tg2sip/webrtc_dsp/modules/audio_processing/audio_processing_impl.cc

1972 lines
75 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/audio_processing_impl.h"
#include <algorithm>
#include <cstdint>
#include <string>
#include <type_traits>
#include <utility>
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "common_audio/audio_converter.h"
#include "common_audio/include/audio_util.h"
#include "modules/audio_processing/agc/agc_manager_direct.h"
#include "modules/audio_processing/agc2/gain_applier.h"
#include "modules/audio_processing/audio_buffer.h"
#include "modules/audio_processing/common.h"
#include "modules/audio_processing/echo_cancellation_impl.h"
#include "modules/audio_processing/echo_control_mobile_impl.h"
#include "modules/audio_processing/gain_control_for_experimental_agc.h"
#include "modules/audio_processing/gain_control_impl.h"
#include "modules/audio_processing/gain_controller2.h"
#include "modules/audio_processing/include/audio_frame_view.h"
#include "modules/audio_processing/level_estimator_impl.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "modules/audio_processing/low_cut_filter.h"
#include "modules/audio_processing/noise_suppression_impl.h"
#include "modules/audio_processing/residual_echo_detector.h"
#include "modules/audio_processing/transient/transient_suppressor.h"
#include "modules/audio_processing/voice_detection_impl.h"
#include "rtc_base/atomicops.h"
#include "rtc_base/checks.h"
#include "rtc_base/constructormagic.h"
#include "rtc_base/logging.h"
#include "rtc_base/refcountedobject.h"
#include "rtc_base/timeutils.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/metrics.h"
#define RETURN_ON_ERR(expr) \
do { \
int err = (expr); \
if (err != kNoError) { \
return err; \
} \
} while (0)
namespace webrtc {
constexpr int AudioProcessing::kNativeSampleRatesHz[];
constexpr int kRuntimeSettingQueueSize = 100;
namespace {
static bool LayoutHasKeyboard(AudioProcessing::ChannelLayout layout) {
switch (layout) {
case AudioProcessing::kMono:
case AudioProcessing::kStereo:
return false;
case AudioProcessing::kMonoAndKeyboard:
case AudioProcessing::kStereoAndKeyboard:
return true;
}
RTC_NOTREACHED();
return false;
}
bool SampleRateSupportsMultiBand(int sample_rate_hz) {
return sample_rate_hz == AudioProcessing::kSampleRate32kHz ||
sample_rate_hz == AudioProcessing::kSampleRate48kHz;
}
int FindNativeProcessRateToUse(int minimum_rate, bool band_splitting_required) {
#ifdef WEBRTC_ARCH_ARM_FAMILY
constexpr int kMaxSplittingNativeProcessRate =
AudioProcessing::kSampleRate32kHz;
#else
constexpr int kMaxSplittingNativeProcessRate =
AudioProcessing::kSampleRate48kHz;
#endif
static_assert(
kMaxSplittingNativeProcessRate <= AudioProcessing::kMaxNativeSampleRateHz,
"");
const int uppermost_native_rate = band_splitting_required
? kMaxSplittingNativeProcessRate
: AudioProcessing::kSampleRate48kHz;
for (auto rate : AudioProcessing::kNativeSampleRatesHz) {
if (rate >= uppermost_native_rate) {
return uppermost_native_rate;
}
if (rate >= minimum_rate) {
return rate;
}
}
RTC_NOTREACHED();
return uppermost_native_rate;
}
// Maximum lengths that frame of samples being passed from the render side to
// the capture side can have (does not apply to AEC3).
static const size_t kMaxAllowedValuesOfSamplesPerBand = 160;
static const size_t kMaxAllowedValuesOfSamplesPerFrame = 480;
// Maximum number of frames to buffer in the render queue.
// TODO(peah): Decrease this once we properly handle hugely unbalanced
// reverse and forward call numbers.
static const size_t kMaxNumFramesToBuffer = 100;
} // namespace
// Throughout webrtc, it's assumed that success is represented by zero.
static_assert(AudioProcessing::kNoError == 0, "kNoError must be zero");
AudioProcessingImpl::ApmSubmoduleStates::ApmSubmoduleStates(
bool capture_post_processor_enabled,
bool render_pre_processor_enabled,
bool capture_analyzer_enabled)
: capture_post_processor_enabled_(capture_post_processor_enabled),
render_pre_processor_enabled_(render_pre_processor_enabled),
capture_analyzer_enabled_(capture_analyzer_enabled) {}
bool AudioProcessingImpl::ApmSubmoduleStates::Update(
bool high_pass_filter_enabled,
bool echo_canceller_enabled,
bool mobile_echo_controller_enabled,
bool residual_echo_detector_enabled,
bool noise_suppressor_enabled,
bool adaptive_gain_controller_enabled,
bool gain_controller2_enabled,
bool pre_amplifier_enabled,
bool echo_controller_enabled,
bool voice_activity_detector_enabled,
bool level_estimator_enabled,
bool transient_suppressor_enabled) {
bool changed = false;
changed |= (high_pass_filter_enabled != high_pass_filter_enabled_);
changed |= (echo_canceller_enabled != echo_canceller_enabled_);
changed |=
(mobile_echo_controller_enabled != mobile_echo_controller_enabled_);
changed |=
(residual_echo_detector_enabled != residual_echo_detector_enabled_);
changed |= (noise_suppressor_enabled != noise_suppressor_enabled_);
changed |=
(adaptive_gain_controller_enabled != adaptive_gain_controller_enabled_);
changed |=
(gain_controller2_enabled != gain_controller2_enabled_);
changed |= (pre_amplifier_enabled_ != pre_amplifier_enabled);
changed |= (echo_controller_enabled != echo_controller_enabled_);
changed |= (level_estimator_enabled != level_estimator_enabled_);
changed |=
(voice_activity_detector_enabled != voice_activity_detector_enabled_);
changed |= (transient_suppressor_enabled != transient_suppressor_enabled_);
if (changed) {
high_pass_filter_enabled_ = high_pass_filter_enabled;
echo_canceller_enabled_ = echo_canceller_enabled;
mobile_echo_controller_enabled_ = mobile_echo_controller_enabled;
residual_echo_detector_enabled_ = residual_echo_detector_enabled;
noise_suppressor_enabled_ = noise_suppressor_enabled;
adaptive_gain_controller_enabled_ = adaptive_gain_controller_enabled;
gain_controller2_enabled_ = gain_controller2_enabled;
pre_amplifier_enabled_ = pre_amplifier_enabled;
echo_controller_enabled_ = echo_controller_enabled;
level_estimator_enabled_ = level_estimator_enabled;
voice_activity_detector_enabled_ = voice_activity_detector_enabled;
transient_suppressor_enabled_ = transient_suppressor_enabled;
}
changed |= first_update_;
first_update_ = false;
return changed;
}
bool AudioProcessingImpl::ApmSubmoduleStates::CaptureMultiBandSubModulesActive()
const {
return CaptureMultiBandProcessingActive() || voice_activity_detector_enabled_;
}
bool AudioProcessingImpl::ApmSubmoduleStates::CaptureMultiBandProcessingActive()
const {
return high_pass_filter_enabled_ || echo_canceller_enabled_ ||
mobile_echo_controller_enabled_ || noise_suppressor_enabled_ ||
adaptive_gain_controller_enabled_ || echo_controller_enabled_;
}
bool AudioProcessingImpl::ApmSubmoduleStates::CaptureFullBandProcessingActive()
const {
return gain_controller2_enabled_ || capture_post_processor_enabled_ ||
pre_amplifier_enabled_;
}
bool AudioProcessingImpl::ApmSubmoduleStates::CaptureAnalyzerActive() const {
return capture_analyzer_enabled_;
}
bool AudioProcessingImpl::ApmSubmoduleStates::RenderMultiBandSubModulesActive()
const {
return RenderMultiBandProcessingActive() || echo_canceller_enabled_ ||
mobile_echo_controller_enabled_ || adaptive_gain_controller_enabled_ ||
echo_controller_enabled_;
}
bool AudioProcessingImpl::ApmSubmoduleStates::RenderFullBandProcessingActive()
const {
return render_pre_processor_enabled_;
}
bool AudioProcessingImpl::ApmSubmoduleStates::RenderMultiBandProcessingActive()
const {
return false;
}
bool AudioProcessingImpl::ApmSubmoduleStates::LowCutFilteringRequired() const {
return high_pass_filter_enabled_ || echo_canceller_enabled_ ||
mobile_echo_controller_enabled_ || noise_suppressor_enabled_;
}
struct AudioProcessingImpl::ApmPublicSubmodules {
ApmPublicSubmodules() {}
// Accessed externally of APM without any lock acquired.
std::unique_ptr<GainControlImpl> gain_control;
std::unique_ptr<LevelEstimatorImpl> level_estimator;
std::unique_ptr<NoiseSuppressionImpl> noise_suppression;
std::unique_ptr<VoiceDetectionImpl> voice_detection;
std::unique_ptr<GainControlForExperimentalAgc>
gain_control_for_experimental_agc;
// Accessed internally from both render and capture.
