//===-- functions.cpp -----------------------------------------------------===// // // LDC – the LLVM D compiler // // This file is distributed under the BSD-style LDC license. See the LICENSE // file for details. // //===----------------------------------------------------------------------===// #include "gen/functions.h" #include "aggregate.h" #include "declaration.h" #include "id.h" #include "init.h" #include "module.h" #include "mtype.h" #include "statement.h" #include "template.h" #include "gen/abi.h" #include "gen/arrays.h" #include "gen/classes.h" #include "gen/dvalue.h" #include "gen/irstate.h" #include "gen/llvm.h" #include "gen/llvmhelpers.h" #include "gen/logger.h" #include "gen/nested.h" #include "gen/optimizer.h" #include "gen/pragma.h" #include "gen/runtime.h" #include "gen/tollvm.h" #if LDC_LLVM_VER >= 305 #include "llvm/Linker/Linker.h" #else #include "llvm/Linker.h" #endif #if LDC_LLVM_VER >= 303 #include "llvm/IR/Intrinsics.h" #else #include "llvm/Intrinsics.h" #endif #if LDC_LLVM_VER >= 305 #include "llvm/IR/CFG.h" #else #include "llvm/Support/CFG.h" #endif #include #if LDC_LLVM_VER == 302 namespace llvm { typedef llvm::Attributes Attribute; } #endif llvm::FunctionType* DtoFunctionType(Type* type, IrFuncTy &irFty, Type* thistype, Type* nesttype, bool isMain, bool isCtor, bool isIntrinsic) { IF_LOG Logger::println("DtoFunctionType(%s)", type->toChars()); LOG_SCOPE // sanity check assert(type->ty == Tfunction); TypeFunction* f = static_cast(type); assert(f->next && "Encountered function type with invalid return type; " "trying to codegen function ignored by the frontend?"); // Return cached type if available if (irFty.funcType) return irFty.funcType; TargetABI* abi = (isIntrinsic ? TargetABI::getIntrinsic() : gABI); // Tell the ABI we're resolving a new function type abi->newFunctionType(f); // Do not modify irFty yet; this function may be called recursively if any // of the argument types refer to this type. IrFuncTy newIrFty; // llvm idx counter size_t lidx = 0; // main needs a little special handling if (isMain) { newIrFty.ret = new IrFuncTyArg(Type::tint32, false); } // sane return value else { Type* rt = f->next; #if LDC_LLVM_VER >= 302 llvm::AttrBuilder attrBuilder; #else llvm::Attributes a = llvm::Attribute::None; #endif // sret return if (abi->returnInArg(f)) { #if LDC_LLVM_VER >= 302 #if LDC_LLVM_VER >= 303 newIrFty.arg_sret = new IrFuncTyArg(rt, true, llvm::AttrBuilder().addAttribute(llvm::Attribute::StructRet) .addAttribute(llvm::Attribute::NoAlias) #else newIrFty.arg_sret = new IrFuncTyArg(rt, true, llvm::Attributes::get(gIR->context(), llvm::AttrBuilder().addAttribute(llvm::Attributes::StructRet) .addAttribute(llvm::Attributes::NoAlias) #endif #if LDC_LLVM_VER == 302 ) #endif ); #else newIrFty.arg_sret = new IrFuncTyArg(rt, true, llvm::Attribute::StructRet | llvm::Attribute::NoAlias); #endif rt = Type::tvoid; lidx++; } // sext/zext return else { Type *t = rt; if (f->isref) t = t->pointerTo(); #if LDC_LLVM_VER >= 303 if (llvm::Attribute::AttrKind a = DtoShouldExtend(t)) attrBuilder.addAttribute(a); #elif LDC_LLVM_VER == 302 if (llvm::Attributes::AttrVal a = DtoShouldExtend(t)) attrBuilder.addAttribute(a); #else a = DtoShouldExtend(t); #endif } #if LDC_LLVM_VER >= 303 llvm::AttrBuilder a = attrBuilder; #elif LDC_LLVM_VER == 302 llvm::Attributes a = llvm::Attributes::get(gIR->context(), attrBuilder); #endif newIrFty.ret = new IrFuncTyArg(rt, f->isref, a); } lidx++; // member functions if (thistype) { #if LDC_LLVM_VER >= 303 llvm::AttrBuilder attrBuilder; // Issue 624: In case of a ctor 'this' is passed to the function and is also // the return value. This could be a perfect case for the 'Returned' attribute. // However the 'this' type and the return type are transformed in different // ways, making them bitcast incompatible. // Example: extern(C): struct Value { this(string) {} string s; } // return type: { i64, i64 } // this type: %ldc_github_624.Value* // FIXME: (1) Investigate why the types are handled in different ways // (2) The attributes are cleared by some abi implementations // if (isCtor) // attrBuilder.addAttribute(llvm::Attribute::Returned); #endif newIrFty.arg_this = new IrFuncTyArg(thistype, thistype->toBasetype()->ty == Tstruct #if LDC_LLVM_VER >= 303 , attrBuilder #endif ); lidx++; } // and nested functions else if (nesttype) { newIrFty.arg_nest = new IrFuncTyArg(nesttype, false); lidx++; } // vararg functions are special too if (f->varargs) { if (f->linkage == LINKd) { // d style with hidden args // 2 (array) is handled by the frontend if (f->varargs == 1) { // _arguments newIrFty.arg_arguments = new IrFuncTyArg(Type::dtypeinfo->type->arrayOf(), false); lidx++; // _argptr #if LDC_LLVM_VER >= 303 newIrFty.arg_argptr = new IrFuncTyArg(Type::tvoid->pointerTo(), false, llvm::AttrBuilder().addAttribute(llvm::Attribute::NoAlias) .addAttribute(llvm::Attribute::NoCapture)); #elif LDC_LLVM_VER == 302 newIrFty.arg_argptr = new IrFuncTyArg(Type::tvoid->pointerTo(), false, llvm::Attributes::get(gIR->context(), llvm::AttrBuilder().addAttribute(llvm::Attributes::NoAlias) .addAttribute(llvm::Attributes::NoCapture))); #else newIrFty.arg_argptr = new IrFuncTyArg(Type::tvoid->pointerTo(), false, llvm::Attribute::NoAlias | llvm::Attribute::NoCapture); #endif lidx++; } } else { // Default to C-style varargs for non-extern(D) variadic functions. // This seems to be what DMD does. newIrFty.c_vararg = true; } } // if this _Dmain() doesn't have an argument, we force it to have one int nargs = Parameter::dim(f->parameters); if (isMain && nargs == 0) { Type* mainargs = Type::tchar->arrayOf()->arrayOf(); newIrFty.args.push_back(new IrFuncTyArg(mainargs, false)); lidx++; } // add explicit parameters else for (int i = 0; i < nargs; i++) { // get argument Parameter* arg = Parameter::getNth(f->parameters, i); // reference semantics? ref, out and d1 static arrays are bool byref = arg->storageClass & (STCref|STCout); Type* argtype = arg->type; #if LDC_LLVM_VER >= 302 llvm::AttrBuilder attrBuilder; #else llvm::Attributes a = llvm::Attribute::None; #endif // handle lazy args if (arg->storageClass & STClazy) { Logger::println("lazy param"); TypeFunction *ltf = new TypeFunction(NULL, arg->type, 0, LINKd); TypeDelegate *ltd = new TypeDelegate(ltf); argtype = ltd; } // byval else if (abi->passByVal(byref ? argtype->pointerTo() : argtype)) { #if LDC_LLVM_VER >= 302 if (!byref) attrBuilder.addAttribute(llvm::Attribute::ByVal); #else if (!byref) a |= llvm::Attribute::ByVal; #endif // set byref, because byval requires a pointed LLVM type byref = true; } // sext/zext else if (!byref) { #if LDC_LLVM_VER >= 303 if (llvm::Attribute::AttrKind a = DtoShouldExtend(argtype)) attrBuilder.addAttribute(a); #elif LDC_LLVM_VER == 302 if (llvm::Attributes::AttrVal a = DtoShouldExtend(argtype)) attrBuilder.addAttribute(a); #else a |= DtoShouldExtend(argtype); #endif } #if LDC_LLVM_VER >= 303 llvm::AttrBuilder a = attrBuilder; #elif LDC_LLVM_VER == 302 llvm::Attributes a = llvm::Attributes::get(gIR->context(), attrBuilder); #endif newIrFty.args.push_back(new IrFuncTyArg(argtype, byref, a)); lidx++; } // let the abi rewrite the types as necesary abi->rewriteFunctionType(f, newIrFty); // Tell the ABI we're done with this function type abi->doneWithFunctionType(); // Now we can modify irFty safely. irFty = llvm_move(newIrFty); // build the function type std::vector argtypes; argtypes.reserve(lidx); if (irFty.arg_sret) argtypes.push_back(irFty.arg_sret->ltype); if (irFty.arg_this) argtypes.push_back(irFty.arg_this->ltype); if (irFty.arg_nest) argtypes.push_back(irFty.arg_nest->ltype); if (irFty.arg_arguments) argtypes.push_back(irFty.arg_arguments->ltype); if (irFty.arg_argptr) argtypes.push_back(irFty.arg_argptr->ltype); size_t beg = argtypes.size(); size_t nargs2 = irFty.args.size(); for (size_t i = 0; i < nargs2; i++) { argtypes.push_back(irFty.args[i]->ltype); } // reverse params? if (irFty.reverseParams && nargs2 > 1) { std::reverse(argtypes.begin() + beg, argtypes.end()); } irFty.funcType = LLFunctionType::get(irFty.ret->ltype, argtypes, irFty.c_vararg); IF_LOG Logger::cout() << "Final function type: " << *irFty.funcType << "\n"; return irFty.funcType; } ////////////////////////////////////////////////////////////////////////////////////////// #include "llvm/Support/raw_ostream.h" #include "llvm/Support/SourceMgr.h" #if LDC_LLVM_VER >= 305 #include "llvm/AsmParser/Parser.h" #else #include "llvm/Assembly/Parser.h" #endif LLFunction* DtoInlineIRFunction(FuncDeclaration* fdecl) { const char* mangled_name = fdecl->mangleExact(); TemplateInstance* tinst = fdecl->parent->isTemplateInstance(); assert(tinst); Objects& objs = tinst->tdtypes; assert(objs.dim == 