// Copyright (c) 1999-2004 by Digital Mars // All Rights Reserved // written by Walter Bright // www.digitalmars.com // License for redistribution is by either the Artistic License // in artistic.txt, or the GNU General Public License in gnu.txt. // See the included readme.txt for details. // Modifications for LDC: // Copyright (c) 2007 by Tomas Lindquist Olsen // tomas at famolsen dk #include #include #include "gen/llvm.h" #include "mars.h" #include "module.h" #include "mtype.h" #include "scope.h" #include "init.h" #include "expression.h" #include "attrib.h" #include "declaration.h" #include "template.h" #include "id.h" #include "enum.h" #include "import.h" #include "aggregate.h" #include "gen/irstate.h" #include "gen/logger.h" #include "gen/runtime.h" #include "gen/tollvm.h" #include "gen/llvmhelpers.h" #include "gen/arrays.h" #include "gen/structs.h" #include "gen/classes.h" #include "gen/linkage.h" #include "gen/metadata.h" #include "gen/rttibuilder.h" #include "ir/irvar.h" #include "ir/irtype.h" /******************************************* * Get a canonicalized form of the TypeInfo for use with the internal * runtime library routines. Canonicalized in that static arrays are * represented as dynamic arrays, enums are represented by their * underlying type, etc. This reduces the number of TypeInfo's needed, * so we can use the custom internal ones more. */ Expression *Type::getInternalTypeInfo(Scope *sc) { TypeInfoDeclaration *tid; Expression *e; Type *t; static TypeInfoDeclaration *internalTI[TMAX]; //printf("Type::getInternalTypeInfo() %s\n", toChars()); t = toBasetype(); switch (t->ty) { case Tsarray: #if 0 // convert to corresponding dynamic array type t = t->nextOf()->mutableOf()->arrayOf(); #endif break; case Tclass: if (((TypeClass *)t)->sym->isInterfaceDeclaration()) break; goto Linternal; case Tarray: #if DMDV2 // convert to corresponding dynamic array type t = t->nextOf()->mutableOf()->arrayOf(); #endif if (t->nextOf()->ty != Tclass) break; goto Linternal; case Tfunction: case Tdelegate: case Tpointer: Linternal: tid = internalTI[t->ty]; if (!tid) { tid = new TypeInfoDeclaration(t, 1); internalTI[t->ty] = tid; } e = new VarExp(0, tid); e = e->addressOf(sc); e->type = tid->type; // do this so we don't get redundant dereference return e; default: break; } //printf("\tcalling getTypeInfo() %s\n", t->toChars()); return t->getTypeInfo(sc); } /**************************************************** * Get the exact TypeInfo. */ Expression *Type::getTypeInfo(Scope *sc) { Expression *e; Type *t; //printf("Type::getTypeInfo() %p, %s\n", this, toChars()); t = merge(); // do this since not all Type's are merge'd if (!t->vtinfo) { #if DMDV2 if (t->isConst()) t->vtinfo = new TypeInfoConstDeclaration(t); else if (t->isInvariant()) t->vtinfo = new TypeInfoInvariantDeclaration(t); else #endif t->vtinfo = t->getTypeInfoDeclaration(); assert(t->vtinfo); /* If this has a custom implementation in std/typeinfo, then * do not generate a COMDAT for it. */ if (!t->builtinTypeInfo()) { // Generate COMDAT if (sc) // if in semantic() pass { // Find module that will go all the way to an object file Module *m = sc->module->importedFrom; m->members->push(t->vtinfo); } else // if in obj generation pass { #if IN_DMD t->vtinfo->toObjFile(0); // TODO: multiobj #else t->vtinfo->codegen(sir); #endif } } } e = new VarExp(0, t->vtinfo); e = e->addressOf(sc); e->type = t->vtinfo->type; // do this so we don't get redundant dereference return e; } enum RET TypeFunction::retStyle() { return RETstack; } TypeInfoDeclaration *Type::getTypeInfoDeclaration() { //printf("Type::getTypeInfoDeclaration() %s\n", toChars()); return new TypeInfoDeclaration(this, 