#include "gen/llvmhelpers.h" #include "gen/llvm.h" #include "llvm/Target/TargetMachineRegistry.h" #include "mars.h" #include "init.h" #include "id.h" #include "expression.h" #include "template.h" #include "module.h" #include "gen/tollvm.h" #include "gen/irstate.h" #include "gen/runtime.h" #include "gen/logger.h" #include "gen/arrays.h" #include "gen/dvalue.h" #include "gen/complex.h" #include "gen/classes.h" #include "gen/functions.h" #include "gen/typeinf.h" #include "gen/todebug.h" #include "gen/cl_options.h" #include "gen/nested.h" #include "ir/irmodule.h" #include /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // DYNAMIC MEMORY HELPERS ////////////////////////////////////////////////////////////////////////////////////////*/ LLValue* DtoNew(Type* newtype) { // get runtime function llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_allocmemoryT"); // get type info LLConstant* ti = DtoTypeInfoOf(newtype); assert(isaPointer(ti)); // call runtime allocator LLValue* mem = gIR->CreateCallOrInvoke(fn, ti, ".gc_mem").getInstruction(); // cast return DtoBitCast(mem, getPtrToType(DtoType(newtype)), ".gc_mem"); } void DtoDeleteMemory(LLValue* ptr) { // get runtime function llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_delmemory"); // build args LLSmallVector arg; arg.push_back(DtoBitCast(ptr, getVoidPtrType(), ".tmp")); // call gIR->CreateCallOrInvoke(fn, arg.begin(), arg.end()); } void DtoDeleteClass(LLValue* inst) { // get runtime function llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_delclass"); // build args LLSmallVector arg; arg.push_back(DtoBitCast(inst, fn->getFunctionType()->getParamType(0), ".tmp")); // call gIR->CreateCallOrInvoke(fn, arg.begin(), arg.end()); } void DtoDeleteInterface(LLValue* inst) { // get runtime function llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_delinterface"); // build args LLSmallVector arg; arg.push_back(DtoBitCast(inst, fn->getFunctionType()->getParamType(0), ".tmp")); // call gIR->CreateCallOrInvoke(fn, arg.begin(), arg.end()); } void DtoDeleteArray(DValue* arr) { // get runtime function llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_delarray"); // build args LLSmallVector arg; arg.push_back(DtoArrayLen(arr)); arg.push_back(DtoBitCast(DtoArrayPtr(arr), getVoidPtrType(), ".tmp")); // call gIR->CreateCallOrInvoke(fn, arg.begin(), arg.end()); } /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // ALLOCA HELPERS ////////////////////////////////////////////////////////////////////////////////////////*/ llvm::AllocaInst* DtoAlloca(Type* type, const char* name) { const llvm::Type* lltype = DtoType(type); llvm::AllocaInst* ai = new llvm::AllocaInst(lltype, name, gIR->topallocapoint()); ai->setAlignment(type->alignsize()); return ai; } llvm::AllocaInst* DtoArrayAlloca(Type* type, unsigned arraysize, const char* name) { const llvm::Type* lltype = DtoType(type); llvm::AllocaInst* ai = new llvm::AllocaInst( lltype, DtoConstUint(arraysize), name, gIR->topallocapoint()); ai->setAlignment(type->alignsize()); return ai; } llvm::AllocaInst* DtoRawAlloca(const llvm::Type* lltype, size_t alignment, const char* name) { llvm::AllocaInst* ai = new llvm::AllocaInst(lltype, name, gIR->topallocapoint()); if (alignment) ai->setAlignment(alignment); return ai; } /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // ASSERT HELPER ////////////////////////////////////////////////////////////////////////////////////////*/ void DtoAssert(Module* M, Loc loc, DValue* msg) { std::vector args; // func const char* fname = msg ? "_d_assert_msg" : "_d_assert"; llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, fname); // msg param if (msg) { args.push_back(msg->getRVal()); } // file param // we might be generating for an imported template function const char* cur_file = M->srcfile->name->toChars(); if (loc.filename && strcmp(loc.filename, cur_file) != 0) { args.push_back(DtoConstString(loc.filename)); } else { IrModule* irmod = getIrModule(M); args.push_back(DtoLoad(irmod->fileName)); } // line param LLConstant* c = DtoConstUint(loc.linnum); args.push_back(c); // call gIR->CreateCallOrInvoke(fn, args.begin(), args.end()); // end debug info if (global.params.symdebug) DtoDwarfFuncEnd(gIR->func()->decl); // after assert is always unreachable gIR->ir->CreateUnreachable(); } /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // LABEL HELPER ////////////////////////////////////////////////////////////////////////////////////////*/ LabelStatement* DtoLabelStatement(Identifier* ident) { FuncDeclaration* fd = gIR->func()->decl; FuncDeclaration::LabelMap::iterator iter = fd->labmap.find(ident->toChars()); if (iter == fd->labmap.end()) { if (fd->returnLabel && fd->returnLabel->ident->equals(ident)) { assert(fd->returnLabel->statement); return fd->returnLabel->statement; } return NULL; } return iter->second; } /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // GOTO HELPER ////////////////////////////////////////////////////////////////////////////////////////*/ void DtoGoto(Loc