C ABI: Do not pass empty structs as parameters at all

This is most visible on x86 (32-bit), where the stack
alignment is off otherwise.

This change is quite messy because many places assumed
that there was always exactly one LLVM parameter per
TypeFunction::parameters entry.
This commit is contained in:
David Nadlinger 2015-08-22 22:12:23 +02:00
parent 410203b37a
commit ee50259dfd
5 changed files with 130 additions and 91 deletions

View file

@ -164,6 +164,17 @@ llvm::FunctionType* DtoFunctionType(Type* type, IrFuncTy &irFty, Type* thistype,
} }
else if (!passPointer) else if (!passPointer)
{ {
if (loweredDType->toBasetype()->ty == Tstruct)
{
// Do not pass empty structs at all for C++ ABI compatibility.
// Tests with clang reveal that more complex "empty" types, for
// example a struct containing an empty struct, are not
// optimized in the same way.
StructDeclaration *sd =
static_cast<TypeStruct*>(loweredDType->toBasetype())->sym;
if (sd->fields.empty()) continue;
}
if (abi->passByVal(loweredDType)) if (abi->passByVal(loweredDType))
{ {
attrBuilder.add(LDC_ATTRIBUTE(ByVal)); attrBuilder.add(LDC_ATTRIBUTE(ByVal));
@ -177,6 +188,7 @@ llvm::FunctionType* DtoFunctionType(Type* type, IrFuncTy &irFty, Type* thistype,
} }
} }
newIrFty.args.push_back(new IrFuncTyArg(loweredDType, passPointer, attrBuilder)); newIrFty.args.push_back(new IrFuncTyArg(loweredDType, passPointer, attrBuilder));
newIrFty.args.back()->parametersIdx = i;
++nextLLArgIdx; ++nextLLArgIdx;
} }
@ -411,13 +423,11 @@ static void set_param_attrs(TypeFunction* f, llvm::Function* func, FuncDeclarati
#undef ADD_PA #undef ADD_PA
// set attrs on the rest of the arguments // Set attributes on the explicit parameters.
size_t n = Parameter::dim(f->parameters); const size_t n = irFty.args.size();
for (size_t k = 0; k < n; k++) for (size_t k = 0; k < n; k++)
{ {
assert(Parameter::getNth(f->parameters, k)); const size_t i = idx + (irFty.reverseParams ? (n - k - 1) : k);
unsigned i = idx + (irFty.reverseParams ? n-k-1 : k);
newAttrs.add(i, irFty.args[k]->attrs); newAttrs.add(i, irFty.args[k]->attrs);
} }
@ -576,32 +586,28 @@ void DtoDeclareFunction(FuncDeclaration* fdecl)
++iarg; ++iarg;
} }
// we never reference parameters of function prototypes
unsigned int k = 0; unsigned int k = 0;
for (; iarg != func->arg_end(); ++iarg) for (; iarg != func->arg_end(); ++iarg)
{ {
if (fdecl->parameters && fdecl->parameters->dim > k) size_t llExplicitIdx = irFty.reverseParams ? irFty.args.size() - k - 1 : k;
{ ++k;
int paramIndex = irFty.reverseParams ? fdecl->parameters->dim-k-1 : k; IrFuncTyArg *arg = irFty.args[llExplicitIdx];
Dsymbol* argsym = static_cast<Dsymbol*>(fdecl->parameters->data[paramIndex]);
VarDeclaration* argvd = argsym->isVarDeclaration(); if (!fdecl->parameters || arg->parametersIdx >= fdecl->parameters->dim)
assert(argvd);
assert(!isIrLocalCreated(argvd));
std::string str(argvd->ident->toChars());
str.append("_arg");
iarg->setName(str);
IrParameter *irParam = getIrParameter(argvd, true);
irParam->value = iarg;
irParam->arg = irFty.args[paramIndex];
k++;
}
else
{ {
iarg->setName("unnamed"); iarg->setName("unnamed");
continue;
} }
Dsymbol* const argsym = (*fdecl->parameters)[arg->parametersIdx];
VarDeclaration* argvd = argsym->isVarDeclaration();
assert(argvd);
iarg->setName(argvd->ident->toChars() + llvm::Twine("_arg"));
IrParameter *irParam = getIrParameter(argvd, true);
irParam->arg = arg;
irParam->value = iarg;
} }
} }
@ -842,24 +848,34 @@ void DtoDefineFunction(FuncDeclaration* fd)
irFunc->nestArg = val; irFunc->nestArg = val;
} }
// give arguments storage // give arguments storage and debug info
// and debug info
if (fd->parameters) if (fd->parameters)
{ {
size_t n = irFty.args.size(); // Not all arguments are necessarily passed on the LLVM level
assert(n == fd->parameters->dim); // (e.g. zero-member structs), so we need to keep track of the
for (size_t i=0; i < n; ++i) // index in the IrFuncTy args array separately.
size_t llArgIdx = 0;
for (size_t i = 0; i < fd->parameters->dim; ++i)
{ {
Dsymbol* argsym = static_cast<Dsymbol*>(fd->parameters->data[i]); Dsymbol* const argsym = (*fd->parameters)[i];
VarDeclaration* vd = argsym->isVarDeclaration(); VarDeclaration* const vd = argsym->isVarDeclaration();
assert(vd); assert(vd);
const bool refout = vd->storage_class & (STCref | STCout);
IrParameter* irparam = getIrParameter(vd); IrParameter* irparam = getIrParameter(vd);
assert(irparam); Type* debugInfoType = vd->type;
if (!irparam)
bool refout = vd->storage_class & (STCref | STCout); {
bool lazy = vd->storage_class & STClazy; // This is a parameter that is not passed on the LLVM level.
bool firstClassVal = !refout && (!irparam->arg->byref || lazy); // Create the param here and set it to a "dummy" alloca that
// we do not store to here.
irparam = getIrParameter(vd, true);
irparam->value = DtoAlloca(vd->type, vd->ident->toChars());
}
else
{
const bool lazy = vd->storage_class & STClazy;
const bool firstClassVal = !refout && (!irparam->arg->byref || lazy);
if (firstClassVal) if (firstClassVal)
{ {
// alloca a stack slot for this first class value arg // alloca a stack slot for this first class value arg
@ -867,14 +883,18 @@ void DtoDefineFunction(FuncDeclaration* fd)
// let the abi transform the argument back first // let the abi transform the argument back first
DImValue arg_dval(vd->type, irparam->value); DImValue arg_dval(vd->type, irparam->value);
irFty.getParam(vd->type, i, &arg_dval, mem); irFty.getParam(vd->type, llArgIdx, &arg_dval, mem);
// set the arg var value to the alloca // set the arg var value to the alloca
irparam->value = mem; irparam->value = mem;
debugInfoType = irparam->arg->type;
}
++llArgIdx;
} }
if (global.params.symdebug && !(isaArgument(irparam->value) && isaArgument(irparam->value)->hasByValAttr()) && !refout) if (global.params.symdebug && !(isaArgument(irparam->value) && isaArgument(irparam->value)->hasByValAttr()) && !refout)
gIR->DBuilder.EmitLocalVariable(irparam->value, vd, firstClassVal ? irparam->arg->type : 0); gIR->DBuilder.EmitLocalVariable(irparam->value, vd, debugInfoType);
} }
} }

