/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ #define MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ // MSVC++ requires this to be set before any other includes to get M_PI. #ifndef _USE_MATH_DEFINES #define _USE_MATH_DEFINES #endif #include #include // size_t #include // FILE #include #include #include "absl/types/optional.h" #include "api/audio/echo_canceller3_config.h" #include "api/audio/echo_control.h" #include "modules/audio_processing/include/audio_generator.h" #include "modules/audio_processing/include/audio_processing_statistics.h" #include "modules/audio_processing/include/config.h" #include "modules/audio_processing/include/gain_control.h" #include "rtc_base/arraysize.h" #include "rtc_base/deprecation.h" #include "rtc_base/platform_file.h" #include "rtc_base/refcount.h" #include "rtc_base/scoped_ref_ptr.h" #include "rtc_base/system/rtc_export.h" namespace webrtc { struct AecCore; class AecDump; class AudioBuffer; class AudioFrame; class StreamConfig; class ProcessingConfig; class EchoDetector; class GainControl; class LevelEstimator; class NoiseSuppression; class CustomAudioAnalyzer; class CustomProcessing; class VoiceDetection; // Use to enable the extended filter mode in the AEC, along with robustness // measures around the reported system delays. It comes with a significant // increase in AEC complexity, but is much more robust to unreliable reported // delays. // // Detailed changes to the algorithm: // - The filter length is changed from 48 to 128 ms. This comes with tuning of // several parameters: i) filter adaptation stepsize and error threshold; // ii) non-linear processing smoothing and overdrive. // - Option to ignore the reported delays on platforms which we deem // sufficiently unreliable. See WEBRTC_UNTRUSTED_DELAY in echo_cancellation.c. // - Faster startup times by removing the excessive "startup phase" processing // of reported delays. // - Much more conservative adjustments to the far-end read pointer. We smooth // the delay difference more heavily, and back off from the difference more. // Adjustments force a readaptation of the filter, so they should be avoided // except when really necessary. struct ExtendedFilter { ExtendedFilter() : enabled(false) {} explicit ExtendedFilter(bool enabled) : enabled(enabled) {} static const ConfigOptionID identifier = ConfigOptionID::kExtendedFilter; bool enabled; }; // Enables the refined linear filter adaptation in the echo canceller. // This configuration only applies to non-mobile echo cancellation. // It can be set in the constructor or using AudioProcessing::SetExtraOptions(). struct RefinedAdaptiveFilter { RefinedAdaptiveFilter() : enabled(false) {} explicit RefinedAdaptiveFilter(bool enabled) : enabled(enabled) {} static const ConfigOptionID identifier = ConfigOptionID::kAecRefinedAdaptiveFilter; bool enabled; }; // Enables delay-agnostic echo cancellation. This feature relies on internally // estimated delays between the process and reverse streams, thus not relying // on reported system delays. This configuration only applies to non-mobile echo // cancellation. It can be set in the constructor or using // AudioProcessing::SetExtraOptions(). struct DelayAgnostic { DelayAgnostic() : enabled(false) {} explicit DelayAgnostic(bool enabled) : enabled(enabled) {} static const ConfigOptionID identifier = ConfigOptionID::kDelayAgnostic; bool enabled; }; // Use to enable experimental gain control (AGC). At startup the experimental // AGC moves the microphone volume up to |startup_min_volume| if the current // microphone volume is set too low. The value is clamped to its operating range // [12, 255]. Here, 255 maps to 100%. // // Must be provided through AudioProcessingBuilder().Create(config). #if defined(WEBRTC_CHROMIUM_BUILD) static const int kAgcStartupMinVolume = 85; #else static const int kAgcStartupMinVolume = 0; #endif // defined(WEBRTC_CHROMIUM_BUILD) static constexpr int kClippedLevelMin = 70; struct ExperimentalAgc { ExperimentalAgc() = default; explicit ExperimentalAgc(bool enabled) : enabled(enabled) {} ExperimentalAgc(bool enabled, bool enabled_agc2_level_estimator, bool digital_adaptive_disabled, bool analyze_before_aec) : enabled(enabled), enabled_agc2_level_estimator(enabled_agc2_level_estimator), digital_adaptive_disabled(digital_adaptive_disabled), analyze_before_aec(analyze_before_aec) {} ExperimentalAgc(bool enabled, int startup_min_volume) : enabled(enabled), startup_min_volume(startup_min_volume) {} ExperimentalAgc(bool enabled, int startup_min_volume, int