/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/echo_remover.h" #include #include #include #include #include #include "api/array_view.h" #include "modules/audio_processing/aec3/aec3_common.h" #include "modules/audio_processing/aec3/aec3_fft.h" #include "modules/audio_processing/aec3/aec_state.h" #include "modules/audio_processing/aec3/comfort_noise_generator.h" #include "modules/audio_processing/aec3/echo_path_variability.h" #include "modules/audio_processing/aec3/echo_remover_metrics.h" #include "modules/audio_processing/aec3/fft_data.h" #include "modules/audio_processing/aec3/render_buffer.h" #include "modules/audio_processing/aec3/render_signal_analyzer.h" #include "modules/audio_processing/aec3/residual_echo_estimator.h" #include "modules/audio_processing/aec3/subtractor.h" #include "modules/audio_processing/aec3/subtractor_output.h" #include "modules/audio_processing/aec3/suppression_filter.h" #include "modules/audio_processing/aec3/suppression_gain.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/atomicops.h" #include "rtc_base/checks.h" #include "rtc_base/constructormagic.h" #include "rtc_base/logging.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { bool UseShadowFilterOutput() { return !field_trial::IsEnabled( "WebRTC-Aec3UtilizeShadowFilterOutputKillSwitch"); } bool UseSmoothSignalTransitions() { return !field_trial::IsEnabled( "WebRTC-Aec3SmoothSignalTransitionsKillSwitch"); } bool EnableBoundedNearend() { return !field_trial::IsEnabled("WebRTC-Aec3BoundedNearendKillSwitch"); } void LinearEchoPower(const FftData& E, const FftData& Y, std::array* S2) { for (size_t k = 0; k < E.re.size(); ++k) { (*S2)[k] = (Y.re[k] - E.re[k]) * (Y.re[k] - E.re[k]) + (Y.im[k] - E.im[k]) * (Y.im[k] - E.im[k]); } } // Fades between two input signals using a fix-sized transition. void SignalTransition(rtc::ArrayView from, rtc::ArrayView to, rtc::ArrayView out) { constexpr size_t kTransitionSize = 30; constexpr float kOneByTransitionSizePlusOne = 1.f / (kTransitionSize + 1); RTC_DCHECK_EQ(from.size(), to.size()); RTC_DCHECK_EQ(from.size(), out.size()); RTC_DCHECK_LE(kTransitionSize, out.size()); for (size_t k = 0; k < kTransitionSize; ++k) { float a = (k + 1) * kOneByTransitionSizePlusOne; out[k] = a * to[k] + (1.f - a) * from[k]; } std::copy(to.begin() + kTransitionSize, to.end(), out.begin() + kTransitionSize); } // Computes a windowed (square root Hanning) padded FFT and updates the related // memory. void WindowedPaddedFft(const Aec3Fft& fft, rtc::ArrayView v, rtc::ArrayView v_old, FftData* V) { fft.PaddedFft(v, v_old, Aec3Fft::Window::kSqrtHanning, V); std::copy(v.begin(), v.end(), v_old.begin()); } // Class for removing the echo from the capture signal. class EchoRemoverImpl final : public EchoRemover { public: EchoRemoverImpl(const EchoCanceller3Config& config, int sample_rate_hz); ~EchoRemoverImpl() override; void GetMetrics(EchoControl::Metrics* metrics) const override; // Removes the echo from a block of samples from the capture signal. The // supplied render signal is assumed to be pre-aligned with the capture // signal. void ProcessCapture(EchoPathVariability echo_path_variability, bool capture_signal_saturation, const absl::optional& external_delay, RenderBuffer* render_buffer, std::vector>* capture) override; // Returns the internal delay estimate in blocks. absl::optional Delay() const