#include "gen/llvm.h" #include "llvm/Support/CFG.h" #include "llvm/Intrinsics.h" #include "mtype.h" #include "aggregate.h" #include "init.h" #include "declaration.h" #include "template.h" #include "module.h" #include "statement.h" #include "gen/irstate.h" #include "gen/tollvm.h" #include "gen/llvmhelpers.h" #include "gen/runtime.h" #include "gen/arrays.h" #include "gen/logger.h" #include "gen/functions.h" #include "gen/todebug.h" #include "gen/classes.h" #include "gen/dvalue.h" const llvm::FunctionType* DtoFunctionType(Type* type, const LLType* thistype, bool ismain) { assert(type->ty == Tfunction); TypeFunction* f = (TypeFunction*)type; if (type->ir.type != NULL) { return llvm::cast(type->ir.type->get()); } bool typesafeVararg = false; bool arrayVararg = false; if (f->linkage == LINKd) { if (f->varargs == 1) typesafeVararg = true; else if (f->varargs == 2) arrayVararg = true; } // return value type const LLType* rettype; const LLType* actualRettype; Type* rt = f->next; bool retinptr = false; bool usesthis = false; // parameter types std::vector paramvec; if (ismain) { rettype = LLType::Int32Ty; actualRettype = rettype; if (Argument::dim(f->parameters) == 0) { const LLType* arrTy = DtoArrayType(LLType::Int8Ty); const LLType* arrArrTy = DtoArrayType(arrTy); paramvec.push_back(getPtrToType(arrArrTy)); } } else{ assert(rt); if (DtoIsReturnedInArg(rt)) { rettype = getPtrToType(DtoType(rt)); actualRettype = LLType::VoidTy; f->llvmRetInPtr = retinptr = true; } else { rettype = DtoType(rt); actualRettype = rettype; } if (unsigned ea = DtoShouldExtend(rt)) { f->llvmRetAttrs |= ea; } } if (retinptr) { //Logger::cout() << "returning through pointer parameter: " << *rettype << '\n'; paramvec.push_back(rettype); } if (thistype) { paramvec.push_back(thistype); usesthis = true; } if (typesafeVararg) { ClassDeclaration* ti = Type::typeinfo; ti->toObjFile(0); // TODO: multiobj DtoForceConstInitDsymbol(ti); assert(ti->ir.irStruct->constInit); std::vector types; types.push_back(DtoSize_t()); types.push_back(getPtrToType(getPtrToType(ti->ir.irStruct->constInit->getType()))); const LLType* t1 = llvm::StructType::get(types); paramvec.push_back(getPtrToType(t1)); paramvec.push_back(getPtrToType(LLType::Int8Ty)); } else if (arrayVararg) { // do nothing? } size_t n = Argument::dim(f->parameters); for (int i=0; i < n; ++i) { Argument* arg = Argument::getNth(f->parameters, i); // ensure scalar Type* argT = DtoDType(arg->type); assert(argT); bool refOrOut = ((arg->storageClass & STCref) || (arg->storageClass & STCout)); const LLType* at = DtoType(argT); if (isaStruct(at)) { Logger::println("struct param"); paramvec.push_back(getPtrToType(at)); if (!refOrOut) arg->llvmAttrs |= llvm::ParamAttr::ByVal; } else if (isaArray(at)) { // static array are passed by reference Logger::println("sarray param"); assert(argT->ty == Tsarray); paramvec.push_back(getPtrToType(at)); } else if (llvm::isa(at)) { Logger::println("opaque param"); assert(argT->ty == Tstruct || argT->ty == Tclass); paramvec.push_back(getPtrToType(at)); } else { if (refOrOut) { Logger::println("by ref param"); at = getPtrToType(at); } else { Logger::println("in param"); if (unsigned ea = DtoShouldExtend(argT)) { arg->llvmAttrs |= ea; } } paramvec.push_back(at); } // handle lazy args if (arg->storageClass & STClazy) { Logger::cout() << "for lazy got: " << *paramvec.back() << '\n'; TypeFunction *ltf = new TypeFunction(NULL, arg->type, 0, LINKd); TypeDelegate *ltd = new TypeDelegate(ltf); at = getPtrToType(DtoType(ltd)); Logger::cout() << "lazy updated to: " << *at << '\n'; paramvec.back() = at; } } //warning("set %d byval args for type: %s", nbyval, f->toChars()); // construct function type bool isvararg = !