loc, Identifier* target, TryFinallyStatement* sourceFinally) { assert(!gIR->scopereturned()); LabelStatement* lblstmt = DtoLabelStatement(target); if(!lblstmt) { error(loc, "the label %s does not exist", target->toChars()); fatal(); } // if the target label is inside inline asm, error if(lblstmt->asmLabel) { error(loc, "cannot goto to label %s inside an inline asm block", target->toChars()); fatal(); } // find target basic block std::string labelname = gIR->func()->gen->getScopedLabelName(target->toChars()); llvm::BasicBlock*& targetBB = gIR->func()->gen->labelToBB[labelname]; if (targetBB == NULL) targetBB = llvm::BasicBlock::Create("label_" + labelname, gIR->topfunc()); // emit code for finallys between goto and label DtoEnclosingHandlers(loc, lblstmt); // goto into finally blocks is forbidden by the spec // but should work fine if(lblstmt->enclosingFinally != sourceFinally) { error(loc, "spec disallows goto into or out of finally block"); fatal(); } llvm::BranchInst::Create(targetBB, gIR->scopebb()); } /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // TRY-FINALLY, VOLATILE AND SYNCHRONIZED HELPER ////////////////////////////////////////////////////////////////////////////////////////*/ void EnclosingSynchro::emitCode(IRState * p) { if (s->exp) DtoLeaveMonitor(s->exp->toElem(p)->getRVal()); else DtoLeaveCritical(s->llsync); } //////////////////////////////////////////////////////////////////////////////////////// void EnclosingVolatile::emitCode(IRState * p) { // store-load barrier DtoMemoryBarrier(false, false, true, false); } //////////////////////////////////////////////////////////////////////////////////////// void EnclosingTryFinally::emitCode(IRState * p) { if (tf->finalbody) { llvm::BasicBlock* oldpad = p->func()->gen->landingPad; p->func()->gen->landingPad = landingPad; tf->finalbody->toIR(p); p->func()->gen->landingPad = oldpad; } } //////////////////////////////////////////////////////////////////////////////////////// void DtoEnclosingHandlers(Loc loc, Statement* target) { // labels are a special case: they are not required to enclose the current scope // for them we use the enclosing scope handler as a reference point LabelStatement* lblstmt = dynamic_cast(target); if (lblstmt) target = lblstmt->enclosingScopeExit; // figure out up until what handler we need to emit FuncGen::TargetScopeVec::reverse_iterator targetit = gIR->func()->gen->targetScopes.rbegin(); FuncGen::TargetScopeVec::reverse_iterator it_end = gIR->func()->gen->targetScopes.rend(); while(targetit != it_end) { if (targetit->s == target) { break; } ++targetit; } if (target && targetit == it_end) { if (lblstmt) error(loc, "cannot goto into try, volatile or synchronized statement at %s", target->loc.toChars()); else error(loc, "internal error, cannot find jump path to statement at %s", target->loc.toChars()); return; } // // emit code for enclosing handlers // // since the labelstatements possibly inside are private // and might already exist push a label scope gIR->func()->gen->pushUniqueLabelScope("enclosing"); FuncGen::TargetScopeVec::reverse_iterator it = gIR->func()->gen->targetScopes.rbegin(); while (it != targetit) { if (it->enclosinghandler) it->enclosinghandler->emitCode(gIR); ++it; } gIR->func()->gen->popLabelScope(); } /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // SYNCHRONIZED SECTION HELPERS ////////////////////////////////////////////////////////////////////////////////////////*/ void DtoEnterCritical(LLValue* g) { LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_criticalenter"); gIR->CreateCallOrInvoke(fn, g); } void DtoLeaveCritical(LLValue* g) { LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_criticalexit"); gIR->CreateCallOrInvoke(fn, g); } void DtoEnterMonitor(LLValue* v) { LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_monitorenter"); v = DtoBitCast(v, fn->getFunctionType()->getParamType(0)); gIR->CreateCallOrInvoke(fn, v); } void DtoLeaveMonitor(LLValue* v) { LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_monitorexit"); v = DtoBitCast(v, fn->getFunctionType()->getParamType(0)); gIR->CreateCallOrInvoke(fn, v); } /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // ASSIGNMENT HELPER (store this in that) ////////////////////////////////////////////////////////////////////////////////////////*/ // is this a good approach at all ? void DtoAssign(Loc& loc, DValue* lhs, DValue* rhs) { Logger::println("DtoAssign(...);\n"); LOG_SCOPE; Type* t = lhs->getType()->toBasetype(); Type* t2 = rhs->getType()->toBasetype(); if (t->ty == Tstruct) { if (!t->equals(t2)) { // FIXME: use 'rhs' for something !?! DtoAggrZeroInit(lhs->getLVal()); } else { DtoAggrCopy(lhs->getLVal(), rhs->getRVal()); } } else if (t->ty == Tarray) { // lhs is slice if (DSliceValue* s = lhs->isSlice()) { if (DSliceValue* s2 = rhs->isSlice()) { DtoArrayCopySlices(s, s2); } else if (t->nextOf()->toBasetype()->equals(t2)) { DtoArrayInit(loc, s, rhs); } else { DtoArrayCopyToSlice(s, rhs); } } // rhs is slice else if (DSliceValue* s = rhs->isSlice()) { assert(s->getType()->toBasetype() == lhs->getType()->toBasetype()); DtoSetArray(lhs->getLVal(),DtoArrayLen(s),DtoArrayPtr(s)); } // null else if (rhs->isNull()) { DtoSetArrayToNull(lhs->getLVal()); } // reference assignment else if (t2->ty == Tarray) { DtoStore(rhs->getRVal(), lhs->getLVal()); } // some implicitly converting ref assignment else { DtoSetArray(lhs->getLVal(), DtoArrayLen(rhs), DtoArrayPtr(rhs)); } } else if (t->ty == Tsarray) { // T[n] = T[n] if (DtoType(lhs->getType()) == DtoType(rhs->getType())) { DtoStaticArrayCopy(lhs->getLVal(), rhs->getRVal()); } // T[n] = T else if (t->nextOf()->toBasetype()->equals(t2)) { DtoArrayInit(loc, lhs, rhs); } // T[n] = T[] - generally only generated by frontend in rare cases else if (t2->ty == Tarray && t->nextOf()->toBasetype()->equals(t2->nextOf()->toBasetype())) { DtoMemCpy(lhs->getLVal(), DtoArrayPtr(rhs), DtoArrayLen(rhs)); } else { assert(0 && "Unimplemented static array assign!"); } } else if (t->ty == Tdelegate) { LLValue* l = lhs->getLVal(); LLValue* r = rhs->getRVal(); if (Logger::enabled()) Logger::cout() << "assign\nlhs: " << *l << "rhs: " << *r << '\n'; DtoStore(r, l); } else if (t->ty == Tclass) { assert(t2->ty == Tclass); LLValue* l = lhs->getLVal(); LLValue* r = rhs->getRVal(); if (Logger::enabled()) { Logger::cout() << "l : " << *l << '\n'; Logger::cout() << "r : " << *r << '\n'; } r = DtoBitCast(r, l->getType()->getContainedType(0)); DtoStore(r, l); } else if (t->iscomplex()) { LLValue* dst = lhs->getLVal(); LLValue* src = DtoCast(loc, rhs, lhs->getType())->getRVal(); DtoStore(src, dst); } else { LLValue* l = lhs->getLVal(); LLValue* r = rhs->getRVal(); if (Logger::enabled()) Logger::cout() << "assign\nlhs: " << *l << "rhs: " << *r << '\n'; const LLType* lit = l->getType()->getContainedType(0); if (r->getType() != lit) { r = DtoCast(loc, rhs, lhs->getType())->getRVal(); if (Logger::enabled()) Logger::cout() << "really assign\nlhs: " << *l << "rhs: " << *r << '\n'; assert(r->getType() == l->getType()->getContainedType(0)); } gIR->ir->CreateStore(r, l); } } /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // NULL VALUE HELPER ////////////////////////////////////////////////////////////////////////////////////////*/ DValue* DtoNullValue(Type* type) { Type* basetype = type->toBasetype(); TY basety = basetype->ty; const LLType* lltype = DtoType(basetype); // complex, needs to be first since complex are also floating if (basetype->iscomplex()) { const LLType* basefp = DtoComplexBaseType(basetype); LLValue* res = DtoAggrPair(DtoType(type), gIR->context().getNullValue(basefp), gIR->context().getNullValue(basefp)); return new DImValue(type, res); } // integer, floating, pointer and class have no special representation else if (basetype->isintegral() || basetype->isfloating() || basety == Tpointer || basety == Tclass) { return new DConstValue(type, gIR->context().getNullValue(lltype)); } // dynamic array else if (basety == Tarray) { LLValue* len = DtoConstSize_t(0); LLValue* ptr = getNullPtr(getPtrToType(DtoType(basetype->nextOf()))); return new DSliceValue(type, len, ptr); } // delegate else if (basety == Tdelegate) { return new DNullValue(type, gIR->context().getNullValue(lltype)); } // unknown llvm::cout << "unsupported: null value for " << type->toChars() << '\n'; assert(0); return 0; } /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // CASTING HELPERS ////////////////////////////////////////////////////////////////////////////////////////*/ DValue* DtoCastInt(Loc& loc, DValue* val, Type* _to) { const LLType* tolltype = DtoType(_to); Type* to = _to->toBasetype(); Type* from = val->getType()->toBasetype(); assert(from->isintegral()); size_t fromsz = from->size(); size_t tosz = to->size(); LLValue* rval = val->getRVal(); if (rval->getType() == tolltype) { return new DImValue(_to, rval); } if (to->ty == Tbool) { LLValue* zero = gIR->context().getConstantInt(rval->getType(), 0, false); rval = gIR->ir->CreateICmpNE(rval, zero, "tmp"); } else if (to->isintegral()) { if (fromsz < tosz || from->ty == Tbool) { if (Logger::enabled()) Logger::cout() << "cast to: " << *tolltype << '\n'; if (from->isunsigned() || from->ty == Tbool) { rval = new llvm::ZExtInst(rval, tolltype, "tmp", gIR->scopebb()); } else { rval = new llvm::SExtInst(rval, tolltype, "tmp", gIR->scopebb()); } } else if (fromsz > tosz) { rval = new llvm::TruncInst(rval, tolltype, "tmp", gIR->scopebb()); } else { rval = DtoBitCast(rval, tolltype); } } else if (to->iscomplex()) { return DtoComplex(loc, to, val); } else if (to->isfloating()) { if (from->isunsigned()) { rval = new llvm::UIToFPInst(rval, tolltype, "tmp", gIR->scopebb()); } else { rval = new llvm::SIToFPInst(rval, tolltype, "tmp", gIR->scopebb()); } } else if (to->ty == Tpointer) { if (Logger::enabled()) Logger::cout() << "cast pointer: " << *tolltype << '\n'; rval = gIR->ir->CreateIntToPtr(rval, tolltype, "tmp"); } else { error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), _to->toChars()); fatal(); } return new DImValue(_to, rval); } DValue* DtoCastPtr(Loc& loc, DValue* val, Type* to) { const LLType* tolltype = DtoType(to); Type* totype = to->toBasetype(); Type* fromtype = val->getType()->toBasetype(); assert(fromtype->ty == Tpointer || fromtype->ty == Tfunction); LLValue* rval; if (totype->ty == Tpointer || totype->ty == Tclass) { LLValue* src = val->getRVal(); if (Logger::enabled()) Logger::cout() << "src: " << *src << "to type: " << *tolltype << '\n'; rval = DtoBitCast(src, tolltype); } else if (totype->ty == Tbool) { LLValue* src = val->getRVal(); LLValue* zero = gIR->context().getNullValue(src->getType()); rval = gIR->ir->CreateICmpNE(src, zero, "tmp"); } else if (totype->isintegral()) { rval = new llvm::PtrToIntInst(val->getRVal(), tolltype, "tmp", gIR->scopebb()); } else { error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars()); fatal(); } return new DImValue(to, rval); } DValue* DtoCastFloat(Loc& loc, DValue* val, Type* to) { if (val->getType() == to) return val; const LLType* tolltype = DtoType(to); Type* totype = to->toBasetype(); Type* fromtype = val->getType()->toBasetype(); assert(fromtype->isfloating()); size_t fromsz = fromtype->size(); size_t tosz = totype->size(); LLValue* rval; if (totype->ty == Tbool) { rval = val->getRVal(); LLValue* zero = gIR->context().getNullValue(rval->getType()); rval = gIR->ir->CreateFCmpUNE(rval, zero, "tmp"); } else if (totype->iscomplex()) { return DtoComplex(loc, to, val); } else if (totype->isfloating()) { if (fromsz == tosz) { rval = val->getRVal(); assert(rval->getType() == tolltype); } else if (fromsz < tosz) { rval = new llvm::FPExtInst(val->getRVal(), tolltype, "tmp", gIR->scopebb()); } else if (fromsz > tosz) { rval = new llvm::FPTruncInst(val->getRVal(), tolltype, "tmp", gIR->scopebb()); } else { error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars()); fatal(); } } else if (totype->isintegral()) { if (totype->isunsigned()) { rval = new llvm::FPToUIInst(val->getRVal(), tolltype, "tmp", gIR->scopebb()); } else { rval = new llvm::FPToSIInst(val->getRVal(), tolltype, "tmp", gIR->scopebb()); } } else { error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars()); fatal(); } return new DImValue(to, rval); } DValue* DtoCastDelegate(Loc& loc, DValue* val, Type* to) { if (to->toBasetype()->ty == Tdelegate) { return DtoPaintType(loc, val, to); } else if (to->toBasetype()->ty == Tbool) { return new DImValue(to, DtoDelegateEquals(TOKnotequal, val->getRVal(), NULL)); } else { error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars()); fatal(); } } DValue* DtoCast(Loc& loc, DValue* val, Type* to) { Type* fromtype = val->getType()->toBasetype(); Type* totype = to->toBasetype(); if (fromtype->equals(totype)) return val; Logger::println("Casting from '%s' to '%s'", fromtype->toChars(), to->toChars()); LOG_SCOPE; if (fromtype->isintegral()) { return DtoCastInt(loc, val, to); } else if (fromtype->iscomplex()) { return DtoCastComplex(loc, val, to); } else if (fromtype->isfloating()) { return DtoCastFloat(loc, val, to); } else if (fromtype->ty == Tclass) { return DtoCastClass(val, to); } else if (fromtype->ty == Tarray || fromtype->ty == Tsarray) { return DtoCastArray(loc, val, to); } else if (fromtype->ty == Tpointer || fromtype->ty == Tfunction) { return DtoCastPtr(loc, val, to); } else if (fromtype->ty == Tdelegate) { return DtoCastDelegate(loc, val, to); } else { error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars()); fatal(); } } ////////////////////////////////////////////////////////////////////////////////////////// DValue* DtoPaintType(Loc& loc, DValue* val, Type* to) { Type* from = val->getType()->toBasetype(); Logger::println("repainting from '%s' to '%s'", from->toChars(), to->toChars()); if (from->ty == Tarray) { Type* at = to->toBasetype(); assert(at->ty == Tarray); Type* elem = at->nextOf()->pointerTo(); if (DSliceValue* slice = val->isSlice()) { return new DSliceValue(to, slice->len, DtoBitCast(slice->ptr, DtoType(elem))); } else if (val->isLVal()) { LLValue* ptr = val->getLVal(); ptr = DtoBitCast(ptr, DtoType(at->pointerTo())); return new DVarValue(to, ptr); } else { LLValue *len, *ptr; len = DtoArrayLen(val); ptr = DtoArrayPtr(val); ptr = DtoBitCast(ptr, DtoType(elem)); return new DImValue(to, DtoAggrPair(len, ptr, "tmp")); } } else if (from->ty == Tdelegate) { Type* dgty = to->toBasetype(); assert(dgty->ty == Tdelegate); if (val->isLVal()) { LLValue* ptr = val->getLVal(); assert(isaPointer(ptr)); ptr = DtoBitCast(ptr, getPtrToType(DtoType(dgty))); if (Logger::enabled()) Logger::cout() << "dg ptr: " << *ptr << '\n'; return new DVarValue(to, ptr); } else { LLValue* dg = val->getRVal(); LLValue* context = gIR->ir->CreateExtractValue(dg, 0, ".context"); LLValue* funcptr = gIR->ir->CreateExtractValue(dg, 1, ".funcptr"); funcptr = DtoBitCast(funcptr, DtoType(dgty)->getContainedType(1)); LLValue* aggr = DtoAggrPair(context, funcptr, "tmp"); if (Logger::enabled()) Logger::cout() << "dg: " << *aggr << '\n'; return new DImValue(to, aggr); } } else if (from->ty == Tpointer || from->ty == Tclass || from->ty == Taarray) { Type* b = to->toBasetype(); assert(b->ty == Tpointer || b->ty == Tclass || b->ty == Taarray); LLValue* ptr = DtoBitCast(val->getRVal(), DtoType(b)); return new DImValue(to, ptr); } else { assert(!val->isLVal()); assert(DtoType(to) == DtoType(to)); return new DImValue(to, val->getRVal()); } } /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // TEMPLATE HELPERS ////////////////////////////////////////////////////////////////////////////////////////*/ TemplateInstance* DtoIsTemplateInstance(Dsymbol* s) { if (!s) return NULL; if (s->isTemplateInstance() && !s->isTemplateMixin()) return s->isTemplateInstance(); else if (s->parent) return DtoIsTemplateInstance(s->parent); return NULL; } /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // PROCESSING QUEUE HELPERS ////////////////////////////////////////////////////////////////////////////////////////*/ void DtoResolveDsymbol(Dsymbol* dsym) { if (StructDeclaration* sd = dsym->isStructDeclaration()) { DtoResolveStruct(sd); } else if (ClassDeclaration* cd = dsym->isClassDeclaration()) { DtoResolveClass(cd); } else if (FuncDeclaration* fd = dsym->isFuncDeclaration()) { DtoResolveFunction(fd); } else if (TypeInfoDeclaration* fd = dsym->isTypeInfoDeclaration()) { DtoResolveTypeInfo(fd); } else { error(dsym->loc, "unsupported dsymbol: %s", dsym->toChars()); assert(0 && "unsupported dsymbol for DtoResolveDsymbol"); } } ////////////////////////////////////////////////////////////////////////////////////////// void DtoConstInitGlobal(VarDeclaration* vd) { vd->codegen(Type::sir); if (vd->ir.initialized) return; vd->ir.initialized = gIR->dmodule; Logger::println("DtoConstInitGlobal(%s) @ %s", vd->toChars(), vd->loc.toChars()); LOG_SCOPE; Dsymbol* par = vd->toParent(); // build the initializer LLConstant* initVal = DtoConstInitializer(vd->loc, vd->type, vd->init); // set the initializer if appropriate IrGlobal* glob = vd->ir.irGlobal; llvm::GlobalVariable* gvar = llvm::cast(glob->value); // refine the global's opaque type to the type of the initializer llvm::cast(glob->type.get())->refineAbstractTypeTo(initVal->getType()); assert(!glob->constInit); glob->constInit = initVal; // assign the initializer llvm::GlobalVariable* globalvar = llvm::cast(glob->value); if (!(vd->storage_class & STCextern) && mustDefineSymbol(vd)) { if (Logger::enabled()) { Logger::println("setting initializer"); Logger::cout() << "global: " << *gvar << '\n'; #if 0 Logger::cout() << "init: " << *initVal << '\n'; #endif } gvar->setInitializer(initVal); // do debug info if (global.params.symdebug) { LLGlobalVariable* gv = DtoDwarfGlobalVariable(gvar, vd).getGV(); // keep a reference so GDCE doesn't delete it ! gIR->usedArray.push_back(llvm::ConstantExpr::getBitCast(gv, getVoidPtrType())); } } } /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // DECLARATION EXP HELPER ////////////////////////////////////////////////////////////////////////////////////////*/ DValue* DtoDeclarationExp(Dsymbol* declaration) { Logger::print("DtoDeclarationExp: %s\n", declaration->toChars()); LOG_SCOPE; // variable declaration if (VarDeclaration* vd = declaration->isVarDeclaration()) { Logger::println("VarDeclaration"); // if aliassym is set, this VarDecl is redone as an alias to another symbol // this seems to be done to rewrite Tuple!(...) v; // as a TupleDecl that contains a bunch of individual VarDecls if (vd->aliassym) return DtoDeclarationExp(vd->aliassym); // static if (vd->isDataseg()) { vd->codegen(Type::sir); } else { if (global.params.llvmAnnotate) DtoAnnotation(declaration->toChars()); Logger::println("vdtype = %s", vd->type->toChars()); // referenced by nested delegate? #if DMDV2 if (vd->nestedrefs.dim) { #else if (vd->nestedref) { #endif Logger::println("has nestedref set"); assert(vd->ir.irLocal); DtoNestedInit(vd); } // normal stack variable, allocate storage on the stack if it has not already been done else if(!vd->ir.irLocal) { const LLType* lltype = DtoType(vd->type); llvm::Value* allocainst; if(gTargetData->getTypeSizeInBits(lltype) == 0) allocainst = llvm::ConstantPointerNull::get(getPtrToType(lltype)); else allocainst = DtoAlloca(vd->type, vd->toChars()); //allocainst->setAlignment(vd->type->alignsize()); // TODO vd->ir.irLocal = new IrLocal(vd); vd->ir.irLocal->value = allocainst; if (global.params.symdebug) { DtoDwarfLocalVariable(allocainst, vd); } } else { assert(vd->ir.irLocal->value); } if (Logger::enabled()) Logger::cout() << "llvm value for decl: " << *vd->ir.irLocal->value << '\n'; DValue* ie = DtoInitializer(vd->ir.irLocal->value, vd->init); } return new DVarValue(vd->type, vd, vd->ir.getIrValue()); } // struct declaration else if (StructDeclaration* s = declaration->isStructDeclaration()) { Logger::println("StructDeclaration"); s->codegen(Type::sir); } // function declaration else if (FuncDeclaration* f = declaration->isFuncDeclaration()) { Logger::println("FuncDeclaration"); f->codegen(Type::sir); } // alias declaration else if (AliasDeclaration* a = declaration->isAliasDeclaration()) { Logger::println("AliasDeclaration - no work"); // do nothing } // enum else if (EnumDeclaration* e = declaration->isEnumDeclaration()) { Logger::println("EnumDeclaration - no work"); // do nothing } // class else if (ClassDeclaration* e = declaration->isClassDeclaration()) { Logger::println("ClassDeclaration"); e->codegen(Type::sir); } // typedef else if (TypedefDeclaration* tdef = declaration->isTypedefDeclaration()) { Logger::println("TypedefDeclaration"); DtoTypeInfoOf(tdef->type, false); } // attribute declaration else if (AttribDeclaration* a = declaration->isAttribDeclaration()) { Logger::println("AttribDeclaration"); // choose the right set in case this is a conditional declaration Array *d = a->include(NULL, NULL); if (d) for (int i=0; i < d->dim; ++i) { DtoDeclarationExp((Dsymbol*)d->data[i]); } } // mixin declaration else if (TemplateMixin* m = declaration->isTemplateMixin()) { Logger::println("TemplateMixin"); for (int i=0; i < m->members->dim; ++i) { Dsymbol* mdsym = (Dsymbol*)m->members->data[i]; DtoDeclarationExp(mdsym); } } // tuple declaration else if (TupleDeclaration* tupled = declaration->isTupleDeclaration()) { Logger::println("TupleDeclaration"); if(!tupled->isexp) { error(declaration->loc, "don't know how to handle non-expression tuple decls yet"); assert(0); } assert(tupled->objects); for (int i=0; i < tupled->objects->dim; ++i) { DsymbolExp* exp = (DsymbolExp*)tupled->objects->data[i]; DtoDeclarationExp(exp->s); } } // unsupported declaration else { error(declaration->loc, "Unimplemented Declaration type for DeclarationExp. kind: %s", declaration->kind()); assert(0); } return NULL; } // does pretty much the same as DtoDeclarationExp, except it doesn't initialize, and only handles var declarations LLValue* DtoRawVarDeclaration(VarDeclaration* var, LLValue* addr) { // we don't handle globals with this one assert(!var->isDataseg()); // we don't handle aliases either assert(!var->aliassym); // alloca if necessary LLValue* allocaval = NULL; if (!addr && (!var->ir.irLocal || !var->ir.irLocal->value)) { addr = DtoAlloca(var->type, var->toChars()); // add debug info if (global.params.symdebug) DtoDwarfLocalVariable(addr, var); } // referenced by nested function? #if DMDV2 if (var->nestedrefs.dim) #else if (var->nestedref) #endif { assert(var->ir.irLocal); if(!var->ir.irLocal->value) { assert(addr); var->ir.irLocal->value = addr; } else assert(!addr || addr == var->ir.irLocal->value); DtoNestedInit(var); } // normal local variable else { // if this already has storage, it must've been handled already if (var->ir.irLocal && var->ir.irLocal->value) { if (addr && addr != var->ir.irLocal->value) { // This can happen, for example, in scope(exit) blocks which // are translated to IR multiple times. // That *should* only happen after the first one is completely done // though, so just set the address. IF_LOG { Logger::println("Replacing LLVM address of %s", var->toChars()); LOG_SCOPE; Logger::cout() << "Old val: " << *var->ir.irLocal->value << '\n'; Logger::cout() << "New val: " << *addr << '\n'; } var->ir.irLocal->value = addr; } return addr; } assert(!var->ir.isSet()); assert(addr); var->ir.irLocal = new IrLocal(var); var->ir.irLocal->value = addr; } // return the alloca return var->ir.irLocal->value; } /****************************************************************************************/ /*//////////////////////////////////////////////////////////////////////////////////////// // INITIALIZER HELPERS ////////////////////////////////////////////////////////////////////////////////////////*/ LLConstant* DtoConstInitializer(Loc loc, Type* type, Initializer* init) { LLConstant* _init = 0; // may return zero if (!init) { Logger::println("const default initializer for %s", type->toChars()); _init = DtoConstExpInit(loc, type, type->defaultInit()); } else if (ExpInitializer* ex = init->isExpInitializer()) { Logger::println("const expression initializer"); _init = DtoConstExpInit(loc, type, ex->exp);; } else if (StructInitializer* si = init->isStructInitializer()) { Logger::println("const struct initializer"); si->ad->codegen(Type::sir); return si->ad->ir.irStruct->createStructInitializer(si); } else if (ArrayInitializer* ai = init->isArrayInitializer()) { Logger::println("const array initializer"); _init = DtoConstArrayInitializer(ai); } else if (init->isVoidInitializer()) { Logger::println("const void initializer"); const LLType* ty = DtoType(type); _init = gIR->context().getNullValue(ty); } else { Logger::println("unsupported const initializer: %s", init->toChars()); } return _init; } ////////////////////////////////////////////////////////////////////////////////////////// DValue* DtoInitializer(LLValue* target, Initializer* init) { if (!init) return 0; else if (ExpInitializer* ex = init->isExpInitializer()) { Logger::println("expression initializer"); assert(ex->exp); return ex->exp->toElem(gIR); } else if (init->isVoidInitializer()) { // do nothing } else { Logger::println("unsupported initializer: %s", init->toChars()); assert(0); } return 0; } ////////////////////////////////////////////////////////////////////////////////////////// static