//===-- functions.cpp -----------------------------------------------------===// // // LDC – the LLVM D compiler // // This file is distributed under the BSD-style LDC license. See the LICENSE // file for details. // //===----------------------------------------------------------------------===// #include "gen/functions.h" #include "aggregate.h" #include "declaration.h" #include "id.h" #include "init.h" #include "module.h" #include "mtype.h" #include "statement.h" #include "template.h" #include "gen/abi.h" #include "gen/arrays.h" #include "gen/classes.h" #include "gen/dvalue.h" #include "gen/inlineir.h" #include "gen/irstate.h" #include "gen/linkage.h" #include "gen/llvm.h" #include "gen/llvmhelpers.h" #include "gen/logger.h" #include "gen/nested.h" #include "gen/optimizer.h" #include "gen/pragma.h" #include "gen/runtime.h" #include "gen/tollvm.h" #include "ir/irfunction.h" #include "ir/irmodule.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/CFG.h" #include llvm::FunctionType* DtoFunctionType(Type* type, IrFuncTy &irFty, Type* thistype, Type* nesttype, bool isMain, bool isCtor, bool isIntrinsic) { IF_LOG Logger::println("DtoFunctionType(%s)", type->toChars()); LOG_SCOPE // sanity check assert(type->ty == Tfunction); TypeFunction* f = static_cast(type); assert(f->next && "Encountered function type with invalid return type; " "trying to codegen function ignored by the frontend?"); // Return cached type if available if (irFty.funcType) return irFty.funcType; TargetABI* abi = (isIntrinsic ? TargetABI::getIntrinsic() : gABI); // Do not modify irFty yet; this function may be called recursively if any // of the argument types refer to this type. IrFuncTy newIrFty; // The index of the next argument on the LLVM level. unsigned nextLLArgIdx = 0; if (isMain) { // _Dmain always returns i32, no matter what the type in the D main() is. newIrFty.ret = new IrFuncTyArg(Type::tint32, false); } else { Type* rt = f->next; const bool byref = f->isref && rt->toBasetype()->ty != Tvoid; AttrBuilder attrBuilder; if (abi->returnInArg(f)) { // sret return newIrFty.arg_sret = new IrFuncTyArg(rt, true, AttrBuilder().add(LDC_ATTRIBUTE(StructRet)).add(LDC_ATTRIBUTE(NoAlias))); rt = Type::tvoid; ++nextLLArgIdx; } else { // sext/zext return attrBuilder.add(DtoShouldExtend(byref ? rt->pointerTo() : rt)); } newIrFty.ret = new IrFuncTyArg(rt, byref, attrBuilder); } ++nextLLArgIdx; if (thistype) { // Add the this pointer for member functions AttrBuilder attrBuilder; if (isCtor) attrBuilder.add(LDC_ATTRIBUTE(Returned)); newIrFty.arg_this = new IrFuncTyArg(thistype, thistype->toBasetype()->ty == Tstruct, attrBuilder); ++nextLLArgIdx; } else if (nesttype) { // Add the context pointer for nested functions newIrFty.arg_nest = new IrFuncTyArg(nesttype, false); ++nextLLArgIdx; } // vararg functions are special too if (f->varargs) { if (f->linkage == LINKd) { // d style with hidden args // 2 (array) is handled by the frontend if (f->varargs == 1) { // _arguments newIrFty.arg_arguments = new IrFuncTyArg(Type::dtypeinfo->type->arrayOf(), false); ++nextLLArgIdx; } } newIrFty.c_vararg = true; } // if this _Dmain() doesn't have an argument, we force it to have one const size_t numExplicitDArgs = Parameter::dim(f->parameters); if (isMain && numExplicitDArgs == 0) { Type* mainargs = Type::tchar->arrayOf()->arrayOf(); newIrFty.args.push_back(new IrFuncTyArg(mainargs, false)); ++nextLLArgIdx; } for (size_t i = 0; i < numExplicitDArgs; ++i) { Parameter* arg = Parameter::getNth(f->parameters, i); // Whether the parameter is passed by LLVM value or as a pointer to the // alloca/…. bool passPointer = arg->storageClass & (STCref | STCout); Type* loweredDType = arg->type; AttrBuilder attrBuilder; if (arg->storageClass & STClazy) { // Lazy arguments are lowered to delegates. Logger::println("lazy param"); TypeFunction *ltf = new TypeFunction(NULL, arg->type, 0, LINKd); TypeDelegate *ltd = new TypeDelegate(ltf); loweredDType = ltd; } else if (!passPointer) { if (abi->passByVal(loweredDType)) { attrBuilder.add(LDC_ATTRIBUTE(ByVal)); // byval parameters are also passed as an address passPointer = true; } else { // Add sext/zext