(typesafeVararg || arrayVararg) && f->varargs; llvm::FunctionType* functype = llvm::FunctionType::get(actualRettype, paramvec, isvararg); f->llvmRetInPtr = retinptr; f->llvmUsesThis = usesthis; f->ir.type = new llvm::PATypeHolder(functype); return functype; } ////////////////////////////////////////////////////////////////////////////////////////// static const llvm::FunctionType* DtoVaFunctionType(FuncDeclaration* fdecl) { // type has already been resolved if (fdecl->type->ir.type != 0) { return llvm::cast(fdecl->type->ir.type->get()); } TypeFunction* f = (TypeFunction*)fdecl->type; const llvm::FunctionType* fty = 0; if (fdecl->llvmInternal == LLVMva_start) fty = GET_INTRINSIC_DECL(vastart)->getFunctionType(); else if (fdecl->llvmInternal == LLVMva_copy) fty = GET_INTRINSIC_DECL(vacopy)->getFunctionType(); else if (fdecl->llvmInternal == LLVMva_end) fty = GET_INTRINSIC_DECL(vaend)->getFunctionType(); assert(fty); f->ir.type = new llvm::PATypeHolder(fty); return fty; } ////////////////////////////////////////////////////////////////////////////////////////// const llvm::FunctionType* DtoFunctionType(FuncDeclaration* fdecl) { // handle for C vararg intrinsics if (fdecl->isVaIntrinsic()) return DtoVaFunctionType(fdecl); // type has already been resolved if (fdecl->type->ir.type != 0) return llvm::cast(fdecl->type->ir.type->get()); const LLType* thisty = NULL; if (fdecl->needThis()) { if (AggregateDeclaration* ad = fdecl->isMember2()) { Logger::println("isMember = this is: %s", ad->type->toChars()); thisty = DtoType(ad->type); //Logger::cout() << "this llvm type: " << *thisty << '\n'; if (isaStruct(thisty) || (!gIR->structs.empty() && thisty == gIR->topstruct()->recty.get())) thisty = getPtrToType(thisty); } else { Logger::println("chars: %s type: %s kind: %s", fdecl->toChars(), fdecl->type->toChars(), fdecl->kind()); assert(0); } } else if (fdecl->isNested()) { thisty = getPtrToType(LLType::Int8Ty); } const llvm::FunctionType* functype = DtoFunctionType(fdecl->type, thisty, fdecl->isMain()); return functype; } ////////////////////////////////////////////////////////////////////////////////////////// static llvm::Function* DtoDeclareVaFunction(FuncDeclaration* fdecl) { TypeFunction* f = (TypeFunction*)DtoDType(fdecl->type); const llvm::FunctionType* fty = DtoVaFunctionType(fdecl); llvm::Function* func = 0; if (fdecl->llvmInternal == LLVMva_start) func = GET_INTRINSIC_DECL(vastart); else if (fdecl->llvmInternal == LLVMva_copy) func = GET_INTRINSIC_DECL(vacopy); else if (fdecl->llvmInternal == LLVMva_end) func = GET_INTRINSIC_DECL(vaend); assert(func); fdecl->ir.irFunc->func = func; return func; } ////////////////////////////////////////////////////////////////////////////////////////// void DtoResolveFunction(FuncDeclaration* fdecl) { if (!global.params.useUnitTests && fdecl->isUnitTestDeclaration()) { return; // ignore declaration completely } // is imported and we don't have access? if (fdecl->getModule() != gIR->dmodule) { if (fdecl->prot() == PROTprivate) return; } if (fdecl->ir.resolved) return; fdecl->ir.resolved = true; Logger::println("DtoResolveFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars()); LOG_SCOPE; if (fdecl->parent) if (TemplateInstance* tinst = fdecl->parent->isTemplateInstance()) { TemplateDeclaration* tempdecl = tinst->tempdecl; if (tempdecl->llvmInternal == LLVMva_arg) { Logger::println("magic va_arg found"); fdecl->llvmInternal = LLVMva_arg; fdecl->ir.declared = true; fdecl->ir.initialized = true; fdecl->ir.defined = true; return; // this gets mapped to an instruction so a declaration makes no sence } else if (tempdecl->llvmInternal == LLVMva_start) { Logger::println("magic va_start found"); fdecl->llvmInternal = LLVMva_start; } } DtoFunctionType(fdecl); // queue declaration if (!fdecl->isAbstract()) gIR->declareList.push_back(fdecl); } ////////////////////////////////////////////////////////////////////////////////////////// static void set_param_attrs(TypeFunction* f, llvm::Function* func, FuncDeclaration* fdecl) { assert(f->parameters); int llidx = 1; if (f->llvmRetInPtr) ++llidx; if (f->llvmUsesThis) ++llidx; if (f->linkage == LINKd && f->varargs == 1) llidx += 2; int funcNumArgs = func->getArgumentList().size(); std::vector attrs; int k = 0; llvm::ParamAttrsWithIndex PAWI; // set zext/sext attr on return value if necessary if (f->next->isintegral() && f->next->size() < PTRSIZE) { PAWI.Index = 0; if (f->next->isunsigned()) PAWI.Attrs = llvm::ParamAttr::ZExt; else PAWI.Attrs = llvm::ParamAttr::SExt; attrs.push_back(PAWI); } // set byval attrs on implicit main arg if (fdecl->isMain() && Argument::dim(f->parameters) == 0) { PAWI.Index = llidx; PAWI.Attrs = llvm::ParamAttr::ByVal; attrs.push_back(PAWI); llidx++; } // set attrs on the rest of the arguments for (; llidx <= funcNumArgs && f->parameters->dim > k; ++llidx,++k) { Argument* fnarg = (Argument*)f->parameters->data[k]; assert(fnarg); PAWI.Index = llidx; PAWI.Attrs = fnarg->llvmAttrs; if (PAWI.Attrs) attrs.push_back(PAWI); } llvm::PAListPtr palist = llvm::PAListPtr::get(attrs.begin(), attrs.end()); func->setParamAttrs(palist); } ////////////////////////////////////////////////////////////////////////////////////////// void DtoDeclareFunction(FuncDeclaration* fdecl) { if (fdecl->ir.declared) return; fdecl->ir.declared = true; Logger::println("DtoDeclareFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars()); LOG_SCOPE; assert(!fdecl->isAbstract()); // intrinsic sanity check if (fdecl->llvmInternal == LLVMintrinsic && fdecl->fbody) { error(fdecl->loc, "intrinsics cannot have function bodies"); fatal(); } // get TypeFunction* Type* t = DtoDType(fdecl->type); TypeFunction* f = (TypeFunction*)t; bool declareOnly = false; bool templInst = fdecl->parent && DtoIsTemplateInstance(fdecl->parent); if (!templInst && fdecl->getModule() != gIR->dmodule) { Logger::println("not template instance, and not in this module. declare only!"); Logger::println("current module: %s", gIR->dmodule->ident->toChars()); if(fdecl->getModule()) Logger::println("func module: %s", fdecl->getModule()->ident->toChars()); else { Logger::println("func not in a module, is runtime"); } declareOnly = true; } else if (fdecl->llvmInternal == LLVMva_start) declareOnly = true; if (!fdecl->ir.irFunc) { fdecl->ir.irFunc = new IrFunction(fdecl); } // mangled name const char* mangled_name; if (fdecl->llvmInternal == LLVMintrinsic) mangled_name = fdecl->intrinsicName.c_str(); else mangled_name = fdecl->mangle(); llvm::Function* vafunc = 0; if (fdecl->isVaIntrinsic()) vafunc = DtoDeclareVaFunction(fdecl); // construct function const llvm::FunctionType* functype = DtoFunctionType(fdecl); llvm::Function* func = vafunc ? vafunc : gIR->module->getFunction(mangled_name); if (!func) func = llvm::Function::Create(functype, DtoLinkage(fdecl), mangled_name, gIR->module); else assert(func->getFunctionType() == functype); // add func to IRFunc fdecl->ir.irFunc->func = func; // calling convention if (!vafunc && fdecl->llvmInternal != LLVMintrinsic) func->setCallingConv(DtoCallingConv(f->linkage)); else // fall back to C, it should be the right thing to do func->setCallingConv(llvm::CallingConv::C); fdecl->ir.irFunc->func = func; assert(llvm::isa(f->ir.type->get())); // parameter attributes if (f->parameters && !fdecl->isIntrinsic()) { set_param_attrs(f, func, fdecl); } // main if (fdecl->isMain()) { gIR->mainFunc = func; } // static ctor if (fdecl->isStaticCtorDeclaration() && fdecl->getModule() == gIR->dmodule) { gIR->ctors.push_back(fdecl); } // static dtor else if (fdecl->isStaticDtorDeclaration() && fdecl->getModule() == gIR->dmodule) { gIR->dtors.push_back(fdecl); } // we never reference parameters of function prototypes if (!declareOnly) { // name parameters llvm::Function::arg_iterator iarg = func->arg_begin(); int k = 0; if (f->llvmRetInPtr) { iarg->setName("retval"); fdecl->ir.irFunc->retArg = iarg; ++iarg; } if (f->llvmUsesThis) { iarg->setName("this"); fdecl->ir.irFunc->thisVar = iarg; assert(fdecl->ir.irFunc->thisVar); ++iarg; } if (f->linkage == LINKd && f->varargs == 1) { iarg->setName("_arguments"); fdecl->ir.irFunc->_arguments = iarg; ++iarg; iarg->setName("_argptr"); fdecl->ir.irFunc->_argptr = iarg; ++iarg; } for (; iarg != func->arg_end(); ++iarg) { if (fdecl->parameters && fdecl->parameters->dim > k) { Dsymbol* argsym = (Dsymbol*)fdecl->parameters->data[k++]; VarDeclaration* argvd = argsym->isVarDeclaration(); assert(argvd); assert(!argvd->ir.irLocal); argvd->ir.irLocal = new IrLocal(argvd); argvd->ir.irLocal->value = iarg; iarg->setName(argvd->ident->toChars()); } else { iarg->setName("unnamed"); } } } if (fdecl->isUnitTestDeclaration()) gIR->unitTests.push_back(fdecl); if (!declareOnly) gIR->defineList.push_back(fdecl); else assert(func->getLinkage() != llvm::GlobalValue::InternalLinkage); Logger::cout() << "func decl: " << *func << '\n'; } ////////////////////////////////////////////////////////////////////////////////////////// void DtoDefineFunc(FuncDeclaration* fd) { if (fd->ir.defined) return; fd->ir.defined = true; assert(fd->ir.declared); Logger::println("DtoDefineFunc(%s): %s", fd->toPrettyChars(), fd->loc.toChars()); LOG_SCOPE; // debug info if (global.params.symdebug) { Module* mo = fd->getModule(); fd->ir.irFunc->dwarfSubProg = DtoDwarfSubProgram(fd); } Type* t = DtoDType(fd->type); TypeFunction* f = (TypeFunction*)t; assert(f->ir.type); llvm::Function* func = fd->ir.irFunc->func; const llvm::FunctionType* functype = func->getFunctionType(); // only members of the current module or template instances maybe be defined if (!(fd->getModule() == gIR->dmodule || DtoIsTemplateInstance(fd->parent))) return; // set module owner fd->ir.DModule = gIR->dmodule; // is there a body? if (fd->fbody == NULL) return; Logger::println("Doing function body for: %s", fd->toChars()); assert(fd->ir.irFunc); gIR->functions.push_back(fd->ir.irFunc); if (fd->isMain()) gIR->emitMain = true; std::string entryname("entry_"); entryname.append(fd->toPrettyChars()); llvm::BasicBlock* beginbb = llvm::BasicBlock::Create(entryname,func); llvm::BasicBlock* endbb = llvm::BasicBlock::Create("endentry",func); //assert(gIR->scopes.empty()); gIR->scopes.push_back(IRScope(beginbb, endbb)); // create alloca point llvm::Instruction* allocaPoint = new llvm::AllocaInst(LLType::Int32Ty, "alloca point", beginbb); gIR->func()->allocapoint = allocaPoint; // need result variable? (not nested) if (fd->vresult && !fd->vresult->nestedref) { Logger::println("non-nested vresult value"); fd->vresult->ir.irLocal = new IrLocal(fd->vresult); fd->vresult->ir.irLocal->value = new