Add manually ported frontend source files to version control

This commit is contained in:
Daniel Murphy 2015-02-21 19:58:46 +11:00
parent db9bda359c
commit ea591ba98e
10 changed files with 3785 additions and 0 deletions

77
.gitignore vendored
View file

@ -3,6 +3,7 @@
src/cdxxx.c
src/debtab.c
src/dmd
src/ddmd
src/dmd.conf
src/elxxx.c
src/fltables.c
@ -26,6 +27,7 @@ src/verstr.h
trace.def
trace.log
Makefile
src/magicport/magicport
# Visual Studio files
*.exe
@ -52,3 +54,78 @@ tags
# OSX
src/impcnvgen.dSYM/
src/optabgen.dSYM/
# Generated D source
src/access.d
src/aggregate.d
src/aliasthis.d
src/apply.d
src/argtypes.d
src/arrayop.d
src/arraytypes.d
src/attrib.d
src/builtin.d
src/canthrow.d
src/dcast.d
src/dclass.d
src/clone.d
src/cond.d
src/constfold.d
src/cppmangle.d
src/ctfeexpr.d
src/declaration.d
src/delegatize.d
src/doc.d
src/dsymbol.d
src/denum.d
src/errors.d
src/expression.d
src/func.d
src/hdrgen.d
src/id.d
src/identifier.d
src/imphint.d
src/dimport.d
src/dinifile.d
src/inline.d
src/init.d
src/dinterpret.d
src/json.d
src/lexer.d
src/link.d
src/dmacro.d
src/dmangle.d
src/mars.d
src/dmodule.d
src/mtype.d
src/nspace.d
src/opover.d
src/optimize.d
src/parse.d
src/sapply.d
src/dscope.d
src/sideeffect.d
src/statement.d
src/staticassert.d
src/dstruct.d
src/target.d
src/dtemplate.d
src/tokens.d
src/traits.d
src/dunittest.d
src/utf.d
src/dversion.d
src/visitor.d
src/lib.d
src/nogc.d
src/nspace.d
src/color.d
src/globals.d
src/root/aav.d
src/root/file.d
src/root/filename.d
src/root/speller.d
src/root/man.d
src/root/outbuffer.d
src/root/response.d
src/root/stringtable.d

33
src/backend.d Normal file
View file

@ -0,0 +1,33 @@
// Compiler implementation of the D programming language
// Copyright (c) 1999-2015 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
module ddmd.backend;
import ddmd.aggregate, ddmd.dmodule, ddmd.dscope, ddmd.expression, ddmd.lib, ddmd.mtype, ddmd.root.file;
struct Symbol;
struct TYPE;
alias type = TYPE;
struct code;
struct block;
extern extern (C++) void backend_init();
extern extern (C++) void backend_term();
extern extern (C++) void obj_start(char* srcfile);
extern extern (C++) void obj_end(Library library, File* objfile);
extern extern (C++) void obj_write_deferred(Library library);
extern extern (C++) Expression getTypeInfo(Type t, Scope* sc);
extern extern (C++) Expression getInternalTypeInfo(Type t, Scope* sc);
extern extern (C++) void genObjFile(Module m, bool multiobj);
extern extern (C++) void genhelpers(Module m, bool multiobj);
extern extern (C++) Symbol* toInitializer(AggregateDeclaration sd);
extern extern (C++) Symbol* toModuleArray(Module m);
extern extern (C++) Symbol* toModuleAssert(Module m);
extern extern (C++) Symbol* toModuleUnittest(Module m);