as needed. attrBuilder.add(DtoShouldExtend(loweredDType)); } } newIrFty.args.push_back(new IrFuncTyArg(loweredDType, passPointer, attrBuilder)); newIrFty.args.back()->parametersIdx = i; ++nextLLArgIdx; } // let the abi rewrite the types as necesary abi->rewriteFunctionType(f, newIrFty); // Now we can modify irFty safely. irFty = llvm_move(newIrFty); // Finally build the actual LLVM function type. llvm::SmallVector argtypes; argtypes.reserve(nextLLArgIdx); if (irFty.arg_sret) argtypes.push_back(irFty.arg_sret->ltype); if (irFty.arg_this) argtypes.push_back(irFty.arg_this->ltype); if (irFty.arg_nest) argtypes.push_back(irFty.arg_nest->ltype); if (irFty.arg_arguments) argtypes.push_back(irFty.arg_arguments->ltype); if (irFty.arg_sret && irFty.arg_this && abi->passThisBeforeSret(f)) std::swap(argtypes[0], argtypes[1]); const size_t firstExplicitArg = argtypes.size(); const size_t numExplicitLLArgs = irFty.args.size(); for (size_t i = 0; i < numExplicitLLArgs; i++) { argtypes.push_back(irFty.args[i]->ltype); } // reverse params? if (irFty.reverseParams && numExplicitLLArgs > 1) { std::reverse(argtypes.begin() + firstExplicitArg, argtypes.end()); } irFty.funcType = LLFunctionType::get(irFty.ret->ltype, argtypes, irFty.c_vararg); IF_LOG Logger::cout() << "Final function type: " << *irFty.funcType << "\n"; return irFty.funcType; } ////////////////////////////////////////////////////////////////////////////////////////// static llvm::FunctionType* DtoVaFunctionType(FuncDeclaration* fdecl) { IrFuncTy &irFty = getIrFunc(fdecl, true)->irFty; if (irFty.funcType) return irFty.funcType; irFty.ret = new IrFuncTyArg(Type::tvoid, false); irFty.args.push_back(new IrFuncTyArg(Type::tvoid->pointerTo(), false)); if (fdecl->llvmInternal == LLVMva_start) irFty.funcType = GET_INTRINSIC_DECL(vastart)->getFunctionType(); else if (fdecl->llvmInternal == LLVMva_copy) { irFty.funcType = GET_INTRINSIC_DECL(vacopy)->getFunctionType(); irFty.args.push_back(new IrFuncTyArg(Type::tvoid->pointerTo(), false)); } else if (fdecl->llvmInternal == LLVMva_end) irFty.funcType = GET_INTRINSIC_DECL(vaend)->getFunctionType(); assert(irFty.funcType); return irFty.funcType; } ////////////////////////////////////////////////////////////////////////////////////////// llvm::FunctionType* DtoFunctionType(FuncDeclaration* fdecl) { // handle for C vararg intrinsics if (DtoIsVaIntrinsic(fdecl)) return DtoVaFunctionType(fdecl); Type *dthis=0, *dnest=0; if (fdecl->ident == Id::ensure || fdecl->ident == Id::require) { FuncDeclaration *p = fdecl->parent->isFuncDeclaration(); assert(p); AggregateDeclaration *ad = p->isMember2(); assert(ad); dnest = Type::tvoid->pointerTo(); } else if (fdecl->needThis()) { if (AggregateDeclaration* ad = fdecl->isMember2()) { IF_LOG Logger::println("isMember = this is: %s", ad->type->toChars()); dthis = ad->type; LLType* thisty = DtoType(dthis); //Logger::cout() << "this llvm type: " << *thisty << '\n'; if (ad->isStructDeclaration()) thisty = getPtrToType(thisty); } else { IF_LOG Logger::println("chars: %s type: %s kind: %s", fdecl->toChars(), fdecl->type->toChars(), fdecl->kind()); llvm_unreachable("needThis, but invalid parent declaration."); } } else if (fdecl->isNested()) { dnest = Type::tvoid->pointerTo(); } LLFunctionType* functype = DtoFunctionType(fdecl->type, getIrFunc(fdecl, true)->irFty, dthis, dnest, fdecl->isMain(), fdecl->isCtorDeclaration(), DtoIsIntrinsic(fdecl)); return functype; } ////////////////////////////////////////////////////////////////////////////////////////// static llvm::Function* DtoDeclareVaFunction(FuncDeclaration* fdecl) { DtoVaFunctionType(fdecl); llvm::Function* func = 0; if (fdecl->llvmInternal == LLVMva_start) func = GET_INTRINSIC_DECL(vastart); else if (fdecl->llvmInternal == LLVMva_copy) func = GET_INTRINSIC_DECL(vacopy); else if (fdecl->llvmInternal == LLVMva_end) func = GET_INTRINSIC_DECL(vaend); assert(func); getIrFunc(fdecl)->func = func; return func; } ////////////////////////////////////////////////////////////////////////////////////////// void DtoResolveFunction(FuncDeclaration* fdecl) { if ((!global.params.useUnitTests || !fdecl->type) && fdecl->isUnitTestDeclaration()) { IF_LOG