llvm::AllocaInst(DtoType(fd->vresult->type),"function_vresult",allocaPoint); } // give 'this' argument debug info (and storage) if (fd->needThis() && global.params.symdebug) { LLValue** thisvar = &fd->ir.irFunc->thisVar; assert(*thisvar); LLValue* thismem = new llvm::AllocaInst((*thisvar)->getType(), "newthis", allocaPoint); DtoDwarfLocalVariable(thismem, fd->vthis); gIR->ir->CreateStore(*thisvar, thismem); *thisvar = thismem; } // give arguments storage if (fd->parameters) { size_t n = fd->parameters->dim; for (int i=0; i < n; ++i) { Dsymbol* argsym = (Dsymbol*)fd->parameters->data[i]; VarDeclaration* vd = argsym->isVarDeclaration(); assert(vd); // FIXME: llvm seems to want an alloca/byval for debug info if (!vd->needsStorage || vd->nestedref || vd->isRef() || vd->isOut()) continue; // debug info for normal aggr params seem to work fine else if (DtoIsPassedByRef(vd->type)) { if (global.params.symdebug) DtoDwarfLocalVariable(vd->ir.getIrValue(), vd); continue; } LLValue* a = vd->ir.irLocal->value; assert(a); std::string s(a->getName()); Logger::println("giving argument '%s' storage", s.c_str()); s.append("_storage"); LLValue* v = new llvm::AllocaInst(a->getType(),s,allocaPoint); if (global.params.symdebug) DtoDwarfLocalVariable(v, vd); gIR->ir->CreateStore(a,v); vd->ir.irLocal->value = v; } } // debug info if (global.params.symdebug) DtoDwarfFuncStart(fd); LLValue* parentNested = NULL; if (FuncDeclaration* fd2 = fd->toParent2()->isFuncDeclaration()) { if (!fd->isStatic()) // huh? parentNested = fd2->ir.irFunc->nestedVar; } // need result variable? (nested) if (fd->vresult && fd->vresult->nestedref) { Logger::println("nested vresult value: %s", fd->vresult->toChars()); fd->nestedVars.insert(fd->vresult); } // construct nested variables struct if (!fd->nestedVars.empty() || parentNested) { std::vector nestTypes; int j = 0; if (parentNested) { nestTypes.push_back(parentNested->getType()); j++; } for (std::set::iterator i=fd->nestedVars.begin(); i!=fd->nestedVars.end(); ++i) { VarDeclaration* vd = *i; Logger::println("referenced nested variable %s", vd->toChars()); if (!vd->ir.irLocal) vd->ir.irLocal = new IrLocal(vd); vd->ir.irLocal->nestedIndex = j++; if (vd->isParameter()) { if (!vd->ir.irLocal->value) { assert(vd == fd->vthis); vd->ir.irLocal->value = fd->ir.irFunc->thisVar; } assert(vd->ir.irLocal->value); nestTypes.push_back(vd->ir.irLocal->value->getType()); } else { nestTypes.push_back(DtoType(vd->type)); } } const llvm::StructType* nestSType = llvm::StructType::get(nestTypes); Logger::cout() << "nested var struct has type:" << *nestSType << '\n'; fd->ir.irFunc->nestedVar = new llvm::AllocaInst(nestSType,"nestedvars",allocaPoint); if (parentNested) { assert(fd->ir.irFunc->thisVar); LLValue* ptr = gIR->ir->CreateBitCast(fd->ir.irFunc->thisVar, parentNested->getType(), "tmp"); gIR->ir->CreateStore(ptr, DtoGEPi(fd->ir.irFunc->nestedVar, 0,0, "tmp")); } for (std::set::iterator i=fd->nestedVars.begin(); i!=fd->nestedVars.end(); ++i) { VarDeclaration* vd = *i; if (vd->isParameter()) { assert(vd->ir.irLocal); gIR->ir->CreateStore(vd->ir.irLocal->value, DtoGEPi(fd->ir.irFunc->nestedVar, 0, vd->ir.irLocal->nestedIndex, "tmp")); vd->ir.irLocal->value = fd->ir.irFunc->nestedVar; } } } // copy _argptr to a memory location if (f->linkage == LINKd && f->varargs == 1) { LLValue* argptrmem = new llvm::AllocaInst(fd->ir.irFunc->_argptr->getType(), "_argptrmem", gIR->topallocapoint()); new llvm::StoreInst(fd->ir.irFunc->_argptr, argptrmem, gIR->scopebb()); fd->ir.irFunc->_argptr = argptrmem; } // output function body fd->fbody->toIR(gIR); // llvm requires all basic