clipped_level_min) : enabled(enabled), startup_min_volume(startup_min_volume), clipped_level_min(clipped_level_min) {} static const ConfigOptionID identifier = ConfigOptionID::kExperimentalAgc; bool enabled = true; int startup_min_volume = kAgcStartupMinVolume; // Lowest microphone level that will be applied in response to clipping. int clipped_level_min = kClippedLevelMin; bool enabled_agc2_level_estimator = false; bool digital_adaptive_disabled = false; // 'analyze_before_aec' is an experimental flag. It is intended to be removed // at some point. bool analyze_before_aec = false; }; // Use to enable experimental noise suppression. It can be set in the // constructor or using AudioProcessing::SetExtraOptions(). struct ExperimentalNs { ExperimentalNs() : enabled(false) {} explicit ExperimentalNs(bool enabled) : enabled(enabled) {} static const ConfigOptionID identifier = ConfigOptionID::kExperimentalNs; bool enabled; }; // The Audio Processing Module (APM) provides a collection of voice processing // components designed for real-time communications software. // // APM operates on two audio streams on a frame-by-frame basis. Frames of the // primary stream, on which all processing is applied, are passed to // |ProcessStream()|. Frames of the reverse direction stream are passed to // |ProcessReverseStream()|. On the client-side, this will typically be the // near-end (capture) and far-end (render) streams, respectively. APM should be // placed in the signal chain as close to the audio hardware abstraction layer // (HAL) as possible. // // On the server-side, the reverse stream will normally not be used, with // processing occurring on each incoming stream. // // Component interfaces follow a similar pattern and are accessed through // corresponding getters in APM. All components are disabled at create-time, // with default settings that are recommended for most situations. New settings // can be applied without enabling a component. Enabling a component triggers // memory allocation and initialization to allow it to start processing the // streams. // // Thread safety is provided with the following assumptions to reduce locking // overhead: // 1. The stream getters and setters are called from the same thread as // ProcessStream(). More precisely, stream functions are never called // concurrently with ProcessStream(). // 2. Parameter getters are never called concurrently with the corresponding // setter. // // APM accepts only linear PCM audio data in chunks of 10 ms. The int16 // interfaces use interleaved data, while the float interfaces use deinterleaved // data. // // Usage example, omitting error checking: // AudioProcessing* apm = AudioProcessingBuilder().Create(); // // AudioProcessing::Config config; // config.echo_canceller.enabled = true; // config.echo_canceller.mobile_mode = false; // config.high_pass_filter.enabled = true; // config.gain_controller2.enabled = true; // apm->ApplyConfig(config) // // apm->noise_reduction()->set_level(kHighSuppression); // apm->noise_reduction()->Enable(true); // // apm->gain_control()->set_analog_level_limits(0, 255); // apm->gain_control()->set_mode(kAdaptiveAnalog); // apm->gain_control()->Enable(true); // // apm->voice_detection()->Enable(true); // // // Start a voice call... // // // ... Render frame arrives bound for the audio HAL ... // apm->ProcessReverseStream(render_frame); // // // ... Capture frame arrives from the audio HAL ... // // Call required set_stream_ functions. // apm->set_stream_delay_ms(delay_ms); // apm->gain_control()->set_stream_analog_level(analog_level); // // apm->ProcessStream(capture_frame); // // // Call required stream_ functions. // analog_level = apm->gain_control()->stream_analog_level(); // has_voice = apm->stream_has_voice(); // // // Repeate render and capture processing for the duration of the call... // // Start a new call... // apm->Initialize(); // // // Close the application... // delete apm; // class AudioProcessing : public rtc::RefCountInterface { public: // The struct below constitutes the new parameter scheme for the audio // processing. It is being introduced gradually and until it is fully // introduced, it is prone to change. // TODO(peah): Remove this comment once the new config scheme is fully rolled // out. // // The parameters and behavior of the audio processing module are controlled // by changing the default values in the AudioProcessing::Config struct. // The config is applied by passing the struct to the ApplyConfig method. struct Config { struct EchoCanceller { bool enabled = false; bool mobile_mode = false; // Recommended not to use. Will be removed in the