110
src/complex.d Normal file
View file

@ -0,0 +1,110 @@
// Compiler implementation of the D programming language
// Copyright (c) 1999-2015 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
module ddmd.complex;
struct complex_t
{
real re = 0;
real im = 0;
this(real re)
{
this.re = re;
this.im = 0;
}
this(real re, real im)
{
this.re = re;
this.im = im;
}
complex_t opAdd(complex_t y)
{
complex_t r;
r.re = re + y.re;
r.im = im + y.im;
return r;
}
complex_t opSub(complex_t y)
{
complex_t r;
r.re = re - y.re;
r.im = im - y.im;
return r;
}
complex_t opNeg()
{
complex_t r;
r.re = -re;
r.im = -im;
return r;
}
complex_t opMul(complex_t y)
{
return complex_t(re * y.re - im * y.im, im * y.re + re * y.im);
}
complex_t opMul_r(real x)
{
return complex_t(x) * this;
}
complex_t opMul(real y)
{
return this * complex_t(y);
}
complex_t opDiv(real y)
{
return this / complex_t(y);
}
complex_t opDiv(complex_t y)
{
real abs_y_re = y.re < 0 ? -y.re : y.re;
real abs_y_im = y.im < 0 ? -y.im : y.im;
real r, den;
if (abs_y_re < abs_y_im)
{
r = y.re / y.im;
den = y.im + r * y.re;
return complex_t((re * r + im) / den, (im * r - re) / den);
}
else
{
r = y.im / y.re;
den = y.re + r * y.im;
return complex_t((re + r * im) / den, (im - r * re) / den);
}
}
bool opCast(T : bool)()
{
return re || im;
}
int opEquals(complex_t y)
{
return re == y.re && im == y.im;
}
}
real creall(complex_t x)
{
return x.re;
}
real cimagl(complex_t x)
{
return x.im;
}