blocks to end with a TerminatorInst but DMD does not put a return statement // in automatically, so we do it here. if (!gIR->scopereturned()) { // pass the previous block into this block if (global.params.symdebug) DtoDwarfFuncEnd(fd); if (func->getReturnType() == LLType::VoidTy) { llvm::ReturnInst::Create(gIR->scopebb()); } else { if (!fd->isMain()) llvm::ReturnInst::Create(llvm::UndefValue::get(func->getReturnType()), gIR->scopebb()); else llvm::ReturnInst::Create(llvm::Constant::getNullValue(func->getReturnType()), gIR->scopebb()); } } // erase alloca point allocaPoint->eraseFromParent(); allocaPoint = 0; gIR->func()->allocapoint = 0; gIR->scopes.pop_back(); // get rid of the endentry block, it's never used assert(!func->getBasicBlockList().empty()); func->getBasicBlockList().pop_back(); // if the last block is empty now, it must be unreachable or it's a bug somewhere else // would be nice to figure out how to assert that this is correct llvm::BasicBlock* lastbb = &func->getBasicBlockList().back(); if (lastbb->empty()) { new llvm::UnreachableInst(lastbb); } // if the last block is not terminated we return a null value or void // for some unknown reason this is needed when a void main() has a inline asm block ... // this should be harmless for well formed code! lastbb = &func->getBasicBlockList().back(); if (!lastbb->getTerminator()) { Logger::println("adding missing return statement"); if (func->getReturnType() == LLType::VoidTy) llvm::ReturnInst::Create(lastbb); else llvm::ReturnInst::Create(llvm::Constant::getNullValue(func->getReturnType()), lastbb); } gIR->functions.pop_back(); } ////////////////////////////////////////////////////////////////////////////////////////// const llvm::FunctionType* DtoBaseFunctionType(FuncDeclaration* fdecl) { Dsymbol* parent = fdecl->toParent(); ClassDeclaration* cd = parent->isClassDeclaration(); assert(cd); FuncDeclaration* f = fdecl; while (cd) { ClassDeclaration* base = cd->baseClass; if (!base) break; FuncDeclaration* f2 = base->findFunc(fdecl->ident, (TypeFunction*)fdecl->type); if (f2) { f = f2; cd = base; } else break; } DtoResolveDsymbol(f); return llvm::cast(DtoType(f->type)); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* DtoArgument(Argument* fnarg, Expression* argexp) { Logger::println("DtoArgument"); LOG_SCOPE; DValue* arg = argexp->toElem(gIR); // ref/out arg if (fnarg && ((fnarg->storageClass & STCref) || (fnarg->storageClass & STCout))) { if (arg->isVar() || arg->isLRValue()) arg = new DImValue(argexp->type, arg->getLVal(), false); else arg = new DImValue(argexp->type, arg->getRVal(), false); } // byval arg, but expr has no storage yet else if (DtoIsPassedByRef(argexp->type) && (arg->isSlice() || arg->isComplex() || arg->isNull())) { LLValue* alloc = new llvm::AllocaInst(DtoType(argexp->type), "tmpparam", gIR->topallocapoint()); DVarValue* vv = new DVarValue(argexp->type, alloc, true); DtoAssign(argexp->loc, vv, arg); arg = vv; } return arg; } ////////////////////////////////////////////////////////////////////////////////////////// void DtoVariadicArgument(Expression* argexp, LLValue* dst) { Logger::println("DtoVariadicArgument"); LOG_SCOPE; DVarValue vv(argexp->type, dst, true); DtoAssign(argexp->loc, &vv, argexp->toElem(gIR)); } ////////////////////////////////////////////////////////////////////////////////////////// bool FuncDeclaration::isIntrinsic() { return (llvmInternal == LLVMintrinsic || isVaIntrinsic()); } bool FuncDeclaration::isVaIntrinsic() { return (llvmInternal == LLVMva_start || llvmInternal == LLVMva_copy || llvmInternal == LLVMva_end); }