future. // APM components are not fine-tuned for legacy suppression levels. bool legacy_moderate_suppression_level = false; } echo_canceller; struct ResidualEchoDetector { bool enabled = true; } residual_echo_detector; struct HighPassFilter { bool enabled = false; } high_pass_filter; // Enabled the pre-amplifier. It amplifies the capture signal // before any other processing is done. struct PreAmplifier { bool enabled = false; float fixed_gain_factor = 1.f; } pre_amplifier; // Enables the next generation AGC functionality. This feature replaces the // standard methods of gain control in the previous AGC. Enabling this // submodule enables an adaptive digital AGC followed by a limiter. By // setting |fixed_gain_db|, the limiter can be turned into a compressor that // first applies a fixed gain. The adaptive digital AGC can be turned off by // setting |adaptive_digital_mode=false|. struct GainController2 { enum LevelEstimator { kRms, kPeak }; bool enabled = false; struct { float gain_db = 0.f; } fixed_digital; struct { bool enabled = true; LevelEstimator level_estimator = kRms; bool use_saturation_protector = true; float extra_saturation_margin_db = 2.f; } adaptive_digital; } gain_controller2; // Explicit copy assignment implementation to avoid issues with memory // sanitizer complaints in case of self-assignment. // TODO(peah): Add buildflag to ensure that this is only included for memory // sanitizer builds. Config& operator=(const Config& config) { if (this != &config) { memcpy(this, &config, sizeof(*this)); } return *this; } }; // TODO(mgraczyk): Remove once all methods that use ChannelLayout are gone. enum ChannelLayout { kMono, // Left, right. kStereo, // Mono, keyboard, and mic. kMonoAndKeyboard, // Left, right, keyboard, and mic. kStereoAndKeyboard }; // Specifies the properties of a setting to be passed to AudioProcessing at // runtime. class RuntimeSetting { public: enum class Type { kNotSpecified, kCapturePreGain, kCustomRenderProcessingRuntimeSetting }; RuntimeSetting() : type_(Type::kNotSpecified), value_(0.f) {} ~RuntimeSetting() = default; static RuntimeSetting CreateCapturePreGain(float gain) { RTC_DCHECK_GE(gain, 1.f) << "Attenuation is not allowed."; return {Type::kCapturePreGain, gain}; } static RuntimeSetting CreateCustomRenderSetting(float payload) { return {Type::kCustomRenderProcessingRuntimeSetting, payload}; } Type type() const { return type_; } void GetFloat(float* value) const { RTC_DCHECK(value); *value = value_; } private: RuntimeSetting(Type id, float value) : type_(id), value_(value) {} Type type_; float value_; }; ~AudioProcessing() override {} // Initializes internal states, while retaining all user settings. This // should be called before beginning to process a new audio stream. However, // it is not necessary to call before processing the first stream after // creation. // // It is also not necessary to call if the audio parameters (sample // rate and number of channels) have changed. Passing updated parameters // directly to |ProcessStream()| and |ProcessReverseStream()| is permissible. // If the parameters are known at init-time though, they may be provided. virtual int Initialize() = 0; // The int16 interfaces require: // - only |NativeRate|s be used // - that the input, output and reverse rates must match // - that |processing_config.output_stream()| matches // |processing_config.input_stream()|. // // The float interfaces accept arbitrary rates and support differing input and // output layouts, but the output must have either one channel or the same // number of channels as the input. virtual int Initialize(const ProcessingConfig& processing_config) = 0; // Initialize with unpacked parameters. See Initialize() above for details. // // TODO(mgraczyk): Remove once clients are updated to use the new interface. virtual int Initialize(int capture_input_sample_rate_hz, int capture_output_sample_rate_hz, int render_sample_rate_hz, ChannelLayout capture_input_layout, ChannelLayout capture_output_layout, ChannelLayout render_input_layout) = 0; // TODO(peah): This method is a temporary solution used to take control // over the parameters in the audio processing module and is likely to change. virtual void ApplyConfig(const Config& config) = 0; // Pass down additional options which don't have explicit setters. This // ensures the options are applied immediately. virtual void SetExtraOptions(const webrtc::Config& config) = 0; // TODO(ajm): Only intended for internal use. Make private and friend the // necessary classes? virtual int proc_sample_rate_hz() const = 0; virtual int