2386
src/entity.d Normal file

File diff suppressed because it is too large Load diff

494
src/intrange.d Normal file
View file

@ -0,0 +1,494 @@
// Compiler implementation of the D programming language
// Copyright (c) 1999-2015 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
module ddmd.intrange;
import core.stdc.stdio;
import ddmd.mtype;
import ddmd.expression;
import ddmd.globals;
enum UINT64_MAX = 0xFFFFFFFFFFFFFFFFUL;
static uinteger_t copySign(uinteger_t x, bool sign)
{
// return sign ? -x : x;
return (x - cast(uinteger_t)sign) ^ -cast(uinteger_t)sign;
}
struct SignExtendedNumber
{
ulong value;
bool negative;
static SignExtendedNumber fromInteger(uinteger_t value_)
{
return SignExtendedNumber(value_, value_ >> 63);
}
static SignExtendedNumber extreme(bool minimum)
{
return SignExtendedNumber(minimum - 1, minimum);
}
static SignExtendedNumber max()
{
return SignExtendedNumber(UINT64_MAX, false);
}
static SignExtendedNumber min()
{
return SignExtendedNumber(0, true);
}
bool isMinimum() const
{
return negative && value == 0;
}
bool opEquals(const ref SignExtendedNumber a) const
{
return value == a.value && negative == a.negative;
}
int opCmp(const ref SignExtendedNumber a) const
{
if (negative != a.negative)
{
if (negative)
return -1;
else
return 1;
}
if (value < a.value)
return -1;
else if (value > a.value)
return 1;
else
return 0;
}
SignExtendedNumber opNeg() const
{
if (value == 0)
return SignExtendedNumber(-cast(ulong)negative);
else
return SignExtendedNumber(-value, !negative);
}
SignExtendedNumber opAdd(const SignExtendedNumber a) const
{
uinteger_t sum = value + a.value;
bool carry = sum < value && sum < a.value;
if (negative != a.negative)
return SignExtendedNumber(sum, !carry);
else if (negative)
return SignExtendedNumber(carry ? sum : 0, true);
else
return SignExtendedNumber(carry ? UINT64_MAX : sum, false);
}
SignExtendedNumber opSub(const SignExtendedNumber a) const
{
if (a.isMinimum())
return negative ? SignExtendedNumber(value, false) : max();
else
return this + (-a);
}
SignExtendedNumber opMul(const SignExtendedNumber a) const
{
// perform *saturated* multiplication, otherwise we may get bogus ranges
// like 0x10 * 0x10 == 0x100 == 0.
/* Special handling for zeros:
INT65_MIN * 0 = 0
INT65_MIN * + = INT65_MIN
INT65_MIN * - = INT65_MAX
0 * anything = 0
*/
if (value == 0)
{
if (!negative)
return this;
else if (a.negative)
return max();
else
return a.value == 0 ? a : this;
}
else if (a.value == 0)
return a * this; // don't duplicate the symmetric case.
SignExtendedNumber rv;
// these are != 0 now surely.
uinteger_t tAbs = copySign(value, negative);
uinteger_t aAbs = copySign(a.value, a.negative);
rv.negative = negative != a.negative;
if (UINT64_MAX / tAbs < aAbs)
rv.value = rv.negative - 1;
else
rv.value = copySign(tAbs * aAbs, rv.negative);
return rv;
}
SignExtendedNumber opDiv(const SignExtendedNumber a) const
{
/* special handling for zeros:
INT65_MIN / INT65_MIN = 1
anything / INT65_MIN = 0
+ / 0 = INT65_MAX (eh?)
- / 0 = INT65_MIN (eh?)
*/
if (a.value == 0)
{
if (a.negative)
return SignExtendedNumber(value == 0 && negative);
else
return extreme(negative);
}
uinteger_t aAbs = copySign(a.value, a.negative);
uinteger_t rvVal;
if (!isMinimum())
rvVal = copySign(value, negative) / aAbs;
// Special handling for INT65_MIN
// if the denominator is not a power of 2, it is same as UINT64_MAX / x.
else if (aAbs & (aAbs - 1))
rvVal = UINT64_MAX / aAbs;
// otherwise, it's the same as reversing the bits of x.
else
{
if (aAbs == 1)
return extreme(!a.negative);
rvVal = 1UL << 63;
aAbs >>= 1;
if (aAbs & 0xAAAAAAAAAAAAAAAAUL) rvVal >>= 1;
if (aAbs & 0xCCCCCCCCCCCCCCCCUL) rvVal >>= 2;
if (aAbs & 0xF0F0F0F0F0F0F0F0UL) rvVal >>= 4;
if (aAbs & 0xFF00FF00FF00FF00UL) rvVal >>= 8;
