#if USE_METADATA //===-- GarbageCollect2Stack.cpp - Promote or remove GC allocations -------===// // // LDC – the LLVM D compiler // // This file is distributed under the BSD-style LDC license. See the LICENSE // file for details. // //===----------------------------------------------------------------------===// // // This file attempts to turn allocations on the garbage-collected heap into // stack allocations. // //===----------------------------------------------------------------------===// #include "gen/runtime.h" #include "gen/metadata.h" #define DEBUG_TYPE "dgc2stack" #include "Passes.h" #include "llvm/Pass.h" #if LDC_LLVM_VER >= 303 #include "llvm/IR/Module.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/DataLayout.h" #else #include "llvm/Module.h" #include "llvm/Constants.h" #include "llvm/Intrinsics.h" #if LDC_LLVM_VER == 302 #include "llvm/IRBuilder.h" #include "llvm/DataLayout.h" #else #include "llvm/Support/IRBuilder.h" #include "llvm/Target/TargetData.h" #endif #endif #include "llvm/Support/CallSite.h" #include "llvm/Support/CommandLine.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; STATISTIC(NumGcToStack, "Number of calls promoted to constant-size allocas"); STATISTIC(NumToDynSize, "Number of calls promoted to dynamically-sized allocas"); STATISTIC(NumDeleted, "Number of GC calls deleted because the return value was unused"); static cl::opt SizeLimit("dgc2stack-size-limit", cl::init(1024), cl::Hidden, cl::desc("Require allocs to be smaller than n bytes to be promoted, 0 to ignore.")); namespace { struct Analysis { #if LDC_LLVM_VER >= 302 DataLayout& TD; #else TargetData& TD; #endif const Module& M; CallGraph* CG; CallGraphNode* CGNode; Type* getTypeFor(Value* typeinfo) const; }; } //===----------------------------------------------------------------------===// // Helper functions //===----------------------------------------------------------------------===// void EmitMemSet(IRBuilder<>& B, Value* Dst, Value* Val, Value* Len, const Analysis& A) { Dst = B.CreateBitCast(Dst, PointerType::getUnqual(B.getInt8Ty())); Module *M = B.GetInsertBlock()->getParent()->getParent(); Type* intTy = Len->getType(); Type *VoidPtrTy = PointerType::getUnqual(B.getInt8Ty()); Type *Tys[2] = {VoidPtrTy, intTy}; Function *MemSet = Intrinsic::getDeclaration(M, Intrinsic::memset, llvm::makeArrayRef(Tys, 2)); Value *Align = ConstantInt::get(B.getInt32Ty(), 1); CallSite CS = B.CreateCall5(MemSet, Dst, Val, Len, Align, B.getFalse()); if (A.CGNode) A.CGNode->addCalledFunction(CS, A.CG->getOrInsertFunction(MemSet)); } static void EmitMemZero(IRBuilder<>& B, Value* Dst, Value* Len, const Analysis& A) { EmitMemSet(B, Dst, ConstantInt::get(B.getInt8Ty(), 0), Len, A); } //===----------------------------------------------------------------------===// // Helpers for specific types of GC calls. //===----------------------------------------------------------------------===// namespace { class FunctionInfo { protected: Type* Ty; public: unsigned TypeInfoArgNr; bool SafeToDelete; /// Whether the allocated memory is returned as a D array instead of /// just a plain pointer. bool ReturnsArray; // Analyze the current call, filling in some fields. Returns true if // this is an allocation we can stack-allocate. virtual bool analyze(CallSite CS, const Analysis& A) { Value* TypeInfo = CS.getArgument(TypeInfoArgNr); Ty = A.getTypeFor(TypeInfo); if (!Ty) return false; return A.TD.getTypeAllocSize(Ty) < SizeLimit; } // Returns the alloca to replace this call. // It will always be inserted before the call. virtual Value* promote(CallSite CS, IRBuilder<>& B, const Analysis& A) { NumGcToStack++; Instruction* Begin = CS.getCaller()->getEntryBlock().begin(); return new AllocaInst(Ty, ".nongc_mem", Begin); // FIXME: align? } FunctionInfo(unsigned typeInfoArgNr, bool safeToDelete, bool returnsArray) : TypeInfoArgNr(typeInfoArgNr), SafeToDelete(safeToDelete), ReturnsArray(returnsArray) {} }; class ArrayFI : public FunctionInfo { Value* arrSize; int ArrSizeArgNr; bool Initialized; public: ArrayFI(unsigned tiArgNr, bool safeToDelete, bool returnsArray, bool initialized, unsigned arrSizeArgNr) : FunctionInfo(tiArgNr, safeToDelete, returnsArray), ArrSizeArgNr(arrSizeArgNr), Initialized(initialized) {} virtual bool analyze(CallSite CS, const Analysis& A) { if (!FunctionInfo::analyze(CS, A)) return false; arrSize = CS.getArgument(ArrSizeArgNr); // Extract the element type from the array type. const StructType* ArrTy = dyn_cast(Ty); assert(ArrTy && "Dynamic array type not a struct?"); assert(isa(ArrTy->getElementType(0))); const PointerType* PtrTy = cast(ArrTy->getElementType(1)); Ty = PtrTy->getElementType(); // If the user explicitly disabled the limits, don't even check // whether the element count fits in 32 bits. This could cause // miscompilations for humongous arrays, but as the value "range" // (set bits) inference algorithm is rather limited, this is // useful for experimenting. if (SizeLimit > 0) { uint64_t ElemSize = A.TD.getTypeAllocSize(Ty); unsigned BitsLimit = Log2_64(SizeLimit / ElemSize); // LLVM's alloca ueses an i32 for the number of elements. BitsLimit = std::min(BitsLimit, 32U); const IntegerType* SizeType = dyn_cast(arrSize->getType()); if (!SizeType) return false; unsigned Bits = SizeType->getBitWidth(); if (Bits > BitsLimit) { APInt Mask = APInt::getLowBitsSet(Bits, BitsLimit); Mask.flipAllBits(); APInt KnownZero(Bits, 0), KnownOne(Bits, 0); #if LDC_LLVM_VER >= 301 ComputeMaskedBits(arrSize, KnownZero, KnownOne, &A.TD); #else ComputeMaskedBits(arrSize, Mask, KnownZero, KnownOne, &A.TD); #endif if ((KnownZero & Mask) != Mask) return false; } } return true; } virtual Value* promote(CallSite CS, IRBuilder<>& B, const Analysis& A) { IRBuilder<> Builder = B; // If the allocation is of constant size it's best to put it in the // entry block, so do so if we're not already there. // For dynamically-sized allocations it's best to avoid the overhead // of allocating them if possible, so leave those where they are. // While we're at it, update statistics too. if (isa(arrSize)) { BasicBlock& Entry = CS.getCaller()->getEntryBlock(); if (Builder.GetInsertBlock() != &Entry) Builder.SetInsertPoint(&Entry, Entry.begin()); NumGcToStack++; } else { NumToDynSize++; } // Convert array size to 32 bits if necessary Value* count = Builder.CreateIntCast(arrSize, Builder.getInt32Ty(), false); AllocaInst* alloca = Builder.CreateAlloca(Ty, count, ".nongc_mem"); // FIXME: align? if (Initialized) { // For now, only zero-init is supported. uint64_t size = A.TD.getTypeStoreSize(Ty); Value* TypeSize = ConstantInt::get(arrSize->getType(), size); // Use the original B to put initialization at the // allocation site. Value* Size = B.CreateMul(TypeSize, arrSize); EmitMemZero(B, alloca, Size, A); } if (ReturnsArray) { Value* arrStruct = llvm::UndefValue::get(CS.getType()); arrStruct = Builder.CreateInsertValue(arrStruct, arrSize, 0); Value* memPtr = Builder.CreateBitCast(alloca, PointerType::getUnqual(B.getInt8Ty())); arrStruct = Builder.CreateInsertValue(arrStruct, memPtr, 1); return arrStruct; } return alloca; } }; // FunctionInfo for _d_allocclass class AllocClassFI : public FunctionInfo { public: virtual bool analyze(CallSite CS, const Analysis& A) { // This call contains no TypeInfo parameter, so don't call the // base class implementation here... if (CS.arg_size() != 1) return false; Value* arg = CS.getArgument(0)->stripPointerCasts(); GlobalVariable* ClassInfo = dyn_cast(arg); if (!ClassInfo) return false; std::string metaname = CD_PREFIX; metaname += ClassInfo->getName(); NamedMDNode* meta = A.M.getNamedMetadata(metaname); if (!meta) return false; MDNode* node = static_cast(meta->getOperand(0)); if (!node || node->getNumOperands() != CD_NumFields) return false; // Inserting destructor calls is not implemented yet, so classes // with destructors are ignored for now. Constant* hasDestructor = dyn_cast(node->getOperand(CD_Finalize)); // We