3); Expression* a0 = isExpression(objs[0]); assert(a0); StringExp* strexp = a0->toString(); assert(strexp); assert(strexp->sz == 1); std::string code(static_cast(strexp->string), strexp->len); Type* ret = isType(objs[1]); assert(ret); Tuple* a2 = isTuple(objs[2]); assert(a2); Objects& arg_types = a2->objects; std::string str; llvm::raw_string_ostream stream(str); stream << "define " << *DtoType(ret) << " @" << mangled_name << "("; for(size_t i = 0; ;) { Type* ty = isType(arg_types[i]); //assert(ty); if(!ty) { error(tinst->loc, "All parameters of a template defined with pragma llvm_inline_ir, except for the first one, should be types"); fatal(); } stream << *DtoType(ty); i++; if(i >= arg_types.dim) break; stream << ", "; } if(ret->ty == Tvoid) code.append("\nret void"); stream << ")\n{\n" << code << "\n}"; llvm::SMDiagnostic err; #if LDC_LLVM_VER >= 306 std::unique_ptr m = llvm::parseAssemblyString( stream.str().c_str(), err, gIR->context()); #elif LDC_LLVM_VER >= 303 llvm::Module* m = llvm::ParseAssemblyString( stream.str().c_str(), NULL, err, gIR->context()); #else llvm::ParseAssemblyString( stream.str().c_str(), gIR->module, err, gIR->context()); #endif std::string errstr = err.getMessage(); if(errstr != "") error(tinst->loc, "can't parse inline LLVM IR:\n%s\n%s\n%s\nThe input string was: \n%s", #if LDC_LLVM_VER >= 303 err.getLineContents().str().c_str(), #else err.getLineContents().c_str(), #endif (std::string(err.getColumnNo(), ' ') + '^').c_str(), errstr.c_str(), stream.str().c_str()); #if LDC_LLVM_VER >= 303 std::string errstr2 = ""; #if LDC_LLVM_VER >= 306 llvm::Linker(gIR->module).linkInModule(m.get(), &errstr2); #else llvm::Linker(gIR->module).linkInModule(m, &errstr2); #endif if(errstr2 != "") error(tinst->loc, "Error when linking in llvm inline ir: %s", errstr2.c_str()); #endif LLFunction* fun = gIR->module->getFunction(mangled_name); fun->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); fun->addFnAttr(llvm::Attribute::AlwaysInline); return fun; } ////////////////////////////////////////////////////////////////////////////////////////// static llvm::FunctionType* DtoVaFunctionType(FuncDeclaration* fdecl) { IrFuncTy &irFty = fdecl->irFty; if (irFty.funcType) return irFty.funcType; irFty.ret = new IrFuncTyArg(Type::tvoid, false); irFty.args.push_back(new IrFuncTyArg(Type::tvoid->pointerTo(), false)); if (fdecl->llvmInternal == LLVMva_start) irFty.funcType = GET_INTRINSIC_DECL(vastart)->getFunctionType(); else if (fdecl->llvmInternal == LLVMva_copy) { irFty.funcType = GET_INTRINSIC_DECL(vacopy)->getFunctionType(); irFty.args.push_back(new IrFuncTyArg(Type::tvoid->pointerTo(), false)); } else if (fdecl->llvmInternal == LLVMva_end) irFty.funcType = GET_INTRINSIC_DECL(vaend)->getFunctionType(); assert(irFty.funcType); return irFty.funcType; } ////////////////////////////////////////////////////////////////////////////////////////// llvm::FunctionType* DtoFunctionType(FuncDeclaration* fdecl) { // handle for C vararg intrinsics if (fdecl->isVaIntrinsic()) return DtoVaFunctionType(fdecl); Type *dthis=0, *dnest=0; if (fdecl->ident == Id::ensure || fdecl->ident == Id::require) { FuncDeclaration *p = fdecl->parent->isFuncDeclaration(); assert(p); AggregateDeclaration *ad = p->isMember2(); assert(ad); dnest = Type::tvoid->pointerTo(); } else if (fdecl->needThis()) { if (AggregateDeclaration* ad = fdecl->isMember2()) { IF_LOG Logger::println("isMember = this is: %s", ad->type->toChars()); dthis = ad->type; LLType* thisty = DtoType(dthis); //Logger::cout() << "this llvm type: " << *thisty << '\n'; if (ad->isStructDeclaration()) thisty = getPtrToType(thisty); } else { IF_LOG Logger::println("chars: %s type: %s kind: %s", fdecl->toChars(), fdecl->type->toChars(), fdecl->kind()); llvm_unreachable("needThis, but invalid parent declaration."); } } else if (fdecl->isNested()) { dnest = Type::tvoid->pointerTo(); } LLFunctionType* functype = DtoFunctionType(fdecl->type, fdecl->irFty, dthis, dnest, fdecl->isMain(), fdecl->isCtorDeclaration(), fdecl->llvmInternal == LLVMintrinsic); return functype; } ////////////////////////////////////////////////////////////////////////////////////////// static llvm::Function* DtoDeclareVaFunction(FuncDeclaration* fdecl) { DtoVaFunctionType(fdecl); llvm::Function* func = 0; if (fdecl->llvmInternal == LLVMva_start) func = GET_INTRINSIC_DECL(vastart); else