std::unique_ptr<TransientSuppressor> transient_suppressor;
};
struct AudioProcessingImpl::ApmPrivateSubmodules {
ApmPrivateSubmodules(std::unique_ptr<CustomProcessing> capture_post_processor,
std::unique_ptr<CustomProcessing> render_pre_processor,
rtc::scoped_refptr<EchoDetector> echo_detector,
std::unique_ptr<CustomAudioAnalyzer> capture_analyzer)
: echo_detector(std::move(echo_detector)),
capture_post_processor(std::move(capture_post_processor)),
render_pre_processor(std::move(render_pre_processor)),
capture_analyzer(std::move(capture_analyzer)) {}
// Accessed internally from capture or during initialization
std::unique_ptr<AgcManagerDirect> agc_manager;
std::unique_ptr<GainController2> gain_controller2;
std::unique_ptr<LowCutFilter> low_cut_filter;
rtc::scoped_refptr<EchoDetector> echo_detector;
std::unique_ptr<EchoCancellationImpl> echo_cancellation;
std::unique_ptr<EchoControl> echo_controller;
std::unique_ptr<EchoControlMobileImpl> echo_control_mobile;
std::unique_ptr<CustomProcessing> capture_post_processor;
std::unique_ptr<CustomProcessing> render_pre_processor;
std::unique_ptr<GainApplier> pre_amplifier;
std::unique_ptr<CustomAudioAnalyzer> capture_analyzer;
};
AudioProcessingBuilder::AudioProcessingBuilder() = default;
AudioProcessingBuilder::~AudioProcessingBuilder() = default;
AudioProcessingBuilder& AudioProcessingBuilder::SetCapturePostProcessing(
std::unique_ptr<CustomProcessing> capture_post_processing) {
capture_post_processing_ = std::move(capture_post_processing);
return *this;
}
AudioProcessingBuilder& AudioProcessingBuilder::SetRenderPreProcessing(
std::unique_ptr<CustomProcessing> render_pre_processing) {
render_pre_processing_ = std::move(render_pre_processing);
return *this;
}
AudioProcessingBuilder& AudioProcessingBuilder::SetCaptureAnalyzer(
std::unique_ptr<CustomAudioAnalyzer> capture_analyzer) {
capture_analyzer_ = std::move(capture_analyzer);
return *this;
}
AudioProcessingBuilder& AudioProcessingBuilder::SetEchoControlFactory(
std::unique_ptr<EchoControlFactory> echo_control_factory) {
echo_control_factory_ = std::move(echo_control_factory);
return *this;
}
AudioProcessingBuilder& AudioProcessingBuilder::SetEchoDetector(
rtc::scoped_refptr<EchoDetector> echo_detector) {
echo_detector_ = std::move(echo_detector);
return *this;
}
AudioProcessing* AudioProcessingBuilder::Create() {
webrtc::Config config;
return Create(config);
}
AudioProcessing* AudioProcessingBuilder::Create(const webrtc::Config& config) {
AudioProcessingImpl* apm = new rtc::RefCountedObject<AudioProcessingImpl>(
config, std::move(capture_post_processing_),
std::move(render_pre_processing_), std::move(echo_control_factory_),
std::move(echo_detector_), std::move(capture_analyzer_));
if (apm->Initialize() != AudioProcessing::kNoError) {
delete apm;
apm = nullptr;
}
return apm;
}
AudioProcessingImpl::AudioProcessingImpl(const webrtc::Config& config)
: AudioProcessingImpl(config, nullptr, nullptr, nullptr, nullptr, nullptr) {
}
int AudioProcessingImpl::instance_count_ = 0;
AudioProcessingImpl::AudioProcessingImpl(
const webrtc::Config& config,
std::unique_ptr<CustomProcessing> capture_post_processor,
std::unique_ptr<CustomProcessing> render_pre_processor,
std::unique_ptr<EchoControlFactory> echo_control_factory,
rtc::scoped_refptr<EchoDetector> echo_detector,
std::unique_ptr<CustomAudioAnalyzer> capture_analyzer)
: data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
capture_runtime_settings_(kRuntimeSettingQueueSize),
render_runtime_settings_(kRuntimeSettingQueueSize),
capture_runtime_settings_enqueuer_(&capture_runtime_settings_),
render_runtime_settings_enqueuer_(&render_runtime_settings_),
echo_control_factory_(std::move(echo_control_factory)),
submodule_states_(!!capture_post_processor,
!!render_pre_processor,
!!capture_analyzer),
public_submodules_(new ApmPublicSubmodules()),
private_submodules_(
new ApmPrivateSubmodules(std::move(capture_post_processor),
std::move(render_pre_processor),
std::move(echo_detector),
std::move(capture_analyzer))),
constants_(config.Get<ExperimentalAgc>().startup_min_volume,
config.Get<ExperimentalAgc>().clipped_level_min,
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
/* enabled= */ false,
/* enabled_agc2_level_estimator= */ false,
/* digital_adaptive_disabled= */ false,
/* analyze_before_aec= */ false),
#else
config.Get<ExperimentalAgc>().enabled,
config.Get<ExperimentalAgc>().enabled_agc2_level_estimator,
config.Get<ExperimentalAgc>().digital_adaptive_disabled,
config.Get<ExperimentalAgc>().analyze_before_aec),
#endif
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
capture_(false),
#else
capture_(config.Get<ExperimentalNs>().enabled),
#endif
capture_nonlocked_() {
{
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
// Mark Echo Controller enabled if a factory is injected.
capture_nonlocked_.echo_controller_enabled =
static_cast<bool>(echo_control_factory_);
public_submodules_->gain_control.reset(
new GainControlImpl(&crit_render_, &crit_capture_));
public_submodules_->level_estimator.reset(
new LevelEstimatorImpl(&crit_capture_));
public_submodules_->noise_suppression.reset(
new NoiseSuppressionImpl(&crit_capture_));
public_submodules_->voice_detection.reset(
new VoiceDetectionImpl(&crit_capture_));
public_submodules_->gain_control_for_experimental_agc.reset(
new GainControlForExperimentalAgc(
public_submodules_->gain_control.get(), &crit_capture_));
// If no echo detector is injected, use the ResidualEchoDetector.
if (!private_submodules_->echo_detector) {
private_submodules_->echo_detector =
new rtc::RefCountedObject<ResidualEchoDetector>();
}
private_submodules_->echo_cancellation.reset(new EchoCancellationImpl());
private_submodules_->echo_control_mobile.reset(new EchoControlMobileImpl());
// TODO(alessiob): Move the injected gain controller once injection is
// implemented.
private_submodules_->gain_controller2.reset(new GainController2());
RTC_LOG(LS_INFO) << "Capture analyzer activated: "
<< !!private_submodules_->capture_analyzer
<< "\nCapture post processor activated: "
<< !!private_submodules_->capture_post_processor
<< "\nRender pre processor activated: "
<< !!private_submodules_->render_pre_processor;
}
SetExtraOptions(config);
}
AudioProcessingImpl::~AudioProcessingImpl() {
// Depends on gain_control_ and
// public_submodules_->gain_control_for_experimental_agc.
private_submodules_->agc_manager.reset();
// Depends on gain_control_.
public_submodules_->gain_control_for_experimental_agc.reset();
}
int AudioProcessingImpl::Initialize() {
// Run in a single-threaded manner during initialization.
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
return InitializeLocked();
}
int AudioProcessingImpl::Initialize(int capture_input_sample_rate_hz,
int capture_output_sample_rate_hz,
int render_input_sample_rate_hz,
ChannelLayout capture_input_layout,
ChannelLayout capture_output_layout,
ChannelLayout render_input_layout) {
const ProcessingConfig processing_config = {
{{capture_input_sample_rate_hz, ChannelsFromLayout(capture_input_layout),
LayoutHasKeyboard(capture_input_layout)},
{capture_output_sample_rate_hz,
ChannelsFromLayout(capture_output_layout),
LayoutHasKeyboard(capture_output_layout)},
{render_input_sample_rate_hz, ChannelsFromLayout(render_input_layout),
LayoutHasKeyboard(render_input_layout)},
{render_input_sample_rate_hz, ChannelsFromLayout(render_input_layout),
LayoutHasKeyboard(render_input_layout)}}};
return Initialize(processing_config);
}
int AudioProcessingImpl::Initialize(const ProcessingConfig& processing_config) {
// Run in a single-threaded manner during initialization.