if (aAbs & 0xFFFF0000FFFF0000UL) rvVal >>= 16;
if (aAbs & 0xFFFFFFFF00000000UL) rvVal >>= 32;
}
bool rvNeg = negative != a.negative;
rvVal = copySign(rvVal, rvNeg);
return SignExtendedNumber(rvVal, rvVal != 0 && rvNeg);
}
SignExtendedNumber opMod(const SignExtendedNumber a) const
{
if (a.value == 0)
return !a.negative ? a : isMinimum() ? SignExtendedNumber(0) : this;
uinteger_t aAbs = copySign(a.value, a.negative);
uinteger_t rvVal;
// a % b == sgn(a) * abs(a) % abs(b).
if (!isMinimum())
rvVal = copySign(value, negative) % aAbs;
// Special handling for INT65_MIN
// if the denominator is not a power of 2, it is same as UINT64_MAX%x + 1.
else if (aAbs & (aAbs - 1))
rvVal = UINT64_MAX % aAbs + 1;
// otherwise, the modulus is trivially zero.
else
rvVal = 0;
rvVal = copySign(rvVal, negative);
return SignExtendedNumber(rvVal, rvVal != 0 && negative);
}
ref SignExtendedNumber opAddAssign(int a)
{
assert(a == 1);
if (value != UINT64_MAX)
++value;
else if (negative)
{
value = 0;
negative = false;
}
return this;
}
SignExtendedNumber opShl(const SignExtendedNumber a)
{
// assume left-shift the shift-amount is always unsigned. Thus negative
// shifts will give huge result.
if (value == 0)
return this;
else if (a.negative)
return extreme(negative);
uinteger_t v = copySign(value, negative);
// compute base-2 log of 'v' to determine the maximum allowed bits to shift.
// Ref: http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog
// Why is this a size_t? Looks like a bug.
size_t r, s;
r = (v > 0xFFFFFFFFUL) << 5; v >>= r;
s = (v > 0xFFFFUL ) << 4; v >>= s; r |= s;
s = (v > 0xFFUL ) << 3; v >>= s; r |= s;
s = (v > 0xFUL ) << 2; v >>= s; r |= s;
s = (v > 0x3UL ) << 1; v >>= s; r |= s;
r |= (v >> 1);
uinteger_t allowableShift = 63 - r;
if (a.value > allowableShift)
return extreme(negative);
else
return SignExtendedNumber(value << a.value, negative);
}
SignExtendedNumber opShr(const SignExtendedNumber a)
{
if (a.negative || a.value > 64)
return negative ? SignExtendedNumber(-1, true) : SignExtendedNumber(0);
else if (isMinimum())
return a.value == 0 ? this : SignExtendedNumber(-1UL << (64 - a.value), true);
uinteger_t x = value ^ -cast(int)negative;
x >>= a.value;
return SignExtendedNumber(x ^ -cast(int)negative, negative);
}
}
struct IntRange
{
SignExtendedNumber imin, imax;
this(SignExtendedNumber a)
{
imin = a;
imax = a;
}
this(SignExtendedNumber lower, SignExtendedNumber upper)
{
imin = lower;
imax = upper;
}
static IntRange fromType(Type type)
{
return fromType(type, type.isunsigned());
}
static IntRange fromType(Type type, bool isUnsigned)
{
if (!type.isintegral())
return widest();
uinteger_t mask = type.sizemask();
auto lower = SignExtendedNumber(0);
auto upper = SignExtendedNumber(mask);
if (type.toBasetype().ty == Tdchar)
upper.value = 0x10FFFFUL;
else if (!isUnsigned)
{
lower.value = ~(mask >> 1);
lower.negative = true;
upper.value = (mask >> 1);
}
return IntRange(lower, upper);
}
static IntRange fromNumbers2(SignExtendedNumber* numbers)
{
if (numbers[0] < numbers[1])
return IntRange(numbers[0], numbers[1]);
else
return IntRange(numbers[1], numbers[0]);
}
static IntRange fromNumbers4(SignExtendedNumber* numbers)
{
IntRange ab = fromNumbers2(numbers);
IntRange cd = fromNumbers2(numbers + 2);
if (cd.imin < ab.imin)
ab.imin = cd.imin;
if (cd.imax > ab.imax)
ab.imax = cd.imax;
return ab;
}
static IntRange widest()
{
return IntRange(SignExtendedNumber.min(), SignExtendedNumber.max());
}
IntRange castSigned(uinteger_t mask)
{
// .... 0x1e7f ] [0x1e80 .. 0x1f7f] [0x1f80 .. 0x7f] [0x80 .. 0x17f] [0x180 ....
//
// regular signed type. We use a technique similar to the unsigned version,
// but the chunk has to be offset by 1/2 of the range.
uinteger_t halfChunkMask = mask >> 1;
uinteger_t minHalfChunk = imin.value & ~halfChunkMask;