if (fdecl->llvmInternal == LLVMva_copy) func = GET_INTRINSIC_DECL(vacopy); else if (fdecl->llvmInternal == LLVMva_end) func = GET_INTRINSIC_DECL(vaend); assert(func); getIrFunc(fdecl)->func = func; return func; } ////////////////////////////////////////////////////////////////////////////////////////// void DtoResolveFunction(FuncDeclaration* fdecl) { if ((!global.params.useUnitTests || !fdecl->type) && fdecl->isUnitTestDeclaration()) { IF_LOG Logger::println("Ignoring unittest %s", fdecl->toPrettyChars()); return; // ignore declaration completely } if (fdecl->ir.resolved) return; fdecl->ir.resolved = true; Type *type = fdecl->type; // If errors occurred compiling it, such as bugzilla 6118 if (type && type->ty == Tfunction) { Type *next = static_cast(type)->next; if (!next || next->ty == Terror) return; } //printf("resolve function: %s\n", fdecl->toPrettyChars()); if (fdecl->parent) if (TemplateInstance* tinst = fdecl->parent->isTemplateInstance()) { if (TemplateDeclaration* tempdecl = tinst->tempdecl->isTemplateDeclaration()) { if (tempdecl->llvmInternal == LLVMva_arg) { Logger::println("magic va_arg found"); fdecl->llvmInternal = LLVMva_arg; fdecl->ir.resolved = true; fdecl->ir.declared = true; fdecl->ir.initialized = true; fdecl->ir.defined = true; return; // this gets mapped to an instruction so a declaration makes no sence } else if (tempdecl->llvmInternal == LLVMva_start) { Logger::println("magic va_start found"); fdecl->llvmInternal = LLVMva_start; } else if (tempdecl->llvmInternal == LLVMintrinsic) { Logger::println("overloaded intrinsic found"); assert(fdecl->llvmInternal == LLVMintrinsic); assert(fdecl->mangleOverride); } else if (tempdecl->llvmInternal == LLVMinline_asm) { Logger::println("magic inline asm found"); TypeFunction* tf = static_cast(fdecl->type); if (tf->varargs != 1 || (fdecl->parameters && fdecl->parameters->dim != 0)) { tempdecl->error("invalid __asm declaration, must be a D style variadic with no explicit parameters"); fatal(); } fdecl->llvmInternal = LLVMinline_asm; fdecl->ir.resolved = true; fdecl->ir.declared = true; fdecl->ir.initialized = true; fdecl->ir.defined = true; return; // this gets mapped to a special inline asm call, no point in going on. } else if (tempdecl->llvmInternal == LLVMinline_ir) { fdecl->llvmInternal = LLVMinline_ir; fdecl->linkage = LINKc; fdecl->ir.defined = true; Type* type = fdecl->type; assert(type->ty == Tfunction); static_cast(type)->linkage = LINKc; } } } DtoFunctionType(fdecl); IF_LOG Logger::println("DtoResolveFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars()); LOG_SCOPE; // queue declaration unless the function is abstract without body if (!fdecl->isAbstract() || fdecl->fbody) { DtoDeclareFunction(fdecl); } } ////////////////////////////////////////////////////////////////////////////////////////// #if LDC_LLVM_VER >= 303 static void set_param_attrs(TypeFunction* f, llvm::Function* func, FuncDeclaration* fdecl) { IrFuncTy &irFty = fdecl->irFty; llvm::AttributeSet old = func->getAttributes(); llvm::AttributeSet existingAttrs[] = { old.getFnAttributes(), old.getRetAttributes() }; llvm::AttributeSet newAttrs = llvm::AttributeSet::get(gIR->context(), existingAttrs); int idx = 0; // handle implicit args #define ADD_PA(X) \ if (irFty.X) { \ if (irFty.X->attrs.hasAttributes()) { \ llvm::AttributeSet a = llvm::AttributeSet::get(gIR->context(), idx, irFty.X->attrs); \ newAttrs = newAttrs.addAttributes(gIR->context(), idx, a); \ } \ idx++; \ } ADD_PA(ret) ADD_PA(arg_sret) ADD_PA(arg_this) ADD_PA(arg_nest) ADD_PA(arg_arguments) ADD_PA(arg_argptr) #undef ADD_PA // set attrs on the rest of the arguments size_t n = Parameter::dim(f->parameters); for (size_t k = 0; k < n; k++) { Parameter* fnarg = Parameter::getNth(f->parameters, k); assert(fnarg); llvm::AttrBuilder a = irFty.args[k]->attrs; if (a.hasAttributes()) { unsigned i = idx + (irFty.reverseParams ? n-k-1 : k); llvm::AttributeSet as = llvm::AttributeSet::get(gIR->context(), i, a); newAttrs = newAttrs.addAttributes(gIR->context(), i, as); } } // Store the final attribute set func->setAttributes(newAttrs); } #else static void set_param_attrs(TypeFunction* f, llvm::Function* func, FuncDeclaration* fdecl) { IrFuncTy &irFty = fdecl->irFty; LLSmallVector attrs; int idx = 0; // handle implicit args #define ADD_PA(X) \ if (irFty.X) { \ if (HAS_ATTRIBUTES(irFty.X->attrs)) { \ attrs.push_back(llvm::AttributeWithIndex::get(idx, irFty.X->attrs)); \ } \ idx++; \ } ADD_PA(ret) ADD_PA(arg_sret) ADD_PA(arg_this) ADD_PA(arg_nest) ADD_PA(arg_arguments) ADD_PA(arg_argptr) #undef ADD_PA // set attrs on the rest of the arguments size_t n = Parameter::dim(f->parameters); #if LDC_LLVM_VER == 302 LLSmallVector attrptr(n, llvm::Attributes()); #else LLSmallVector attrptr(n, llvm::Attribute::None); #endif for (size_t k = 0; k < n; ++k) { Parameter* fnarg = Parameter::getNth(f->parameters, k); assert(fnarg); attrptr[k] = irFty.args[k]->attrs; } // reverse params? if (irFty.reverseParams) { std::reverse(attrptr.begin(), attrptr.end()); } // build rest of attrs list for (size_t i = 0; i < n; i++) { if (HAS_ATTRIBUTES(attrptr[i])) { attrs.push_back(llvm::AttributeWithIndex::get(idx + i, attrptr[i])); } } // Merge in any old attributes (attributes for the function itself are // also stored in a list slot). const size_t newSize = attrs.size(); llvm::AttrListPtr oldAttrs = func->getAttributes(); for (size_t i = 0; i < oldAttrs.getNumSlots(); ++i) { llvm::AttributeWithIndex curr = oldAttrs.getSlot(i); bool found = false; for (size_t j = 0; j < newSize; ++j) { if (attrs[j].Index == curr.Index) { #if LDC_LLVM_VER == 302 attrs[j].Attrs = llvm::Attributes::get( gIR->context(), llvm::AttrBuilder(attrs[j].Attrs).addAttributes(curr.Attrs)); #else attrs[j].Attrs |= curr.Attrs; #endif found = true; break; } } if (!found) { attrs.push_back(curr); } } #if LDC_LLVM_VER >= 302 llvm::AttrListPtr attrlist = llvm::AttrListPtr::get(gIR->context(), llvm::ArrayRef(attrs)); #else llvm::AttrListPtr attrlist = llvm::AttrListPtr::get(attrs.begin(), attrs.end()); #endif func->setAttributes(attrlist); } #endif ////////////////////////////////////////////////////////////////////////////////////////// void DtoDeclareFunction(FuncDeclaration* fdecl) { DtoResolveFunction(fdecl); if (fdecl->ir.declared) return; fdecl->ir.declared = true; IF_LOG Logger::println("DtoDeclareFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars()); LOG_SCOPE; if (fdecl->isUnitTestDeclaration() && !global.params.useUnitTests) { Logger::println("unit tests not enabled"); return; } //printf("declare function: %s\n", fdecl->toPrettyChars()); // intrinsic sanity check if (fdecl->llvmInternal == LLVMintrinsic && fdecl->fbody) { error(fdecl->loc, "intrinsics cannot have function bodies"); fatal(); } // get TypeFunction* Type* t = fdecl->type->toBasetype(); TypeFunction* f = static_cast(t); // create IrFunction IrFunction *irFunc = getIrFunc(fdecl, true); LLFunction* vafunc = 0; if (fdecl->isVaIntrinsic()) vafunc = DtoDeclareVaFunction(fdecl); // calling convention LINK link = f->linkage; if (vafunc || fdecl->llvmInternal == LLVMintrinsic // DMD treats _Dmain as having C calling convention and this has been // hardcoded into druntime, even if the frontend type has D linkage. // See Bugzilla issue 9028. || fdecl->isMain() ) { link = LINKc; } // mangled name std::string mangledName(fdecl->mangleExact()); mangledName = gABI->mangleForLLVM(mangledName, link); // construct function LLFunctionType* functype = DtoFunctionType(fdecl); LLFunction* func = vafunc ? vafunc : gIR->module->getFunction(mangledName); if (!func) { if(fdecl->llvmInternal == LLVMinline_ir) { func = DtoInlineIRFunction(fdecl); } else { // All function declarations are "external" - any other linkage type // is set when actually defining the function. func = LLFunction::Create(functype, llvm::GlobalValue::ExternalLinkage, mangledName, gIR->module); } } else if (func->getFunctionType() != functype) { error(fdecl->loc, "Function type does not match previously declared function with the same mangled name: %s", fdecl->mangleExact()); fatal(); } func->setCallingConv(gABI->callingConv(link)); IF_LOG Logger::cout() << "func = " << *func << std::endl; // add func to IRFunc irFunc->func = func; // parameter attributes if (!fdecl->isIntrinsic()) { set_param_attrs(f, func, fdecl); if (global.params.disableRedZone) { func->addFnAttr(llvm::Attribute::NoRedZone); } } // main if (fdecl->isMain()) { // Detect multiple main functions, which is disallowed. DMD checks this // in the glue code, so we need to do it here as well. if (gIR->mainFunc) { error(fdecl->loc, "only one main function allowed"); } gIR->mainFunc = func; } if (fdecl->neverInline) { irFunc->setNeverInline(); } if (fdecl->llvmInternal == LLVMglobal_crt_ctor || fdecl->llvmInternal == LLVMglobal_crt_dtor) { AppendFunctionToLLVMGlobalCtorsDtors(func, fdecl->priority, fdecl->llvmInternal == LLVMglobal_crt_ctor); } IrFuncTy &irFty = fdecl->irFty; // if (!declareOnly) { // name parameters llvm::Function::arg_iterator iarg = func->arg_begin(); if (irFty.arg_sret) { iarg->setName(".sret_arg"); irFunc->retArg = iarg; ++iarg; } if (irFty.arg_this) { iarg->setName(".this_arg"); irFunc->thisArg = iarg; VarDeclaration* v = fdecl->vthis; if (v) { // We already build the this argument here if we will need it // later for codegen'ing the function, just as normal // parameters below, because it can be referred to in nested // context types. Will be given storage in DtoDefineFunction. assert(!isIrParameterCreated(v)); IrParameter *irParam = getIrParameter(v, true); irParam->value = iarg; irParam->arg = irFty.arg_this; irParam->isVthis = true; } ++iarg; } else if (irFty.arg_nest) { iarg->setName(".nest_arg"); irFunc->nestArg = iarg; assert(irFunc->nestArg); ++iarg; } if (irFty.arg_argptr) { iarg->setName("._arguments"); irFunc->_arguments = iarg; ++iarg; iarg->setName("._argptr"); irFunc->_argptr = iarg; ++iarg; } // we never reference parameters of function prototypes unsigned int k = 0; for (; iarg != func->arg_end(); ++iarg) { if (fdecl->parameters && fdecl->parameters->dim > k) { int paramIndex = irFty.reverseParams ? fdecl->parameters->dim-k-1 : k; Dsymbol* argsym = static_cast(fdecl->parameters->data[paramIndex]); VarDeclaration* argvd = argsym->isVarDeclaration(); assert(argvd); assert(!isIrLocalCreated(argvd)); std::string str(argvd->ident->toChars()); str.append("_arg"); iarg->setName(str); IrParameter *irParam = getIrParameter(argvd, true); irParam->value = iarg; irParam->arg = irFty.args[paramIndex]; k++; } else { iarg->setName("unnamed"); } } } } ////////////////////////////////////////////////////////////////////////////////////////// // FIXME: this isn't too pretty! void DtoDefineFunction(FuncDeclaration* fd) { IF_LOG Logger::println("DtoDefineFunction(%s): %s", fd->toPrettyChars(), fd->loc.toChars()); LOG_SCOPE; if (fd->ir.defined) return; if ((fd->type && fd->type->ty == Terror) || (fd->type && fd->type->ty == Tfunction && static_cast(fd->type)->next == NULL) || (fd->type && fd->type->ty == Tfunction && static_cast(fd->type)->next->ty == Terror)) { IF_LOG Logger::println("Ignoring; has error type, no return type or returns error type"); fd->ir.defined = true; return; } if (fd->isUnitTestDeclaration() && !global.params.useUnitTests) { IF_LOG Logger::println("No code generation for unit test declaration %s", fd->toChars()); fd->ir.defined = true; return; } if (fd->semanticRun == PASSsemanticdone) { /* What happened is this function failed semantic3() with errors, * but the errors were gagged. * Try to reproduce those errors, and then fail. */ error(fd->loc, "errors compiling function %s", fd->toPrettyChars()); fd->ir.defined = true; return; } // Skip generating code for this part of a TemplateInstance if it has been // instantiated by any non-root module (i.e. a module not listed on the // command line). // Check this before calling DtoDeclareFunction to avoid touching // unanalyzed code. if (!fd->needsCodegen()) { IF_LOG Logger::println("No code generation for %s", fd->toChars()); fd->ir.defined = true; return; } DtoDeclareFunction(fd); assert(fd->ir.declared); // DtoResolveFunction might also set the defined flag for functions we // should not touch. if (fd->ir.defined) return; fd->ir.defined = true; // We cannot emit nested functions with parents that have not gone through // semantic analysis. This can happen as DMD leaks some template instances // from constraints into the module member list. DMD gets away with being // sloppy as functions in template contraints obviously never need to access // data from the template function itself, but it would still mess up our // nested context creation code. FuncDeclaration* parent = fd; while ((parent = getParentFunc(parent, true))) { if (parent->semanticRun != PASSsemantic3done || parent->semantic3Errors) { IF_LOG Logger::println("Ignoring nested function with unanalyzed parent."); return; } } assert(fd->semanticRun == PASSsemantic3done); assert(fd->ident != Id::empty); if (fd->isUnitTestDeclaration()) { if (global.params.useUnitTests) gIR->unitTests.push_back(fd); else return; } else if (fd->isSharedStaticCtorDeclaration()) { gIR->sharedCtors.push_back(fd); } else if (StaticDtorDeclaration *dtorDecl = fd->isSharedStaticDtorDeclaration()) { gIR->sharedDtors.push_front(fd); if (dtorDecl->vgate) gIR->sharedGates.push_front(dtorDecl->vgate); } else if (fd->isStaticCtorDeclaration()) { gIR->ctors.push_back(fd); } else if (StaticDtorDeclaration *dtorDecl = fd->isStaticDtorDeclaration()) { gIR->dtors.push_front(fd); if (dtorDecl->vgate) gIR->gates.push_front(dtorDecl->vgate); } // if this function is naked, we take over right away! no standard processing! if (fd->naked) { DtoDefineNakedFunction(fd); return; } IrFuncTy &irFty = fd->irFty; IrFunction *irFunc = getIrFunc(fd); // debug info irFunc->diSubprogram = gIR->DBuilder.EmitSubProgram(fd); Type* t = fd->type->toBasetype(); TypeFunction* f = static_cast(t); // assert(f->irtype); llvm::Function* func = irFunc->func; // is there a body? if (fd->fbody == NULL) return; IF_LOG Logger::println("Doing function body for: %s", fd->toChars()); gIR->functions.push_back(irFunc); if (fd->isMain()) gIR->emitMain = true; func->setLinkage(DtoLinkage(fd)); // On x86_64, always set 'uwtable' for System V ABI compatibility. // TODO: Find a better place for this. if (global.params.targetTriple.getArch() == llvm::Triple::x86_64) { func->addFnAttr(llvm::Attribute::UWTable); } #if LDC_LLVM_VER >= 303 if (opts::sanitize != opts::None) { // Set the required sanitizer attribute. if (opts::sanitize == opts::AddressSanitizer) { func->addFnAttr(llvm::Attribute::SanitizeAddress); } if (opts::sanitize == opts::MemorySanitizer) { func->addFnAttr(llvm::Attribute::SanitizeMemory); } if (opts::sanitize == opts::ThreadSanitizer) { func->addFnAttr(llvm::Attribute::SanitizeThread); } } #endif llvm::BasicBlock* beginbb = llvm::BasicBlock::Create(gIR->context(), "", func); llvm::BasicBlock* endbb = llvm::BasicBlock::Create(gIR->context(), "endentry", func); //assert(gIR->scopes.empty()); gIR->scopes.push_back(IRScope(beginbb, endbb)); // create alloca point // this gets erased when the function is complete, so alignment etc does not matter at all llvm::Instruction* allocaPoint = new llvm::AllocaInst(LLType::getInt32Ty(gIR->context()), "alloca point", beginbb); irFunc->allocapoint = allocaPoint; // debug info - after all allocas, but before any llvm.dbg.declare etc gIR->DBuilder.EmitFuncStart(fd); // this hack makes sure the frame pointer elimination optimization is disabled. // this this eliminates a bunch of inline asm related issues. if (fd->hasReturnExp & 8) // has inline asm { // emit a call to llvm_eh_unwind_init LLFunction* hack = GET_INTRINSIC_DECL(eh_unwind_init); gIR->ir->CreateCall(hack, ""); } // give the 'this' argument storage and debug info if (irFty.arg_this) { LLValue* thisvar = irFunc->thisArg; assert(thisvar); LLValue* thismem = thisvar; if (!irFty.arg_this->byref) { thismem = DtoRawAlloca(thisvar->getType(), 0, "this"); // FIXME: align? DtoStore(thisvar, thismem); irFunc->thisArg = thismem; } assert(getIrParameter(fd->vthis)->value == thisvar); getIrParameter(fd->vthis)->value = thismem; gIR->DBuilder.EmitLocalVariable(thismem, fd->vthis); } // give the 'nestArg' storage if (irFty.arg_nest) { LLValue *nestArg = irFunc->nestArg; LLValue *val = DtoRawAlloca(nestArg->getType(), 0, "nestedFrame"); DtoStore(nestArg, val); irFunc->nestArg = val; } // give arguments storage // and debug info if (fd->parameters) { size_t n = irFty.args.size(); assert(n == fd->parameters->dim); for (size_t i=0; i < n; ++i) { Dsymbol* argsym = static_cast(fd->parameters->data[i]); VarDeclaration* vd = argsym->isVarDeclaration(); assert(vd); IrParameter* irparam = getIrParameter(vd); assert(irparam); bool refout = vd->storage_class & (STCref | STCout); bool lazy = vd->storage_class & STClazy; if (!refout && (!irparam->arg->byref || lazy)) { // alloca a stack slot for this first class value arg LLType* argt; if (lazy) argt = irparam->value->getType(); else argt = i1ToI8(DtoType(vd->type)); LLValue* mem = DtoRawAlloca(argt, 0, vd->ident->toChars()); // let the abi transform the argument back first DImValue arg_dval(vd->type, irparam->value); irFty.getParam(vd->type, i, &arg_dval, mem); // set the arg var value to the alloca irparam->value = mem; } if (global.params.symdebug && !