override { // TODO(peah): Remove or reactivate this functionality. return absl::nullopt; } // Updates the status on whether echo leakage is detected in the output of the // echo remover. void UpdateEchoLeakageStatus(bool leakage_detected) override { echo_leakage_detected_ = leakage_detected; } private: // Selects which of the shadow and main linear filter outputs that is most // appropriate to pass to the suppressor and forms the linear filter output by // smoothly transition between those. void FormLinearFilterOutput(bool smooth_transition, const SubtractorOutput& subtractor_output, rtc::ArrayView output); static int instance_count_; const EchoCanceller3Config config_; const Aec3Fft fft_; std::unique_ptr data_dumper_; const Aec3Optimization optimization_; const int sample_rate_hz_; const bool use_shadow_filter_output_; const bool use_smooth_signal_transitions_; const bool enable_bounded_nearend_; Subtractor subtractor_; SuppressionGain suppression_gain_; ComfortNoiseGenerator cng_; SuppressionFilter suppression_filter_; RenderSignalAnalyzer render_signal_analyzer_; ResidualEchoEstimator residual_echo_estimator_; bool echo_leakage_detected_ = false; AecState aec_state_; EchoRemoverMetrics metrics_; std::array e_old_; std::array x_old_; std::array y_old_; size_t block_counter_ = 0; int gain_change_hangover_ = 0; bool main_filter_output_last_selected_ = true; bool linear_filter_output_last_selected_ = true; RTC_DISALLOW_COPY_AND_ASSIGN(EchoRemoverImpl); }; int EchoRemoverImpl::instance_count_ = 0; EchoRemoverImpl::EchoRemoverImpl(const EchoCanceller3Config& config, int sample_rate_hz) : config_(config), fft_(), data_dumper_( new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))), optimization_(DetectOptimization()), sample_rate_hz_(sample_rate_hz), use_shadow_filter_output_( UseShadowFilterOutput() && config_.filter.enable_shadow_filter_output_usage), use_smooth_signal_transitions_(UseSmoothSignalTransitions()), enable_bounded_nearend_(EnableBoundedNearend()), subtractor_(config, data_dumper_.get(), optimization_), suppression_gain_(config_, optimization_, sample_rate_hz), cng_(optimization_), suppression_filter_(optimization_, sample_rate_hz_), render_signal_analyzer_(config_), residual_echo_estimator_(config_), aec_state_(config_) { RTC_DCHECK(ValidFullBandRate(sample_rate_hz)); x_old_.fill(0.f); y_old_.fill(0.f); e_old_.fill(0.f); } EchoRemoverImpl::~EchoRemoverImpl() = default; void EchoRemoverImpl::GetMetrics(EchoControl::Metrics* metrics) const { // Echo return loss (ERL) is inverted to go from gain to attenuation. metrics->echo_return_loss = -10.0 * log10(aec_state_.ErlTimeDomain()); metrics->echo_return_loss_enhancement = Log2TodB(aec_state_.FullBandErleLog2()); } void EchoRemoverImpl::ProcessCapture( EchoPathVariability echo_path_variability, bool capture_signal_saturation, const absl::optional& external_delay, RenderBuffer* render_buffer, std::vector>* capture) { ++block_counter_; const std::vector>& x = render_buffer->Block(0); std::vector>* y = capture; RTC_DCHECK(render_buffer); RTC_DCHECK(y); RTC_DCHECK_EQ(x.size(), NumBandsForRate(sample_rate_hz_)); RTC_DCHECK_EQ(y->size(), NumBandsForRate(sample_rate_hz_)); RTC_DCHECK_EQ(x[0].size(), kBlockSize); RTC_DCHECK_EQ((*y)[0].size(), kBlockSize); const std::vector& x0 = x[0]; std::vector& y0 = (*y)[0]; data_dumper_->DumpWav("aec3_echo_remover_capture_input", kBlockSize, &y0[0], LowestBandRate(sample_rate_hz_), 1); data_dumper_->DumpWav("aec3_echo_remover_render_input", kBlockSize, &x0[0], LowestBandRate(sample_rate_hz_), 1); data_dumper_->DumpRaw("aec3_echo_remover_capture_input", y0); data_dumper_->DumpRaw("aec3_echo_remover_render_input", x0); aec_state_.UpdateCaptureSaturation(capture_signal_saturation); if (echo_path_variability.AudioPathChanged()) { // Ensure that the gain change is only acted on once per frame. if (echo_path_variability.gain_change) { if (gain_change_hangover_ == 0) { constexpr int kMaxBlocksPerFrame = 3; gain_change_hangover_ = kMaxBlocksPerFrame; RTC_LOG(LS_WARNING) << "Gain change detected at block " << block_counter_; } else { echo_path_variability.gain_change = false; } } subtractor_.HandleEchoPathChange(echo_path_variability); aec_state_.HandleEchoPathChange(echo_path_variability); if (echo_path_variability.delay_change != EchoPathVariability::DelayAdjustment::kNone) { suppression_gain_.SetInitialState(true); } } if (gain_change_hangover_ > 0) { --gain_change_hangover_; } std::array Y2; std::array E2; std::array R2; std::array S2_linear; std::array G; float high_bands_gain; FftData Y; FftData E; FftData comfort_noise; FftData high_band_comfort_noise; SubtractorOutput subtractor_output; // Analyze the render signal. render_signal_analyzer_.Update(*render_buffer, aec_state_.FilterDelayBlocks()); // Perform linear echo cancellation. if (aec_state_.TransitionTriggered()) { subtractor_.ExitInitialState(); suppression_gain_.SetInitialState(false); } // If the delay is known, use the echo subtractor. subtractor_.Process(*render_buffer, y0, render_signal_analyzer_, aec_state_, &subtractor_output); std::array e; FormLinearFilterOutput(use_smooth_signal_transitions_, subtractor_output, e); // Compute spectra. WindowedPaddedFft(fft_, y0, y_old_, &Y); WindowedPaddedFft(fft_, e, e_old_, &E); LinearEchoPower(E, Y, &S2_linear); Y.Spectrum(optimization_, Y2); E.Spectrum(optimization_, E2); // Update the AEC state information. aec_state_.Update(external_delay, subtractor_.FilterFrequencyResponse(), subtractor_.FilterImpulseResponse(), *render_buffer, E2, Y2, subtractor_output, y0); // Choose the linear output. data_dumper_->DumpWav("aec3_output_linear2", kBlockSize, &e[0], LowestBandRate(sample_rate_hz_), 1); if (aec_state_.UseLinearFilterOutput()) { if (!linear_filter_output_last_selected_ && use_smooth_signal_transitions_) { SignalTransition(y0, e, y0); } else { std::copy(e.begin(), e.end(), y0.begin()); } } else { if (linear_filter_output_last_selected_ && use_smooth_signal_transitions_) { SignalTransition(e, y0, y0); } } linear_filter_output_last_selected_ = aec_state_.UseLinearFilterOutput(); const auto& Y_fft = aec_state_.UseLinearFilterOutput() ? E : Y; data_dumper_->DumpWav("aec3_output_linear", kBlockSize, &y0[0], LowestBandRate(sample_rate_hz_), 1); // Estimate the residual echo power. residual_echo_estimator_.Estimate(aec_state_, *render_buffer, S2_linear, Y2, &R2); // Estimate the comfort noise. cng_.Compute(aec_state_, Y2, &comfort_noise, &high_band_comfort_noise); // Compute and apply the suppression gain. const auto& echo_spectrum = aec_state_.UsableLinearEstimate() ? S2_linear : R2; std::array E2_bounded; if (enable_bounded_nearend_) { std::transform(E2.begin(), E2.end(), Y2.begin(), E2_bounded.begin(), [](float a, float