uinteger_t maxHalfChunk = imax.value & ~halfChunkMask;
int minHalfChunkNegativity = imin.negative; // 1 = neg, 0 = nonneg, -1 = chunk containing ::max
int maxHalfChunkNegativity = imax.negative;
if (minHalfChunk & mask)
{
minHalfChunk += halfChunkMask + 1;
if (minHalfChunk == 0)
--minHalfChunkNegativity;
}
if (maxHalfChunk & mask)
{
maxHalfChunk += halfChunkMask + 1;
if (maxHalfChunk == 0)
--maxHalfChunkNegativity;
}
if (minHalfChunk == maxHalfChunk && minHalfChunkNegativity == maxHalfChunkNegativity)
{
imin.value &= mask;
imax.value &= mask;
// sign extend if necessary.
imin.negative = (imin.value & ~halfChunkMask) != 0;
imax.negative = (imax.value & ~halfChunkMask) != 0;
halfChunkMask += 1;
imin.value = (imin.value ^ halfChunkMask) - halfChunkMask;
imax.value = (imax.value ^ halfChunkMask) - halfChunkMask;
}
else
{
imin = SignExtendedNumber(~halfChunkMask, true);
imax = SignExtendedNumber(halfChunkMask, false);
}
return this;
}
IntRange castUnsigned(uinteger_t mask)
{
// .... 0x1eff ] [0x1f00 .. 0x1fff] [0 .. 0xff] [0x100 .. 0x1ff] [0x200 ....
//
// regular unsigned type. We just need to see if ir steps across the
// boundary of validRange. If yes, ir will represent the whole validRange,
// otherwise, we just take the modulus.
// e.g. [0x105, 0x107] & 0xff == [5, 7]
// [0x105, 0x207] & 0xff == [0, 0xff]
uinteger_t minChunk = imin.value & ~mask;
uinteger_t maxChunk = imax.value & ~mask;
if (minChunk == maxChunk && imin.negative == imax.negative)
{
imin.value &= mask;
imax.value &= mask;
}
else
{
imin.value = 0;
imax.value = mask;
}
imin.negative = imax.negative = false;
return this;
}
IntRange castDchar()
{
// special case for dchar. Casting to dchar means "I'll ignore all
// invalid characters."
castUnsigned(0xFFFFFFFFUL);
if (imin.value > 0x10FFFFUL) // ??
imin.value = 0x10FFFFUL; // ??
if (imax.value > 0x10FFFFUL)
imax.value = 0x10FFFFUL;
return this;
}
IntRange _cast(Type type)
{
if (!type.isintegral())
return this;
else if (!type.isunsigned())
return castSigned(type.sizemask());
else if (type.toBasetype().ty == Tdchar)
return castDchar();
else
return castUnsigned(type.sizemask());
}
IntRange castUnsigned(Type type)
{
if (!type.isintegral())
return castUnsigned(UINT64_MAX);
else if (type.toBasetype().ty == Tdchar)
return castDchar();
else
return castUnsigned(type.sizemask());
}
bool contains(IntRange a)
{
return imin <= a.imin && imax >= a.imax;
}
bool containsZero() const
{
return (imin.negative && !imax.negative)
|| (!imin.negative && imin.value == 0);
}
IntRange absNeg() const
{
if (imax.negative)
return this;
else if (!imin.negative)
return IntRange(-imax, -imin);
else
{
SignExtendedNumber imaxAbsNeg = -imax;
return IntRange(imaxAbsNeg < imin ? imaxAbsNeg : imin,
SignExtendedNumber(0));
}
}
IntRange unionWith(const ref IntRange other) const
{
return IntRange(imin < other.imin ? imin : other.imin,
imax > other.imax ? imax : other.imax);
}
void unionOrAssign(IntRange other, ref bool union_)
{
if (!union_ || imin > other.imin)
imin = other.imin;
if (!union_ || imax < other.imax)
imax = other.imax;
union_ = true;
}
ref const(IntRange) dump(const(char)* funcName, Expression e) const
{
printf("[(%c)%#018llx, (%c)%#018llx] @ %s ::: %s\n",
imin.negative?'-':'+', cast(ulong)imin.value,
imax.negative?'-':'+', cast(ulong)imax.value,
funcName, e.toChars());
return this;
}
void splitBySign(ref IntRange negRange, ref bool hasNegRange, ref IntRange nonNegRange, ref bool hasNonNegRange) const
{
hasNegRange = imin.negative;
if (hasNegRange)
{
negRange.imin = imin;
negRange.imax = imax.negative ? imax : SignExtendedNumber(-1, true);
}
hasNonNegRange = !imax.negative;
if (hasNonNegRange)
{
nonNegRange.imin = imin.negative ? SignExtendedNumber(0) : imin;
nonNegRange.imax = imax;
}
}
}