can't stack-allocate if the class has a custom deallocator // (Custom allocators don't get turned into this runtime call, so // those can be ignored) Constant* hasCustomDelete = dyn_cast(node->getOperand(CD_CustomDelete)); if (hasDestructor == NULL || hasCustomDelete == NULL) return false; if (ConstantExpr::getOr(hasDestructor, hasCustomDelete) != ConstantInt::getFalse(A.M.getContext())) return false; Ty =node->getOperand(CD_BodyType)->getType(); return A.TD.getTypeAllocSize(Ty) < SizeLimit; } // The default promote() should be fine. AllocClassFI() : FunctionInfo(~0u, true, false) {} }; } //===----------------------------------------------------------------------===// // GarbageCollect2Stack Pass Implementation //===----------------------------------------------------------------------===// namespace { /// This pass replaces GC calls with alloca's /// class LLVM_LIBRARY_VISIBILITY GarbageCollect2Stack : public FunctionPass { StringMap KnownFunctions; Module* M; FunctionInfo AllocMemoryT; ArrayFI NewArrayVT; ArrayFI NewArrayT; AllocClassFI AllocClass; public: static char ID; // Pass identification GarbageCollect2Stack(); bool doInitialization(Module &M) { this->M = &M; return false; } bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { #if LDC_LLVM_VER >= 302 AU.addRequired(); #else AU.addRequired(); #endif AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } }; char GarbageCollect2Stack::ID = 0; } // end anonymous namespace. static RegisterPass X("dgc2stack", "Promote (GC'ed) heap allocations to stack"); // Public interface to the pass. FunctionPass *createGarbageCollect2Stack() { return new GarbageCollect2Stack(); } GarbageCollect2Stack::GarbageCollect2Stack() : FunctionPass(ID), AllocMemoryT(0, true, false), NewArrayVT(0, true, false, false, 1), #ifdef DMDV1 // _d_newarrayT returns just the void* ptr in the LDC D1 runtime. NewArrayT(0, true, false, true, 1) #else NewArrayT(0, true, true, true, 1) #endif { KnownFunctions["_d_allocmemoryT"] = &AllocMemoryT; KnownFunctions["_d_newarrayvT"] = &NewArrayVT; KnownFunctions["_d_newarrayT"] = &NewArrayT; KnownFunctions[_d_allocclass] = &AllocClass; } static void RemoveCall(CallSite CS, const Analysis& A) { if (CS.isInvoke()) { InvokeInst* Invoke = cast(CS.getInstruction()); // If this was an invoke instruction, we need to do some extra // work to preserve the control flow. // Create a "conditional" branch that -simplifycfg can clean up, so we // can keep using the DominatorTree without updating it. BranchInst::Create(Invoke->getNormalDest(), Invoke->getUnwindDest(), ConstantInt::getTrue(A.M.getContext()), Invoke->getParent()); } // Remove the runtime call. if (A.CGNode) A.CGNode->removeCallEdgeFor(CS); CS.getInstruction()->eraseFromParent(); } static bool isSafeToStackAllocateArray(Instruction* Alloc, DominatorTree& DT, SmallVector& RemoveTailCallInsts ); static bool isSafeToStackAllocate(Instruction* Alloc, Value* V, DominatorTree& DT, SmallVector& RemoveTailCallInsts ); /// runOnFunction - Top level algorithm. /// bool GarbageCollect2Stack::runOnFunction(Function &F) { DEBUG(errs() << "\nRunning -dgc2stack on function " << F.getName() << '\n'); #if LDC_LLVM_VER >= 302 DataLayout& TD = getAnalysis(); #else TargetData& TD = getAnalysis(); #endif DominatorTree& DT = getAnalysis(); CallGraph* CG = getAnalysisIfAvailable(); CallGraphNode* CGNode = CG ? (*CG)[&F] : NULL; Analysis A = { TD, *M, CG, CGNode }; BasicBlock& Entry = F.getEntryBlock(); IRBuilder<> AllocaBuilder(&Entry, Entry.begin()); bool Changed = false; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { // Ignore non-calls. Instruction* Inst = I++; CallSite CS(Inst); if (!CS.getInstruction()) continue; // Ignore indirect calls and calls to non-external functions. Function *Callee = CS.getCalledFunction(); if (Callee == 0 || !Callee->isDeclaration() || !