proc_split_sample_rate_hz() const = 0; virtual size_t num_input_channels() const = 0; virtual size_t num_proc_channels() const = 0; virtual size_t num_output_channels() const = 0; virtual size_t num_reverse_channels() const = 0; // Set to true when the output of AudioProcessing will be muted or in some // other way not used. Ideally, the captured audio would still be processed, // but some components may change behavior based on this information. // Default false. virtual void set_output_will_be_muted(bool muted) = 0; // Enqueue a runtime setting. virtual void SetRuntimeSetting(RuntimeSetting setting) = 0; // Processes a 10 ms |frame| of the primary audio stream. On the client-side, // this is the near-end (or captured) audio. // // If needed for enabled functionality, any function with the set_stream_ tag // must be called prior to processing the current frame. Any getter function // with the stream_ tag which is needed should be called after processing. // // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_| // members of |frame| must be valid. If changed from the previous call to this // method, it will trigger an initialization. virtual int ProcessStream(AudioFrame* frame) = 0; // Accepts deinterleaved float audio with the range [-1, 1]. Each element // of |src| points to a channel buffer, arranged according to // |input_layout|. At output, the channels will be arranged according to // |output_layout| at |output_sample_rate_hz| in |dest|. // // The output layout must have one channel or as many channels as the input. // |src| and |dest| may use the same memory, if desired. // // TODO(mgraczyk): Remove once clients are updated to use the new interface. virtual int ProcessStream(const float* const* src, size_t samples_per_channel, int input_sample_rate_hz, ChannelLayout input_layout, int output_sample_rate_hz, ChannelLayout output_layout, float* const* dest) = 0; // Accepts deinterleaved float audio with the range [-1, 1]. Each element of // |src| points to a channel buffer, arranged according to |input_stream|. At // output, the channels will be arranged according to |output_stream| in // |dest|. // // The output must have one channel or as many channels as the input. |src| // and |dest| may use the same memory, if desired. virtual int ProcessStream(const float* const* src, const StreamConfig& input_config, const StreamConfig& output_config, float* const* dest) = 0; // Processes a 10 ms |frame| of the reverse direction audio stream. The frame // may be modified. On the client-side, this is the far-end (or to be // rendered) audio. // // It is necessary to provide this if echo processing is enabled, as the // reverse stream forms the echo reference signal. It is recommended, but not // necessary, to provide if gain control is enabled. On the server-side this // typically will not be used. If you're not sure what to pass in here, // chances are you don't need to use it. // // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_| // members of |frame| must be valid. virtual int ProcessReverseStream(AudioFrame* frame) = 0; // Accepts deinterleaved float audio with the range [-1, 1]. Each element // of |data| points to a channel buffer, arranged according to |layout|. // TODO(mgraczyk): Remove once clients are updated to use the new interface. virtual int AnalyzeReverseStream(const float* const* data, size_t samples_per_channel, int sample_rate_hz, ChannelLayout layout) = 0; // Accepts deinterleaved float audio with the range [-1, 1]. Each element of // |data| points to a channel buffer, arranged according to |reverse_config|. virtual int ProcessReverseStream(const float* const* src, const StreamConfig& input_config, const StreamConfig& output_config, float* const* dest) = 0; // This must be called if and only if echo processing is enabled. // // Sets the |delay| in ms between ProcessReverseStream() receiving a far-end // frame and ProcessStream() receiving a near-end frame containing the // corresponding echo. On the client-side this can be expressed as // delay = (t_render - t_analyze) + (t_process - t_capture) // where, // - t_analyze is the time a frame is passed to ProcessReverseStream() and // t_render is the time the first sample of the same frame is rendered by // the audio hardware. // - t_capture is the time the first sample of a frame is captured by the // audio hardware and t_process is the time the same frame is passed to // ProcessStream(). virtual int set_stream_delay_ms(int delay) = 0; virtual int stream_delay_ms() const = 0; virtual bool was_stream_delay_set() const = 0; // Call to signal that a