LLConstant* expand_to_sarray(Type *base, Expression* exp) { Logger::println("building type %s from expression (%s) of type %s", base->toChars(), exp->toChars(), exp->type->toChars()); const LLType* dstTy = DtoType(base); if (Logger::enabled()) Logger::cout() << "final llvm type requested: " << *dstTy << '\n'; LLConstant* val = exp->toConstElem(gIR); Type* expbase = exp->type->toBasetype(); Logger::println("expbase: %s", expbase->toChars()); Type* t = base->toBasetype(); LLSmallVector dims; while(1) { Logger::println("t: %s", t->toChars()); if (t->equals(expbase)) break; assert(t->ty == Tsarray); TypeSArray* tsa = (TypeSArray*)t; dims.push_back(tsa->dim->toInteger()); assert(t->nextOf()); t = t->nextOf()->toBasetype(); } size_t i = dims.size(); assert(i); std::vector inits; while (i--) { const LLArrayType* arrty = LLArrayType::get(val->getType(), dims[i]); inits.clear(); inits.insert(inits.end(), dims[i], val); val = LLConstantArray::get(arrty, inits); } return val; } LLConstant* DtoConstExpInit(Loc loc, Type* type, Expression* exp) { Type* expbase = exp->type->toBasetype(); Type* base = type->toBasetype(); // if not the same basetypes, we won't get the same llvm types either if (!expbase->equals(base)) { if (base->ty == Tsarray) { if (base->nextOf()->toBasetype()->ty == Tvoid) { error(loc, "static arrays of voids have no default initializer"); fatal(); } Logger::println("type is a static array, building constant array initializer to single value"); return expand_to_sarray(base, exp); } else { error("cannot yet convert default initializer %s to type %s to %s", exp->toChars(), exp->type->toChars(), type->toChars()); fatal(); } assert(0); } return exp->toConstElem(gIR); } ////////////////////////////////////////////////////////////////////////////////////////// void DtoAnnotation(const char* str) { std::string s("CODE: "); s.append(str); char* p = &s[0]; while (*p) { if (*p == '"') *p = '\''; ++p; } // create a noop with the code as the result name! // FIXME: this is const folded and eliminated immediately ... :/ gIR->ir->CreateAnd(DtoConstSize_t(0),DtoConstSize_t(0),s.c_str()); } ////////////////////////////////////////////////////////////////////////////////////////// LLConstant* DtoTypeInfoOf(Type* type, bool base) { #if DMDV2 // FIXME: this is probably wrong, but it makes druntime's genobj.d compile! type = type->mutableOf()->merge(); // needed.. getTypeInfo does the same #else type = type->merge(); // needed.. getTypeInfo does the same #endif type->getTypeInfo(NULL); TypeInfoDeclaration* tidecl = type->vtinfo; assert(tidecl); tidecl->codegen(Type::sir); assert(tidecl->ir.irGlobal != NULL); assert(tidecl->ir.irGlobal->value != NULL); LLConstant* c = isaConstant(tidecl->ir.irGlobal->value); assert(c != NULL); if (base) return llvm::ConstantExpr::getBitCast(c, DtoType(Type::typeinfo->type)); return c; } ////////////////////////////////////////////////////////////////////////////////////////// void DtoOverloadedIntrinsicName(TemplateInstance* ti, TemplateDeclaration* td, std::string& name) { Logger::println("DtoOverloadedIntrinsicName"); LOG_SCOPE; Logger::println("template instance: %s", ti->toChars()); Logger::println("template declaration: %s", td->toChars()); Logger::println("intrinsic name: %s", td->intrinsicName.c_str()); // for now use the size in bits of the first template param in the instance assert(ti->tdtypes.dim == 1); Type* T = (Type*)ti->tdtypes.data[0]; char prefix = T->isreal() ? 'f' : T->isintegral() ? 'i' : 0; if (!prefix) { ti->error("has invalid template parameter for intrinsic: %s", T->toChars()); fatal(); // or LLVM asserts } char tmp[21]; // probably excessive, but covers a uint64_t sprintf(tmp, "%lu", (unsigned long) gTargetData->getTypeSizeInBits(DtoType(T))); // replace # in name with bitsize name = td->intrinsicName; std::string needle("#"); size_t pos; while(std::string::npos != (pos = name.find(needle))) { if (pos > 0 && name[pos-1] == prefix) { // Properly prefixed, insert bitwidth. name.replace(pos, 1, tmp); } else { if (pos && (name[pos-1] == 'i' || name[pos-1] == 'f')) { // Wrong type character. ti->error("has invalid parameter type for intrinsic %s: %s is not a%s type", name.c_str(), T->toChars(), (name[pos-1] == 'i' ? "n integral" : " floating-point")); } else { // Just plain wrong. (Error in declaration, not instantiation) td->error("has an invalid intrinsic name: %s", name.c_str()); } fatal(); // or LLVM asserts } } Logger::println("final intrinsic name: %s", name.c_str()); } ////////////////////////////////////////////////////////////////////////////////////////// bool mustDefineSymbol(Dsymbol* s) { if (FuncDeclaration* fd = s->isFuncDeclaration()) { // we can't (and probably shouldn't?) define functions // that weren't semantic3'ed if (fd->semanticRun < 4) return false; if (fd->isArrayOp) return true; if (global.params.useAvailableExternally && fd->availableExternally) { // Emit extra functions if we're inlining. // These will get available_externally linkage, // so they shouldn't end up in object code. assert(fd->type->ty == Tfunction); TypeFunction* tf = (TypeFunction*) fd->type; // * If we define extra static constructors, static destructors // and unittests they'll get registered to run, and we won't // be calling them directly anyway. // * If it's a large function, don't emit it unnecessarily. // Use DMD's canInline() to determine whether it's large. // inlineCost() members have been changed to pay less attention // to DMDs limitations, but still have some issues. The most glaring // offenders are any kind of control flow statements other than // 'if' and 'return'. if ( !fd->isStaticCtorDeclaration() && !fd->isStaticDtorDeclaration() && !fd->isUnitTestDeclaration() && fd->canInline(true)) { return true; } // This was only semantic'ed for inlining checks. // We won't be inlining this, so we only need to emit a declaration. return false; } } // Inlining checks may create some variable and class declarations // we don't need to emit. if (global.params.useAvailableExternally) { if (VarDeclaration* vd = s->isVarDeclaration()) if (vd->availableExternally) return false; if (ClassDeclaration* cd = s->isClassDeclaration()) if (cd->availableExternally) return false; } TemplateInstance* tinst = DtoIsTemplateInstance(s); if (tinst) { if (!opts::singleObj) return true; if (!tinst->emittedInModule) { gIR->seenTemplateInstances.insert(tinst); tinst->emittedInModule = gIR->dmodule; } return tinst->emittedInModule == gIR->dmodule; } return s->getModule() == gIR->dmodule; } ////////////////////////////////////////////////////////////////////////////////////////// bool needsTemplateLinkage(Dsymbol* s) { return DtoIsTemplateInstance(s) && mustDefineSymbol(s); } ////////////////////////////////////////////////////////////////////////////////////////// bool hasUnalignedFields(Type* t) { t = t->toBasetype(); if (t->ty == Tsarray) { assert(t->nextOf()->size() % t->nextOf()->alignsize() == 0); return hasUnalignedFields(t->nextOf()); } else if (t->ty != Tstruct) return false; TypeStruct* ts = (TypeStruct*)t; if (ts->unaligned) return (ts->unaligned == 2); StructDeclaration* sym = ts->sym; // go through all the fields and try to find something unaligned ts->unaligned = 2; for (int i = 0; i < sym->fields.dim; i++) { VarDeclaration* f = (VarDeclaration*)sym->fields.data[i]; unsigned a = f->type->alignsize() - 1; if (((f->offset + a) & ~a) != f->offset) return true; else if (f->type->toBasetype()->ty == Tstruct && hasUnalignedFields(f->type)) return true; } ts->unaligned = 1; return false; } ////////////////////////////////////////////////////////////////////////////////////////// IrModule * getIrModule(Module * M) { if (M == NULL) M = gIR->func()->decl->getModule(); assert(M && "null module"); if (!M->ir.irModule) M->ir.irModule = new IrModule(M, M->srcfile->toChars()); return M->ir.irModule; } ////////////////////////////////////////////////////////////////////////////////////////// size_t realignOffset(size_t offset, Type* type) { size_t alignsize = type->alignsize(); size_t alignedoffset = (offset + alignsize - 1) & ~(alignsize - 1); // if the aligned offset already matches the input offset // don't waste time checking things are ok! if (alignedoffset == offset) return alignedoffset; // we cannot get the llvm alignment if the type is still opaque, this can happen in some // forward reference situations, so when this happens we fall back to manual padding. // also handle arbitrary "by-value" opaques nested inside aggregates. const llvm::Type* T = DtoType(type); if (!T->isSized()) { return offset; } // then we check against the llvm alignment size_t alignsize2 = gTargetData->getABITypeAlignment(T); // if it differs we need to insert manual padding as well if (alignsize != alignsize2) { assert(alignsize > alignsize2 && "this is not good, the D and LLVM " "type alignments differ, but LLVM's is bigger! This will break " "aggregate type mapping"); // don't try and align the offset, and let the mappers pad 100% manually return offset; } // ok, we're good, llvm will align properly! return alignedoffset; } ////////////////////////////////////////////////////////////////////////////////////////// Type * stripModifiers( Type * type ) { #if DMDV2 Type *t = type; while (t->mod) { switch (t->mod) { case MODconst: t = type->cto; break; case MODshared: t = type->sto; break; case MODinvariant: t = type->ito; break; case MODshared | MODconst: t = type->scto; break; default: assert(0 && "Unhandled type modifier"); } if (!t) { unsigned sz = type->sizeTy[type->ty]; t = (Type *)malloc(sz); memcpy(t, type, sz); t->mod = 0; t->deco = NULL; t->arrayof = NULL; t->pto = NULL; t->rto = NULL; t->cto = NULL; t->ito = NULL; t->sto = NULL; t->scto = NULL; t->vtinfo = NULL; t = t->merge(); t->fixTo(type); switch (type->mod) { case MODconst: t->cto = type; break; case MODinvariant: t->ito = type; break; case MODshared: t->sto = type; break; case MODshared | MODconst: t->scto = type; break; default: assert(0); } } } return t; #else return type; #endif } //////////////////////////////////////////////////////////////////////////////////////////