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
return InitializeLocked(processing_config);
}
int AudioProcessingImpl::MaybeInitializeRender(
const ProcessingConfig& processing_config) {
return MaybeInitialize(processing_config, false);
}
int AudioProcessingImpl::MaybeInitializeCapture(
const ProcessingConfig& processing_config,
bool force_initialization) {
return MaybeInitialize(processing_config, force_initialization);
}
// Calls InitializeLocked() if any of the audio parameters have changed from
// their current values (needs to be called while holding the crit_render_lock).
int AudioProcessingImpl::MaybeInitialize(
const ProcessingConfig& processing_config,
bool force_initialization) {
// Called from both threads. Thread check is therefore not possible.
if (processing_config == formats_.api_format && !force_initialization) {
return kNoError;
}
rtc::CritScope cs_capture(&crit_capture_);
return InitializeLocked(processing_config);
}
int AudioProcessingImpl::InitializeLocked() {
UpdateActiveSubmoduleStates();
const int render_audiobuffer_num_output_frames =
formats_.api_format.reverse_output_stream().num_frames() == 0
? formats_.render_processing_format.num_frames()
: formats_.api_format.reverse_output_stream().num_frames();
if (formats_.api_format.reverse_input_stream().num_channels() > 0) {
render_.render_audio.reset(new AudioBuffer(
formats_.api_format.reverse_input_stream().num_frames(),
formats_.api_format.reverse_input_stream().num_channels(),
formats_.render_processing_format.num_frames(),
formats_.render_processing_format.num_channels(),
render_audiobuffer_num_output_frames));
if (formats_.api_format.reverse_input_stream() !=
formats_.api_format.reverse_output_stream()) {
render_.render_converter = AudioConverter::Create(
formats_.api_format.reverse_input_stream().num_channels(),
formats_.api_format.reverse_input_stream().num_frames(),
formats_.api_format.reverse_output_stream().num_channels(),
formats_.api_format.reverse_output_stream().num_frames());
} else {
render_.render_converter.reset(nullptr);
}
} else {
render_.render_audio.reset(nullptr);
render_.render_converter.reset(nullptr);
}
capture_.capture_audio.reset(
new AudioBuffer(formats_.api_format.input_stream().num_frames(),
formats_.api_format.input_stream().num_channels(),
capture_nonlocked_.capture_processing_format.num_frames(),
formats_.api_format.output_stream().num_channels(),
formats_.api_format.output_stream().num_frames()));
private_submodules_->echo_cancellation->Initialize(
proc_sample_rate_hz(), num_reverse_channels(), num_output_channels(),
num_proc_channels());
AllocateRenderQueue();
int success = private_submodules_->echo_cancellation->enable_metrics(true);
RTC_DCHECK_EQ(0, success);
success = private_submodules_->echo_cancellation->enable_delay_logging(true);
RTC_DCHECK_EQ(0, success);
private_submodules_->echo_control_mobile->Initialize(
proc_split_sample_rate_hz(), num_reverse_channels(),
num_output_channels());
public_submodules_->gain_control->Initialize(num_proc_channels(),
proc_sample_rate_hz());
if (constants_.use_experimental_agc) {
if (!private_submodules_->agc_manager.get()) {
private_submodules_->agc_manager.reset(new AgcManagerDirect(
public_submodules_->gain_control.get(),
public_submodules_->gain_control_for_experimental_agc.get(),
constants_.agc_startup_min_volume, constants_.agc_clipped_level_min,
constants_.use_experimental_agc_agc2_level_estimation,
constants_.use_experimental_agc_agc2_digital_adaptive));
}
private_submodules_->agc_manager->Initialize();
private_submodules_->agc_manager->SetCaptureMuted(
capture_.output_will_be_muted);
public_submodules_->gain_control_for_experimental_agc->Initialize();
}
InitializeTransient();
InitializeLowCutFilter();
public_submodules_->noise_suppression->Initialize(num_proc_channels(),
proc_sample_rate_hz());
public_submodules_->voice_detection->Initialize(proc_split_sample_rate_hz());
public_submodules_->level_estimator->Initialize();
InitializeResidualEchoDetector();
InitializeEchoController();
InitializeGainController2();
InitializeAnalyzer();
InitializePostProcessor();
InitializePreProcessor();
if (aec_dump_) {
aec_dump_->WriteInitMessage(formats_.api_format, rtc::TimeUTCMillis());
}
return kNoError;
}
int AudioProcessingImpl::InitializeLocked(const ProcessingConfig& config) {
UpdateActiveSubmoduleStates();
for (const auto& stream : config.streams) {
if (stream.num_channels() > 0 && stream.sample_rate_hz() <= 0) {
return kBadSampleRateError;
}
}
const size_t num_in_channels = config.input_stream().num_channels();
const size_t num_out_channels = config.output_stream().num_channels();
// Need at least one input channel.
// Need either one output channel or as many outputs as there are inputs.
if (num_in_channels == 0 ||
!(num_out_channels == 1 || num_out_channels == num_in_channels)) {
return kBadNumberChannelsError;
}
formats_.api_format = config;
int capture_processing_rate = FindNativeProcessRateToUse(
std::min(formats_.api_format.input_stream().sample_rate_hz(),
formats_.api_format.output_stream().sample_rate_hz()),
submodule_states_.CaptureMultiBandSubModulesActive() ||
submodule_states_.RenderMultiBandSubModulesActive());
capture_nonlocked_.capture_processing_format =
StreamConfig(capture_processing_rate);
int render_processing_rate;
if (!capture_nonlocked_.echo_controller_enabled) {
render_processing_rate = FindNativeProcessRateToUse(
std::min(formats_.api_format.reverse_input_stream().sample_rate_hz(),
formats_.api_format.reverse_output_stream().sample_rate_hz()),
submodule_states_.CaptureMultiBandSubModulesActive() ||
submodule_states_.RenderMultiBandSubModulesActive());
} else {
render_processing_rate = capture_processing_rate;
}
// TODO(aluebs): Remove this restriction once we figure out why the 3-band
// splitting filter degrades the AEC performance.
if (render_processing_rate > kSampleRate32kHz &&
!capture_nonlocked_.echo_controller_enabled) {
render_processing_rate = submodule_states_.RenderMultiBandProcessingActive()
? kSampleRate32kHz
: kSampleRate16kHz;
}
// If the forward sample rate is 8 kHz, the render stream is also processed
// at this rate.
if (capture_nonlocked_.capture_processing_format.sample_rate_hz() ==
kSampleRate8kHz) {
render_processing_rate = kSampleRate8kHz;
} else {
render_processing_rate =
std::max(render_processing_rate, static_cast<int>(kSampleRate16kHz));
}
// Always downmix the render stream to mono for analysis. This has been
// demonstrated to work well for AEC in most practical scenarios.
if (submodule_states_.RenderMultiBandSubModulesActive()) {
formats_.render_processing_format = StreamConfig(render_processing_rate, 1);
} else {
formats_.render_processing_format = StreamConfig(
formats_.api_format.reverse_input_stream().sample_rate_hz(),
formats_.api_format.reverse_input_stream().num_channels());
}
if (capture_nonlocked_.capture_processing_format.sample_rate_hz() ==
kSampleRate32kHz ||
capture_nonlocked_.capture_processing_format.sample_rate_hz() ==
kSampleRate48kHz) {
capture_nonlocked_.split_rate = kSampleRate16kHz;
} else {
capture_nonlocked_.split_rate =
capture_nonlocked_.capture_processing_format.sample_rate_hz();
}
return InitializeLocked();
}
void AudioProcessingImpl::ApplyConfig(const AudioProcessing::Config& config) {
// Run in a single-threaded manner when applying the settings.
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
config_ = config;
private_submodules_->echo_cancellation->Enable(
config_.echo_canceller.enabled && !config_.echo_canceller.mobile_mode);
private_submodules_->echo_control_mobile->Enable(
config_.echo_canceller.enabled && config_.echo_canceller.mobile_mode);
private_submodules_->echo_cancellation->set_suppression_level(
config.echo_canceller.legacy_moderate_suppression_level
? EchoCancellationImpl::SuppressionLevel::kModerateSuppression
: EchoCancellationImpl::SuppressionLevel::kHighSuppression);
InitializeLowCutFilter();
RTC_LOG(LS_INFO) << "Highpass filter activated: "
<< config_.high_pass_filter.enabled;
const bool config_ok = GainController2::Validate(config_.gain_controller2);
if (!config_ok) {
RTC_LOG(LS_ERROR) << "AudioProcessing module config error\n"
"Gain Controller 2: "
<< GainController2::ToString(config_.gain_controller2)
<< "\nReverting to default parameter set";
config_.gain_controller2 = AudioProcessing::Config::GainController2();
}
InitializeGainController2();
InitializePreAmplifier();
private_submodules_->gain_controller2->ApplyConfig(config_.gain_controller2);
RTC_LOG(LS_INFO) << "Gain Controller 2 activated: "
<< config_.gain_controller2.enabled;
RTC_LOG(LS_INFO) << "Pre-amplifier activated: "
<< config_.pre_amplifier.enabled;
}
void AudioProcessingImpl::SetExtraOptions(const webrtc::Config& config) {
// Run in a single-threaded manner when setting the extra options.
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
private_submodules_->echo_cancellation->SetExtraOptions(config);
if (capture_.transient_suppressor_enabled !=
config.Get<ExperimentalNs>().enabled) {
capture_.transient_suppressor_enabled =
config.Get<ExperimentalNs>().enabled;
InitializeTransient();
}
}
int AudioProcessingImpl::proc_sample_rate_hz() const {
// Used as callback from submodules, hence locking is not allowed.
return capture_nonlocked_.capture_processing_format.sample_rate_hz();
}
int AudioProcessingImpl::proc_split_sample_rate_hz() const {
// Used as callback from submodules, hence locking is not allowed.
return capture_nonlocked_.split_rate;
}
size_t AudioProcessingImpl::num_reverse_channels() const {
// Used as callback from submodules, hence locking is not allowed.
return formats_.render_processing_format.num_channels();
}
size_t AudioProcessingImpl::num_input_channels() const {
// Used as callback from submodules, hence locking is not allowed.
return formats_.api_format.input_stream().num_channels();
}
size_t AudioProcessingImpl::num_proc_channels() const {
// Used as callback from submodules, hence locking is not allowed.
return capture_nonlocked_.echo_controller_enabled ? 1 : num_output_channels();
}
size_t AudioProcessingImpl::num_output_channels() const {
// Used as callback from submodules, hence locking is not allowed.
return formats_.api_format.output_stream().num_channels();
}
void AudioProcessingImpl::set_output_will_be_muted(bool muted) {
rtc::CritScope cs(&crit_capture_);
capture_.output_will_be_muted = muted;
if (private_submodules_->agc_manager.get()) {
private_submodules_->agc_manager->SetCaptureMuted(
capture_.output_will_be_muted);
}
}
void AudioProcessingImpl::SetRuntimeSetting(RuntimeSetting setting) {
switch (setting.type()) {
case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting:
render_runtime_settings_enqueuer_.Enqueue(setting);
return;
case RuntimeSetting::Type::kNotSpecified:
RTC_NOTREACHED();
return;
case RuntimeSetting::Type::kCapturePreGain:
capture_runtime_settings_enqueuer_.Enqueue(setting);
return;
}
// The language allows the enum to have a non-enumerator
// value. Check that this doesn't happen.