key press occurred (true) or did not occur (false) // with this chunk of audio. virtual void set_stream_key_pressed(bool key_pressed) = 0; // Sets a delay |offset| in ms to add to the values passed in through // set_stream_delay_ms(). May be positive or negative. // // Note that this could cause an otherwise valid value passed to // set_stream_delay_ms() to return an error. virtual void set_delay_offset_ms(int offset) = 0; virtual int delay_offset_ms() const = 0; // Attaches provided webrtc::AecDump for recording debugging // information. Log file and maximum file size logic is supposed to // be handled by implementing instance of AecDump. Calling this // method when another AecDump is attached resets the active AecDump // with a new one. This causes the d-tor of the earlier AecDump to // be called. The d-tor call may block until all pending logging // tasks are completed. virtual void AttachAecDump(std::unique_ptr aec_dump) = 0; // If no AecDump is attached, this has no effect. If an AecDump is // attached, it's destructor is called. The d-tor may block until // all pending logging tasks are completed. virtual void DetachAecDump() = 0; // Attaches provided webrtc::AudioGenerator for modifying playout audio. // Calling this method when another AudioGenerator is attached replaces the // active AudioGenerator with a new one. virtual void AttachPlayoutAudioGenerator( std::unique_ptr audio_generator) = 0; // If no AudioGenerator is attached, this has no effect. If an AecDump is // attached, its destructor is called. virtual void DetachPlayoutAudioGenerator() = 0; // Use to send UMA histograms at end of a call. Note that all histogram // specific member variables are reset. virtual void UpdateHistogramsOnCallEnd() = 0; // Get audio processing statistics. The |has_remote_tracks| argument should be // set if there are active remote tracks (this would usually be true during // a call). If there are no remote tracks some of the stats will not be set by // AudioProcessing, because they only make sense if there is at least one // remote track. virtual AudioProcessingStats GetStatistics(bool has_remote_tracks) const = 0; // These provide access to the component interfaces and should never return // NULL. The pointers will be valid for the lifetime of the APM instance. // The memory for these objects is entirely managed internally. virtual GainControl* gain_control() const = 0; virtual LevelEstimator* level_estimator() const = 0; virtual NoiseSuppression* noise_suppression() const = 0; virtual VoiceDetection* voice_detection() const = 0; // Returns the last applied configuration. virtual AudioProcessing::Config GetConfig() const = 0; enum Error { // Fatal errors. kNoError = 0, kUnspecifiedError = -1, kCreationFailedError = -2, kUnsupportedComponentError = -3, kUnsupportedFunctionError = -4, kNullPointerError = -5, kBadParameterError = -6, kBadSampleRateError = -7, kBadDataLengthError = -8, kBadNumberChannelsError = -9, kFileError = -10, kStreamParameterNotSetError = -11, kNotEnabledError = -12, // Warnings are non-fatal. // This results when a set_stream_ parameter is out of range. Processing // will continue, but the parameter may have been truncated. kBadStreamParameterWarning = -13 }; enum NativeRate { kSampleRate8kHz = 8000, kSampleRate16kHz = 16000, kSampleRate32kHz = 32000, kSampleRate48kHz = 48000 }; // TODO(kwiberg): We currently need to support a compiler (Visual C++) that // complains if we don't explicitly state the size of the array here. Remove // the size when that's no longer the case. static constexpr int kNativeSampleRatesHz[4] = { kSampleRate8kHz, kSampleRate16kHz, kSampleRate32kHz, kSampleRate48kHz}; static constexpr size_t kNumNativeSampleRates = arraysize(kNativeSampleRatesHz); static constexpr int kMaxNativeSampleRateHz = kNativeSampleRatesHz[kNumNativeSampleRates - 1]; static const int kChunkSizeMs = 10; }; class RTC_EXPORT AudioProcessingBuilder { public: AudioProcessingBuilder(); ~AudioProcessingBuilder(); // The AudioProcessingBuilder takes ownership of the echo_control_factory. AudioProcessingBuilder& SetEchoControlFactory( std::unique_ptr echo_control_factory); // The AudioProcessingBuilder takes ownership of the capture_post_processing. AudioProcessingBuilder& SetCapturePostProcessing( std::unique_ptr capture_post_processing); // The AudioProcessingBuilder takes ownership of the render_pre_processing. AudioProcessingBuilder& SetRenderPreProcessing( std::unique_ptr render_pre_processing); // The AudioProcessingBuilder takes ownership of the echo_detector. AudioProcessingBuilder& SetEchoDetector( rtc::scoped_refptr