202
src/root/array.d Normal file
View file

@ -0,0 +1,202 @@
// Compiler implementation of the D programming language
// Copyright (c) 1999-2015 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
module ddmd.root.array;
import core.stdc.string;
import ddmd.root.rmem;
extern (C++) struct Array(T)
{
public:
size_t dim;
T* data;
private:
size_t allocdim;
enum SMALLARRAYCAP = 1;
T[SMALLARRAYCAP] smallarray; // inline storage for small arrays
public:
~this()
{
if (data != &smallarray[0])
mem.xfree(data);
}
char* toChars()
{
static if (is(typeof(T.init.toChars())))
{
char** buf = cast(char**)mem.xmalloc(dim * (char*).sizeof);
size_t len = 2;
for (size_t u = 0; u < dim; u++)
{
buf[u] = data[u].toChars();
len += strlen(buf[u]) + 1;
}
char* str = cast(char*)mem.xmalloc(len);
str[0] = '[';
char* p = str + 1;
for (size_t u = 0; u < dim; u++)
{
if (u)
*p++ = ',';
len = strlen(buf[u]);
memcpy(p, buf[u], len);
p += len;
}
*p++ = ']';
*p = 0;
mem.xfree(buf);
return str;
}
else
{
assert(0);
}
}
void push(T ptr)
{
reserve(1);
data[dim++] = ptr;
}
void append(typeof(this)* a)
{
insert(dim, a);
}
void reserve(size_t nentries)
{
//printf("Array::reserve: dim = %d, allocdim = %d, nentries = %d\n", (int)dim, (int)allocdim, (int)nentries);
if (allocdim - dim < nentries)
{
if (allocdim == 0)
{
// Not properly initialized, someone memset it to zero
if (nentries <= SMALLARRAYCAP)
{
allocdim = SMALLARRAYCAP;
data = SMALLARRAYCAP ? smallarray.ptr : null;
}
else
{
allocdim = nentries;
data = cast(T*)mem.xmalloc(allocdim * (*data).sizeof);
}
}
else if (allocdim == SMALLARRAYCAP)
{
allocdim = dim + nentries;
data = cast(T*)mem.xmalloc(allocdim * (*data).sizeof);
memcpy(data, smallarray.ptr, dim * (*data).sizeof);
}
else
{
allocdim = dim + nentries;
data = cast(T*)mem.xrealloc(data, allocdim * (*data).sizeof);
}
}
}
void remove(size_t i)
{
if (dim - i - 1)
memmove(data + i, data + i + 1, (dim - i - 1) * (data[0]).sizeof);
dim--;
}
void insert(size_t index, typeof(this)* a)
{
if (a)
{
size_t d = a.dim;
reserve(d);
if (dim != index)
memmove(data + index + d, data + index, (dim - index) * (*data).sizeof);
memcpy(data + index, a.data, d * (*data).sizeof);
dim += d;
}
}
void insert(size_t index, T ptr)
{
reserve(1);
memmove(data + index + 1, data + index, (dim - index) * (*data).sizeof);
data[index] = ptr;
dim++;
}
void setDim(size_t newdim)
{
if (dim < newdim)
{
reserve(newdim - dim);
}
dim = newdim;
}
ref T opIndex(size_t i)
{
return data[i];
}
T* tdata()
{
return data;
}
typeof(this)* copy()
{
auto a = new typeof(this)();
a.setDim(dim);
memcpy(a.data, data, dim * (void*).sizeof);
return a;
}
void shift(T ptr)
{
reserve(1);
memmove(data + 1, data, dim * (*data).sizeof);
data[0] = ptr;
dim++;
}
void zero()
{
memset(data, 0, dim * (data[0]).sizeof);
}
T pop()
{
return data[--dim];
}
int apply(int function(T, void*) fp, void* param)
{
static if (is(typeof(T.init.apply(fp, null))))
{
for (size_t i = 0; i < dim; i++)
{
T e = data[i];
if (e)
{
if (e.apply(fp, param))
return 1;
}
}
return 0;
}
else
assert(0);
}
}

35
src/root/longdouble.d Normal file
View file

@ -0,0 +1,35 @@
// Compiler implementation of the D programming language
// Copyright (c) 1999-2015 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
module ddmd.root.longdouble;
import core.stdc.stdio;
real ldouble(T)(T x)
{
return cast(real)x;
}
size_t ld_sprint(char* str, int fmt, real x)
{
if ((cast(real)cast(ulong)x) == x)
{
// ((1.5 -> 1 -> 1.0) == 1.5) is false
// ((1.0 -> 1 -> 1.0) == 1.0) is true
// see http://en.cppreference.com/w/cpp/io/c/fprintf
char sfmt[5] = "%#Lg\0";
sfmt[3] = cast(char)fmt;
return sprintf(str, sfmt.ptr, x);
}
else
{
char sfmt[4] = "%Lg\0";
sfmt[2] = cast(char)fmt;
return sprintf(str, sfmt.ptr, x);
}
}