Logger::println("Ignoring unittest %s", fdecl->toPrettyChars()); return; // ignore declaration completely } if (fdecl->ir.isResolved()) return; fdecl->ir.setResolved(); Type *type = fdecl->type; // If errors occurred compiling it, such as bugzilla 6118 if (type && type->ty == Tfunction) { Type *next = static_cast(type)->next; if (!next || next->ty == Terror) return; } //printf("resolve function: %s\n", fdecl->toPrettyChars()); if (fdecl->parent) if (TemplateInstance* tinst = fdecl->parent->isTemplateInstance()) { if (TemplateDeclaration* tempdecl = tinst->tempdecl->isTemplateDeclaration()) { if (tempdecl->llvmInternal == LLVMva_arg) { Logger::println("magic va_arg found"); fdecl->llvmInternal = LLVMva_arg; fdecl->ir.setDefined(); return; // this gets mapped to an instruction so a declaration makes no sence } else if (tempdecl->llvmInternal == LLVMva_start) { Logger::println("magic va_start found"); fdecl->llvmInternal = LLVMva_start; } else if (tempdecl->llvmInternal == LLVMintrinsic) { Logger::println("overloaded intrinsic found"); assert(fdecl->llvmInternal == LLVMintrinsic); assert(fdecl->mangleOverride); } else if (tempdecl->llvmInternal == LLVMinline_asm) { Logger::println("magic inline asm found"); TypeFunction* tf = static_cast(fdecl->type); if (tf->varargs != 1 || (fdecl->parameters && fdecl->parameters->dim != 0)) { tempdecl->error("invalid __asm declaration, must be a D style variadic with no explicit parameters"); fatal(); } fdecl->llvmInternal = LLVMinline_asm; fdecl->ir.setDefined(); return; // this gets mapped to a special inline asm call, no point in going on. } else if (tempdecl->llvmInternal == LLVMinline_ir) { Logger::println("magic inline ir found"); fdecl->llvmInternal = LLVMinline_ir; fdecl->linkage = LINKc; Type* type = fdecl->type; assert(type->ty == Tfunction); static_cast(type)->linkage = LINKc; DtoFunctionType(fdecl); DtoDeclareFunction(fdecl); fdecl->ir.setDefined(); return; } } } DtoFunctionType(fdecl); IF_LOG Logger::println("DtoResolveFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars()); LOG_SCOPE; // queue declaration unless the function is abstract without body if (!fdecl->isAbstract() || fdecl->fbody) { DtoDeclareFunction(fdecl); } } ////////////////////////////////////////////////////////////////////////////////////////// static void set_param_attrs(TypeFunction* f, llvm::Function* func, FuncDeclaration* fdecl) { IrFuncTy &irFty = getIrFunc(fdecl)->irFty; AttrSet newAttrs = AttrSet::extractFunctionAndReturnAttributes(func); int idx = 0; // handle implicit args #define ADD_PA(X) \ if (irFty.X) { \ newAttrs.add(idx, irFty.X->attrs); \ idx++; \ } ADD_PA(ret) if (irFty.arg_sret && irFty.arg_this && gABI->passThisBeforeSret(f)) { ADD_PA(arg_this) ADD_PA(arg_sret) } else { ADD_PA(arg_sret) ADD_PA(arg_this) } ADD_PA(arg_nest) ADD_PA(arg_arguments) #undef ADD_PA // Set attributes on the explicit parameters. const size_t n = irFty.args.size(); for (size_t k = 0; k < n; k++) { const size_t i = idx + (irFty.reverseParams ? (n - k - 1) : k); newAttrs.add(i, irFty.args[k]->attrs); } // Store the final attribute set func->setAttributes(newAttrs.toNativeSet()); } ////////////////////////////////////////////////////////////////////////////////////////// void DtoDeclareFunction(FuncDeclaration* fdecl) { DtoResolveFunction(fdecl); if (fdecl->ir.isDeclared()) return; fdecl->ir.setDeclared(); IF_LOG Logger::println("DtoDeclareFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars()); LOG_SCOPE; if (fdecl->isUnitTestDeclaration() && !global.params.useUnitTests) { Logger::println("unit tests not enabled"); return; } //printf("declare function: %s\n", fdecl->toPrettyChars()); // intrinsic sanity check if (DtoIsIntrinsic(fdecl) && fdecl->fbody) { error(fdecl->loc, "intrinsics cannot have function bodies"); fatal(); } // get TypeFunction* Type* t = fdecl->type->toBasetype(); TypeFunction* f = static_cast(t); // create IrFunction IrFunction *irFunc = getIrFunc(fdecl, true); LLFunction* vafunc = 0; if (DtoIsVaIntrinsic(fdecl)) vafunc = DtoDeclareVaFunction(fdecl); // calling convention LINK link = f->linkage; if (vafunc || DtoIsIntrinsic(fdecl) // DMD treats _Dmain as having C calling convention and this has been // hardcoded into druntime, even if the frontend type has D linkage. // See Bugzilla issue 9028. || fdecl->isMain() ) { link = LINKc; } // mangled name std::string mangledName(mangleExact(fdecl)); mangledName = gABI->mangleForLLVM(mangledName, link); // construct function LLFunctionType* functype = DtoFunctionType(fdecl); LLFunction* func = vafunc ? vafunc : gIR->module.getFunction(mangledName); if (!func) { if(fdecl->llvmInternal == LLVMinline_ir) { func = DtoInlineIRFunction(fdecl); } else { // All function declarations are "external" - any other linkage type // is set when actually defining the function. func = LLFunction::Create(functype, llvm::GlobalValue::ExternalLinkage, mangledName, &gIR->module); } } else if (func->getFunctionType() != functype) { error(fdecl->loc, "Function type does not match previously declared function with the same mangled name: %s", mangleExact(fdecl)); fatal(); } func->setCallingConv(gABI->callingConv(func->getFunctionType(), link)); IF_LOG Logger::cout() << "func = " << *func << std::endl; // add func to IRFunc irFunc->func = func; // parameter attributes if (!DtoIsIntrinsic(fdecl)) { set_param_attrs(f, func, fdecl); if (global.params.disableRedZone) { func->addFnAttr(LDC_ATTRIBUTE(NoRedZone)); } } // main if (fdecl->isMain()) { // Detect multiple main functions, which is disallowed. DMD checks this // in the glue code, so we need to do it here as well. if (gIR->mainFunc) { error(fdecl->loc, "only one main function allowed"); } gIR->mainFunc = func; } if (fdecl->neverInline) { irFunc->setNeverInline(); } if (fdecl->llvmInternal == LLVMglobal_crt_ctor || fdecl->llvmInternal == LLVMglobal_crt_dtor) { AppendFunctionToLLVMGlobalCtorsDtors(func, fdecl->priority, fdecl->llvmInternal == LLVMglobal_crt_ctor); } IrFuncTy &irFty = irFunc->irFty; // name parameters llvm::Function::arg_iterator iarg = func->arg_begin(); const bool passThisBeforeSret = irFty.arg_sret && irFty.arg_this && gABI->passThisBeforeSret(f); if (irFty.arg_sret && !passThisBeforeSret) { iarg->setName(".sret_arg"); irFunc->retArg = iarg; ++iarg; } if (irFty.arg_this) { iarg->setName(".this_arg"); irFunc->thisArg = iarg; VarDeclaration* v = fdecl->vthis; if (v) { // We already build the this argument here if we will need it // later for codegen'ing the function, just as normal // parameters below, because it can be referred to in nested // context types. Will be given storage in DtoDefineFunction. assert(!isIrParameterCreated(v)); IrParameter *irParam = getIrParameter(v, true); irParam->value = iarg; irParam->arg = irFty.arg_this; irParam->isVthis = true; } ++iarg; } else if (irFty.arg_nest) { iarg->setName(".nest_arg"); irFunc->nestArg = iarg; assert(irFunc->nestArg); ++iarg; } if (passThisBeforeSret) { iarg->setName(".sret_arg"); irFunc->retArg = iarg; ++iarg; } if (irFty.arg_arguments) { iarg->setName("._arguments"); irFunc->_arguments = iarg; ++iarg; } unsigned int k = 0; for (; iarg != func->arg_end(); ++iarg) { size_t llExplicitIdx = irFty.reverseParams ? irFty.args.size() - k - 1 : k; ++k; IrFuncTyArg *arg = irFty.args[llExplicitIdx]; if (!fdecl->parameters || arg->parametersIdx >= fdecl->parameters->dim) { iarg->setName("unnamed"); continue; } Dsymbol* const argsym = (*fdecl->parameters)[arg->parametersIdx]; VarDeclaration* argvd = argsym->isVarDeclaration(); assert(argvd); iarg->setName(argvd->ident->toChars() + llvm::Twine("_arg")); IrParameter *irParam = getIrParameter(argvd, true); irParam->arg = arg; irParam->value = iarg; } } ////////////////////////////////////////////////////////////////////////////////////////// static LinkageWithCOMDAT lowerFuncLinkage(FuncDeclaration* fdecl) { // Intrinsics are always external. if (DtoIsIntrinsic(fdecl)) return LinkageWithCOMDAT(llvm::GlobalValue::ExternalLinkage, false); // Generated array op functions behave like templates in that they might be // emitted into many different modules. if (fdecl->isArrayOp && (willInline() || !isDruntimeArrayOp(fdecl))) return LinkageWithCOMDAT(templateLinkage, supportsCOMDAT()); // A body-less declaration always