0); } TypeInfoDeclaration *TypeTypedef::getTypeInfoDeclaration() { return new TypeInfoTypedefDeclaration(this); } TypeInfoDeclaration *TypePointer::getTypeInfoDeclaration() { return new TypeInfoPointerDeclaration(this); } TypeInfoDeclaration *TypeDArray::getTypeInfoDeclaration() { return new TypeInfoArrayDeclaration(this); } TypeInfoDeclaration *TypeSArray::getTypeInfoDeclaration() { return new TypeInfoStaticArrayDeclaration(this); } TypeInfoDeclaration *TypeAArray::getTypeInfoDeclaration() { return new TypeInfoAssociativeArrayDeclaration(this); } TypeInfoDeclaration *TypeStruct::getTypeInfoDeclaration() { return new TypeInfoStructDeclaration(this); } TypeInfoDeclaration *TypeClass::getTypeInfoDeclaration() { if (sym->isInterfaceDeclaration()) return new TypeInfoInterfaceDeclaration(this); else return new TypeInfoClassDeclaration(this); } TypeInfoDeclaration *TypeEnum::getTypeInfoDeclaration() { return new TypeInfoEnumDeclaration(this); } TypeInfoDeclaration *TypeFunction::getTypeInfoDeclaration() { return new TypeInfoFunctionDeclaration(this); } TypeInfoDeclaration *TypeDelegate::getTypeInfoDeclaration() { return new TypeInfoDelegateDeclaration(this); } TypeInfoDeclaration *TypeTuple::getTypeInfoDeclaration() { return new TypeInfoTupleDeclaration(this); } /* ========================================================================= */ /* These decide if there's an instance for them already in std.typeinfo, * because then the compiler doesn't need to build one. */ int Type::builtinTypeInfo() { return 0; } int TypeBasic::builtinTypeInfo() { #if DMDV2 return !mod; #else return 1; #endif } int TypeDArray::builtinTypeInfo() { #if DMDV2 return !mod && next->isTypeBasic() != NULL && !next->mod; #else return next->isTypeBasic() != NULL; #endif } int TypeClass::builtinTypeInfo() { /* This is statically put out with the ClassInfo, so * claim it is built in so it isn't regenerated by each module. */ #if IN_DMD return 1; #elif IN_LLVM // FIXME if I enable this, the way LDC does typeinfo will cause a bunch // of linker errors to missing class typeinfo definitions. return 0; #endif } /* ========================================================================= */ ////////////////////////////////////////////////////////////////////////////// // MAGIC PLACE // (wut?) ////////////////////////////////////////////////////////////////////////////// void DtoResolveTypeInfo(TypeInfoDeclaration* tid); void DtoDeclareTypeInfo(TypeInfoDeclaration* tid); void TypeInfoDeclaration::codegen(Ir*) { DtoResolveTypeInfo(this); } void DtoResolveTypeInfo(TypeInfoDeclaration* tid) { if (tid->ir.resolved) return; tid->ir.resolved = true; Logger::println("DtoResolveTypeInfo(%s)", tid->toChars()); LOG_SCOPE; IrGlobal* irg = new IrGlobal(tid); std::string mangle(tid->mangle()); irg->value = gIR->module->getGlobalVariable(mangle); if (!irg->value) irg->value = new llvm::GlobalVariable(*gIR->module, irg->type.get(), true, TYPEINFO_LINKAGE_TYPE, NULL, mangle); tid->ir.irGlobal = irg; // Add some metadata for use by optimization passes. std::string metaname = std::string(TD_PREFIX) + mangle; LLGlobalVariable* meta = gIR->module->getGlobalVariable(metaname); // Don't generate metadata for non-concrete types // (such as tuple types, slice types, typeof(expr), etc.) if (!meta && tid->tinfo->toBasetype()->ty < Terror) { // Construct the fields MDNodeField* mdVals[TD_NumFields]; if (TD_Confirm >= 0) mdVals[TD_Confirm] = llvm::cast(irg->value); mdVals[TD_Type] = llvm::UndefValue::get(DtoType(tid->tinfo)); // Construct the metadata llvm::MDNode* metadata = gIR->context().getMDNode(mdVals, TD_NumFields); // Insert it into the module new