RTC_NOTREACHED();
}
AudioProcessingImpl::RuntimeSettingEnqueuer::RuntimeSettingEnqueuer(
SwapQueue<RuntimeSetting>* runtime_settings)
: runtime_settings_(*runtime_settings) {
RTC_DCHECK(runtime_settings);
}
AudioProcessingImpl::RuntimeSettingEnqueuer::~RuntimeSettingEnqueuer() =
default;
void AudioProcessingImpl::RuntimeSettingEnqueuer::Enqueue(
RuntimeSetting setting) {
size_t remaining_attempts = 10;
while (!runtime_settings_.Insert(&setting) && remaining_attempts-- > 0) {
RuntimeSetting setting_to_discard;
if (runtime_settings_.Remove(&setting_to_discard))
RTC_LOG(LS_ERROR)
<< "The runtime settings queue is full. Oldest setting discarded.";
}
if (remaining_attempts == 0)
RTC_LOG(LS_ERROR) << "Cannot enqueue a new runtime setting.";
}
int AudioProcessingImpl::ProcessStream(const float* const* src,
size_t samples_per_channel,
int input_sample_rate_hz,
ChannelLayout input_layout,
int output_sample_rate_hz,
ChannelLayout output_layout,
float* const* dest) {
TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_ChannelLayout");
StreamConfig input_stream;
StreamConfig output_stream;
{
// Access the formats_.api_format.input_stream beneath the capture lock.
// The lock must be released as it is later required in the call
// to ProcessStream(,,,);
rtc::CritScope cs(&crit_capture_);
input_stream = formats_.api_format.input_stream();
output_stream = formats_.api_format.output_stream();
}
input_stream.set_sample_rate_hz(input_sample_rate_hz);
input_stream.set_num_channels(ChannelsFromLayout(input_layout));
input_stream.set_has_keyboard(LayoutHasKeyboard(input_layout));
output_stream.set_sample_rate_hz(output_sample_rate_hz);
output_stream.set_num_channels(ChannelsFromLayout(output_layout));
output_stream.set_has_keyboard(LayoutHasKeyboard(output_layout));
if (samples_per_channel != input_stream.num_frames()) {
return kBadDataLengthError;
}
return ProcessStream(src, input_stream, output_stream, dest);
}
int AudioProcessingImpl::ProcessStream(const float* const* src,
const StreamConfig& input_config,
const StreamConfig& output_config,
float* const* dest) {
TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_StreamConfig");
ProcessingConfig processing_config;
bool reinitialization_required = false;
{
// Acquire the capture lock in order to safely call the function
// that retrieves the render side data. This function accesses apm
// getters that need the capture lock held when being called.
rtc::CritScope cs_capture(&crit_capture_);
EmptyQueuedRenderAudio();
if (!src || !dest) {
return kNullPointerError;
}
processing_config = formats_.api_format;
reinitialization_required = UpdateActiveSubmoduleStates();
}
processing_config.input_stream() = input_config;
processing_config.output_stream() = output_config;
{
// Do conditional reinitialization.
rtc::CritScope cs_render(&crit_render_);
RETURN_ON_ERR(
MaybeInitializeCapture(processing_config, reinitialization_required));
}
rtc::CritScope cs_capture(&crit_capture_);
RTC_DCHECK_EQ(processing_config.input_stream().num_frames(),
formats_.api_format.input_stream().num_frames());
if (aec_dump_) {
RecordUnprocessedCaptureStream(src);
}
capture_.capture_audio->CopyFrom(src, formats_.api_format.input_stream());
RETURN_ON_ERR(ProcessCaptureStreamLocked());
capture_.capture_audio->CopyTo(formats_.api_format.output_stream(), dest);
if (aec_dump_) {
RecordProcessedCaptureStream(dest);
}
return kNoError;
}
void AudioProcessingImpl::HandleCaptureRuntimeSettings() {
RuntimeSetting setting;
while (capture_runtime_settings_.Remove(&setting)) {
if (aec_dump_) {
aec_dump_->WriteRuntimeSetting(setting);
}
switch (setting.type()) {
case RuntimeSetting::Type::kCapturePreGain:
if (config_.pre_amplifier.enabled) {
float value;
setting.GetFloat(&value);
private_submodules_->pre_amplifier->SetGainFactor(value);
}
// TODO(bugs.chromium.org/9138): Log setting handling by Aec Dump.
break;
case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting:
RTC_NOTREACHED();
break;
case RuntimeSetting::Type::kNotSpecified:
RTC_NOTREACHED();
break;
}
}
}
void AudioProcessingImpl::HandleRenderRuntimeSettings() {
RuntimeSetting setting;
while (render_runtime_settings_.Remove(&setting)) {
if (aec_dump_) {
aec_dump_->WriteRuntimeSetting(setting);
}
switch (setting.type()) {
case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting:
if (private_submodules_->render_pre_processor) {
private_submodules_->render_pre_processor->SetRuntimeSetting(setting);
}
break;
case RuntimeSetting::Type::kCapturePreGain:
RTC_NOTREACHED();
break;
case RuntimeSetting::Type::kNotSpecified:
RTC_NOTREACHED();
break;
}
}
}
void AudioProcessingImpl::QueueBandedRenderAudio(AudioBuffer* audio) {
EchoCancellationImpl::PackRenderAudioBuffer(audio, num_output_channels(),
num_reverse_channels(),
&aec_render_queue_buffer_);
RTC_DCHECK_GE(160, audio->num_frames_per_band());
// Insert the samples into the queue.
if (!aec_render_signal_queue_->Insert(&aec_render_queue_buffer_)) {
// The data queue is full and needs to be emptied.
EmptyQueuedRenderAudio();
// Retry the insert (should always work).
bool result = aec_render_signal_queue_->Insert(&aec_render_queue_buffer_);
RTC_DCHECK(result);
}
EchoControlMobileImpl::PackRenderAudioBuffer(audio, num_output_channels(),
num_reverse_channels(),
&aecm_render_queue_buffer_);
// Insert the samples into the queue.
if (!aecm_render_signal_queue_->Insert(&aecm_render_queue_buffer_)) {
// The data queue is full and needs to be emptied.
EmptyQueuedRenderAudio();
// Retry the insert (should always work).
bool result = aecm_render_signal_queue_->Insert(&aecm_render_queue_buffer_);
RTC_DCHECK(result);
}
if (!constants_.use_experimental_agc) {
GainControlImpl::PackRenderAudioBuffer(audio, &agc_render_queue_buffer_);
// Insert the samples into the queue.
if (!agc_render_signal_queue_->Insert(&agc_render_queue_buffer_)) {
// The data queue is full and needs to be emptied.
EmptyQueuedRenderAudio();
// Retry the insert (should always work).
bool result = agc_render_signal_queue_->Insert(&agc_render_queue_buffer_);
RTC_DCHECK(result);
}
}
}
void AudioProcessingImpl::QueueNonbandedRenderAudio(AudioBuffer* audio) {
ResidualEchoDetector::PackRenderAudioBuffer(audio, &red_render_queue_buffer_);
// Insert the samples into the queue.
if (!red_render_signal_queue_->Insert(&red_render_queue_buffer_)) {
// The data queue is full and needs to be emptied.