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage())) continue; // Ignore unknown calls. StringMap::iterator OMI = KnownFunctions.find(Callee->getName()); if (OMI == KnownFunctions.end()) continue; FunctionInfo* info = OMI->getValue(); if (Inst->use_empty() && info->SafeToDelete) { Changed = true; NumDeleted++; RemoveCall(CS, A); continue; } DEBUG(errs() << "GarbageCollect2Stack inspecting: " << *Inst); if (!info->analyze(CS, A)) continue; SmallVector RemoveTailCallInsts; if (info->ReturnsArray) { if (!isSafeToStackAllocateArray(Inst, DT, RemoveTailCallInsts)) continue; } else { if (!isSafeToStackAllocate(Inst, Inst, DT, RemoveTailCallInsts)) continue; } // Let's alloca this! Changed = true; // First demote tail calls which use the value so there IR is never // in an invalid state. SmallVector::iterator it, end = RemoveTailCallInsts.end(); for (it = RemoveTailCallInsts.begin(); it != end; ++it) { (*it)->setTailCall(false); } IRBuilder<> Builder(BB, Inst); Value* newVal = info->promote(CS, Builder, A); DEBUG(errs() << "Promoted to: " << *newVal); // Make sure the type is the same as it was before, and replace all // uses of the runtime call with the alloca. if (newVal->getType() != Inst->getType()) newVal = Builder.CreateBitCast(newVal, Inst->getType()); Inst->replaceAllUsesWith(newVal); RemoveCall(CS, A); } } return Changed; } Type* Analysis::getTypeFor(Value* typeinfo) const { GlobalVariable* ti_global = dyn_cast(typeinfo->stripPointerCasts()); if (!ti_global) return NULL; std::string metaname = TD_PREFIX; metaname += ti_global->getName(); NamedMDNode* meta = M.getNamedMetadata(metaname); if (!meta) return NULL; MDNode* node = static_cast(meta->getOperand(0)); if (!node) return NULL; if (node->getNumOperands() != TD_NumFields) return NULL; if (TD_Confirm >= 0 && (!node->getOperand(TD_Confirm) || node->getOperand(TD_Confirm)->stripPointerCasts() != ti_global)) return NULL; return node->getOperand(TD_Type)->getType(); } /// Returns whether Def is used by any instruction that is reachable from Alloc /// (without executing Def again). static bool mayBeUsedAfterRealloc(Instruction* Def, Instruction* Alloc, DominatorTree& DT) { DEBUG(errs() << "### mayBeUsedAfterRealloc()\n" << *Def << *Alloc); // If the definition isn't used it obviously won't be used after the // allocation. // If it does not dominate the allocation, there's no way for it to be used // without going through Def again first, since the definition couldn't // dominate the user either. if (Def->use_empty() || !DT.dominates(Def, Alloc)) { DEBUG(errs() << "### No uses or does not dominate allocation\n"); return false; } DEBUG(errs() << "### Def dominates Alloc\n"); BasicBlock* DefBlock = Def->getParent(); BasicBlock* AllocBlock = Alloc->getParent(); // Create a set of users and one of blocks containing users. SmallSet Users; SmallSet UserBlocks; for (Instruction::use_iterator UI = Def->use_begin(), UE = Def->use_end(); UI != UE; ++UI) { Instruction* User = cast(*UI); DEBUG(errs() << "USER: " << *User); BasicBlock* UserBlock = User->getParent(); // This dominance check is not performed if they're in the same block // because it will just walk the instruction list to figure it out. // We will instead do that ourselves in the first iteration (for all // users at once). if (AllocBlock != UserBlock && DT.dominates(AllocBlock, UserBlock)) { // There's definitely a path from alloc to this user that does not // go through Def, namely any path that ends up in that user. DEBUG(errs() << "### Alloc dominates user " << *User); return true; } // Phi nodes are checked separately, so no need to enter them here. if (!isa(User)) { Users.insert(User); UserBlocks.insert(UserBlock); } } // Contains first instruction of block to inspect. typedef std::pair StartPoint; SmallVector Worklist; // Keeps track of successors that have been added to the work list. SmallSet Visited; // Start just after the allocation. // Note that we don't insert AllocBlock into the Visited set here so the // start of the block will get inspected if it's reachable. BasicBlock::iterator Start = Alloc; ++Start; Worklist.push_back(StartPoint(AllocBlock, Start)); while (!Worklist.empty()) { StartPoint sp = Worklist.pop_back_val(); BasicBlock* B = sp.first; BasicBlock::iterator BBI = sp.second; // BBI is either just after the allocation (in the first iteration) // or just after the last phi node in B (in subsequent iterations) here. // This whole 'if' is just a way to avoid performing the inner 'for' // loop when it can be determined not to be necessary, avoiding // potentially expensive walks of the instruction list. // It should be equivalent to just doing the loop. if (UserBlocks.count(B)) { if (B != DefBlock && B != AllocBlock) { // This block does not contain the definition or the allocation, // so any user in this block is definitely reachable without // finding either the definition or the allocation. DEBUG(errs() << "### Block " << B->getName() << " contains a reachable user\n"); return true; } // We need to walk the instructions in the block to see whether we // reach a user before we reach the definition or the allocation. for (BasicBlock::iterator E = B->end(); BBI != E; ++BBI) { if (&*BBI == Alloc || &*BBI == Def) break; if (Users.count(BBI)) { DEBUG(errs() << "### Problematic user: " << *BBI); return true; } } } else if (B == DefBlock || (B == AllocBlock && BBI != Start)) { // There are no users in the block so the def or the allocation // will be encountered before any users though this path. // Skip to the next item on the worklist. continue; } else { // No users and no definition or allocation after the start point, // so just keep going. } // All instructions after the starting point in this block have been // accounted for. Look for successors to add to the work list. TerminatorInst* Term = B->getTerminator(); unsigned SuccCount = Term->getNumSuccessors(); for (unsigned i = 0; i < SuccCount; i++) { BasicBlock* Succ = Term->getSuccessor(i); BBI = Succ->begin(); // Check phi nodes here because we only care about the operand // coming in from this block. bool SeenDef = false; while (isa(BBI)) { if (Def == cast(BBI)->getIncomingValueForBlock(B)) { DEBUG(errs() << "### Problematic phi user: " << *BBI); return true; } SeenDef |= (Def == &*BBI); ++BBI; } // If none of the phis we just looked at were the definition, we // haven't seen this block yet, and it's dominated by the def // (meaning paths through it could lead to users), add the block and // the first non-phi to the worklist. if (!SeenDef && Visited.insert(Succ) && DT.dominates(DefBlock, Succ)) Worklist.push_back(StartPoint(Succ, BBI)); } } // No users found in any block reachable from Alloc // without going through the definition again. return false; } /// Returns true if the GC call passed in is safe to turn into a stack /// allocation. /// /// This handles GC calls returning a D array instead of a raw pointer, /// see isSafeToStackAllocate() for details. bool isSafeToStackAllocateArray(Instruction* Alloc, DominatorTree& DT, SmallVector& RemoveTailCallInsts ) { assert(Alloc->getType()->isStructTy() && "Allocated array is not a struct?"); Value* V = Alloc; for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; ++UI) { Instruction *User = cast(*UI); switch (User->getOpcode()) { case Instruction::ExtractValue: { ExtractValueInst *EVI = cast(User); assert(EVI->getAggregateOperand() == V); assert(EVI->getNumIndices() == 1); unsigned idx = EVI->getIndices()[0]; if (idx == 0) { // This extract the length argument, irrelevant for our analysis. assert(EVI->getType()->isIntegerTy() && "First array field not length?"); } else { assert(idx == 1 && "Invalid array struct access."); if (!isSafeToStackAllocate(Alloc, EVI, DT, RemoveTailCallInsts)) return false; } break; } default: // We are super conservative here, the only thing we want to be able to // handle at this point is extracting len/ptr. More extensive analysis // could be added later. return false; } } // All uses examined - memory not captured. return true; } /// Returns true