llvm::GlobalVariable(*gIR->module, metadata->getType(), true, METADATA_LINKAGE_TYPE, metadata, metaname); } DtoDeclareTypeInfo(tid); } void DtoDeclareTypeInfo(TypeInfoDeclaration* tid) { DtoResolveTypeInfo(tid); if (tid->ir.declared) return; tid->ir.declared = true; Logger::println("DtoDeclareTypeInfo(%s)", tid->toChars()); LOG_SCOPE; if (Logger::enabled()) { std::string mangled(tid->mangle()); Logger::println("type = '%s'", tid->tinfo->toChars()); Logger::println("typeinfo mangle: %s", mangled.c_str()); } IrGlobal* irg = tid->ir.irGlobal; assert(irg->value != NULL); // this is a declaration of a builtin __initZ var if (tid->tinfo->builtinTypeInfo()) { // fixup the global const llvm::Type* rty = Type::typeinfo->type->irtype->getPA(); llvm::cast(irg->type.get())->refineAbstractTypeTo(rty); LLGlobalVariable* g = isaGlobalVar(irg->value); g->setLinkage(llvm::GlobalValue::ExternalLinkage); return; } // define custom typedef tid->llvmDefine(); } /* ========================================================================= */ void TypeInfoDeclaration::llvmDefine() { assert(0 && "cannot generate generic typeinfo"); } /* ========================================================================= */ void TypeInfoTypedefDeclaration::llvmDefine() { Logger::println("TypeInfoTypedefDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; RTTIBuilder b(Type::typeinfotypedef); assert(tinfo->ty == Ttypedef); TypeTypedef *tc = (TypeTypedef *)tinfo; TypedefDeclaration *sd = tc->sym; // TypeInfo base sd->basetype = sd->basetype->merge(); // dmd does it ... why? b.push_typeinfo(sd->basetype); // char[] name b.push_string(sd->toPrettyChars()); // void[] init // emit null array if we should use the basetype, or if the basetype // uses default initialization. if (!sd->init || tinfo->isZeroInit(0)) { b.push_null_void_array(); } // otherwise emit a void[] with the default initializer else { LLConstant* C = DtoConstInitializer(sd->loc, sd->basetype, sd->init); b.push_void_array(C, sd->basetype, sd); } // finish b.finalize(ir.irGlobal); } /* ========================================================================= */ void TypeInfoEnumDeclaration::llvmDefine() { Logger::println("TypeInfoEnumDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; RTTIBuilder b(Type::typeinfoenum); assert(tinfo->ty == Tenum); TypeEnum *tc = (TypeEnum *)tinfo; EnumDeclaration *sd = tc->sym; // TypeInfo base b.push_typeinfo(sd->memtype); // char[] name b.push_string(sd->toPrettyChars()); // void[] init // emit void[] with the default initialier, the array is null if the default // initializer is zero if (!sd->defaultval || tinfo->isZeroInit(0)) { b.push_null_void_array(); } // otherwise emit a void[] with the default initializer else { const LLType* memty = DtoType(sd->memtype); #if DMDV2 LLConstant* C = gIR->context().getConstantInt(memty, sd->defaultval->toInteger(), !sd->memtype->isunsigned()); #else LLConstant* C = gIR->context().getConstantInt(memty, sd->defaultval, !sd->memtype->isunsigned()); #endif b.push_void_array(C, sd->memtype, sd); } // finish b.finalize(ir.irGlobal); } /* ========================================================================= */ void TypeInfoPointerDeclaration::llvmDefine() { Logger::println("TypeInfoPointerDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; RTTIBuilder b(Type::typeinfopointer); // TypeInfo base b.push_typeinfo(tinfo->nextOf()); // finish b.finalize(ir.irGlobal); } /* ========================================================================= */ void TypeInfoArrayDeclaration::llvmDefine() { Logger::println("TypeInfoArrayDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; RTTIBuilder b(Type::typeinfoarray); // TypeInfo