needs to be marked as external in LLVM // (also e.g. naked template functions which would otherwise be weak_odr, // but where the definition is in module-level inline asm). if (!fdecl->fbody || fdecl->naked) return LinkageWithCOMDAT(llvm::GlobalValue::ExternalLinkage, false); return DtoLinkage(fdecl); } void DtoDefineFunction(FuncDeclaration* fd) { IF_LOG Logger::println("DtoDefineFunction(%s): %s", fd->toPrettyChars(), fd->loc.toChars()); LOG_SCOPE; if (fd->ir.isDefined()) return; if ((fd->type && fd->type->ty == Terror) || (fd->type && fd->type->ty == Tfunction && static_cast(fd->type)->next == NULL) || (fd->type && fd->type->ty == Tfunction && static_cast(fd->type)->next->ty == Terror)) { IF_LOG Logger::println("Ignoring; has error type, no return type or returns error type"); fd->ir.setDefined(); return; } if (fd->semanticRun == PASSsemanticdone) { /* What happened is this function failed semantic3() with errors, * but the errors were gagged. * Try to reproduce those errors, and then fail. */ error(fd->loc, "errors compiling function %s", fd->toPrettyChars()); fd->ir.setDefined(); return; } DtoResolveFunction(fd); if (fd->isUnitTestDeclaration() && !global.params.useUnitTests) { IF_LOG Logger::println("No code generation for unit test declaration %s", fd->toChars()); fd->ir.setDefined(); return; } // Skip array ops implemented in druntime if (fd->isArrayOp && !willInline() && isDruntimeArrayOp(fd)) { IF_LOG Logger::println("No code generation for array op %s implemented in druntime", fd->toChars()); fd->ir.setDefined(); return; } // Check whether the frontend knows that the function is already defined // in some other module (see DMD's FuncDeclaration::toObjFile). for (FuncDeclaration *f = fd; f; ) { if (!f->isInstantiated() && f->inNonRoot()) { IF_LOG Logger::println("Skipping '%s'.", fd->toPrettyChars()); // TODO: Emit as available_externally for inlining purposes instead // (see #673). fd->ir.setDefined(); return; } if (f->isNested()) f = f->toParent2()->isFuncDeclaration(); else break; } DtoDeclareFunction(fd); assert(fd->ir.isDeclared()); // DtoResolveFunction might also set the defined flag for functions we // should not touch. if (fd->ir.isDefined()) return; fd->ir.setDefined(); // We cannot emit nested functions with parents that have not gone through // semantic analysis. This can happen as DMD leaks some template instances // from constraints into the module member list. DMD gets away with being // sloppy as functions in template contraints obviously never need to access // data from the template function itself, but it would still mess up our // nested context creation code. FuncDeclaration* parent = fd; while ((parent = getParentFunc(parent, true))) { if (parent->semanticRun != PASSsemantic3done || parent->semantic3Errors) { IF_LOG Logger::println("Ignoring nested function with unanalyzed parent."); return; } } assert(fd->semanticRun == PASSsemantic3done); assert(fd->ident != Id::empty); if (fd->isUnitTestDeclaration()) { getIrModule(gIR->dmodule)->unitTests.push_back(fd); } else if (fd->isSharedStaticCtorDeclaration()) { getIrModule(gIR->dmodule)->sharedCtors.push_back(fd); } else if (StaticDtorDeclaration *dtorDecl = fd->isSharedStaticDtorDeclaration()) { getIrModule(gIR->dmodule)->sharedDtors.push_front(fd); if (dtorDecl->vgate) { getIrModule(gIR->dmodule)->sharedGates.push_front(dtorDecl->vgate); } } else if (fd->isStaticCtorDeclaration()) { getIrModule(gIR->dmodule)->ctors.push_back(fd); } else if (StaticDtorDeclaration *dtorDecl = fd->isStaticDtorDeclaration()) { getIrModule(gIR->dmodule)->dtors.push_front(fd); if (dtorDecl->vgate) { getIrModule(gIR->dmodule)->gates.push_front(dtorDecl->vgate); } } // if this function is naked, we take over right away! no standard processing! if (fd->naked) { DtoDefineNakedFunction(fd); return; } IrFunction *irFunc = getIrFunc(fd); IrFuncTy &irFty = irFunc->irFty; // debug info irFunc->diSubprogram = gIR->DBuilder.EmitSubProgram(fd); Type* t = fd->type->toBasetype(); TypeFunction* f = static_cast(t); // assert(f->ctype); llvm::Function* func = irFunc->func; // is there a body? if (fd->fbody == NULL) return; IF_LOG