207
src/root/port.d Normal file
View file

@ -0,0 +1,207 @@
// Compiler implementation of the D programming language
// Copyright (c) 1999-2015 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
module ddmd.root.port;
import core.stdc.ctype;
import core.stdc.string;
import core.math;
version (Windows) __gshared extern (C) extern const(char)* __locale_decpoint;
extern (C) float strtof(const(char)* p, char** endp);
extern (C) double strtod(const(char)* p, char** endp);
extern (C) real strtold(const(char)* p, char** endp);
extern (C++) struct Port
{
enum nan = double.nan;
enum infinity = double.infinity;
enum ldbl_max = real.max;
enum ldbl_nan = real.nan;
enum ldbl_infinity = real.infinity;
static __gshared bool yl2x_supported = true;
static __gshared bool yl2xp1_supported = true;
static __gshared real snan;
static this()
{
/*
* Use a payload which is different from the machine NaN,
* so that uninitialised variables can be
* detected even if exceptions are disabled.
*/
ushort* us = cast(ushort*)&snan;
us[0] = 0;
us[1] = 0;
us[2] = 0;
us[3] = 0xA000;
us[4] = 0x7FFF;
}
static bool isNan(double r)
{
return !(r == r);
}
static real sqrt(real x)
{
return .sqrt(x);
}
static real fmodl(real a, real b)
{
return a % b;
}
static real fequal(real a, real b)
{
return memcmp(&a, &b, 10) == 0;
}
static int memicmp(const char* s1, const char* s2, size_t n)
{
int result = 0;
for (int i = 0; i < n; i++)
{
char c1 = s1[i];
char c2 = s2[i];
result = c1 - c2;
if (result)
{
result = toupper(c1) - toupper(c2);
if (result)
break;
}
}
return result;
}
static char* strupr(char* s)
{
char* t = s;
while (*s)
{
*s = cast(char)toupper(*s);
s++;
}
return t;
}
static int isSignallingNan(double r)
{
return isNan(r) && !(((cast(ubyte*)&r)[6]) & 8);
}
static int isSignallingNan(real r)
{
return isNan(r) && !(((cast(ubyte*)&r)[7]) & 0x40);
}
static int isInfinity(double r)
{
return r is double.infinity || r is -double.infinity;
}
static float strtof(const(char)* p, char** endp)
{
version (Windows)
{
auto save = __locale_decpoint;
__locale_decpoint = ".";
}
auto r = .strtof(p, endp);
version (Windows) __locale_decpoint = save;
return r;
}
static double strtod(const(char)* p, char** endp)
{
version (Windows)
{
auto save = __locale_decpoint;
__locale_decpoint = ".";
}
auto r = .strtod(p, endp);
version (Windows) __locale_decpoint = save;
return r;
}
static real strtold(const(char)* p, char** endp)
{
version (Windows)
{
auto save = __locale_decpoint;
__locale_decpoint = ".";
}
auto r = .strtold(p, endp);
version (Windows) __locale_decpoint = save;
return r;
}
static void yl2x_impl(real* x, real* y, real* res)
{
*res = yl2x(*x, *y);
}
static void yl2xp1_impl(real* x, real* y, real* res)
{
*res = yl2xp1(*x, *y);
}
// Little endian
static void writelongLE(uint value, void* buffer)
{
auto p = cast(ubyte*)buffer;
p[3] = cast(ubyte)(value >> 24);
p[2] = cast(ubyte)(value >> 16);
p[1] = cast(ubyte)(value >> 8);
p[0] = cast(ubyte)(value);
}
// Little endian
static uint readlongLE(void* buffer)
{
auto p = cast(ubyte*)buffer;
return (((((p[3] << 8) | p[2]) << 8) | p[1]) << 8) | p[0];
}
// Big endian
static void writelongBE(uint value, void* buffer)
{
auto p = cast(ubyte*)buffer;
p[0] = cast(ubyte)(value >> 24);
p[1] = cast(ubyte)(value >> 16);
p[2] = cast(ubyte)(value >> 8);
p[3] = cast(ubyte)(value);
}
// Big endian
static uint readlongBE(void* buffer)
{
auto p = cast(ubyte*)buffer;
return (((((p[0] << 8) | p[1]) << 8) | p[2]) << 8) | p[3];
}
// Little endian
static uint readwordLE(void* buffer)
{
auto p = cast(ubyte*)buffer;
return (p[1] << 8) | p[0];
}
// Big endian
static uint readwordBE(void* buffer)
{
auto p = cast(ubyte*)buffer;
return (p[0] << 8) | p[1];
}
}