echo_detector); // The AudioProcessingBuilder takes ownership of the capture_analyzer. AudioProcessingBuilder& SetCaptureAnalyzer( std::unique_ptr capture_analyzer); // This creates an APM instance using the previously set components. Calling // the Create function resets the AudioProcessingBuilder to its initial state. AudioProcessing* Create(); AudioProcessing* Create(const webrtc::Config& config); private: std::unique_ptr echo_control_factory_; std::unique_ptr capture_post_processing_; std::unique_ptr render_pre_processing_; rtc::scoped_refptr echo_detector_; std::unique_ptr capture_analyzer_; RTC_DISALLOW_COPY_AND_ASSIGN(AudioProcessingBuilder); }; class StreamConfig { public: // sample_rate_hz: The sampling rate of the stream. // // num_channels: The number of audio channels in the stream, excluding the // keyboard channel if it is present. When passing a // StreamConfig with an array of arrays T*[N], // // N == {num_channels + 1 if has_keyboard // {num_channels if !has_keyboard // // has_keyboard: True if the stream has a keyboard channel. When has_keyboard // is true, the last channel in any corresponding list of // channels is the keyboard channel. StreamConfig(int sample_rate_hz = 0, size_t num_channels = 0, bool has_keyboard = false) : sample_rate_hz_(sample_rate_hz), num_channels_(num_channels), has_keyboard_(has_keyboard), num_frames_(calculate_frames(sample_rate_hz)) {} void set_sample_rate_hz(int value) { sample_rate_hz_ = value; num_frames_ = calculate_frames(value); } void set_num_channels(size_t value) { num_channels_ = value; } void set_has_keyboard(bool value) { has_keyboard_ = value; } int sample_rate_hz() const { return sample_rate_hz_; } // The number of channels in the stream, not including the keyboard channel if // present. size_t num_channels() const { return num_channels_; } bool has_keyboard() const { return has_keyboard_; } size_t num_frames() const { return num_frames_; } size_t num_samples() const { return num_channels_ * num_frames_; } bool operator==(const StreamConfig& other) const { return sample_rate_hz_ == other.sample_rate_hz_ && num_channels_ == other.num_channels_ && has_keyboard_ == other.has_keyboard_; } bool operator!=(const StreamConfig& other) const { return !(*this == other); } private: static size_t calculate_frames(int sample_rate_hz) { return static_cast(AudioProcessing::kChunkSizeMs * sample_rate_hz / 1000); } int sample_rate_hz_; size_t num_channels_; bool has_keyboard_; size_t num_frames_; }; class ProcessingConfig { public: enum StreamName { kInputStream, kOutputStream, kReverseInputStream, kReverseOutputStream, kNumStreamNames, }; const StreamConfig& input_stream() const { return streams[StreamName::kInputStream]; } const StreamConfig& output_stream() const { return streams[StreamName::kOutputStream]; } const StreamConfig& reverse_input_stream() const { return streams[StreamName::kReverseInputStream]; } const StreamConfig& reverse_output_stream() const { return streams[StreamName::kReverseOutputStream]; } StreamConfig& input_stream() { return streams[StreamName::kInputStream]; } StreamConfig& output_stream() { return streams[StreamName::kOutputStream]; } StreamConfig& reverse_input_stream() { return streams[StreamName::kReverseInputStream]; } StreamConfig& reverse_output_stream() { return streams[StreamName::kReverseOutputStream]; } bool operator==(const ProcessingConfig& other) const { for (int i = 0; i < StreamName::kNumStreamNames; ++i) { if (this->streams[i] != other.streams[i]) { return false; } } return true; } bool operator!=(const ProcessingConfig& other) const { return !(*this == other); } StreamConfig streams[StreamName::kNumStreamNames]; }; // An estimation component used to retrieve level metrics. class LevelEstimator { public: virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // Returns the root mean square (RMS) level in dBFs (decibels from digital // full-scale), or alternately dBov. It is computed over all primary stream // frames since the last call to RMS(). The returned value is positive but // should be interpreted as negative. It is constrained to [0, 127]. // // The computation follows: https://tools.ietf.org/html/rfc6465 // with the intent that it can provide the RTP audio level indication. // // Frames passed to ProcessStream() with an |_energy| of zero are considered // to have been muted. The RMS of the frame will be interpreted as -127. virtual int RMS() = 0; protected: virtual ~LevelEstimator() {} }; // The noise suppression (NS) component attempts to remove noise while // retaining speech. Recommended to