if the GC call passed in is safe to turn /// into a stack allocation. This requires that the return value does not /// escape from the function and no derived pointers are live at the call site /// (i.e. if it's in a loop then the function can't use any pointer returned /// from an earlier call after a new call has been made). /// /// This is currently conservative where loops are involved: it can handle /// simple loops, but returns false if any derived pointer is used in a /// subsequent iteration. /// /// Based on LLVM's PointerMayBeCaptured(), which only does escape analysis but /// doesn't care about loops. /// /// Alloc is the actual call to the runtime function, and V is the pointer to /// the memory it returns (which might not be equal to Alloc in case of /// functions returning D arrays). /// /// If the value is used in a call instruction with the tail attribute set, /// the attribute has to be removed before promoting the memory to the /// stack. The affected instructions are added to RemoveTailCallInsts. If /// the function returns false, these entries are meaningless. bool isSafeToStackAllocate(Instruction* Alloc, Value* V, DominatorTree& DT, SmallVector& RemoveTailCallInsts ) { assert(isa(V->getType()) && "Allocated value is not a pointer?"); SmallVector Worklist; SmallSet Visited; for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; ++UI) { Use *U = &UI.getUse(); Visited.insert(U); Worklist.push_back(U); } while (!Worklist.empty()) { Use *U = Worklist.pop_back_val(); Instruction *I = cast(U->getUser()); V = U->get(); switch (I->getOpcode()) { case Instruction::Call: case Instruction::Invoke: { CallSite CS(I); // Not captured if the callee is readonly, doesn't return a copy through // its return value and doesn't unwind (a readonly function can leak bits // by throwing an exception or not depending on the input value). if (CS.onlyReadsMemory() && CS.doesNotThrow() && I->getType() == Type::getVoidTy(I->getContext())) break; // Not captured if only passed via 'nocapture' arguments. Note that // calling a function pointer does not in itself cause the pointer to // be captured. This is a subtle point considering that (for example) // the callee might return its own address. It is analogous to saying // that loading a value from a pointer does not cause the pointer to be // captured, even though the loaded value might be the pointer itself // (think of self-referential objects). CallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end(); for (CallSite::arg_iterator A = B; A != E; ++A) if (A->get() == V) { if (!CS.paramHasAttr(A - B + 1, #if LDC_LLVM_VER >= 303 Attribute::NoCapture #elif LDC_LLVM_VER == 302 Attributes::NoCapture #else Attribute::NoCapture #endif )) { // The parameter is not marked 'nocapture' - captured. return false; } if (CS.isCall()) { CallInst* CI = cast(I); if (CI->isTailCall()) { RemoveTailCallInsts.push_back(CI); } } } // Only passed via 'nocapture' arguments, or is the called function - not // captured. break; } case Instruction::Load: // Loading from a pointer does not cause it to be captured. break; case Instruction::Store: if (V == I->getOperand(0)) // Stored the pointer - it may be captured. return false; // Storing to the pointee does not cause the pointer to be captured. break; case Instruction::BitCast: case Instruction::GetElementPtr: case Instruction::PHI: case Instruction::Select: // It's not safe to stack-allocate if this derived pointer is live across // the original allocation. if (mayBeUsedAfterRealloc(I, Alloc, DT)) return false; // The original value is not captured via this if the new value isn't. for (Instruction::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) { Use *U = &UI.getUse(); if (Visited.insert(U)) Worklist.push_back(U); } break; default: // Something else - be conservative and say it is captured. return false; } } // All uses examined - not captured or live across original allocation. return true; } #endif // USE_METADATA