EmptyQueuedRenderAudio();
// Retry the insert (should always work).
bool result = red_render_signal_queue_->Insert(&red_render_queue_buffer_);
RTC_DCHECK(result);
}
}
void AudioProcessingImpl::AllocateRenderQueue() {
const size_t new_aec_render_queue_element_max_size =
std::max(static_cast<size_t>(1),
kMaxAllowedValuesOfSamplesPerBand *
EchoCancellationImpl::NumCancellersRequired(
num_output_channels(), num_reverse_channels()));
const size_t new_aecm_render_queue_element_max_size =
std::max(static_cast<size_t>(1),
kMaxAllowedValuesOfSamplesPerBand *
EchoControlMobileImpl::NumCancellersRequired(
num_output_channels(), num_reverse_channels()));
const size_t new_agc_render_queue_element_max_size =
std::max(static_cast<size_t>(1), kMaxAllowedValuesOfSamplesPerBand);
const size_t new_red_render_queue_element_max_size =
std::max(static_cast<size_t>(1), kMaxAllowedValuesOfSamplesPerFrame);
// Reallocate the queues if the queue item sizes are too small to fit the
// data to put in the queues.
if (aec_render_queue_element_max_size_ <
new_aec_render_queue_element_max_size) {
aec_render_queue_element_max_size_ = new_aec_render_queue_element_max_size;
std::vector<float> template_queue_element(
aec_render_queue_element_max_size_);
aec_render_signal_queue_.reset(
new SwapQueue<std::vector<float>, RenderQueueItemVerifier<float>>(
kMaxNumFramesToBuffer, template_queue_element,
RenderQueueItemVerifier<float>(
aec_render_queue_element_max_size_)));
aec_render_queue_buffer_.resize(aec_render_queue_element_max_size_);
aec_capture_queue_buffer_.resize(aec_render_queue_element_max_size_);
} else {
aec_render_signal_queue_->Clear();
}
if (aecm_render_queue_element_max_size_ <
new_aecm_render_queue_element_max_size) {
aecm_render_queue_element_max_size_ =
new_aecm_render_queue_element_max_size;
std::vector<int16_t> template_queue_element(
aecm_render_queue_element_max_size_);
aecm_render_signal_queue_.reset(
new SwapQueue<std::vector<int16_t>, RenderQueueItemVerifier<int16_t>>(
kMaxNumFramesToBuffer, template_queue_element,
RenderQueueItemVerifier<int16_t>(
aecm_render_queue_element_max_size_)));
aecm_render_queue_buffer_.resize(aecm_render_queue_element_max_size_);
aecm_capture_queue_buffer_.resize(aecm_render_queue_element_max_size_);
} else {
aecm_render_signal_queue_->Clear();
}
if (agc_render_queue_element_max_size_ <
new_agc_render_queue_element_max_size) {
agc_render_queue_element_max_size_ = new_agc_render_queue_element_max_size;
std::vector<int16_t> template_queue_element(
agc_render_queue_element_max_size_);
agc_render_signal_queue_.reset(
new SwapQueue<std::vector<int16_t>, RenderQueueItemVerifier<int16_t>>(
kMaxNumFramesToBuffer, template_queue_element,
RenderQueueItemVerifier<int16_t>(
agc_render_queue_element_max_size_)));
agc_render_queue_buffer_.resize(agc_render_queue_element_max_size_);
agc_capture_queue_buffer_.resize(agc_render_queue_element_max_size_);
} else {
agc_render_signal_queue_->Clear();
}
if (red_render_queue_element_max_size_ <
new_red_render_queue_element_max_size) {
red_render_queue_element_max_size_ = new_red_render_queue_element_max_size;
std::vector<float> template_queue_element(
red_render_queue_element_max_size_);
red_render_signal_queue_.reset(
new SwapQueue<std::vector<float>, RenderQueueItemVerifier<float>>(
kMaxNumFramesToBuffer, template_queue_element,
RenderQueueItemVerifier<float>(
red_render_queue_element_max_size_)));
red_render_queue_buffer_.resize(red_render_queue_element_max_size_);
red_capture_queue_buffer_.resize(red_render_queue_element_max_size_);
} else {
red_render_signal_queue_->Clear();
}
}
void AudioProcessingImpl::EmptyQueuedRenderAudio() {
rtc::CritScope cs_capture(&crit_capture_);
while (aec_render_signal_queue_->Remove(&aec_capture_queue_buffer_)) {
private_submodules_->echo_cancellation->ProcessRenderAudio(
aec_capture_queue_buffer_);
}
while (aecm_render_signal_queue_->Remove(&aecm_capture_queue_buffer_)) {
private_submodules_->echo_control_mobile->ProcessRenderAudio(
aecm_capture_queue_buffer_);
}
while (agc_render_signal_queue_->Remove(&agc_capture_queue_buffer_)) {
public_submodules_->gain_control->ProcessRenderAudio(
agc_capture_queue_buffer_);
}
while (red_render_signal_queue_->Remove(&red_capture_queue_buffer_)) {
RTC_DCHECK(private_submodules_->echo_detector);
private_submodules_->echo_detector->AnalyzeRenderAudio(
red_capture_queue_buffer_);
}
}
int AudioProcessingImpl::ProcessStream(AudioFrame* frame) {
TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_AudioFrame");
{
// Acquire the capture lock in order to safely call the function
// that retrieves the render side data. This function accesses APM
// getters that need the capture lock held when being called.
rtc::CritScope cs_capture(&crit_capture_);
EmptyQueuedRenderAudio();
}
if (!frame) {
return kNullPointerError;
}
// Must be a native rate.
if (frame->sample_rate_hz_ != kSampleRate8kHz &&
frame->sample_rate_hz_ != kSampleRate16kHz &&
frame->sample_rate_hz_ != kSampleRate32kHz &&
frame->sample_rate_hz_ != kSampleRate48kHz) {
return kBadSampleRateError;
}
ProcessingConfig processing_config;
bool reinitialization_required = false;
{
// Aquire lock for the access of api_format.
// The lock is released immediately due to the conditional
// reinitialization.
rtc::CritScope cs_capture(&crit_capture_);
// TODO(ajm): The input and output rates and channels are currently
// constrained to be identical in the int16 interface.
processing_config = formats_.api_format;
reinitialization_required = UpdateActiveSubmoduleStates();
}
processing_config.input_stream().set_sample_rate_hz(frame->sample_rate_hz_);
processing_config.input_stream().set_num_channels(frame->num_channels_);
processing_config.output_stream().set_sample_rate_hz(frame->sample_rate_hz_);
processing_config.output_stream().set_num_channels(frame->num_channels_);
{
// Do conditional reinitialization.
rtc::CritScope cs_render(&crit_render_);
RETURN_ON_ERR(
MaybeInitializeCapture(processing_config, reinitialization_required));
}
rtc::CritScope cs_capture(&crit_capture_);
if (frame->samples_per_channel_ !=
formats_.api_format.input_stream().num_frames()) {
return kBadDataLengthError;
}
if (aec_dump_) {
RecordUnprocessedCaptureStream(*frame);
}
capture_.capture_audio->DeinterleaveFrom(frame);
RETURN_ON_ERR(ProcessCaptureStreamLocked());
capture_.capture_audio->InterleaveTo(
frame, submodule_states_.CaptureMultiBandProcessingActive() ||
submodule_states_.CaptureFullBandProcessingActive());
if (aec_dump_) {
RecordProcessedCaptureStream(*frame);
}
return kNoError;
}
int AudioProcessingImpl::ProcessCaptureStreamLocked() {
HandleCaptureRuntimeSettings();
// Ensure that not both the AEC and AECM are active at the same time.
// TODO(peah): Simplify once the public API Enable functions for these
// are moved to APM.
RTC_DCHECK(!(private_submodules_->echo_cancellation->is_enabled() &&
private_submodules_->echo_control_mobile->is_enabled()));
MaybeUpdateHistograms();
AudioBuffer* capture_buffer = capture_.capture_audio.get(); // For brevity.
if (private_submodules_->pre_amplifier) {
private_submodules_->pre_amplifier->ApplyGain(AudioFrameView<float>(
capture_buffer->channels_f(), capture_buffer->num_channels(),
capture_buffer->num_frames()));
}
capture_input_rms_.Analyze(rtc::ArrayView<const int16_t>(
capture_buffer->channels_const()[0],
capture_nonlocked_.capture_processing_format.num_frames()));
const bool log_rms = ++capture_rms_interval_counter_ >= 1000;
if (log_rms) {
capture_rms_interval_counter_ = 0;
RmsLevel::Levels levels = capture_input_rms_.AverageAndPeak();
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureInputLevelAverageRms",
levels.average, 1, RmsLevel::kMinLevelDb, 64);
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureInputLevelPeakRms",
levels.peak, 1, RmsLevel::kMinLevelDb, 64);
}
if (private_submodules_->echo_controller) {
// Detect and flag any change in the analog gain.
int analog_mic_level = gain_control()->stream_analog_level();
capture_.echo_path_gain_change =
capture_.prev_analog_mic_level != analog_mic_level &&
capture_.prev_analog_mic_level != -1;
capture_.prev_analog_mic_level = analog_mic_level;
// Detect and flag any change in the pre-amplifier gain.
if (private_submodules_->pre_amplifier) {
float pre_amp_gain = private_submodules_->pre_amplifier->GetGainFactor();
capture_.echo_path_gain_change =
capture_.echo_path_gain_change ||
(capture_.prev_pre_amp_gain != pre_amp_gain &&
capture_.prev_pre_amp_gain >= 0.f);
capture_.prev_pre_amp_gain = pre_amp_gain;
}
private_submodules_->echo_controller->AnalyzeCapture(capture_buffer);
}
if (constants_.use_experimental_agc &&
public_submodules_->gain_control->is_enabled()) {
private_submodules_->agc_manager->AnalyzePreProcess(
capture_buffer->channels()[0], capture_buffer->num_channels(),
capture_nonlocked_.capture_processing_format.num_frames());
if (constants_.use_experimental_agc_process_before_aec) {
private_submodules_->agc_manager->Process(
capture_buffer->channels()[0],
capture_nonlocked_.capture_processing_format.num_frames(),
capture_nonlocked_.capture_processing_format.sample_rate_hz());
}
}
if (submodule_states_.CaptureMultiBandSubModulesActive() &&
SampleRateSupportsMultiBand(
capture_nonlocked_.capture_processing_format.sample_rate_hz())) {
capture_buffer->SplitIntoFrequencyBands();
}
if (private_submodules_->echo_controller) {
// Force down-mixing of the number of channels after the detection of
// capture signal saturation.