Logger::println("Doing function body for: %s", fd->toChars()); gIR->functions.push_back(irFunc); LinkageWithCOMDAT lwc = lowerFuncLinkage(fd); func->setLinkage(lwc.first); if (lwc.second) SET_COMDAT(func, gIR->module); // On x86_64, always set 'uwtable' for System V ABI compatibility. // TODO: Find a better place for this. // TODO: Is this required for Win64 as well? if (global.params.targetTriple.getArch() == llvm::Triple::x86_64) { func->addFnAttr(LDC_ATTRIBUTE(UWTable)); } if (opts::sanitize != opts::None) { // Set the required sanitizer attribute. if (opts::sanitize == opts::AddressSanitizer) { func->addFnAttr(LDC_ATTRIBUTE(SanitizeAddress)); } if (opts::sanitize == opts::MemorySanitizer) { func->addFnAttr(LDC_ATTRIBUTE(SanitizeMemory)); } if (opts::sanitize == opts::ThreadSanitizer) { func->addFnAttr(LDC_ATTRIBUTE(SanitizeThread)); } } llvm::BasicBlock* beginbb = llvm::BasicBlock::Create(gIR->context(), "", func); //assert(gIR->scopes.empty()); gIR->scopes.push_back(IRScope(beginbb)); // create alloca point // this gets erased when the function is complete, so alignment etc does not matter at all llvm::Instruction* allocaPoint = new llvm::AllocaInst(LLType::getInt32Ty(gIR->context()), "alloca point", beginbb); irFunc->allocapoint = allocaPoint; // debug info - after all allocas, but before any llvm.dbg.declare etc gIR->DBuilder.EmitFuncStart(fd); // this hack makes sure the frame pointer elimination optimization is disabled. // this this eliminates a bunch of inline asm related issues. if (fd->hasReturnExp & 8) // has inline asm { // emit a call to llvm_eh_unwind_init LLFunction* hack = GET_INTRINSIC_DECL(eh_unwind_init); #if LDC_LLVM_VER >= 307 gIR->ir->CreateCall(hack, {}); #else gIR->ir->CreateCall(hack, ""); #endif } // give the 'this' argument storage and debug info if (irFty.arg_this) { LLValue* thisvar = irFunc->thisArg; assert(thisvar); LLValue* thismem = thisvar; if (!irFty.arg_this->byref) { thismem = DtoAllocaDump(thisvar, 0, "this"); irFunc->thisArg = thismem; } assert(getIrParameter(fd->vthis)->value == thisvar); getIrParameter(fd->vthis)->value = thismem; gIR->DBuilder.EmitLocalVariable(thismem, fd->vthis, 0, true); } // give the 'nestArg' storage if (irFty.arg_nest) irFunc->nestArg = DtoAllocaDump(irFunc->nestArg, 0, "nestedFrame"); // give arguments storage and debug info if (fd->parameters) { // Not all arguments are necessarily passed on the LLVM level // (e.g. zero-member structs), so we need to keep track of the // index in the IrFuncTy args array separately. size_t llArgIdx = 0; for (size_t i = 0; i < fd->parameters->dim; ++i) { Dsymbol* const argsym = (*fd->parameters)[i]; VarDeclaration* const vd = argsym->isVarDeclaration(); assert(vd); const bool refout = vd->storage_class & (STCref | STCout); IrParameter* irparam = getIrParameter(vd); Type* debugInfoType = vd->type; if (!irparam) { // This is a parameter that is not passed on the LLVM level. // Create the param here and set it to a "dummy" alloca that // we do not store to here. irparam = getIrParameter(vd, true); irparam->value = DtoAlloca(vd, vd->ident->toChars()); } else { const bool lazy = vd->storage_class & STClazy; const bool firstClassVal = !refout && (!irparam->arg->byref || lazy); if (firstClassVal) { // alloca a stack slot for this first class value arg LLValue* mem = DtoAlloca(irparam->arg->type, vd->ident->toChars()); // let the abi transform the argument back first irFty.getParam(vd->type, llArgIdx, irparam->value, mem); // set the arg var value to the alloca irparam->value = mem; debugInfoType = irparam->arg->type; } ++llArgIdx; } if (global.params.symdebug && !