(isaArgument(irparam->value) && isaArgument(irparam->value)->hasByValAttr()) && !refout) gIR->DBuilder.EmitLocalVariable(irparam->value, vd); } } FuncGen fg; irFunc->gen = &fg; DtoCreateNestedContext(fd); if (fd->vresult && ! fd->vresult->nestedrefs.dim // FIXME: not sure here :/ ) { DtoVarDeclaration(fd->vresult); } // copy _argptr and _arguments to a memory location if (f->linkage == LINKd && f->varargs == 1) { // _argptr LLValue* argptrmem = DtoRawAlloca(irFunc->_argptr->getType(), 0, "_argptr_mem"); new llvm::StoreInst(irFunc->_argptr, argptrmem, gIR->scopebb()); irFunc->_argptr = argptrmem; // _arguments LLValue* argumentsmem = DtoRawAlloca(irFunc->_arguments->getType(), 0, "_arguments_mem"); new llvm::StoreInst(irFunc->_arguments, argumentsmem, gIR->scopebb()); irFunc->_arguments = argumentsmem; } // output function body Statement_toIR(fd->fbody, gIR); irFunc->gen = 0; // TODO: clean up this mess // std::cout << *func << std::endl; llvm::BasicBlock* bb = gIR->scopebb(); if (pred_begin(bb) == pred_end(bb) && bb != &bb->getParent()->getEntryBlock()) { // This block is trivially unreachable, so just delete it. // (This is a common case because it happens when 'return' // is the last statement in a function) bb->eraseFromParent(); } else if (!gIR->scopereturned()) { // llvm requires all basic blocks to end with a TerminatorInst but DMD does not put a return statement // in automatically, so we do it here. // pass the previous block into this block gIR->DBuilder.EmitFuncEnd(fd); if (func->getReturnType() == LLType::getVoidTy(gIR->context())) { llvm::ReturnInst::Create(gIR->context(), gIR->scopebb()); } else if (!fd->isMain()) { AsmBlockStatement* asmb = fd->fbody->endsWithAsm(); if (asmb) { assert(asmb->abiret); llvm::ReturnInst::Create(gIR->context(), asmb->abiret, bb); } else { llvm::ReturnInst::Create(gIR->context(), llvm::UndefValue::get(func->getReturnType()), bb); } } else llvm::ReturnInst::Create(gIR->context(), LLConstant::getNullValue(func->getReturnType()), bb); } // std::cout << *func << std::endl; // erase alloca point if (allocaPoint->getParent()) allocaPoint->eraseFromParent(); allocaPoint = 0; gIR->func()->allocapoint = 0; gIR->scopes.pop_back(); // get rid of the endentry block, it's never used assert(!func->getBasicBlockList().empty()); func->getBasicBlockList().pop_back(); gIR->functions.pop_back(); // std::cout << *func << std::endl; } ////////////////////////////////////////////////////////////////////////////////////////// llvm::FunctionType* DtoBaseFunctionType(FuncDeclaration* fdecl) { Dsymbol* parent = fdecl->toParent(); ClassDeclaration* cd = parent->isClassDeclaration(); assert(cd); FuncDeclaration* f = fdecl; while (cd) { ClassDeclaration* base = cd->baseClass; if (!base) break; FuncDeclaration* f2 = base->findFunc(fdecl->ident, static_cast(fdecl->type)); if (f2) { f = f2; cd = base; } else break; } DtoResolveFunction(f); return llvm::cast(DtoType(f->type)); } ////////////////////////////////////////////////////////////////////////////////////////// DValue* DtoArgument(Parameter* fnarg, Expression* argexp) { IF_LOG Logger::println("DtoArgument"); LOG_SCOPE; DValue* arg = argexp->toElem(gIR); // ref/out arg if (fnarg && (fnarg->storageClass & (STCref | STCout))) { Loc loc; arg = new DImValue(argexp->type, makeLValue(loc, arg)); } // lazy arg else if (fnarg && (fnarg->storageClass & STClazy)) { assert(argexp->type->toBasetype()->ty == Tdelegate); assert(!arg->isLVal()); return arg; } // byval arg, but expr has no storage yet else if (DtoIsPassedByRef(argexp->type) && (arg->isSlice() || arg->isNull())) { LLValue* alloc = DtoAlloca(argexp->type, ".tmp_arg"); DVarValue* vv = new DVarValue(argexp->type, alloc); DtoAssign(argexp->loc, vv, arg); arg = vv; } return arg; } ////////////////////////////////////////////////////////////////////////////////////////// void DtoVariadicArgument(Expression* argexp, LLValue* dst) { IF_LOG Logger::println("DtoVariadicArgument"); LOG_SCOPE; DVarValue vv(argexp->type, dst); DtoAssign(argexp->loc, &vv, argexp->toElem(gIR)); } ////////////////////////////////////////////////////////////////////////////////////////// bool FuncDeclaration::isIntrinsic() { return (llvmInternal == LLVMintrinsic || isVaIntrinsic()); } bool FuncDeclaration::isVaIntrinsic() { return (llvmInternal == LLVMva_start || llvmInternal == LLVMva_copy || llvmInternal == LLVMva_end); }