// TODO(peah): Look into ensuring that this kind of tampering with the
// AudioBuffer functionality should not be needed.
capture_buffer->set_num_channels(1);
}
// TODO(peah): Move the AEC3 low-cut filter to this place.
if (private_submodules_->low_cut_filter &&
!private_submodules_->echo_controller) {
private_submodules_->low_cut_filter->Process(capture_buffer);
}
RETURN_ON_ERR(
public_submodules_->gain_control->AnalyzeCaptureAudio(capture_buffer));
public_submodules_->noise_suppression->AnalyzeCaptureAudio(capture_buffer);
// Ensure that the stream delay was set before the call to the
// AEC ProcessCaptureAudio function.
if (private_submodules_->echo_cancellation->is_enabled() &&
!private_submodules_->echo_controller && !was_stream_delay_set()) {
return AudioProcessing::kStreamParameterNotSetError;
}
if (private_submodules_->echo_controller) {
data_dumper_->DumpRaw("stream_delay", stream_delay_ms());
if (was_stream_delay_set()) {
private_submodules_->echo_controller->SetAudioBufferDelay(
stream_delay_ms());
}
private_submodules_->echo_controller->ProcessCapture(
capture_buffer, capture_.echo_path_gain_change);
} else {
RETURN_ON_ERR(private_submodules_->echo_cancellation->ProcessCaptureAudio(
capture_buffer, stream_delay_ms()));
}
if (private_submodules_->echo_control_mobile->is_enabled() &&
public_submodules_->noise_suppression->is_enabled()) {
capture_buffer->CopyLowPassToReference();
}
public_submodules_->noise_suppression->ProcessCaptureAudio(capture_buffer);
// Ensure that the stream delay was set before the call to the
// AECM ProcessCaptureAudio function.
if (private_submodules_->echo_control_mobile->is_enabled() &&
!was_stream_delay_set()) {
return AudioProcessing::kStreamParameterNotSetError;
}
if (!(private_submodules_->echo_controller ||
private_submodules_->echo_cancellation->is_enabled())) {
RETURN_ON_ERR(private_submodules_->echo_control_mobile->ProcessCaptureAudio(
capture_buffer, stream_delay_ms()));
}
public_submodules_->voice_detection->ProcessCaptureAudio(capture_buffer);
if (constants_.use_experimental_agc &&
public_submodules_->gain_control->is_enabled() &&
!constants_.use_experimental_agc_process_before_aec) {
private_submodules_->agc_manager->Process(
capture_buffer->split_bands_const(0)[kBand0To8kHz],
capture_buffer->num_frames_per_band(), capture_nonlocked_.split_rate);
}
RETURN_ON_ERR(public_submodules_->gain_control->ProcessCaptureAudio(
capture_buffer,
private_submodules_->echo_cancellation->stream_has_echo()));
if (submodule_states_.CaptureMultiBandProcessingActive() &&
SampleRateSupportsMultiBand(
capture_nonlocked_.capture_processing_format.sample_rate_hz())) {
capture_buffer->MergeFrequencyBands();
}
if (config_.residual_echo_detector.enabled) {
RTC_DCHECK(private_submodules_->echo_detector);
private_submodules_->echo_detector->AnalyzeCaptureAudio(
rtc::ArrayView<const float>(capture_buffer->channels_f()[0],
capture_buffer->num_frames()));
}
// TODO(aluebs): Investigate if the transient suppression placement should be
// before or after the AGC.
if (capture_.transient_suppressor_enabled) {
float voice_probability =
private_submodules_->agc_manager.get()
? private_submodules_->agc_manager->voice_probability()
: 1.f;
public_submodules_->transient_suppressor->Suppress(
capture_buffer->channels_f()[0], capture_buffer->num_frames(),
capture_buffer->num_channels(),
capture_buffer->split_bands_const_f(0)[kBand0To8kHz],
capture_buffer->num_frames_per_band(), capture_buffer->keyboard_data(),
capture_buffer->num_keyboard_frames(), voice_probability,
capture_.key_pressed);
}
// Experimental APM sub-module that analyzes |capture_buffer|.
if (private_submodules_->capture_analyzer) {
private_submodules_->capture_analyzer->Analyze(capture_buffer);
}
if (config_.gain_controller2.enabled) {
private_submodules_->gain_controller2->NotifyAnalogLevel(
gain_control()->stream_analog_level());
private_submodules_->gain_controller2->Process(capture_buffer);
}
if (private_submodules_->capture_post_processor) {
private_submodules_->capture_post_processor->Process(capture_buffer);
}
// The level estimator operates on the recombined data.
public_submodules_->level_estimator->ProcessStream(capture_buffer);
capture_output_rms_.Analyze(rtc::ArrayView<const int16_t>(
capture_buffer->channels_const()[0],
capture_nonlocked_.capture_processing_format.num_frames()));
if (log_rms) {
RmsLevel::Levels levels = capture_output_rms_.AverageAndPeak();
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureOutputLevelAverageRms",
levels.average, 1, RmsLevel::kMinLevelDb, 64);
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureOutputLevelPeakRms",
levels.peak, 1, RmsLevel::kMinLevelDb, 64);
}
capture_.was_stream_delay_set = false;
return kNoError;
}
int AudioProcessingImpl::AnalyzeReverseStream(const float* const* data,
size_t samples_per_channel,
int sample_rate_hz,
ChannelLayout layout) {
TRACE_EVENT0("webrtc", "AudioProcessing::AnalyzeReverseStream_ChannelLayout");
rtc::CritScope cs(&crit_render_);
const StreamConfig reverse_config = {
sample_rate_hz, ChannelsFromLayout(layout), LayoutHasKeyboard(layout),
};
if (samples_per_channel != reverse_config.num_frames()) {
return kBadDataLengthError;
}
return AnalyzeReverseStreamLocked(data, reverse_config, reverse_config);
}
int AudioProcessingImpl::ProcessReverseStream(const float* const* src,
const StreamConfig& input_config,
const StreamConfig& output_config,
float* const* dest) {
TRACE_EVENT0("webrtc", "AudioProcessing::ProcessReverseStream_StreamConfig");
rtc::CritScope cs(&crit_render_);
RETURN_ON_ERR(AnalyzeReverseStreamLocked(src, input_config, output_config));
if (submodule_states_.RenderMultiBandProcessingActive() ||
submodule_states_.RenderFullBandProcessingActive()) {
render_.render_audio->CopyTo(formats_.api_format.reverse_output_stream(),
dest);
} else if (formats_.api_format.reverse_input_stream() !=
formats_.api_format.reverse_output_stream()) {
render_.render_converter->Convert(src, input_config.num_samples(), dest,
output_config.num_samples());
} else {
CopyAudioIfNeeded(src, input_config.num_frames(),
input_config.num_channels(), dest);
}
return kNoError;
}
int AudioProcessingImpl::AnalyzeReverseStreamLocked(
const float* const* src,
const StreamConfig& input_config,
const StreamConfig& output_config) {
if (src == nullptr) {
return kNullPointerError;
}
if (input_config.num_channels() == 0) {
return kBadNumberChannelsError;
}
ProcessingConfig processing_config = formats_.api_format;
processing_config.reverse_input_stream() = input_config;
processing_config.reverse_output_stream() = output_config;
RETURN_ON_ERR(MaybeInitializeRender(processing_config));
RTC_DCHECK_EQ(input_config.num_frames(),
formats_.api_format.reverse_input_stream().num_frames());
if (aec_dump_) {
const size_t channel_size =
formats_.api_format.reverse_input_stream().num_frames();
const size_t num_channels =
formats_.api_format.reverse_input_stream().num_channels();
aec_dump_->WriteRenderStreamMessage(
AudioFrameView<const float>(src, num_channels, channel_size));
}
render_.render_audio->CopyFrom(src,
formats_.api_format.reverse_input_stream());
return ProcessRenderStreamLocked();
}
int AudioProcessingImpl::ProcessReverseStream(AudioFrame* frame) {
TRACE_EVENT0("webrtc", "AudioProcessing::ProcessReverseStream_AudioFrame");
rtc::CritScope cs(&crit_render_);
if (frame == nullptr) {
return kNullPointerError;
}
// Must be a native rate.
if (frame->sample_rate_hz_ != kSampleRate8kHz &&
frame->sample_rate_hz_ != kSampleRate16kHz &&
frame->sample_rate_hz_ != kSampleRate32kHz &&
frame->sample_rate_hz_ != kSampleRate48kHz) {
return kBadSampleRateError;
}
if (frame->num_channels_ <= 0) {
return kBadNumberChannelsError;
}
ProcessingConfig processing_config = formats_.api_format;
processing_config.reverse_input_stream().set_sample_rate_hz(
frame->sample_rate_hz_);
processing_config.reverse_input_stream().set_num_channels(
frame->num_channels_);
processing_config.reverse_output_stream().set_sample_rate_hz(
frame->sample_rate_hz_);
processing_config.reverse_output_stream().set_num_channels(
frame->num_channels_);
RETURN_ON_ERR(MaybeInitializeRender(processing_config));
if (frame->samples_per_channel_ !=
formats_.api_format.reverse_input_stream().num_frames()) {
return kBadDataLengthError;
}
if (aec_dump_) {
aec_dump_->WriteRenderStreamMessage(*frame);
}
render_.render_audio->DeinterleaveFrom(frame);
RETURN_ON_ERR(ProcessRenderStreamLocked());
render_.render_audio->InterleaveTo(
frame, submodule_states_.RenderMultiBandProcessingActive() ||
submodule_states_.RenderFullBandProcessingActive());
return kNoError;
}
int AudioProcessingImpl::ProcessRenderStreamLocked() {
AudioBuffer* render_buffer = render_.render_audio.get(); // For brevity.