View file

@ -158,7 +158,7 @@ DValue* DtoNestedVariable(Loc& loc, Type* astype, VarDeclaration* vd, bool byref
Logger::cout() << "Addr: " << *val << '\n'; Logger::cout() << "Addr: " << *val << '\n';
Logger::cout() << "of type: " << *val->getType() << '\n'; Logger::cout() << "of type: " << *val->getType() << '\n';
} }
if (byref || (vd->isParameter() && getIrParameter(vd)->arg->byref)) { if (byref || (vd->isParameter() && getIrParameter(vd)->arg && getIrParameter(vd)->arg->byref)) {
val = DtoAlignedLoad(val); val = DtoAlignedLoad(val);
//dwarfOpDeref(dwarfAddr); //dwarfOpDeref(dwarfAddr);
IF_LOG { IF_LOG {
@ -364,9 +364,11 @@ static void DtoCreateNestedContextType(FuncDeclaration* fd) {
irLocal->nestedIndex = types.size(); irLocal->nestedIndex = types.size();
irLocal->nestedDepth = depth; irLocal->nestedDepth = depth;
if (vd->isParameter()) { if (vd->isParameter() && getIrParameter(vd)->arg) {
// Parameters will have storage associated with them (to handle byref etc.), // Parameters that are part of the LLVM signature will have
// so handle those cases specially by storing a pointer instead of a value. // storage associated with them (to handle byref etc.), so
// handle those cases specially by storing a pointer instead
// of a value.
const IrParameter* irparam = getIrParameter(vd); const IrParameter* irparam = getIrParameter(vd);
const bool refout = vd->storage_class & (STCref | STCout); const bool refout = vd->storage_class & (STCref | STCout);
const bool lazy = vd->storage_class & STClazy; const bool lazy = vd->storage_class & STClazy;
@ -479,7 +481,7 @@ void DtoCreateNestedContext(FuncDeclaration* fd) {
LOG_SCOPE LOG_SCOPE
IrParameter* parm = getIrParameter(vd); IrParameter* parm = getIrParameter(vd);
if (parm->arg->byref) if (parm->arg && parm->arg->byref)
{ {
storeVariable(vd, gep); storeVariable(vd, gep);
} }