base b.push_typeinfo(tinfo->nextOf()); // finish b.finalize(ir.irGlobal); } /* ========================================================================= */ void TypeInfoStaticArrayDeclaration::llvmDefine() { Logger::println("TypeInfoStaticArrayDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; assert(tinfo->ty == Tsarray); TypeSArray *tc = (TypeSArray *)tinfo; RTTIBuilder b(Type::typeinfostaticarray); // value typeinfo b.push_typeinfo(tc->nextOf()); // length b.push(DtoConstSize_t((size_t)tc->dim->toUInteger())); // finish b.finalize(ir.irGlobal); } /* ========================================================================= */ void TypeInfoAssociativeArrayDeclaration::llvmDefine() { Logger::println("TypeInfoAssociativeArrayDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; assert(tinfo->ty == Taarray); TypeAArray *tc = (TypeAArray *)tinfo; RTTIBuilder b(Type::typeinfoassociativearray); // value typeinfo b.push_typeinfo(tc->nextOf()); // key typeinfo b.push_typeinfo(tc->index); // finish b.finalize(ir.irGlobal); } /* ========================================================================= */ void TypeInfoFunctionDeclaration::llvmDefine() { Logger::println("TypeInfoFunctionDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; RTTIBuilder b(Type::typeinfofunction); // TypeInfo base b.push_typeinfo(tinfo->nextOf()); // finish b.finalize(ir.irGlobal); } /* ========================================================================= */ void TypeInfoDelegateDeclaration::llvmDefine() { Logger::println("TypeInfoDelegateDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; assert(tinfo->ty == Tdelegate); Type* ret_type = tinfo->nextOf()->nextOf(); RTTIBuilder b(Type::typeinfodelegate); // TypeInfo base b.push_typeinfo(ret_type); // finish b.finalize(ir.irGlobal); } /* ========================================================================= */ static FuncDeclaration* find_method_overload(AggregateDeclaration* ad, Identifier* id, TypeFunction* tf, Module* mod) { Dsymbol *s = search_function(ad, id); FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL; if (fdx) { FuncDeclaration *fd = fdx->overloadExactMatch(tf, mod); if (fd) { return fd; } } return NULL; } void TypeInfoStructDeclaration::llvmDefine() { Logger::println("TypeInfoStructDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; // make sure struct is resolved assert(tinfo->ty == Tstruct); TypeStruct *tc = (TypeStruct *)tinfo; StructDeclaration *sd = tc->sym; // can't emit typeinfo for forward declarations if (sd->sizeok != 1) { sd->error("cannot emit TypeInfo for forward declaration"); fatal(); } sd->codegen(Type::sir); IrStruct* irstruct = sd->ir.irStruct; RTTIBuilder b(Type::typeinfostruct); // char[] name b.push_string(sd->toPrettyChars()); // void[] init // never emit a null array, even for zero initialized typeinfo // the size() method uses this array! size_t init_size = getTypeStoreSize(tc->irtype->getPA()); b.push_void_array(init_size, irstruct->getInitSymbol()); // toX functions ground work static TypeFunction *tftohash; static TypeFunction *tftostring; if (!tftohash) { Scope sc; tftohash = new TypeFunction(NULL, Type::thash_t, 0, LINKd); tftohash = (TypeFunction *)tftohash->semantic(0, &sc); tftostring = new TypeFunction(NULL, Type::tchar->arrayOf(), 0, LINKd); tftostring = (TypeFunction *)tftostring->semantic(0, &sc); } // this one takes a parameter, so we need to build a new one each time // to get the right type. can we avoid this? TypeFunction *tfeqptr; { Scope sc; Arguments *arguments = new Arguments; Argument *arg = new Argument(STCin, tc->pointerTo(), NULL, NULL); arguments->push(arg); tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd); tfeqptr = (TypeFunction *)tfeqptr->semantic(0, &sc); } // well use this module for all overload lookups Module *gm = getModule(); // toHash FuncDeclaration* fd = find_method_overload(sd, Id::tohash, tftohash, gm); b.push_funcptr(fd); // opEquals fd = find_method_overload(sd, Id::eq, tfeqptr, gm); b.push_funcptr(fd); // opCmp fd = find_method_overload(sd, Id::cmp, tfeqptr, gm); b.push_funcptr(fd); // toString fd = find_method_overload(sd, Id::tostring, tftostring, gm); b.push_funcptr(fd); // uint m_flags; unsigned hasptrs = tc->hasPointers() ? 1 : 0; b.push_uint(hasptrs); #if DMDV2 // FIXME: just emit nulls for now ClassDeclaration* tscd = Type::typeinfostruct; assert(tscd->fields.dim == 10); // const(MemberInfo[]) function(in char[]) xgetMembers; VarDeclaration* xgetMembers = (VarDeclaration*)tscd->fields.data[7]; b.push_null(xgetMembers->type); //void function(void*) xdtor; VarDeclaration* xdtor = (VarDeclaration*)tscd->fields.data[8]; b.push_null(xdtor->type); //void function(void*) xpostblit; VarDeclaration* xpostblit = (VarDeclaration*)tscd->fields.data[9]; b.push_null(xpostblit->type); #endif // finish b.finalize(ir.irGlobal); } /* ========================================================================= */ void TypeInfoClassDeclaration::llvmDefine() { Logger::println("TypeInfoClassDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; // make sure class is resolved assert(tinfo->ty == Tclass); TypeClass *tc = (TypeClass *)tinfo; tc->sym->codegen(Type::sir); RTTIBuilder b(Type::typeinfoclass); // TypeInfo base b.push_classinfo(tc->sym); // finish b.finalize(ir.irGlobal); } /* ========================================================================= */ void TypeInfoInterfaceDeclaration::llvmDefine() { Logger::println("TypeInfoInterfaceDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; // make sure interface is resolved assert(tinfo->ty == Tclass); TypeClass *tc = (TypeClass *)tinfo; tc->sym->codegen(Type::sir); RTTIBuilder b(Type::typeinfointerface); // TypeInfo base b.push_classinfo(tc->sym); // finish b.finalize(ir.irGlobal); } /* ========================================================================= */ void TypeInfoTupleDeclaration::llvmDefine() { Logger::println("TypeInfoTupleDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; // create elements array assert(tinfo->ty == Ttuple); TypeTuple *tu = (TypeTuple *)tinfo; size_t dim = tu->arguments->dim; std::vector arrInits; arrInits.reserve(dim); const LLType* tiTy = DtoType(Type::typeinfo->type); for (size_t i = 0; i < dim; i++) { Argument *arg = (Argument *)tu->arguments->data[i]; arrInits.push_back(DtoTypeInfoOf(arg->type, true)); } // build array const LLArrayType* arrTy = LLArrayType::get(tiTy, dim); LLConstant* arrC = llvm::ConstantArray::get(arrTy, arrInits); RTTIBuilder b(Type::typeinfotypelist); // push TypeInfo[] b.push_array(arrC, dim, Type::typeinfo->type, NULL); // finish b.finalize(ir.irGlobal); } /* ========================================================================= */ #if DMDV2 void TypeInfoConstDeclaration::llvmDefine() { Logger::println("TypeInfoConstDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; RTTIBuilder b(Type::typeinfoconst); // TypeInfo base b.push_typeinfo(tinfo->mutableOf()->merge()); // finish b.finalize(ir.irGlobal); } /* ========================================================================= */ void TypeInfoInvariantDeclaration::llvmDefine() { Logger::println("TypeInfoInvariantDeclaration::llvmDefine() %s", toChars()); LOG_SCOPE; RTTIBuilder b(Type::typeinfoinvariant); // TypeInfo base b.push_typeinfo(tinfo->mutableOf()->merge()); // finish b.finalize(ir.irGlobal); } #endif