HandleRenderRuntimeSettings();
if (private_submodules_->render_pre_processor) {
private_submodules_->render_pre_processor->Process(render_buffer);
}
QueueNonbandedRenderAudio(render_buffer);
if (submodule_states_.RenderMultiBandSubModulesActive() &&
SampleRateSupportsMultiBand(
formats_.render_processing_format.sample_rate_hz())) {
render_buffer->SplitIntoFrequencyBands();
}
if (submodule_states_.RenderMultiBandSubModulesActive()) {
QueueBandedRenderAudio(render_buffer);
}
// TODO(peah): Perform the queuing inside QueueRenderAudiuo().
if (private_submodules_->echo_controller) {
private_submodules_->echo_controller->AnalyzeRender(render_buffer);
}
if (submodule_states_.RenderMultiBandProcessingActive() &&
SampleRateSupportsMultiBand(
formats_.render_processing_format.sample_rate_hz())) {
render_buffer->MergeFrequencyBands();
}
return kNoError;
}
int AudioProcessingImpl::set_stream_delay_ms(int delay) {
rtc::CritScope cs(&crit_capture_);
Error retval = kNoError;
capture_.was_stream_delay_set = true;
delay += capture_.delay_offset_ms;
if (delay < 0) {
delay = 0;
retval = kBadStreamParameterWarning;
}
// TODO(ajm): the max is rather arbitrarily chosen; investigate.
if (delay > 500) {
delay = 500;
retval = kBadStreamParameterWarning;
}
capture_nonlocked_.stream_delay_ms = delay;
return retval;
}
int AudioProcessingImpl::stream_delay_ms() const {
// Used as callback from submodules, hence locking is not allowed.
return capture_nonlocked_.stream_delay_ms;
}
bool AudioProcessingImpl::was_stream_delay_set() const {
// Used as callback from submodules, hence locking is not allowed.
return capture_.was_stream_delay_set;
}
void AudioProcessingImpl::set_stream_key_pressed(bool key_pressed) {
rtc::CritScope cs(&crit_capture_);
capture_.key_pressed = key_pressed;
}
void AudioProcessingImpl::set_delay_offset_ms(int offset) {
rtc::CritScope cs(&crit_capture_);
capture_.delay_offset_ms = offset;
}
int AudioProcessingImpl::delay_offset_ms() const {
rtc::CritScope cs(&crit_capture_);
return capture_.delay_offset_ms;
}
void AudioProcessingImpl::AttachAecDump(std::unique_ptr<AecDump> aec_dump) {
RTC_DCHECK(aec_dump);
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
// The previously attached AecDump will be destroyed with the
// 'aec_dump' parameter, which is after locks are released.
aec_dump_.swap(aec_dump);
WriteAecDumpConfigMessage(true);
aec_dump_->WriteInitMessage(formats_.api_format, rtc::TimeUTCMillis());
}
void AudioProcessingImpl::DetachAecDump() {
// The d-tor of a task-queue based AecDump blocks until all pending
// tasks are done. This construction avoids blocking while holding
// the render and capture locks.
std::unique_ptr<AecDump> aec_dump = nullptr;
{
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
aec_dump = std::move(aec_dump_);
}
}
void AudioProcessingImpl::AttachPlayoutAudioGenerator(
std::unique_ptr<AudioGenerator> audio_generator) {
// TODO(bugs.webrtc.org/8882) Stub.
// Reset internal audio generator with audio_generator.
}
void AudioProcessingImpl::DetachPlayoutAudioGenerator() {
// TODO(bugs.webrtc.org/8882) Stub.
// Delete audio generator, if one is attached.
}
AudioProcessingStats AudioProcessingImpl::GetStatistics(
bool has_remote_tracks) const {
AudioProcessingStats stats;
if (has_remote_tracks) {
EchoCancellationImpl::Metrics metrics;
rtc::CritScope cs_capture(&crit_capture_);
if (private_submodules_->echo_controller) {
auto ec_metrics = private_submodules_->echo_controller->GetMetrics();
stats.echo_return_loss = ec_metrics.echo_return_loss;
stats.echo_return_loss_enhancement =
ec_metrics.echo_return_loss_enhancement;
stats.delay_ms = ec_metrics.delay_ms;
} else if (private_submodules_->echo_cancellation->GetMetrics(&metrics) ==
Error::kNoError) {
if (metrics.divergent_filter_fraction != -1.0f) {
stats.divergent_filter_fraction =
absl::optional<double>(metrics.divergent_filter_fraction);
}
if (metrics.echo_return_loss.instant != -100) {
stats.echo_return_loss =
absl::optional<double>(metrics.echo_return_loss.instant);
}
if (metrics.echo_return_loss_enhancement.instant != -100) {
stats.echo_return_loss_enhancement = absl::optional<double>(
metrics.echo_return_loss_enhancement.instant);
}
}
if (config_.residual_echo_detector.enabled) {
RTC_DCHECK(private_submodules_->echo_detector);
auto ed_metrics = private_submodules_->echo_detector->GetMetrics();
stats.residual_echo_likelihood = ed_metrics.echo_likelihood;
stats.residual_echo_likelihood_recent_max =
ed_metrics.echo_likelihood_recent_max;
}
int delay_median, delay_std;
float fraction_poor_delays;
if (private_submodules_->echo_cancellation->GetDelayMetrics(
&delay_median, &delay_std, &fraction_poor_delays) ==
Error::kNoError) {
if (delay_median >= 0) {
stats.delay_median_ms = absl::optional<int32_t>(delay_median);
}
if (delay_std >= 0) {
stats.delay_standard_deviation_ms = absl::optional<int32_t>(delay_std);
}
}
}
return stats;
}
GainControl* AudioProcessingImpl::gain_control() const {
if (constants_.use_experimental_agc) {
return public_submodules_->gain_control_for_experimental_agc.get();
}
return public_submodules_->gain_control.get();
}
LevelEstimator* AudioProcessingImpl::level_estimator() const {
return public_submodules_->level_estimator.get();
}
NoiseSuppression* AudioProcessingImpl::noise_suppression() const {
return public_submodules_->noise_suppression.get();
}
VoiceDetection* AudioProcessingImpl::voice_detection() const {
return public_submodules_->voice_detection.get();
}
void AudioProcessingImpl::MutateConfig(
rtc::FunctionView<void(AudioProcessing::Config*)> mutator) {
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
mutator(&config_);
ApplyConfig(config_);
}
AudioProcessing::Config AudioProcessingImpl::GetConfig() const {
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
return config_;
}
bool AudioProcessingImpl::UpdateActiveSubmoduleStates() {
return submodule_states_.Update(
config_.high_pass_filter.enabled,
private_submodules_->echo_cancellation->is_enabled(),
private_submodules_->echo_control_mobile->is_enabled(),
config_.residual_echo_detector.enabled,
public_submodules_->noise_suppression->is_enabled(),
public_submodules_->gain_control->is_enabled(),
config_.gain_controller2.enabled, config_.pre_amplifier.enabled,
capture_nonlocked_.echo_controller_enabled,
public_submodules_->voice_detection->is_enabled(),
public_submodules_->level_estimator->is_enabled(),
capture_.transient_suppressor_enabled);
}
void AudioProcessingImpl::InitializeTransient() {
if (capture_.transient_suppressor_enabled) {
if (!public_submodules_->transient_suppressor.get()) {
public_submodules_->transient_suppressor.reset(new TransientSuppressor());
}
public_submodules_->transient_suppressor->Initialize(
capture_nonlocked_.capture_processing_format.sample_rate_hz(),
capture_nonlocked_.split_rate, num_proc_channels());
}
}
void AudioProcessingImpl::InitializeLowCutFilter() {
if (submodule_states_.LowCutFilteringRequired()) {
private_submodules_->low_cut_filter.reset(
new LowCutFilter(num_proc_channels(), proc_sample_rate_hz()));
} else {
private_submodules_->low_cut_filter.reset();
}
}
void AudioProcessingImpl::InitializeEchoController() {
if (echo_control_factory_) {
private_submodules_->echo_controller =
echo_control_factory_->Create(proc_sample_rate_hz());
} else {
private_submodules_->echo_controller.reset();
}
}
void AudioProcessingImpl::InitializeGainController2() {
if (config_.gain_controller2.enabled) {
private_submodules_->gain_controller2->Initialize(proc_sample_rate_hz());
}
}
void AudioProcessingImpl::InitializePreAmplifier() {
if (config_.pre_amplifier.enabled) {
private_submodules_->pre_amplifier.reset(
new GainApplier(true, config_.pre_amplifier.fixed_gain_factor));
} else {
private_submodules_->pre_amplifier.reset();
}
}
void AudioProcessingImpl::InitializeResidualEchoDetector() {
RTC_DCHECK(private_submodules_->echo_detector);
private_submodules_->echo_detector->Initialize(
proc_sample_rate_hz(), 1,
formats_.render_processing_format.sample_rate_hz(), 1);
}
void AudioProcessingImpl::InitializeAnalyzer() {
if (private_submodules_->capture_analyzer) {
private_submodules_->capture_analyzer->Initialize(proc_sample_rate_hz(),
num_proc_channels());
}
}
void AudioProcessingImpl::InitializePostProcessor() {
if (private_submodules_->capture_post_processor) {
private_submodules_->capture_post_processor->Initialize(
proc_sample_rate_hz(), num_proc_channels());
}
}
void AudioProcessingImpl::InitializePreProcessor() {
if (private_submodules_->render_pre_processor) {
private_submodules_->render_pre_processor->Initialize(
formats_.render_processing_format.sample_rate_hz(),
formats_.render_processing_format.num_channels());
}
}
void AudioProcessingImpl::MaybeUpdateHistograms() {
static const int kMinDiffDelayMs = 60;
if (private_submodules_->echo_cancellation->is_enabled()) {
// Activate delay_jumps_ counters if we know echo_cancellation is running.
