct(t); return llvm::ConstantStruct::get(st,vals); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* InExp::toElem(IRState* p) { Logger::print("InExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; DValue* key = e1->toElem(p); DValue* aa = e2->toElem(p); return DtoAAIn(type, aa, key); } DValue* RemoveExp::toElem(IRState* p) { Logger::print("RemoveExp::toElem: %s\n", toChars()); LOG_SCOPE; DValue* aa = e1->toElem(p); DValue* key = e2->toElem(p); DtoAARemove(aa, key); return NULL; // does not produce anything useful } ////////////////////////////////////////////////////////////////////////////////////////// DValue* AssocArrayLiteralExp::toElem(IRState* p) { Logger::print("AssocArrayLiteralExp::toElem: %s | %s\n", toChars(), type->toChars()); LOG_SCOPE; assert(keys); assert(values); assert(keys->dim == values->dim); Type* aatype = DtoDType(type); Type* vtype = aatype->next; const LLType* aalltype = DtoType(type); // it should be possible to avoid the temporary in some cases LLValue* tmp = new llvm::AllocaInst(aalltype,"aaliteral",p->topallocapoint()); DValue* aa = new DVarValue(type, tmp, true); DtoStore(LLConstant::getNullValue(aalltype), tmp); const size_t n = keys->dim; for (size_t i=0; idata[i]; Expression* eval = (Expression*)values->data[i]; Logger::println("(%u) aa[%s] = %s", i, ekey->toChars(), eval->toChars()); // index DValue* key = ekey->toElem(p); DValue* mem = DtoAAIndex(vtype, aa, key); // store DValue* val = eval->toElem(p); DtoAssign(mem, val); } return aa; } ////////////////////////////////////////////////////////////////////////////////////////// #define STUB(x) DValue *x::toElem(IRState * p) {error("Exp type "#x" not implemented: %s", toChars()); fatal(); return 0; } //STUB(IdentityExp); //STUB(CondExp); //STUB(EqualExp); //STUB(InExp); //STUB(CmpExp); //STUB(AndAndExp); //STUB(OrOrExp); //STUB(AndExp); //STUB(AndAssignExp); //STUB(OrExp); //STUB(OrAssignExp); //STUB(XorExp); //STUB(XorAssignExp); //STUB(ShrExp); //STUB(ShrAssignExp); //STUB(ShlExp); //STUB(ShlAssignExp); //STUB(UshrExp); //STUB(UshrAssignExp); //STUB(DivExp); //STUB(DivAssignExp); //STUB(MulExp); //STUB(MulAssignExp); //STUB(ModExp); //STUB(ModAssignExp); //STUB(CatExp); //STUB(CatAssignExp); //STUB(AddExp); //STUB(AddAssignExp); STUB(Expression); //STUB(MinExp); //STUB(MinAssignExp); //STUB(PostExp); //STUB(NullExp); //STUB(ThisExp); //STUB(CallExp); STUB(DotTypeExp); STUB(TypeDotIdExp); //STUB(DotVarExp); //STUB(AssertExp); //STUB(FuncExp); //STUB(DelegateExp); //STUB(VarExp); //STUB(DeclarationExp); //STUB(NewExp); //STUB(SymOffExp); STUB(ScopeExp); //STUB(AssignExp); STUB(TypeExp); //STUB(RealExp); //STUB(ComplexExp); //STUB(StringExp); //STUB(IntegerExp); STUB(BoolExp); //STUB(NotExp); //STUB(ComExp); //STUB(NegExp); //STUB(PtrExp); //STUB(AddrExp); //STUB(SliceExp); //STUB(CastExp); //STUB(DeleteExp); //STUB(IndexExp); //STUB(CommaExp); //STUB(ArrayLengthExp); //STUB(HaltExp); //STUB(RemoveExp); //STUB(ArrayLiteralExp); //STUB(AssocArrayLiteralExp); //STUB(StructLiteralExp); STUB(TupleExp); #define CONSTSTUB(x) LLConstant* x::toConstElem(IRState * p) {error("const Exp type "#x" not implemented: '%s' type: '%s'", toChars(), type->toChars()); fatal(); return NULL; } CONSTSTUB(Expression); //CONSTSTUB(IntegerExp); //CONSTSTUB(RealExp); //CONSTSTUB(NullExp); //CONSTSTUB(ComplexExp); //CONSTSTUB(StringExp); //CONSTSTUB(VarExp); //CONSTSTUB(ArrayLiteralExp); CONSTSTUB(AssocArrayLiteralExp); //CONSTSTUB(StructLiteralExp); unsigned Type::totym() { return 0; } type * Type::toCtype() { assert(0); return 0; } type * Type::toCParamtype() { assert(0); return 0; } Symbol * Type::toSymbol() { assert(0); return 0; } type * TypeTypedef::toCtype() { assert(0); return 0; } type * TypeTypedef::toCParamtype() { assert(0); return 0; } void TypedefDeclaration::toDebug() { assert(0); } type * TypeEnum::toCtype() { assert(0); return 0; } type * TypeStruct::toCtype() { assert(0); return 0; } void StructDeclaration::toDebug() { assert(0); } Symbol * TypeClass::toSymbol() { assert(0); return 0; } unsigned TypeFunction::totym() { assert(0); return 0; } type * TypeFunction::toCtype() { assert(0); return 0; } type * TypeSArray::toCtype() { assert(0); return 0; } type *TypeSArray::toCParamtype() { assert(0); return 0; } type * TypeDArray::toCtype() { assert(0); return 0; } type * TypeAArray::toCtype() { assert(0); return 0; } type * TypePointer::toCtype() { assert(0); return 0; } type * TypeDelegate::toCtype() { assert(0); return 0; } type * TypeClass::toCtype() { assert(0); return 0; } void ClassDeclaration::toDebug() { assert(0); } ////////////////////////////////////////////////////////////////////////////// void EnumDeclaration::toDebug() { assert(0); } int Dsymbol::cvMember(unsigned char*) { assert(0); return 0; } int EnumDeclaration::cvMember(unsigned char*) { assert(0); return 0; } int FuncDeclaration::cvMember(unsigned char*) { assert(0); return 0; } int VarDeclaration::cvMember(unsigned char*) { assert(0); return 0; } int TypedefDeclaration::cvMember(unsigned char*) { assert(0); return 0; } void obj_includelib(char*){} void backend_init() { // now lazily loaded //LLVM_D_InitRuntime(); } void backend_term() { LLVM_D_FreeRuntime(); }