View file

@ -117,14 +117,20 @@ LLFunctionType* DtoExtractFunctionType(LLType* type)
static void addExplicitArguments(std::vector<LLValue*>& args, AttrSet& attrs, static void addExplicitArguments(std::vector<LLValue*>& args, AttrSet& attrs,
IrFuncTy& irFty, LLFunctionType* callableTy, const std::vector<DValue*>& argvals, int numFormalParams) IrFuncTy& irFty, LLFunctionType* callableTy, const std::vector<DValue*>& argvals, int numFormalParams)
{ {
const int numImplicitArgs = args.size(); // Number of arguments added to the LLVM type that are implicit on the
const int numExplicitArgs = argvals.size(); // frontend side of things (this, context pointers, etc.)
const size_t implicitLLArgCount = args.size();
args.resize(numImplicitArgs + numExplicitArgs, static_cast<LLValue*>(0)); // Number of formal arguments in the LLVM type (i.e. excluding varargs).
const size_t formalLLArgCount = irFty.args.size();
// The number of explicit arguments in the D call expression (including
// varargs), not all of which necessarily generate a LLVM argument.
const size_t explicitDArgCount = argvals.size();
// construct and initialize an IrFuncTyArg object for each vararg // construct and initialize an IrFuncTyArg object for each vararg
std::vector<IrFuncTyArg*> optionalIrArgs; std::vector<IrFuncTyArg*> optionalIrArgs;
for (int i = numFormalParams; i < numExplicitArgs; i++) { for (size_t i = numFormalParams; i < explicitDArgCount; i++) {
Type* argType = argvals[i]->getType(); Type* argType = argvals[i]->getType();
bool passByVal = gABI->passByVal(argType); bool passByVal = gABI->passByVal(argType);
@ -135,64 +141,68 @@ static void addExplicitArguments(std::vector<LLValue*>& args, AttrSet& attrs,
initialAttrs.add(DtoShouldExtend(argType)); initialAttrs.add(DtoShouldExtend(argType));
optionalIrArgs.push_back(new IrFuncTyArg(argType, passByVal, initialAttrs)); optionalIrArgs.push_back(new IrFuncTyArg(argType, passByVal, initialAttrs));
optionalIrArgs.back()->parametersIdx = i;
} }
// let the ABI rewrite the IrFuncTyArg objects // let the ABI rewrite the IrFuncTyArg objects
gABI->rewriteVarargs(irFty, optionalIrArgs); gABI->rewriteVarargs(irFty, optionalIrArgs);
for (int i = 0; i < numExplicitArgs; i++) const size_t explicitLLArgCount = formalLLArgCount + optionalIrArgs.size();
args.resize(implicitLLArgCount + explicitLLArgCount, static_cast<llvm::Value*>(0));
// Iterate the explicit arguments from left to right in the D source,
// which is the reverse of the LLVM order if irFty.reverseParams is true.
for (size_t i = 0; i < explicitLLArgCount; ++i)
{ {
int j = numImplicitArgs + (irFty.reverseParams ? numExplicitArgs - i - 1 : i); const bool isVararg = (i >= irFty.args.size());
DValue* argval = argvals[i];
Type* argType = argval->getType();
const bool isVararg = (i >= numFormalParams);
IrFuncTyArg* irArg = NULL; IrFuncTyArg* irArg = NULL;
LLValue* arg = NULL; if (isVararg)
if (!isVararg)
{
irArg = irFty.args[i];
arg = irFty.putParam(argType, i, argval);
}
else
{
irArg = optionalIrArgs[i - numFormalParams]; irArg = optionalIrArgs[i - numFormalParams];
arg = irFty.putParam(argType, *irArg, argval); else
} irArg = irFty.args[i];
LLType* callableArgType = (isVararg ? NULL : callableTy->getParamType(j)); DValue* const argval = argvals[irArg->parametersIdx];
Type* const argType = argval->getType();
llvm::Value* llVal = NULL;
if (isVararg)
llVal = irFty.putParam(argType, *irArg, argval);
else
llVal = irFty.putParam(argType, i, argval);
const size_t llArgIdx = implicitLLArgCount +
(irFty.reverseParams ? explicitLLArgCount - i - 1 : i);
llvm::Type* const callableArgType =
(isVararg ? NULL : callableTy->getParamType(llArgIdx));
// Hack around LDC assuming structs and static arrays are in memory: // Hack around LDC assuming structs and static arrays are in memory:
// If the function wants a struct, and the argument value is a // If the function wants a struct, and the argument value is a
// pointer to a struct, load from it before passing it in. // pointer to a struct, load from it before passing it in.
if (isaPointer(arg) && DtoIsPassedByRef(argType) && if (isaPointer(llVal) && DtoIsPassedByRef(argType) &&
( (!isVararg && !isaPointer(callableArgType)) || ((!isVararg && !isaPointer(callableArgType)) ||
(isVararg && !irArg->byref && !irArg->isByVal()) ) ) (isVararg && !irArg->byref && !irArg->isByVal())))
{ {
Logger::println("Loading struct type for function argument"); Logger::println("Loading struct type for function argument");
arg = DtoLoad(arg); llVal = DtoLoad(llVal);
} }
// parameter type mismatch, this is hard to get rid of // parameter type mismatch, this is hard to get rid of
if (!isVararg && arg->getType() != callableArgType) if (!isVararg && llVal->getType() != callableArgType)
{ {
#if 1 IF_LOG
IF_LOG { {
Logger::cout() << "arg: " << *arg << '\n'; Logger::cout() << "arg: " << *llVal << '\n';
Logger::cout() << "of type: " << *arg->getType() << '\n';
Logger::cout() << "expects: " << *callableArgType << '\n'; Logger::cout() << "expects: " << *callableArgType << '\n';
} }
#endif if (isaStruct(llVal))
if (isaStruct(arg)) llVal = DtoAggrPaint(llVal, callableArgType);
arg = DtoAggrPaint(arg, callableArgType);
else else
arg = DtoBitCast(arg, callableArgType); llVal = DtoBitCast(llVal, callableArgType);
} }
args[j] = arg; args[llArgIdx] = llVal;
attrs.add(j + 1, irArg->attrs); // +1 as index 0 contains the function attributes.
attrs.add(llArgIdx + 1, irArg->attrs);
if (isVararg) if (isVararg)
delete irArg; delete irArg;