b) { return std::min(a, b); }); } else { std::copy(E2.begin(), E2.end(), E2_bounded.begin()); } suppression_gain_.GetGain(E2, E2_bounded, echo_spectrum, R2, cng_.NoiseSpectrum(), E, Y, render_signal_analyzer_, aec_state_, x, &high_bands_gain, &G); suppression_filter_.ApplyGain(comfort_noise, high_band_comfort_noise, G, high_bands_gain, Y_fft, y); // Update the metrics. metrics_.Update(aec_state_, cng_.NoiseSpectrum(), G); // Debug outputs for the purpose of development and analysis. data_dumper_->DumpWav("aec3_echo_estimate", kBlockSize, &subtractor_output.s_main[0], LowestBandRate(sample_rate_hz_), 1); data_dumper_->DumpRaw("aec3_output", y0); data_dumper_->DumpRaw("aec3_narrow_render", render_signal_analyzer_.NarrowPeakBand() ? 1 : 0); data_dumper_->DumpRaw("aec3_N2", cng_.NoiseSpectrum()); data_dumper_->DumpRaw("aec3_suppressor_gain", G); data_dumper_->DumpWav("aec3_output", rtc::ArrayView(&y0[0], kBlockSize), LowestBandRate(sample_rate_hz_), 1); data_dumper_->DumpRaw("aec3_using_subtractor_output", aec_state_.UseLinearFilterOutput() ? 1 : 0); data_dumper_->DumpRaw("aec3_E2", E2); data_dumper_->DumpRaw("aec3_S2_linear", S2_linear); data_dumper_->DumpRaw("aec3_Y2", Y2); data_dumper_->DumpRaw( "aec3_X2", render_buffer->Spectrum(aec_state_.FilterDelayBlocks())); data_dumper_->DumpRaw("aec3_R2", R2); data_dumper_->DumpRaw("aec3_R2_reverb", residual_echo_estimator_.GetReverbPowerSpectrum()); data_dumper_->DumpRaw("aec3_filter_delay", aec_state_.FilterDelayBlocks()); data_dumper_->DumpRaw("aec3_capture_saturation", aec_state_.SaturatedCapture() ? 1 : 0); } void EchoRemoverImpl::FormLinearFilterOutput( bool smooth_transition, const SubtractorOutput& subtractor_output, rtc::ArrayView output) { RTC_DCHECK_EQ(subtractor_output.e_main.size(), output.size()); RTC_DCHECK_EQ(subtractor_output.e_shadow.size(), output.size()); bool use_main_output = true; if (use_shadow_filter_output_) { // As the output of the main adaptive filter generally should be better // than the shadow filter output, add a margin and threshold for when // choosing the shadow filter output. if (subtractor_output.e2_shadow < 0.9f * subtractor_output.e2_main && subtractor_output.y2 > 30.f * 30.f * kBlockSize && (subtractor_output.s2_main > 60.f * 60.f * kBlockSize || subtractor_output.s2_shadow > 60.f * 60.f * kBlockSize)) { use_main_output = false; } else { // If the main filter is diverged, choose the filter output that has the // lowest power. if (subtractor_output.e2_shadow < subtractor_output.e2_main && subtractor_output.y2 < subtractor_output.e2_main) { use_main_output = false; } } } if (use_main_output) { if (!main_filter_output_last_selected_ && smooth_transition) { SignalTransition(subtractor_output.e_shadow, subtractor_output.e_main, output); } else { std::copy(subtractor_output.e_main.begin(), subtractor_output.e_main.end(), output.begin()); } } else { if (main_filter_output_last_selected_ && smooth_transition) { SignalTransition(subtractor_output.e_main, subtractor_output.e_shadow, output); } else { std::copy(subtractor_output.e_shadow.begin(), subtractor_output.e_shadow.end(), output.begin()); } } main_filter_output_last_selected_ = use_main_output; } } // namespace EchoRemover* EchoRemover::Create(const EchoCanceller3Config& config, int sample_rate_hz) { return new EchoRemoverImpl(config, sample_rate_hz); } } // namespace webrtc