(isaArgument(irparam->value) && isaArgument(irparam->value)->hasByValAttr()) && !refout) gIR->DBuilder.EmitLocalVariable(irparam->value, vd, debugInfoType); } } { ScopeStack scopeStack(gIR); irFunc->scopes = &scopeStack; DtoCreateNestedContext(fd); if (fd->vresult && !fd->vresult->nestedrefs.dim) // FIXME: not sure here :/ { DtoVarDeclaration(fd->vresult); } // D varargs: prepare _argptr and _arguments if (f->linkage == LINKd && f->varargs == 1) { // allocate _argptr (of type core.stdc.stdarg.va_list) LLValue* argptrmem = DtoAlloca(Type::tvalist, "_argptr_mem"); irFunc->_argptr = argptrmem; // initialize _argptr with a call to the va_start intrinsic LLValue* vaStartArg = gABI->prepareVaStart(argptrmem); llvm::CallInst::Create(GET_INTRINSIC_DECL(vastart), vaStartArg, "", gIR->scopebb()); // copy _arguments to a memory location irFunc->_arguments = DtoAllocaDump(irFunc->_arguments, 0, "_arguments_mem"); } // output function body Statement_toIR(fd->fbody, gIR); irFunc->scopes = 0; } llvm::BasicBlock* bb = gIR->scopebb(); if (pred_begin(bb) == pred_end(bb) && bb != &bb->getParent()->getEntryBlock()) { // This block is trivially unreachable, so just delete it. // (This is a common case because it happens when 'return' // is the last statement in a function) bb->eraseFromParent(); } else if (!gIR->scopereturned()) { // llvm requires all basic blocks to end with a TerminatorInst but DMD does not put a return statement // in automatically, so we do it here. // pass the previous block into this block gIR->DBuilder.EmitStopPoint(fd->endloc); if (func->getReturnType() == LLType::getVoidTy(gIR->context())) { gIR->ir->CreateRetVoid(); } else if (!fd->isMain()) { CompoundAsmStatement* asmb = fd->fbody->endsWithAsm(); if (asmb) { assert(asmb->abiret); gIR->ir->CreateRet(asmb->abiret); } else { gIR->ir->CreateRet(llvm::UndefValue::get(func->getReturnType())); } } else gIR->ir->CreateRet(LLConstant::getNullValue(func->getReturnType())); } gIR->DBuilder.EmitFuncEnd(fd); // erase alloca point if (allocaPoint->getParent()) allocaPoint->eraseFromParent(); allocaPoint = 0; gIR->func()->allocapoint = 0; gIR->scopes.pop_back(); gIR->functions.pop_back(); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* DtoArgument(Parameter* fnarg, Expression* argexp) { IF_LOG Logger::println("DtoArgument"); LOG_SCOPE; // ref/out arg if (fnarg && (fnarg->storageClass & (STCref | STCout))) { Loc loc; DValue* arg = toElem(argexp, true); return new DImValue(argexp->type, arg->isLVal() ? arg->getLVal() : makeLValue(loc, arg)); } DValue* arg = toElem(argexp); // lazy arg if (fnarg && (fnarg->storageClass & STClazy)) { assert(argexp->type->toBasetype()->ty == Tdelegate); assert(!arg->isLVal()); return arg; } // byval arg, but expr has no storage yet if (DtoIsPassedByRef(argexp->type) && (arg->isSlice() || arg->isNull())) { LLValue* alloc = DtoAlloca(argexp->type, ".tmp_arg"); DVarValue* vv = new DVarValue(argexp->type, alloc); DtoAssign(argexp->loc, vv, arg); arg = vv; } return arg; } ////////////////////////////////////////////////////////////////////////////////////////// int binary(const char *p , const char **tab, int high) { int i = 0, j = high, k, l; do { k = (i + j) / 2; l = strcmp(p, tab[k]); if (!l) return k; else if (l < 0) j = k; else i = k + 1; } while (i != j); return -1; } int isDruntimeArrayOp(FuncDeclaration *fd) { /* Some of the array op functions are written as library functions, * presumably to optimize them with special CPU vector instructions. * List those library functions here, in alpha order. */ static const char *libArrayopFuncs[] = { "_arrayExpSliceAddass_a", "_arrayExpSliceAddass_d", "_arrayExpSliceAddass_f", // T[]+=T "_arrayExpSliceAddass_g", "_arrayExpSliceAddass_h", "_arrayExpSliceAddass_i", "_arrayExpSliceAddass_k", "_arrayExpSliceAddass_s", "_arrayExpSliceAddass_t", "_arrayExpSliceAddass_u", "_arrayExpSliceAddass_w", "_arrayExpSliceDivass_d", // T[]/=T "_arrayExpSliceDivass_f", // T[]/=T "_arrayExpSliceMinSliceAssign_a", "_arrayExpSliceMinSliceAssign_d", // T[]=T-T[] "_arrayExpSliceMinSliceAssign_f", // T[]=T-T[] "_arrayExpSliceMinSliceAssign_g", "_arrayExpSliceMinSliceAssign_h", "_arrayExpSliceMinSliceAssign_i", "_arrayExpSliceMinSliceAssign_k", "_arrayExpSliceMinSliceAssign_s", "_arrayExpSliceMinSliceAssign_t", "_arrayExpSliceMinSliceAssign_u", "_arrayExpSliceMinSliceAssign_w", "_arrayExpSliceMinass_a", "_arrayExpSliceMinass_d", // T[]-=T "_arrayExpSliceMinass_f", // T[]-=T "_arrayExpSliceMinass_g", "_arrayExpSliceMinass_h", "_arrayExpSliceMinass_i", "_arrayExpSliceMinass_k", "_arrayExpSliceMinass_s", "_arrayExpSliceMinass_t", "_arrayExpSliceMinass_u", "_arrayExpSliceMinass_w", "_arrayExpSliceMulass_d", // T[]*=T "_arrayExpSliceMulass_f", // T[]*=T "_arrayExpSliceMulass_i", "_arrayExpSliceMulass_k", "_arrayExpSliceMulass_s", "_arrayExpSliceMulass_t", "_arrayExpSliceMulass_u", "_arrayExpSliceMulass_w", "_arraySliceExpAddSliceAssign_a", "_arraySliceExpAddSliceAssign_d", // T[]=T[]+T "_arraySliceExpAddSliceAssign_f", // T[]=T[]+T "_arraySliceExpAddSliceAssign_g", "_arraySliceExpAddSliceAssign_h", "_arraySliceExpAddSliceAssign_i", "_arraySliceExpAddSliceAssign_k", "_arraySliceExpAddSliceAssign_s", "_arraySliceExpAddSliceAssign_t", "_arraySliceExpAddSliceAssign_u", "_arraySliceExpAddSliceAssign_w", "_arraySliceExpDivSliceAssign_d", // T[]=T[]/T "_arraySliceExpDivSliceAssign_f", // T[]=T[]/T "_arraySliceExpMinSliceAssign_a", "_arraySliceExpMinSliceAssign_d", // T[]=T[]-T "_arraySliceExpMinSliceAssign_f", // T[]=T[]-T "_arraySliceExpMinSliceAssign_g", "_arraySliceExpMinSliceAssign_h", "_arraySliceExpMinSliceAssign_i", "_arraySliceExpMinSliceAssign_k", "_arraySliceExpMinSliceAssign_s", "_arraySliceExpMinSliceAssign_t", "_arraySliceExpMinSliceAssign_u", "_arraySliceExpMinSliceAssign_w", "_arraySliceExpMulSliceAddass_d", // T[] += T[]*T "_arraySliceExpMulSliceAddass_f", "_arraySliceExpMulSliceAddass_r", "_arraySliceExpMulSliceAssign_d", // T[]=T[]*T "_arraySliceExpMulSliceAssign_f", // T[]=T[]*T "_arraySliceExpMulSliceAssign_i", "_arraySliceExpMulSliceAssign_k", "_arraySliceExpMulSliceAssign_s", "_arraySliceExpMulSliceAssign_t", "_arraySliceExpMulSliceAssign_u", "_arraySliceExpMulSliceAssign_w", "_arraySliceExpMulSliceMinass_d", // T[] -= T[]*T "_arraySliceExpMulSliceMinass_f", "_arraySliceExpMulSliceMinass_r", "_arraySliceSliceAddSliceAssign_a", "_arraySliceSliceAddSliceAssign_d", // T[]=T[]+T[] "_arraySliceSliceAddSliceAssign_f", // T[]=T[]+T[] "_arraySliceSliceAddSliceAssign_g", "_arraySliceSliceAddSliceAssign_h", "_arraySliceSliceAddSliceAssign_i", "_arraySliceSliceAddSliceAssign_k", "_arraySliceSliceAddSliceAssign_r", // T[]=T[]+T[] "_arraySliceSliceAddSliceAssign_s", "_arraySliceSliceAddSliceAssign_t", "_arraySliceSliceAddSliceAssign_u", "_arraySliceSliceAddSliceAssign_w", "_arraySliceSliceAddass_a", "_arraySliceSliceAddass_d", // T[]+=T[] "_arraySliceSliceAddass_f", // T[]+=T[] "_arraySliceSliceAddass_g", "_arraySliceSliceAddass_h", "_arraySliceSliceAddass_i", "_arraySliceSliceAddass_k", "_arraySliceSliceAddass_s", "_arraySliceSliceAddass_t", "_arraySliceSliceAddass_u", "_arraySliceSliceAddass_w", "_arraySliceSliceMinSliceAssign_a", "_arraySliceSliceMinSliceAssign_d", // T[]=T[]-T[] "_arraySliceSliceMinSliceAssign_f", // T[]=T[]-T[] "_arraySliceSliceMinSliceAssign_g", "_arraySliceSliceMinSliceAssign_h", "_arraySliceSliceMinSliceAssign_i", "_arraySliceSliceMinSliceAssign_k", "_arraySliceSliceMinSliceAssign_r", // T[]=T[]-T[] "_arraySliceSliceMinSliceAssign_s", "_arraySliceSliceMinSliceAssign_t", "_arraySliceSliceMinSliceAssign_u", "_arraySliceSliceMinSliceAssign_w", "_arraySliceSliceMinass_a", "_arraySliceSliceMinass_d", // T[]-=T[] "_arraySliceSliceMinass_f", // T[]-=T[] "_arraySliceSliceMinass_g", "_arraySliceSliceMinass_h", "_arraySliceSliceMinass_i", "_arraySliceSliceMinass_k", "_arraySliceSliceMinass_s", "_arraySliceSliceMinass_t", "_arraySliceSliceMinass_u", "_arraySliceSliceMinass_w", "_arraySliceSliceMulSliceAssign_d", // T[]=T[]*T[] "_arraySliceSliceMulSliceAssign_f", // T[]=T[]*T[] "_arraySliceSliceMulSliceAssign_i", "_arraySliceSliceMulSliceAssign_k", "_arraySliceSliceMulSliceAssign_s", "_arraySliceSliceMulSliceAssign_t", "_arraySliceSliceMulSliceAssign_u", "_arraySliceSliceMulSliceAssign_w", "_arraySliceSliceMulass_d", // T[]*=T[] "_arraySliceSliceMulass_f", // T[]*=T[] "_arraySliceSliceMulass_i", "_arraySliceSliceMulass_k", "_arraySliceSliceMulass_s", "_arraySliceSliceMulass_t", "_arraySliceSliceMulass_u", "_arraySliceSliceMulass_w", }; char *name = fd->ident->toChars(); int i = binary(name, libArrayopFuncs, sizeof(libArrayopFuncs) / sizeof(char *)); if (i != -1) return 1; #ifdef DEBUG // Make sure our array is alphabetized for (i = 0; i < sizeof(libArrayopFuncs) / sizeof(char *); i++) { if (strcmp(name, libArrayopFuncs[i]) == 0) assert(0); } #endif return 0; }