View file

@ -16,7 +16,7 @@
#include "gen/tollvm.h" #include "gen/tollvm.h"
IrFuncTyArg::IrFuncTyArg(Type* t, bool bref, const AttrBuilder& a) IrFuncTyArg::IrFuncTyArg(Type* t, bool bref, const AttrBuilder& a)
: type(t), : type(t), parametersIdx(0),
ltype(t != Type::tvoid && bref ? DtoType(t->pointerTo()) : DtoType(t)), ltype(t != Type::tvoid && bref ? DtoType(t->pointerTo()) : DtoType(t)),
attrs(a), byref(bref), rewrite(0) attrs(a), byref(bref), rewrite(0)
{ {

View file

@ -37,14 +37,21 @@ namespace llvm {
class FunctionType; class FunctionType;
} }
// represents a function type argument /// Represents a function type argument (both explicit and implicit as well as
// both explicit and implicit as well as return values /// return values).
///
/// Instances of this only exist for arguments that are actually lowered to an
/// LLVM parameter (e.g. not for empty structs).
struct IrFuncTyArg struct IrFuncTyArg
{ {
/** This is the original D type as the frontend knows it /** This is the original D type as the frontend knows it
* May NOT be rewritten!!! */ * May NOT be rewritten!!! */
Type* const type; Type* const type;
/// The index of the declaration in the FuncDeclaration::parameters array
/// corresponding to this argument.
size_t parametersIdx;
/// This is the final LLVM Type used for the parameter/return value type /// This is the final LLVM Type used for the parameter/return value type
llvm::Type* ltype; llvm::Type* ltype;