be enabled on the client-side. // // Recommended to be enabled on the client-side. class NoiseSuppression { public: virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // Determines the aggressiveness of the suppression. Increasing the level // will reduce the noise level at the expense of a higher speech distortion. enum Level { kLow, kModerate, kHigh, kVeryHigh }; virtual int set_level(Level level) = 0; virtual Level level() const = 0; // Returns the internally computed prior speech probability of current frame // averaged over output channels. This is not supported in fixed point, for // which |kUnsupportedFunctionError| is returned. virtual float speech_probability() const = 0; // Returns the noise estimate per frequency bin averaged over all channels. virtual std::vector NoiseEstimate() = 0; protected: virtual ~NoiseSuppression() {} }; // Experimental interface for a custom analysis submodule. class CustomAudioAnalyzer { public: // (Re-) Initializes the submodule. virtual void Initialize(int sample_rate_hz, int num_channels) = 0; // Analyzes the given capture or render signal. virtual void Analyze(const AudioBuffer* audio) = 0; // Returns a string representation of the module state. virtual std::string ToString() const = 0; virtual ~CustomAudioAnalyzer() {} }; // Interface for a custom processing submodule. class CustomProcessing { public: // (Re-)Initializes the submodule. virtual void Initialize(int sample_rate_hz, int num_channels) = 0; // Processes the given capture or render signal. virtual void Process(AudioBuffer* audio) = 0; // Returns a string representation of the module state. virtual std::string ToString() const = 0; // Handles RuntimeSettings. TODO(webrtc:9262): make pure virtual // after updating dependencies. virtual void SetRuntimeSetting(AudioProcessing::RuntimeSetting setting); virtual ~CustomProcessing() {} }; // Interface for an echo detector submodule. class EchoDetector : public rtc::RefCountInterface { public: // (Re-)Initializes the submodule. virtual void Initialize(int capture_sample_rate_hz, int num_capture_channels, int render_sample_rate_hz, int num_render_channels) = 0; // Analysis (not changing) of the render signal. virtual void AnalyzeRenderAudio(rtc::ArrayView render_audio) = 0; // Analysis (not changing) of the capture signal. virtual void AnalyzeCaptureAudio( rtc::ArrayView capture_audio) = 0; // Pack an AudioBuffer into a vector. static void PackRenderAudioBuffer(AudioBuffer* audio, std::vector* packed_buffer); struct Metrics { double echo_likelihood; double echo_likelihood_recent_max; }; // Collect current metrics from the echo detector. virtual Metrics GetMetrics() const = 0; }; // The voice activity detection (VAD) component analyzes the stream to // determine if voice is present. A facility is also provided to pass in an // external VAD decision. // // In addition to |stream_has_voice()| the VAD decision is provided through the // |AudioFrame| passed to |ProcessStream()|. The |vad_activity_| member will be // modified to reflect the current decision. class VoiceDetection { public: virtual int Enable(bool enable) = 0; virtual bool is_enabled() const = 0; // Returns true if voice is detected in the current frame. Should be called // after |ProcessStream()|. virtual bool stream_has_voice() const = 0; // Some of the APM functionality requires a VAD decision. In the case that // a decision is externally available for the current frame, it can be passed // in here, before |ProcessStream()| is called. // // VoiceDetection does _not_ need to be enabled to use this. If it happens to // be enabled, detection will be skipped for any frame in which an external // VAD decision is provided. virtual int set_stream_has_voice(bool has_voice) = 0; // Specifies the likelihood that a frame will be declared to contain voice. // A higher value makes it more likely that speech will not be clipped, at // the expense of more noise being detected as voice. enum Likelihood { kVeryLowLikelihood, kLowLikelihood, kModerateLikelihood, kHighLikelihood }; virtual int set_likelihood(Likelihood likelihood) = 0; virtual Likelihood likelihood() const = 0; // Sets the |size| of the frames in ms on which the VAD will operate. Larger // frames will improve detection accuracy, but reduce the frequency of // updates. // // This does not impact the size of frames passed to |ProcessStream()|. virtual int set_frame_size_ms(int size) = 0; virtual int frame_size_ms() const = 0; protected: virtual ~VoiceDetection() {} }; } // namespace webrtc #endif // MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_