// If a stream has echo we know that the echo_cancellation is in process.
if (capture_.stream_delay_jumps == -1 &&
private_submodules_->echo_cancellation->stream_has_echo()) {
capture_.stream_delay_jumps = 0;
}
if (capture_.aec_system_delay_jumps == -1 &&
private_submodules_->echo_cancellation->stream_has_echo()) {
capture_.aec_system_delay_jumps = 0;
}
// Detect a jump in platform reported system delay and log the difference.
const int diff_stream_delay_ms =
capture_nonlocked_.stream_delay_ms - capture_.last_stream_delay_ms;
if (diff_stream_delay_ms > kMinDiffDelayMs &&
capture_.last_stream_delay_ms != 0) {
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.PlatformReportedStreamDelayJump",
diff_stream_delay_ms, kMinDiffDelayMs, 1000, 100);
if (capture_.stream_delay_jumps == -1) {
capture_.stream_delay_jumps = 0; // Activate counter if needed.
}
capture_.stream_delay_jumps++;
}
capture_.last_stream_delay_ms = capture_nonlocked_.stream_delay_ms;
// Detect a jump in AEC system delay and log the difference.
const int samples_per_ms =
rtc::CheckedDivExact(capture_nonlocked_.split_rate, 1000);
RTC_DCHECK_LT(0, samples_per_ms);
const int aec_system_delay_ms =
private_submodules_->echo_cancellation->GetSystemDelayInSamples() /
samples_per_ms;
const int diff_aec_system_delay_ms =
aec_system_delay_ms - capture_.last_aec_system_delay_ms;
if (diff_aec_system_delay_ms > kMinDiffDelayMs &&
capture_.last_aec_system_delay_ms != 0) {
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.AecSystemDelayJump",
diff_aec_system_delay_ms, kMinDiffDelayMs, 1000,
100);
if (capture_.aec_system_delay_jumps == -1) {
capture_.aec_system_delay_jumps = 0; // Activate counter if needed.
}
capture_.aec_system_delay_jumps++;
}
capture_.last_aec_system_delay_ms = aec_system_delay_ms;
}
}
void AudioProcessingImpl::UpdateHistogramsOnCallEnd() {
// Run in a single-threaded manner.
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
if (capture_.stream_delay_jumps > -1) {
RTC_HISTOGRAM_ENUMERATION(
"WebRTC.Audio.NumOfPlatformReportedStreamDelayJumps",
capture_.stream_delay_jumps, 51);
}
capture_.stream_delay_jumps = -1;
capture_.last_stream_delay_ms = 0;
if (capture_.aec_system_delay_jumps > -1) {
RTC_HISTOGRAM_ENUMERATION("WebRTC.Audio.NumOfAecSystemDelayJumps",
capture_.aec_system_delay_jumps, 51);
}
capture_.aec_system_delay_jumps = -1;
capture_.last_aec_system_delay_ms = 0;
}
void AudioProcessingImpl::WriteAecDumpConfigMessage(bool forced) {
if (!aec_dump_) {
return;
}
std::string experiments_description =
private_submodules_->echo_cancellation->GetExperimentsDescription();
// TODO(peah): Add semicolon-separated concatenations of experiment
// descriptions for other submodules.
if (constants_.agc_clipped_level_min != kClippedLevelMin) {
experiments_description += "AgcClippingLevelExperiment;";
}
if (capture_nonlocked_.echo_controller_enabled) {
experiments_description += "EchoController;";
}
if (config_.gain_controller2.enabled) {
experiments_description += "GainController2;";
}
InternalAPMConfig apm_config;
apm_config.aec_enabled = private_submodules_->echo_cancellation->is_enabled();
apm_config.aec_delay_agnostic_enabled =
private_submodules_->echo_cancellation->is_delay_agnostic_enabled();
apm_config.aec_drift_compensation_enabled =
private_submodules_->echo_cancellation->is_drift_compensation_enabled();
apm_config.aec_extended_filter_enabled =
private_submodules_->echo_cancellation->is_extended_filter_enabled();
apm_config.aec_suppression_level = static_cast<int>(
private_submodules_->echo_cancellation->suppression_level());
apm_config.aecm_enabled =
private_submodules_->echo_control_mobile->is_enabled();
apm_config.aecm_comfort_noise_enabled =
private_submodules_->echo_control_mobile->is_comfort_noise_enabled();
apm_config.aecm_routing_mode = static_cast<int>(
private_submodules_->echo_control_mobile->routing_mode());
apm_config.agc_enabled = public_submodules_->gain_control->is_enabled();
apm_config.agc_mode =
static_cast<int>(public_submodules_->gain_control->mode());
apm_config.agc_limiter_enabled =
public_submodules_->gain_control->is_limiter_enabled();
apm_config.noise_robust_agc_enabled = constants_.use_experimental_agc;
apm_config.hpf_enabled = config_.high_pass_filter.enabled;
apm_config.ns_enabled = public_submodules_->noise_suppression->is_enabled();
apm_config.ns_level =
static_cast<int>(public_submodules_->noise_suppression->level());
apm_config.transient_suppression_enabled =
capture_.transient_suppressor_enabled;
apm_config.experiments_description = experiments_description;
apm_config.pre_amplifier_enabled = config_.pre_amplifier.enabled;
apm_config.pre_amplifier_fixed_gain_factor =
config_.pre_amplifier.fixed_gain_factor;
if (!forced && apm_config == apm_config_for_aec_dump_) {
return;
}
aec_dump_->WriteConfig(apm_config);
apm_config_for_aec_dump_ = apm_config;
}
void AudioProcessingImpl::RecordUnprocessedCaptureStream(
const float* const* src) {
RTC_DCHECK(aec_dump_);
WriteAecDumpConfigMessage(false);
const size_t channel_size = formats_.api_format.input_stream().num_frames();
const size_t num_channels = formats_.api_format.input_stream().num_channels();
aec_dump_->AddCaptureStreamInput(
AudioFrameView<const float>(src, num_channels, channel_size));
RecordAudioProcessingState();
}
void AudioProcessingImpl::RecordUnprocessedCaptureStream(
const AudioFrame& capture_frame) {
RTC_DCHECK(aec_dump_);
WriteAecDumpConfigMessage(false);
aec_dump_->AddCaptureStreamInput(capture_frame);
RecordAudioProcessingState();
}
void AudioProcessingImpl::RecordProcessedCaptureStream(
const float* const* processed_capture_stream) {
RTC_DCHECK(aec_dump_);
const size_t channel_size = formats_.api_format.output_stream().num_frames();
const size_t num_channels =
formats_.api_format.output_stream().num_channels();
aec_dump_->AddCaptureStreamOutput(AudioFrameView<const float>(
processed_capture_stream, num_channels, channel_size));
aec_dump_->WriteCaptureStreamMessage();
}
void AudioProcessingImpl::RecordProcessedCaptureStream(
const AudioFrame& processed_capture_frame) {
RTC_DCHECK(aec_dump_);
aec_dump_->AddCaptureStreamOutput(processed_capture_frame);
aec_dump_->WriteCaptureStreamMessage();
}
void AudioProcessingImpl::RecordAudioProcessingState() {
RTC_DCHECK(aec_dump_);
AecDump::AudioProcessingState audio_proc_state;
audio_proc_state.delay = capture_nonlocked_.stream_delay_ms;
audio_proc_state.drift =
private_submodules_->echo_cancellation->stream_drift_samples();
audio_proc_state.level = gain_control()->stream_analog_level();
audio_proc_state.keypress = capture_.key_pressed;
aec_dump_->AddAudioProcessingState(audio_proc_state);
}
AudioProcessingImpl::ApmCaptureState::ApmCaptureState(
bool transient_suppressor_enabled)
: aec_system_delay_jumps(-1),
delay_offset_ms(0),
was_stream_delay_set(false),
last_stream_delay_ms(0),
last_aec_system_delay_ms(0),
stream_delay_jumps(-1),
output_will_be_muted(false),
key_pressed(false),
transient_suppressor_enabled(transient_suppressor_enabled),
capture_processing_format(kSampleRate16kHz),
split_rate(kSampleRate16kHz),
echo_path_gain_change(false),
prev_analog_mic_level(-1),
prev_pre_amp_gain(-1.f) {}
AudioProcessingImpl::ApmCaptureState::~ApmCaptureState() = default;
AudioProcessingImpl::ApmRenderState::ApmRenderState() = default;
AudioProcessingImpl::ApmRenderState::~ApmRenderState() = default;
} // namespace webrtc