191
src/root/rmem.d Normal file
View file

@ -0,0 +1,191 @@
// Compiler implementation of the D programming language
// Copyright (c) 1999-2015 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
module ddmd.root.rmem;
import core.stdc.string;
version (GC)
{
import core.memory : GC;
extern (C++) struct Mem
{
char* xstrdup(const char* p)
{
return p[0 .. strlen(p) + 1].dup.ptr;
}
void xfree(void* p)
{
}
void* xmalloc(size_t n)
{
return GC.malloc(n);
}
void* xcalloc(size_t size, size_t n)
{
return GC.calloc(size * n);
}
void* xrealloc(void* p, size_t size)
{
return GC.realloc(p, size);
}
}
extern (C++) __gshared Mem mem;
}
else
{
import core.stdc.stdlib;
import core.stdc.stdio;
extern (C++) struct Mem
{
char* xstrdup(const char* s)
{
if (s)
{
auto p = .strdup(s);
if (p)
return p;
error();
}
return null;
}
void xfree(void* p)
{
if (p)
.free(p);
}
void* xmalloc(size_t size)
{
if (!size)
return null;
auto p = .malloc(size);
if (!p)
error();
return p;
}
void* xcalloc(size_t size, size_t n)
{
if (!size || !n)
return null;
auto p = .calloc(size, n);
if (!p)
error();
return p;
}
void* xrealloc(void* p, size_t size)
{
if (!size)
{
if (p)
.free(p);
return null;
}
if (!p)
{
p = .malloc(size);
if (!p)
error();
return p;
}
p = .realloc(p, size);
if (!p)
error();
return p;
}
void error()
{
printf("Error: out of memory\n");
exit(EXIT_FAILURE);
}
}
extern (C++) __gshared Mem mem;
enum CHUNK_SIZE = (256 * 4096 - 64);
__gshared size_t heapleft = 0;
__gshared void* heapp;
extern (C++) void* allocmemory(size_t m_size)
{
// 16 byte alignment is better (and sometimes needed) for doubles
m_size = (m_size + 15) & ~15;
// The layout of the code is selected so the most common case is straight through
if (m_size <= heapleft)
{
L1:
heapleft -= m_size;
auto p = heapp;
heapp = cast(void*)(cast(char*)heapp + m_size);
return p;
}
if (m_size > CHUNK_SIZE)
{
auto p = malloc(m_size);
if (p)
{
return p;
}
printf("Error: out of memory\n");
exit(EXIT_FAILURE);
}
heapleft = CHUNK_SIZE;
heapp = malloc(CHUNK_SIZE);
if (!heapp)
{
printf("Error: out of memory\n");
exit(EXIT_FAILURE);
}
goto L1;
}
extern (C) void* _d_allocmemory(size_t m_size)
{
return allocmemory(m_size);
}
extern (C) Object _d_newclass(const ClassInfo ci)
{
auto p = allocmemory(ci.init.length);
(cast(byte*)p)[0 .. ci.init.length] = ci.init[];
return cast(Object)p;
}
extern (C) void* _d_newitemT(TypeInfo ti)
{
auto p = allocmemory(ti.tsize);
(cast(ubyte*)p)[0 .. ti.init.length] = 0;
return p;
}
extern (C) void* _d_newitemiT(TypeInfo ti)
{
auto p = allocmemory(ti.tsize);
p[0 .. ti.init.length] = ti.init[];
return p;
}
}

50
src/root/rootobject.d Normal file
View file

@ -0,0 +1,50 @@
// Compiler implementation of the D programming language
// Copyright (c) 1999-2015 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
module ddmd.root.rootobject;
import core.stdc.stdio;
import ddmd.root.outbuffer;
extern (C++) class RootObject
{
this()
{
}
bool equals(RootObject o)
{
return o is this;
}
int compare(RootObject)
{
assert(0);
}
void print()
{
printf("%s %p\n", toChars(), this);
}
char* toChars()
{
assert(0);
}
void toBuffer(OutBuffer* buf)
{
assert(0);
}
int dyncast()
{
assert(0);
}
}